抽屉原理优秀教案

合集下载

小学数学六年级《抽屉原理》优秀教学设计

小学数学六年级《抽屉原理》优秀教学设计

教学设计:《抽屉原理》一、教学目标1.知识目标:通过本节课的学习,学生能够了解什么是抽屉原理,掌握其基本概念和应用方法。

2.能力目标:培养学生的逻辑思维能力,提高学生运用抽屉原理解决问题的能力。

3.情感目标:激发学生的学习兴趣,培养学生的探索精神和解决问题的勇气。

二、教学重点1.了解抽屉原理的基本概念和应用方法。

2.运用抽屉原理解决相关问题。

三、教学难点学生能够灵活运用抽屉原理解决复杂问题。

四、教学过程设计1.引入(5分钟)教师通过提问,引导学生思考:你们在家里的抽屉里放了什么东西?抽屉有什么共同特点?学生回答之后,教师引导学生总结抽屉的共同特点:抽屉是一种容器,可以用来存放衣服、书籍、文具等物品。

2.导入(10分钟)教师出示一些抽屉的图片,让学生观察并回答问题:这些抽屉里装了多少件东西?学生回答后,教师引导学生进一步思考:如果这些抽屉的数量和放入抽屉的物品数量相等,那么最少需要多少抽屉?最多需要多少抽屉?学生能够自主思考解决问题,教师适时给予点拨。

3.学习(25分钟)(1)教师介绍抽屉原理的基本概念:在一类事物中放入的东西比该类事物的数目还多,那么必定有至少一个抽屉放了两件或两件以上的东西。

(2)教师通过几个简单的案例来让学生理解抽屉原理的应用方法。

例如:有8个抽屉,放入7个苹果,那么至少有一个抽屉中放了2个苹果。

学生在理解的基础上进行思考,试着运用抽屉原理解决其他类似问题。

(3)教师带领学生进行抽屉原理的练习。

先进行简单的练习,再逐步提高难度。

例如:有10个抽屉和9只手套,那么至少有一个抽屉中放了2只手套;有100个抽屉和99个文件夹,那么至少有一个抽屉中放了两个文件夹。

(4)教师和学生一起解析练习题,确保学生掌握抽屉原理的应用方法。

4.拓展(15分钟)(1)教师出示一些有关抽屉原理的拓展问题,让学生独立思考解决方案。

例如:有100个瓶子和99个球,那么至少有一个瓶子中装了几个球?学生可以根据抽屉原理提出自己的思路和解决办法。

抽屉原理教案14篇

抽屉原理教案14篇

抽屉原理教案14篇抽屉原理优质课教案篇一××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。

1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。

此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。

在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。

这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。

在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。

在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。

2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。

让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。

另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。

3、注意渗透数学和生活的联系。

并在游戏中深化知识。

学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。

课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。

”这是为什么?学生很惊讶。

抽屉原理教案

抽屉原理教案

抽屉原理教案抽屉原理教案教学目标:1. 理解抽屉原理的基本概念和应用;2. 掌握使用抽屉原理解决问题的方法;3. 培养学生的逻辑思维和数学推理能力。

教学重点:1. 抽屉原理的定义和应用;2. 如何使用抽屉原理解决问题。

教学难点:如何将抽屉原理应用于实际问题的解决。

教学准备:1. 教师准备PPT和教学素材;2. 学生课前预习相关知识。

教学过程:Step 1 导入新课教师通过简单的引入问题激发学生思考,例如:如果班上有10个学生,分别是A、B、C、D、E、F、G、H、I、J,怎样保证至少有两个学生的名字首字母相同?Step 2 介绍抽屉原理教师通过PPT或板书介绍抽屉原理的定义和基本概念,解释抽屉原理是数学中一种常用的原理,也称为鸽巢原理。

简单介绍抽屉原理的应用领域。

Step 3 学习抽屉原理的应用方法教师通过多个具体例子,引导学生学习使用抽屉原理解决问题的方法。

例如:给出10个整数,证明至少存在两个整数的和能被10整除。

Step 4 练习与巩固教师出示如下问题:在一桶里有101个苹果,你要从中选出100个,那么至少会包含两个相同的苹果。

学生在思考一段时间后,教师逐步引导学生分析和解答问题,引导学生使用抽屉原理解决问题。

Step 5 拓展应用教师提供更复杂的问题,并鼓励学生在小组内合作讨论解决方法。

例如:如果地球上有7.8亿人口,那么至少有多少人的生日在同一天?Step 6 总结与布置作业教师通过总结课堂上所学的内容,强调抽屉原理的应用和重要性。

布置作业,要求学生进一步巩固和拓展抽屉原理的应用。

教学延伸:1. 学生可以结合自己生活中的问题,尝试利用抽屉原理解决;2. 学生可以通过查阅相关资料,了解抽屉原理在其他领域的应用案例。

《抽屉原理》教学设计精选7篇

《抽屉原理》教学设计精选7篇

《抽屉原理》教学设计精选7篇抽屉原理教学反思篇一抽屉原理教学反思《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。

当我第一次接触到《抽屉原理》时,我很困惑:什么是抽屉原理?这么难的内容学生能理解吗?我的印象里《抽屉原理》是非常坚深难懂的(好像在上师范的时候学过,当时我都没学懂)。

