2020-2021学年数学初一培优和竞赛讲练-10-二元一次方程组解的讨论
数学竞赛】七年级数学思维探究(10)二元一次方程组(含答案)
数学竞赛】七年级数学思维探究(10)二元一次方程组(含答案)___是三国时期吴国著名的数学家,他为《周髀算经》作注,其中有一篇《勾股圆方图注》总结了我国东汉以来勾股算术的重要成果,在世界上最早给出并证明了有关直角三角形勾、股、弦三边及其和、差关系的二十多个命题。
___在《勾股圆方图注》中推导出了二次方程的求根公式。
二元一次方程组是在一元一次方程的基础上发展的。
解方程组的基本思想是“消元”,即通过消去一个未知数,将二元一次方程组转化为一元一次方程来解。
代入法和加减法是常见的消元方法。
解决未知数系数较大、方程个数较多等复杂的方程组时,常用到整体叠加、整体叠乘、换元转化、辅助引参等技巧方法。
这些技巧方法的运用是建立在对方程组系数特点的观察和对方程组整体特征的把握基础上的。
方程组的解是方程组理论中的一个重要概念。
代解法、求解法是处理方程组的解的基本方法。
对于含有字母系数的二元一次方程组,可进一步探究解的个数、解的特征。
基本思路是在消元的基础上,把方程组的解的讨论转化为一元一次方程解的讨论。
已知方程组 $\begin{cases} ax+by=-16 \\ x=8\end{cases}$ 的解应为 $\begin{cases} cx+20y=-224 \\ y=-10\end{cases}$。
试将相应的解代入原方程组,先求出$a$、$b$、$c$ 的值。
然后求 $a^2+b^2+c^2$ 的值。
关于二元一次方程组 $\begin{cases} x+ay+1=y \\ bx-2y+1=0 \end{cases}$,有无整数解,则$a$、$b$ 的值为()。
解下列方程组:begin{cases} 23x+17y=63 \\ x-16y-3=0 \end{cases}$。
begin{cases} 17x+23y=57 \\ 2x-22y-1=0 \end{cases}$。
begin{cases} x_1+x_2=x_2+x_3=x_3+x_4=。
苏科版数学七年级下册第十章《二元一次方程组》实际应用培优专练习(四)(附答案)
2020-2021学年七年级下册第十章《二元一次方程组》实际应用培优专练习(四)1.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a,b的值.(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量.阶梯电量x(单位:度)电费价格一档0<x≤180 a元/度二档180<x≤350 b元/度三档x>350 0.9元/度2.我区某中学积极响应国家号召,落实垃圾“分类回收,科学处理”的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放.若购买A型14只,B型6只,学校共支付费用4240元;若购买A型8只,B 型12只,学校共支付费用4480元.求A型、B型垃圾分类回收箱的单价.3.节约用水和合理开发利用水资源是每个公民应尽的责任和义务,为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段引导市民节约用水.某城市实行阶梯水价,月用水量在6吨以内按正常收费,超出部分则收较高水费,该市某户居民今年2月份用水9吨,交水费27元;3月份用水11吨,交水费37元,请回答下列问题.(1)每月在6吨以内的水费每吨多少元?每月超出6吨部分的水费每吨多少元?(2)某户居民4月份用水x吨,请用含有x的代数式表示该户居民4月份应交的水费.4.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.5.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?6.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,5个福娃2枚徽章145元,10个福娃3枚徽章280元(5个福娃为1套),则:(1)一套“福娃”玩具和一枚徽章的价格各是多少元?(2)买5套“福娃”玩具和10枚徽章共需要多少元?7.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35 (1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.8.某商店决定购进A、B两种纪念品出售,若购进A种纪念品10件,B种纪念品5件,需要215元;若购进A种纪念品5件,B种纪念品10件,需要205元.(1)求A、B两种纪念品的购进单价;(2)已知商店购进两种纪念品(A、B都要有)共花费750元,那么该商店购进这A、B两种纪念品有几种可行的方案,并写出具体的购买方案.9.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?10.