时隔两年,再次教学《抽屉原理》心里还是觉得没底,不知能否讲清楚、讲明白。

为了上好这一内容,我搜集学习了很多资料,查阅了多篇教案,在“前辈”们的经验上,与本组成员相互探讨、研究,终于使我对“抽屉原理”有了新的认识,也终于理出了头绪。

抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。

通过本部分内容的教学,我有以下几点体会:一、重视集体研讨,集体的智慧是无穷的。

以前上这节课时,总是按照自己的理解来给学生讲,有时会拿一些名师的优秀教案生搬硬套,结果却总是讲着讲着不知道该怎么讲了,有时连自己也都被搅迷糊了,教学效果可想而知。

而今年上课之前,我们几位老师提前就开始讨论这节课,红晓老师还拿出了以前做的课件,讲了讲自己对这节课的理解,以及难点的突破方法,通过我们集体的研讨,原本觉得很难理解的内容也变得简单了,上课之前能够做到胸有成竹,就不愁讲不好这节课了。

二、要根据学生的实际进行教学设计。

以前上这节课时,我总以“学生的生日”为话题引入新课,学生们兴趣也比较高,这次上课,我依旧以此为话题引入新课,却没有出现以前那种效果。

课后反思一下,以前的班级最多42人,当老师猜测“我们班42人中,至少有4个人的生日在同一个月”之后,学生们都不相信,于是就很有兴趣地要进行验证。

由于人数少,比较好验证,而且基本上会出现1月生日的只有一、两个人,2月同样如此,这样学生就会面露得意之色,说老师猜的不对,直到3、4月或5、6月才发现真的有4个或4个以上的人在同一个月生日,这时还会有些学生不甘心,说有5个人在某一月生日,你说的是4人。

抽屉原理教案幼儿园

抽屉原理教案幼儿园

抽屉原理教案幼儿园
一、教学目标
1.了解抽屉原理的概念;
2.学习抽屉原理的具体应用;
3.培养幼儿的逻辑思维能力。

二、教学内容
1.抽屉原理的概念;
2.抽屉原理的应用案例;
3.数学实验中的抽屉原理。

三、教学重难点
1.抽屉原理的概念和应用;
2.数学实验中如何运用抽屉原理。

四、教学过程
1.教师进行简单的抽屉实验,让幼儿合作实验;
2.引导幼儿讨论实验结果和抽屉原理的概念;
3.播放动画视频,介绍抽屉原理的具体应用;
4.教师指导幼儿进行简单的数学实验,应用抽屉原理。

五、教学后记
在幼儿的成长过程中,培养他们的逻辑思维能力对于孩子的发展至关重要。

通过本次的抽屉原理教学,让幼儿感受到抽屉原理在实际应用中的重要作用,并让孩子们在实验过程中体会到科学的魅力,同时也培养了幼儿的实验精神和团队协作意识。

希望通过本次教学,幼儿们能够对抽屉原理有一个更加深入的认识,同时也能够在今后的学习生活中更加喜欢和关注数学这门学科。

抽屉原理优秀教案

抽屉原理优秀教案

抽屉原理优秀教案
简介
抽屉原理(Pigeonhole Principle)是一种非常基础的组合数学原理,也是解决问题的常用思路。

在高中数学的课程中,抽屉原理也是非常重要的一部分。

下面将介绍一份优秀的抽屉原理教案,帮助老师更好地让学生掌握该原理。

教材准备
•白板、白板笔、橡皮擦、教材
•尺子、铅笔、草稿纸
教学目标
•理解抽屉原理的概念和应用条件;
•运用抽屉原理解决实际问题;
•提高学生的组合数学思维和解决问题的能力。

教学过程
1. 引入
1.1 翻译和解释抽屉原理的概念。

1.2 提示学生,抽屉原理能够帮助解决哪些问题,引出本课核心内容。

2. 案例练习
2.1 由老师出题,引导学生使用抽屉原理解决有关组合数学的实际问题。

2.2 根据题目难易程度逐步提高练习难度,帮助学生逐步掌握使用抽屉原理的方法。

3. 归纳
3.1 学生归纳抽屉原理的应用范围和方法,并在白板上进行讲解。

3.2 带领学生解决课堂上未完成的案例,检测学生对抽屉原理的掌握程度。

4. 课后练习
4.1 布置课后练习,让学生巩固抽屉原理的应用。

4.2 课后批改作业,对学生掌握程度进行检测和评价。

教学评估
•课堂互动表现
•课堂练习和课后作业完成情况
•学生对课程知识点的掌握和理解
小结
本教案针对高中生,以案例练习为主,教师通过引入案例和逐步讲解抽屉原理的方法,帮助学生掌握该原理的应用方法,提高学生的组合数学思维和解决问题的能力。

同时,通过课堂互动和课后练习等方式进行评估,帮助学生巩固和深化所学知识,从而达到提高教学质量的目的。

抽屉原理教学设计(共8篇) - 副本

抽屉原理教学设计(共8篇) - 副本

抽屉原理教学设计(共8篇)篇:《抽屉原理》设计《抽屉原理》教学设计教学目标:1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。

2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、原理。

3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学过程:一、创设情景导入新课师:同学们喜欢玩游戏吗?讲台前面有6张凳子,请7位同学来抢凳子坐。

我不看同学们怎样坐,我敢肯定的说:这6张凳子中总有一张凳子至少有两个同学同坐,大家相信吗?(师生演示)师:想知道老师为什么能做出如此准确的判断吗?这其中蕴含一个有趣的数学原理——抽屉原理。

(板书课题)这节课我们就一起来研究这个数学原理。

师:通过今天的学习,你想知道些什么?二、自主操作探究新知(一) 活动1 课件出示:把4枝铅笔放到3个笔筒里,可以怎么放?师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。

1、学生动手操作,师巡视,了解情况。

2、汇报交流说理活动① 师:有什么发现?谁能说说看?师根据学生的回答用数字在黑板上记录。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1)师:你们是这样记录的吗?师:还可以用图记录。

我把用图记录的用课件展示出来。

师:还可以用表格记录。

师板书在黑板上。

② 再认真观察记录,还有什么发现?板书:不管怎样放,总有一个笔筒里至少有2枝铅笔。

③ 怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。

)板书:4÷3=1(枝)……1(枝)④ 师:这种方法是不是很快就能确定总有一个笔筒里至少有几枝铅笔呢?(学生交流)⑤ 把5枝铅笔放进4个笔筒里呢?还用摆吗?板书:5÷4=1(枝)……1(枝)⑥ 课件出示:把6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把10枝铅笔放进9个笔筒呢?把100枝铅笔放进99个笔筒呢?板书:7÷6=1(枝)……1(枝)10÷9=1(枝)……1(枝)100÷99=1(枝)……1(枝)⑦ 观察这些算式你发现了什么规律?预设学生说出:至少数=商+余数师:是不是这个规律呢?我们来试一试吧!3、深化探究得出结论课件出示:5只鸽子飞回3个鸽笼,至少有两只鸽子要飞进同一个鸽笼里,为什么?① 学生活动② 交流说理活动预设:生1:题目的说法是错误的,用商加余数,应该至少有3只鸽子要飞进同一个鸽笼。

六年级数学《抽屉原理》公开课教学设计

六年级数学《抽屉原理》公开课教学设计

六年级数学《抽屉原理》公开课教学设计六年级数学《抽屉原理》公开课教学设计(精选5篇)抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

接下来我们一起来看看六年级数学《抽屉原理》公开课教学设计(精选5篇)。

六年级数学《抽屉原理》公开课教学设计篇1教学内容:六年级数学下册70页、71页例1、例2。

教学目标:1、理解“抽屉原理”的一般形式。

2、经历“抽屉原理”的探究过程,体会比较、推理的学习方法,会用“抽屉原理”解决简单的的实际问题。

4、感受数学的魅力,提高学习兴趣,培养学生的探究精神。

教学重点:经历“抽屉原理”探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”的一般规律。

教学准备:相应数量的杯子、铅笔、课件。

教学过程:一、情景引入让五位学生同时坐在四把椅子上,引出结论:不管怎么坐,总有一把椅子上至少坐了两名学生。

师:同学们,你们想知道这是为什么吗?今天,我们一起研究一个新的有趣的数学问题。

二、探究新知1、探究3根铅笔放到2个杯子里的问题。

师:现在用3根铅笔放在2个杯子里,怎么放?有几种放法?大家摆摆看,有什么发现?摆完后学生汇报,教师作相应的板书(3,0)(2,1),引导学生观察理解说出:不管怎么放总有一个杯子至少有2根铅笔。

2、教学例1(1)师:依此推下去,把4根铅笔放在3个杯子又怎么放呢?会有这种结论吗?让学生动手操作,做好记录,认真观察,看看有什么发现?(2)、学生汇报放结果,结合学具操作解释。

教师作相应记录。

(4,0,0) (3,1,0) (2,2,0) (2,1,1)(学生通过操作观察、比较不难发现有与上个问题同样结论。

)(3)学生回答后让学生阅读例1中对话框:不管怎么放,总有一个杯子里至少放进2根铅笔。

抽屉原理小学数学教案

抽屉原理小学数学教案

抽屉原理小学数学教案
教学内容:抽屉原理
年级:小学四年级
教学目标:
1. 理解抽屉原理的概念和基本原理。

2. 能够应用抽屉原理解决实际问题。

3. 培养学生的逻辑思维和解决问题的能力。

教学准备:
1. 教师准备教材《小学数学》四年级教材相关内容。

2. 准备黑板、彩色粉笔和教具。

3. 预先准备好相关的练习题和考题。

教学过程:
第一步:导入(5分钟)
教师引导学生回顾前几节课所学的内容,提出一个问题:“如果有5只猴子,只有4只马桶,那么至少有一只猴子会用同一只马桶吗?”让学生思考并讨论。