某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?参考答案1.解:(1)依题意得:,解得:.答:a的值为0.6,b的值为0.7.(2)若一个月用电量为350度,电费为180×0.6+(350﹣180)×0.7=227(元),∵285.5>227,∴小明家7月份用电量超过350度.设小明家7月份用电量为x度,依题意得:180×0.6+(350﹣180)×0.7+(x﹣350)×0.9=285.5,解得:x=415.答:小明家7月份的用电量为415度.2.解:设A型垃圾分类回收箱的单价为x元/只,B型垃圾分类回收箱的单价为y元/只,依题意,得:,解得:,答:A型垃圾分类回收箱的单价为200元/只;B型垃圾分类回收箱的单价为240元/只.3.解:(1)设该市居民用水基本价格为a元/吨,超过6吨部分的价格为b元/吨,根据题意,得,解这个方程组,得.答:该市居民用水基本价格为2元/吨,超过6吨部分的价格为5元/吨.(2)①当x≤6时,该户居民4月份应交的水费为2x元.②当x>6时,该户居民4月份应交的水费为:2×6+5(x﹣6)=5x﹣18(元).综上所述,该户居民4月份应交的水费是2x元或(5x﹣18)元.4.解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意得:,解得:.答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车.(2)根据题意得:30×(8n+12a)×(1﹣5%)=5700,整理得:n=25﹣a,∵n,a均为正整数,且n<a,∴,,.∴n的值为1或4或7.5.解:设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,依题意,得:,解得:.答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.6.解:(1)设一套“福娃”玩具的价格为x元,一枚徽章的价格为y元,依题意,得:,解得:.答:一套“福娃”玩具的价格为125元,一枚徽章的价格为10元.(2)125×5+10×10=725(元).答:买5套“福娃”玩具和10枚徽章共需要725元.7.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.8.解:(1)设A种纪念品的购进单价为x元,B种纪念品的购进单价为y元,依题意,得:,解得:.答:A种纪念品的购进单价为15元,B种纪念品的购进单价为13元.(2)设购进A种纪念品m件,B种纪念品n件,依题意,得:15m+13n=750,∴m=50﹣n.∵m,n均为正整数,∴n为15的倍数,∴或或,∴该商店共有3种进货方案,方案1:购进37件A种纪念品,15件B种纪念品;方案2:购进24件A种纪念品,30件B种纪念品;方案3:购进11件A种纪念品,45件B 种纪念品.9.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.10.解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,依题意,得:,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.。
2020-2021学年七年级数学下册尖子生同步培优题典 专题2
专题2.7平行线的性质与判定(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共20小题)1.(2020秋•长春期末)如图,∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.在下列解答中,填空:证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).【分析】根据平行线的判定与性质即可完成证明过程.【解析】证明:∵∠ABC+∠ECB=180°(已知),∴AB∥DE(同旁内角互补,两直线平行).∴∠ABC=∠BCD(两直线平行,内错角相等).∵∠P=∠Q(已知),∴PB∥(CQ)(内错角相等,两直线平行).∴∠PBC=(∠BCQ)(两直线平行,内错角相等).∵∠1=∠ABC﹣(∠PBC),∠2=∠BCD﹣(∠BCQ),∴∠1=∠2(等量代换).故答案为:同旁内角互补,两直线平行;两直线平行,内错角相等;CQ,内错角相等,两直线平行;∠BCQ;∠PBC;∠BCQ.2.(2020秋•松北区期末)完成下面的证明:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,连接DE,DF,DE∥AB,∠BFD=∠CED,连接BE交DF于点G,求证:∠EGF+∠AEG=180°.