第二步:概念讲解(10分钟)
教师向学生解释抽屉原理的概念:“抽屉原理是指如果有n+1个物品放进n个抽屉里,至少会有一个抽屉里有两个或两个以上的物品。

”让学生理解这个概念。

第三步:例题演练(15分钟)
教师给学生举例:“如果有7个苹果,只有6个篮子,那么至少会有一个篮子里会有两个或两个以上的苹果。

”让学生根据这个例子自己尝试解答其他类似问题。

第四步:练习巩固(10分钟)
教师发放练习题让学生独立完成,并在课堂上讲解答案,让学生自行纠正并加强记忆。

第五步:拓展应用(10分钟)
教师引导学生思考如何在不同的问题中应用抽屉原理来解决,让学生举一些例子并进行讨论。

第六步:课堂总结(5分钟)
教师总结本节课的内容,强调抽屉原理的重要性,并鼓励学生多加练习,加深理解。

教学反思:本节课主要通过例题演练和练习巩固的方式,让学生对抽屉原理有一个初步的理解,并能够灵活运用。

教学中要注重引导学生思考和探索,培养其解决问题的能力。

小学抽屉原理讲课教案及反思

小学抽屉原理讲课教案及反思

小学抽屉原理讲课教案及反思教案标题:小学抽屉原理讲课教案及反思教学目标:1. 理解抽屉原理的基本概念和应用。

2. 能够解决简单的抽屉原理问题。

3. 培养学生的逻辑思维和问题解决能力。

教学重点:1. 抽屉原理的概念和应用。

2. 抽屉原理问题的解决方法。

教学准备:1. PowerPoint演示文稿。

2. 抽屉模型和小球模型的实物或图片。

3. 抽屉原理相关问题的练习题。

教学过程:引入(5分钟):1. 利用一个简单的例子引入抽屉原理的概念,如“如果有5双袜子和3个抽屉,至少需要放几双袜子才能确保至少有两双袜子放在同一个抽屉里?”2. 引导学生思考,让他们猜测答案并解释他们的推理过程。

讲解(15分钟):1. 使用PowerPoint演示文稿,介绍抽屉原理的定义和应用领域,如数学、计算机科学等。

2. 使用抽屉模型和小球模型的实物或图片,生动形象地解释抽屉原理的基本概念。

3. 通过示例问题,引导学生理解抽屉原理问题的解决方法。

练习(20分钟):1. 分发抽屉原理相关问题的练习题,让学生独立或小组合作解答。

2. 监督学生的解答过程,提供必要的指导和帮助。

3. 鼓励学生互相讨论和交流解题思路,培养他们的合作精神和团队合作能力。

总结(5分钟):1. 回顾抽屉原理的基本概念和应用。

2. 强调抽屉原理在解决问题中的重要性。

3. 鼓励学生将抽屉原理运用到其他领域的问题中,拓展他们的思维。

反思:1. 教师在引入部分的问题设计上,是否能够激发学生的思考和兴趣?2. 教师在讲解部分的演示文稿设计上,是否清晰明了,能够帮助学生理解抽屉原理的概念?3. 学生在练习部分的解题过程中,是否能够独立思考和合作解决问题?4. 教师在总结部分的回顾和鼓励上,是否能够激发学生对抽屉原理的兴趣和进一步探索的欲望?5. 整堂课的时间安排是否合理,是否能够充分发挥学生的学习效果?通过不断反思和调整教学方法,教师可以不断提高教案的质量,使学生在教学中获得更好的学习效果。

《抽屉原理》教学设计优秀7篇

《抽屉原理》教学设计优秀7篇

《抽屉原理》教学设计优秀7篇《抽屉原理》教学设计篇一一、教学设计1.教材分析《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。

这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。

2.学情分析“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。

教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。

六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。

3.教学理念激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。

特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。

4.教学目标1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.通过“抽屉原理”的灵活应用感受数学的魅力。

5.教学重难点重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

6.教学过程一、课前游戏引入。

上课前,我们先来热身一下,一起来玩抢椅子的游戏。

这有4把椅子,请5位同学上来参加游戏,游戏规则是:在老师说开始时,5位同学绕着椅子走,当老师说停的,5位同学都要坐在椅子上。

为什么总有一张椅子至少坐两个同学?在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。

数学广角《抽屉原理》教案

数学广角《抽屉原理》教案

数学广角《抽屉原理》教案第一章:引言1.1 教学目标让学生初步了解抽屉原理的概念。

培养学生对数学问题的探究兴趣。

1.2 教学内容抽屉原理的定义及基本思想。

抽屉原理在日常生活中的应用。

1.3 教学过程导入:通过生活中的实例,引发学生对抽屉原理的思考。

讲解:详细解释抽屉原理的定义和证明过程。

练习:让学生尝试解决一些简单的抽屉原理问题。

第二章:抽屉原理的应用2.1 教学目标让学生掌握抽屉原理的应用方法。

培养学生解决实际问题的能力。

2.2 教学内容抽屉原理在不同情境下的应用实例。

解决实际问题时,如何运用抽屉原理。

2.3 教学过程讲解:通过实例讲解抽屉原理在不同情境下的应用。

练习:让学生尝试解决一些实际问题,运用抽屉原理。

讨论:引导学生探讨抽屉原理在解决实际问题中的优点和局限性。

第三章:抽屉原理的推广3.1 教学目标让学生了解抽屉原理的推广形式。

培养学生对数学问题的拓展思维。

3.2 教学内容抽屉原理的推广形式:如多维抽屉原理、带权抽屉原理等。

抽屉原理推广形式在日常生活中的应用。

3.3 教学过程讲解:介绍抽屉原理的推广形式及其证明过程。

练习:让学生尝试解决一些涉及抽屉原理推广形式的问题。

探讨:引导学生思考抽屉原理推广形式在解决问题中的优势。

第四章:抽屉原理与组合数学4.1 教学目标让学生了解抽屉原理与组合数学的关系。

培养学生对数学分支的兴趣。

4.2 教学内容抽屉原理在组合数学中的应用实例。

组合数学中的相关概念和定理。

4.3 教学过程讲解:阐述抽屉原理在组合数学中的应用。

练习:让学生解决一些涉及组合数学的问题,运用抽屉原理。

拓展:引导学生探索组合数学的其他领域。

第五章:抽屉原理的综合应用5.1 教学目标让学生学会将抽屉原理灵活运用于各种数学问题。

培养学生解决复杂问题的能力。

5.2 教学内容抽屉原理在各类数学问题中的综合应用实例。

解决复杂问题时,如何巧妙地运用抽屉原理。

5.3 教学过程讲解:分析抽屉原理在各类数学问题中的综合应用。

《抽屉原理》教学设计【优秀5篇】

《抽屉原理》教学设计【优秀5篇】

《抽屉原理》教学设计【优秀5篇】《抽屉原理》教学设计篇一【教学内容】《义务教育课程标准实验教科书数学》六年级下册第68页。

【教学目标】1.经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。

3. 通过抽屉原理的灵活应用感受数学的魅力。

【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理。

【教学难点】理解抽屉原理,并对一些简单实际问题加以模型化。

【教具、学具准备】每组都有相应数量的盒子、铅笔、书。

【教学过程】一、课前游戏引入。

师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。

这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:不管怎么坐,总有一把椅子上至少坐两个同学我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。

下面我们开始上课,可以吗?【点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0) (2,1)【点评】此处设计教师注意了从最简单的。

数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。

3支笔放进2个盒子里呢?生:不管怎么放,总有一个盒子里至少有2枝笔?是:是这样吗?谁还有这样的发现,再说一说。

抽屉原理教学设计 《抽屉原理》教学设计(5篇)

抽屉原理教学设计 《抽屉原理》教学设计(5篇)

抽屉原理教学设计《抽屉原理》教学设计(5篇)作为一名为他人授业解惑的教育工作者,常常需要准备教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么大家知道规范的教学设计是怎么写的吗?下面是勤劳的小编燕子给大伙儿整编的《抽屉原理》教学设计【较新5篇】,仅供参考。

六年级数学《抽屉原理》公开课教学设计篇一教学目标:1、初步了解“抽屉原理”。

2、引导学生用操作枚举或假设的方法探究“抽屉原理”的一般规律。

3、会用抽屉原理解决简单的实际问题。

4、经历从具体的抽象的探究过程,初步了解抽屉原理,提高学生又根据有条理的进行思考和推理的能力,体会比较的'学习方法。

教学重点:抽屉原理的理解和简单应用。

教学难点:找出实际问题与抽屉原理的内在联系。

教学过程:一、开展小游戏,引入新课。

师:在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人须都坐下,好吗?(好)。

这时教师面向全体,背对那5个人。

师:开始。

师:都坐下了吗?生:坐下了。

师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两位同学”我说得对吗?生:对!师:想知道老师为什么会做出如此准确的判断吗?其实这里面蕴含着一个有趣的数学原理——抽屉原理。

二、实验探索一步:研究4枝铅笔放进3个文具盒,有哪些不同的放法?你们又能从这些方法中发现什么有趣的现象?1、(出示)师:把4枝笔放进3个文具盒,有哪些不同的放法?(请一生榜样)你们又能从这些放法中发现什么有趣的现象?2、师:接下来,就请同学们以小组为单位进行实验操作,并把放法和发现填在记录卡上。

3、小组汇报交流。

(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)生:不管怎么放,总有1个文具盒里至少有2枝铅笔。

师:“总有”是什么意思?生:一定有。

《抽屉原理》教学设计方案

《抽屉原理》教学设计方案

《抽屉原理》教学设计方案一、教学目标1.知识与技能:学生能够理解抽屉原理的概念,掌握抽屉原理的应用方法,能够运用抽屉原理解决实际问题。

2.过程与方法:通过课堂讲解、案例分析和练习等多种方式,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度:激发学生对数学逻辑的兴趣,培养学生的严密思维和耐心细致的工作态度。

二、教学重难点1.教学重点:抽屉原理的概念及应用方法。

2.教学难点:抽屉原理在实际问题中的运用,如何运用抽屉原理解决问题。

三、教学内容1.抽屉原理的定义和基本概念。

2.抽屉原理的应用方法与例题解析。

3.抽屉原理在实际问题中的运用。

四、教学过程1.导入:通过一个实际生活中的例子引入抽屉原理的概念,让学生了解抽屉原理是什么以及它的应用。

2.阐述抽屉原理的定义和基本概念,让学生掌握抽屉原理的概念和基本原理。

3.分组讨论:让学生分组讨论并解决一些抽屉原理相关的问题,激发学生思维,培养学生团队协作能力。

4.教师总结并解析案例:结合具体例题,让学生了解如何应用抽屉原理解决问题,并要求学生进行反思和总结。

5.练习与巩固:板书一些练习题目,让学生在课堂上进行实践操作,巩固所学知识。

6.提高拓展:引导学生思考更多有关抽屉原理的最新研究进展和实际应用。

七、教学工具1.教科书资料2.PPT课件3.白板和彩色笔4.抽屉原理相关的案例题目5.讲解问题八、教学效果的评价1.学生表现:课程结束后进行小测验,测试学生对抽屉原理的理解和应用能力。