证明:∵DE∥AB(已知),∴∠A=∠CED(两直线平行,同位角相等)又∵∠BFD=∠CED(已知),∴∠A=∠BFD(等量代换)∴DF∥AE(同位角相等,两直线平行)∴∠EGF+∠AEG=180°(两直线平行,同旁内角互补)【分析】依据两直线平行,同位角相等以及等量代换,即可得到∠A=∠BFD,再根据同位角相等,两直线平行,即可得出DF∥AF,进而得出∠EGF+∠AEG=180°.【解析】证明:∵DE∥AB(已知),∴∠A=∠CED(两直线平行,同位角相等)又∵∠BFD=∠CED(已知),∴∠A=∠BFD(等量代换)∴DF∥AE(同位角相等,两直线平行)∴∠EGF+∠AEG=180°(两直线平行,同旁内角互补)故答案为:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补.3.(2020春•丰润区期中)完成下面的证明:已知:如图,∠AED=∠C,∠DEF=∠B.求证:∠1=∠2.证明:∵∠AED=∠C(已知),∴DE∥BC(同位角相等,两直线平行),∴∠B+∠BDE=180°(两直线平行,同旁内角互补),∵∠DEF=∠B(已知),∴∠DEF+∠BDE=180°(等量代换),∴EF∥AB(同旁内角互补,两直线平行),∴∠1=∠2(两直线平行,内错角相等).【分析】先判断出DE∥BC得出∠B+∠BDE=180°,再等量代换,即可判断出EF∥AB即可.【解析】∵∠AED=∠C(已知),∴DE∥BC(同位角相等,两直线平行),∴∠B+∠BDE=180°(两直线平行,同旁内角互补),∵∠DEF=∠B(已知),∴∠DEF+∠BDE=180°(等量代换),∴EF∥AB(同旁内角互补,两直线平行),∴∠1=∠2 (两直线平行,内错角相等).故答案为:DE;BC;同位角相等,两直线平行;两直线平行,同旁内角互补;EF;AB;同旁内角互补,两直线平行;两直线平行,内错角相等.4.(2020秋•昌图县期末)如图,MN,EF分别表示两面镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的反射光线为CD,此时∠3=∠4,且AB∥CD.求证:MN∥EF.【分析】先由平行线的性质得∠ABC=∠BCD,再由平角定义和已知进而得∠2=∠3,即可得出结论.【解析】证明:∵AB∥CD,∴∠ABC=∠BCD,∵∠1+∠ABC+∠2=∠3+∠BCD+∠4=180°,∴∠1+∠2=∠3+∠4,又∵∠1=∠2,∠3=∠4,∴∠2=∠3,∴MN∥EF.5.(2019秋•埇桥区期末)如图,一条直线分别与直线AF、直线DF、直线AE、直线CE相交于点B,H,G,D且∠1=∠2,∠A=∠D.求证:∠B=∠C.【分析】由∠1=∠2利用“内错角相等,两直线平行”可得出AE∥DF,由AE∥DF利用“两直线平行,同位角相等”可得出∠AEC=∠D,结合∠A=∠D可得出∠AEC=∠A,利用“内错角相等,两直线平行”可得出AB∥CD,再利用“两直线平行,内错角相等”可证出∠B=∠C.【解析】证明:∵∠1=∠2,∴AE∥DF,∴∠AEC=∠D.又∵∠A=∠D,∴∠AEC=∠A,∴AB∥CD,∴∠B=∠C.6.(2019秋•上蔡县期末)如图,AD∥EF,∠1+∠2=180°,(1)求证:DG∥AB;(2)若DG是∠ADC的角平分线,∠1=30°,求∠B的度数.【分析】(1)根据平行线的性质定理以及判定定理即可解答;(2)根据角平分线的定义以及平行线的性质定理即可求解.【解析】(1)证明:∵AD∥EF(已知),∴∠2+∠BAD=180°(两直线平行,同旁内角互补),又∵∠1+∠2=180°(已知),∴∠1=∠BAD(同角的补角相等),∴DG∥AB(内错角相等,两直线平行);(2)∵DG是∠ADC的角平分线,∴∠GDC=∠1=30°,又∵DG∥AB,∴∠B=∠GDC=30°.7.(2019秋•泉州期末)如图,AD⊥BC于D点,EF⊥BC于F点,∠ADG=35°,∠C=55°.(1)证明:DG∥AC;(2)证明:∠FEC=∠ADG.【分析】(1)依据题意得出∠BDG=∠C,即可得出DG∥AC;(2)依据平行线的性质即可得到∠CEF=∠CAD,∠ADG=∠CAD,进而得到∠FEC=∠ADG.【解析】证明:(1)∵AD⊥BC于D点,∠ADG=35°,∴∠BDG=90°﹣35°=55°,又∵∠C=55°,∴∠BDG=∠C,∴DG∥AC;(2)∵AD⊥BC于D点,EF⊥BC于F点,∴AD∥EF,∴∠CEF=∠CAD,又∵DG∥AC,∴∠ADG=∠CAD,∴∠FEC=∠ADG.8.(2019秋•乐至县期末)已知:如图,∠1=∠2,∠3=∠B;(1)求证:EF∥AB;(2)求证:DE∥BC;(3)若∠C=80°,求∠AED的度数.【分析】(1)根据∠1=∠2,即可得∠EF∥AB;(2)根据(1)的结论可得∠3=∠ADE,由已知∠3=∠B,等量代换后即可证明DE∥BC;(3)根据∠C=80°,即可求∠AED的度数.【解析】(1)证明:∵∠1=∠2,∴EF∥AB;(2)∵EF∥AB,∴∠3=∠ADE,∵∠3=∠B,∴∠ADE=∠B,∴DE∥BC;(3)∵DE∥BC,∴∠AED=∠C,∵∠C=80°,∴∠AED=80°.9.(2020春•单县期末)已知:如图EF∥CD,∠1+∠2=180°.