2.教学效果:观察学生学习态度和课后作业完成情况,评估教学效果。

3.教学反馈:及时总结课程教学过程中的问题和不足之处,为下一次教学改进提供参考。

通过以上的教学设计和实施,相信学生能够理解抽屉原理的概念和应用方法,掌握抽屉原理的技巧,提高解决实际问题的能力和兴趣。

《抽屉原理》教学设计

《抽屉原理》教学设计

《抽屉原理》教学设计教学目标:1.学生能够理解和应用抽屉原理的概念和公式。

2.学生能够解决与抽屉原理相关的实际问题。

教学重点:1.抽屉原理的概念和公式。

2.应用抽屉原理解决问题的方法和步骤。

教学难点:应用抽屉原理解决实际问题。

教学准备:黑板、彩色粉笔、PPT、计算器等辅助工具。

教学过程:一、导入(5分钟)1.引入课题,提出抽屉原理的概念。

2.通过生活中的例子解释抽屉原理。

二、讲授(10分钟)1.介绍抽屉原理的定义和公式。

2.解释抽屉原理的基本原理和应用。

3.通过数学示例说明抽屉原理的应用。

三、练习(15分钟)1.展示一些实际问题,要求学生运用抽屉原理解答。

2.辅导学生解题过程,引导学生理解解题思路。

四、巩固(15分钟)1.小组合作讨论解决抽屉原理问题。

2.通过小组展示和点评,加深学生对抽屉原理的理解。

五、拓展(20分钟)1.展示一些抽屉原理相关的数学难题,引导学生思考解决方法。

2.让学生自己设计一道关于抽屉原理的问题,交换并解答。

六、总结(10分钟)1.总结抽屉原理的概念、公式和应用。

2.提醒学生在解决实际问题时运用抽屉原理的思维方式。

七、作业布置(5分钟)布置相关的练习题,巩固学生对抽屉原理的掌握。

教学反思:1.教学过程中,通过生活中的例子引入,能够促使学生更好地理解抽屉原理。

2.设计了多种练习形式,增加了学生的动手实践和思考能力。

3.拓展环节可以激发学生的兴趣,培养他们独立思考和解决问题的能力。

4.在总结环节中,重点强调了运用抽屉原理解决实际问题的方法和步骤。

5.通过布置作业,巩固学生对抽屉原理的理解和应用能力。

数学广角《抽屉原理》教案

数学广角《抽屉原理》教案

数学广角《抽屉原理》教案第一章:引言1.1 教学目标让学生了解抽屉原理的基本概念和实际应用。

培养学生对数学问题的探究和思考能力。

1.2 教学内容抽屉原理的定义和基本思想。

抽屉原理在实际生活中的应用举例。

1.3 教学方法通过生活中的实例引入抽屉原理的概念。

引导学生通过小组讨论和思考,理解抽屉原理的基本思想。

1.4 教学评估观察学生在小组讨论中的参与程度和理解程度。

学生能够正确解释和应用抽屉原理解决问题。

第二章:抽屉原理的基本概念2.1 教学目标让学生理解抽屉原理的基本概念和数学表达式。

培养学生对数学概念的理解和记忆能力。

2.2 教学内容抽屉原理的数学表达式和证明过程。

抽屉原理在不同情况下的应用举例。

2.3 教学方法通过数学证明和例题来加深学生对抽屉原理的理解。

引导学生通过自主学习和合作交流,掌握抽屉原理的应用。

2.4 教学评估检查学生对抽屉原理数学表达式的记忆和理解。

学生能够运用抽屉原理解决简单的数学问题。

第三章:抽屉原理的实际应用3.1 教学目标让学生了解抽屉原理在实际生活中的应用。

培养学生将数学知识应用到实际问题中的能力。

3.2 教学内容抽屉原理在排序、分配和优化问题中的应用举例。

抽屉原理在其他学科和领域中的应用。

3.3 教学方法通过实际例子和问题解决引导学生了解抽屉原理的应用。

引导学生通过小组讨论和思考,探索抽屉原理在其他领域的应用。

3.4 教学评估观察学生在小组讨论中的参与程度和应用能力。

学生能够运用抽屉原理解决实际问题。

第四章:抽屉原理的综合应用4.1 教学目标让学生综合运用抽屉原理解决复杂的数学问题。

培养学生解决实际问题的能力和创新思维。

4.2 教学内容抽屉原理在复杂问题中的应用举例。

抽屉原理与其他数学知识的综合应用。

4.3 教学方法通过复杂问题和案例引导学生综合运用抽屉原理和其他知识。

引导学生通过自主学习和合作交流,探索抽屉原理的综合应用。

4.4 教学评估观察学生在解决问题中的参与程度和创新能力。

第五单元数学广角——《抽屉的原理》教案

第五单元数学广角——《抽屉的原理》教案
五、教学反思
在本次教学过程中,我发现学生们对于抽屉原理的基本概念掌握得还算不错,能够在简单的例子中理解并应用这一原理。然而,我也注意到,在将抽屉原理应用到更复杂的实际问题中时,部分学生仍然存在一定的困难。这让我意识到,在今后的教学中,我们需要加强以下几个方面:
首先,要注重培养学生的逻辑思维能力。通过设计更多具有挑战性的问题,让学生在思考和解决问题的过程中,逐步提高逻辑推理能力。此外,可以鼓励学生们多进行小组讨论,互相启发,共同进步。
3.重点难点解析:在讲授过程中,我会特别强调至少数和最多数的计算方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与抽屉原理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,让学生们亲自分配物品,体验抽屉原理的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了抽屉原理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对抽屉原理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,要注重教学方法的多样性。在讲授过程中,我采用了理论介绍、案例分析、实验操作等多种教学方法,旨在激发学生的学习兴趣。但从教学效果来看,还可以尝试更多有趣的教学手段,如游戏、竞赛等,以提高学生的学习积极性。
最后,及时进行教学反思。本次教学结束后,我会认真总结经验教训,针对存在的问题调整教学策略,力求在今后的教学中取得更好的效果。
(3)让学生掌握抽屉原理的表述方法,能清晰地阐述问题及解决过程。

抽屉原理优秀教案

抽屉原理优秀教案

《数学广角——抽屉原理》六年级下册# # 镇中学# # #2015年4月17日《数学广角——抽屉原理》【教学内容】:我讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材68页的例1。

【教学目标】:知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律,渗透“建模”思想。

过程与方法:经历从具体到抽象的探究过程,提高学生类比推理能力,形成比较抽象的数学思维。

情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

【教学重点】:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教法和学法】:以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。

【教学准备】:多媒体课件、扑克牌、一定数量的笔、笔筒、练习纸。

【教学过程】:一、游戏激趣,初步体验师:同学们,你们玩过扑克牌吗?生齐:玩过。

师:好,下面我们用扑克牌来玩个游戏。

大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?生齐:对。

师:如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“这5张扑克牌至少有2张是同一种花色的,你们相信吗?部分生说:信。

部分生说:不信。

师:那我们就来验证一下。

师先请一位同学洗牌(把牌混合均匀),然后请5名同学各抽一张,验证至少有两张牌是同一种花色的。

师:如果再请五位同学来抽,我还敢这样肯定地说:抽取的这5张牌中至少有两张是同一花色的,你们相信吗?生齐:相信。

师再找5位同学各抽一张,进一步验证至少有两张牌是同一种花色的。

师:其实这里面蕴藏着一个非常有趣的数学原理,大家想不想研究啊?生齐:想。

进入主题。

【设计意图:在课前进行的游戏激趣,一是使教师和学生进行自然的沟通交流;二是激发学生的兴趣,引起探究的愿望;三是为今天的探究埋下伏笔。

抽屉原理优秀教案

抽屉原理优秀教案

抽屉原理优秀教案抽屉原理是数学中的一个重要概念,许多初中或高中的数学课程都会涉及到这个内容。

下面是一份关于抽屉原理的优秀教案,供参考。

主题:抽屉原理目标:理解抽屉原理的基本概念和应用,培养学生的逻辑思维和数学推理能力。

一、引入(10分钟)1.引导学生回忆并讨论常见的日常行为中的例子,例如房间里有几架椅子,是否可能有两名以上的人坐在同一把椅子上等。

2.引入抽屉原理的概念:当N个物体放入M个容器中,若N>M,则至少有一个容器中会有两个或两个以上的物体。

二、抽屉原理的理论讲解(20分钟)1.定义抽屉原理,并分析它的逻辑思路和推理过程。

2.通过图表和实例,结合具体的数学问题,讲解抽屉原理的应用。

三、抽屉原理的具体应用(40分钟)1.数学问题探索:以给定条件,探索如何应用抽屉原理求解问题。

-例如:10个苹果放入9个抽屉,至少有一个抽屉中会有两个或两个以上的苹果。

2.实际应用案例:以生活中的实际问题为例,让学生体会并应用抽屉原理。

-例如:一个班级有30个学生,每个学生至少会选择一个兴趣课程;学校开设了10门兴趣课程,那么至少有一门兴趣课程的选课人数多于3人。

3.与组合数学的关联:介绍抽屉原理与组合数学的关系,加深学生对抽屉原理的理解。

-例如:讨论抽屉原理在排列组合问题中的应用。

四、巩固与拓展(20分钟)1.练习题训练:提供一些抽屉原理的练习题,让学生通过解题巩固理解。

2.拓展应用:引导学生思考抽屉原理的更多应用领域,例如密码学、图论等。

五、总结与反思(10分钟)1.总结抽屉原理的概念、应用和推理过程。

2.引导学生回顾学习过程,自我评价学习情况,并提出问题和建议。

六、课后拓展1.作业:布置一些抽屉原理的练习题,以巩固学生的知识。

2.拓展资料:提供相关的书籍或网站链接,供学生进一步拓展学习。

通过以上的教案设计,学生可以在理解抽屉原理的基础上,学会抽象思维和逻辑推理,提高他们的数学解决问题的能力。

同时,激发学生对数学的兴趣和对数学在实际生活中的应用的好奇心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学广角——抽屉原理》
实验小学
潘聪聪
《数学广角——抽屉原理》
【教学内容】:
我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。

【教学目标】:
知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。

渗透“建模”思想。

过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

【教学重点】:
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。

【教学难点】:
理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

【教法和学法】:
以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。

【教学准备】:一定数量的笔、铅笔盒、课件。

【教学过程】:
一、游戏激趣,初步体验
师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”
时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它?
【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。


二、操作探究,发现规律
1、小组合作,初步感知。

师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快?
(1)、学生动手操作,讨论交流,老师巡视,指导;
(2)、全班交流。

师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。

师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。

师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答“平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。

师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1……1)
师:这里的4指的是什么?3呢?商1呢?余数1呢?
师:看来解决这个问题时,用平均分的方法比较简便。

【设计意图:通过让学生自己动手操作,用列举法找出四枝铅笔放入三个盒子的所有方法,观察总结概括出四种方法的共同点,即总有一个盒子里至少有2枝铅笔,让学生充分理解“总有”、“至少”的含义。


2、逐步深入,建立模型
(1)初建模型
①如果把5枝铅笔放入4个盒子(出示),会是什么结果呢?(生答),你怎么想的?(生说)能用算式表示吗?(生答,师板书:5÷4=1……1)
②增加难度:把100支铅笔放进99个盒子呢?
m+ 1铅笔放进m个盒子呢?
③师:你有什么发现?(铅笔数比盒子数多1时,无论怎么放,总有一个盒子至少放2枝铅笔)。

你的发现和他一样吗?你们太了不起了,同桌互说1遍(出示,齐读)。

【设计意图:此环节让学生充分体会用平均分的好处,用除法算式表示出来,形象直观,便于学生理解,帮助学生初步建立模型。


(2)完善模型
①师:我们研究了铅笔数比杯子数多1的,那铅笔数比杯子数多2,多3,多4呢?会有什么情况出现呢?我们再来研究研究。

(出示例2:5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?为什么?)可以和小组的同学交流一下(小组交流)。

②汇报:
生:把5本书放2个抽屉,先平均分,每个抽屉放2本,剩1本,无论怎么放,总有1个抽屉至少放3本书。

(课件演示)谁能用算式表示出来?(板书:5÷2=2……1)
③师:用同样的方法推想:如果把7本书放2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?
生:把7本书平均分,每个抽屉放3本,剩1本,无论怎么放,总有
1个抽屉至少放4本(课件演示)。

可以用算式记录下来吗?(板书:7÷2=3……1)
④如果把9本书放进2个抽屉呢?
生:先把9本书平均分,每个放4本,余1本,不管怎么放,总有1个抽屉至少放5本(课件演示)。

用算式怎么表示?(板书:9÷2=4……1)
【设计意图:让学生在这个过程中发展了学生的类推能力,形成比较抽象的数学思维,逐步建立模型】
3、观察:你又有什么发现?(生:余数都是1,至少数=商+余数,至少数=商+1)
4、师:大家有没有发现这里的余数都是1,余数有没有是2、3、4的情况呢?
如果余数不是1,那会有什么结论呢?想不想知道?(出示:7只鸽子飞进5个鸽舍里,至少有2只鸽子要飞进同一个鸽舍里,这是为什么?)师:这里的笼子就是刚才的抽屉
①小组讨论。

②汇报交流。

先把7只鸽子平均分,每个鸽舍飞1只,还剩2只,把这2只再平均分,飞入不同的鸽舍里,所以无论怎么飞,总有1个笼子至少2只鸽子。

③师总结:看来,余数不是1时,要把余数再平均分,才能保证至少。

③怎么列式?(板书:7÷5=1……2)
【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。


5、修改结论,得出规律:大家现在认为至少数应该与什么有关?(板书:至少数=商+1)
6、引出课题:同学们真了不起!不知不觉中你们已经发现了一个很伟大的数学原理,也就是我们今天研究的抽屉原理(板书课题)一起来看
大屏幕,(出示抽屉原理资料介绍)找生读。

师:抽屉原理又称为狄里克雷原理,我们班是谁最先发现的?(李瑞龙)我们把这个原理改为李瑞龙原理,李瑞龙原理诞生了,李瑞龙原理说的是什么?(齐说)
三、巩固应用,解决问题。

师:利用这个李瑞龙原理可以解决问题,我们看都能解决什么问题?(课件出示)
(1)3个小朋友同行,其中必有2个小朋友性别相同,想一想,为什么?
生说,师引导,把2种性别当抽屉,把3个人当物体。

(2)舞蹈小组有13名学生,至少有2名学生的生日在同一个月。

问:谁是物体?谁是抽屉?(引导:隐藏条件12个月当抽屉,13个人当物体)会列式吗?(生答:13÷12=1……1)
(3)一副扑克牌,去掉2张大小王,还剩52张,有几种花色?(4种)从中任意抽5张,无论怎么抽,为什么总有2张牌是同一花色的?问:谁是抽屉?谁是物体?(4种花色是抽屉,5张牌是物体)
(4)、小结:看来,我们利用李瑞龙原理解决问题时,我们一定要是找准谁是抽屉,谁是物体。

(课件出示)
【设计意图:对规律的认识是循序渐进的。

用抽屉原理解决具体问题进行建模,让学生体会抽屉的形式是多种多样的。


四、课堂总结:今天你学到了什么新知识?
五、布置作业:练习十二第1、2题
【板书设计】
数学广角——抽屉原理
物体数÷抽屉数= 商……余数至少数 =商+1
4 ÷ 3 = 1……1 2
5 ÷ 4 = 1……1 2
100 ÷ 99= 1……1 2
5 ÷ 2 = 2……1 3
7 ÷2 = 3……1 4
9 ÷2 = 4……1 5
7 ÷5 = 1……2 2
【设计意图】这样的板书设计是在教学过程中动态生成的,按讲课思路来安排的,力求简洁精练。

这样设计便于学生对本课知识的理解与记忆,突出了的教学重点,使板书真正起到画龙点睛的作用。

相关文档
最新文档