(1)试说明GD∥CA;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数.【分析】(1)利用同旁内角互补,说明GD∥CA;(2)由GD∥CA,得∠A=∠GDB=∠2=40°=∠ACD,由角平分线的性质可求得∠ACB的度数.【解析】(1)∵EF∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD∥CA(2)由(1)得:GD∥CA,∴∠BDG=∠A=40°,∠ACD=∠2,∵DG平分∠CDB,∴∠2=∠BDG=40°,∴∠ACD=∠2=40°,∵CD平分∠ACB,∴∠ACB=2∠ACD=80°.10.(2020春•溧阳市期末)如图,在△ABC中,点D在BC边上,EF∥AD,分别交AB、BC于点E、F,DG平分∠ADC,交AC于点G,∠1+∠2=180°.(1)求证:DG∥AB;(2)若∠B=32°,求∠ADC的度数.【分析】(1)由平行线的性质和∠1+∠2=180°,可推出DG∥AB;(2)由(1)的结论和DG平分∠ADC,可得结论.【解析】(1)证明:∵EF∥AD,∴∠2+∠3=180°.∵∠1+∠2=180°.∴∠1=∠3.∴DG∥AB;(2)∵DG平分∠ADC,∴∠ADC=2∠1=2∠4.由(1)知DG∥AB,∴∠4=∠B=32°,∴∠ADC=2∠4=64°.11.(2019秋•万州区期末)如图,∠AEM+∠CDN=180°,EC平分∠AEF.若∠EFC=62°,求∠C的度数.根据提示将解题过程补充完整.解:∵∠CDM+∠CDN=180°(平角),又∵∠AEM+∠CDN=180°(已知),∴∠AEM=∠CDM∴AB∥CD,(同位角相等,两直线平行)∴∠AEF+(∠EFC)=180°,(两直线平行,同旁内角互补)∵∠EFC=62°,∴∠AEF=(118°)∵EC平分∠AEF,∴∠AEC=(59°).(角平分线的定义)∵AB∥CD,∴∠C=∠AEC=(59°)(两直线平行,内错角相等)【分析】根据同角的补角相等可得出∠AEM=∠CDM,利用“同位角相等,两直线平行”可得出AB∥CD,由“两直线平行,同旁内角互补”及∠EFC=62°可求出∠AEF=118°,结合角平分线的定义可求出∠AEC的度数,再利用“两直线平行,内错角相等”即可求出∠C的度数.【解析】∵∠CDM+∠CDN=180°(平角),又∵∠AEM+∠CDN=180°(已知),∴∠AEM=∠CDM(同角的补角相等),∴AB∥CD,(同位角相等,两直线平行)∴∠AEF+(∠EFC)=180°,(两直线平行,同旁内角互补)∵∠EFC=62°,∴∠AEF=(118°)∵EC平分∠AEF,∴∠AEC=(59°).(角平分线的定义)∵AB∥CD,∴∠C=∠AEC=(59°)(两直线平行,内错角相等).故答案为:同位角相等,两直线平行;∠EFC;118°;59°;59°.12.(2020春•润州区期末)结合图形填空:已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补).又∵∠C=∠D(已知),∴∠DBC+∠D=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).【分析】由∠1=∠2及∠1=∠DMN可得出∠2=∠DMN,利用“同位角相等,两直线平行”可得出DB ∥EC,利用“两直线平行,同旁内角互补”可得出∠DBC+∠C=180°,结合∠C=∠D可得出∠DBC+∠D=180°,利用“同旁内角互补,两直线平行”可得出DF∥AC,再利用“两直线平行,内错角相等”即可证出∠A=∠F.【解析】证明:∵∠1=∠2(已知),又∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补).又∵∠C=∠D(已知),∴∠DBC+∠D=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:对顶角相等;两直线平行,同旁内角互补;同旁内角互补,两直线平行;两直线平行,内错角相等.13.(2020秋•文山市期末)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解析】∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.14.(2019春•桥西区校级期中)已知,如图,在四边形ABCD中,AB∥CD,延长BC至点E,连接AE交CD于点F,使∠BAC=∠DAE,∠ACB=∠CFE(1)求证:∠BAF=∠CAD;(2)求证:AD∥BE;(3)若BF平分∠ABC,请写出∠AFB与∠CAF的数量关系2∠AFB+∠CAF=180°.(不需证明)【分析】(1)根据∠BAC=∠DAE,运用等式性质即可得出∠BAC+∠CAF=∠DAE+∠CAF,进而得到∠BAF=∠CAD;(2)根据∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,可得∠B=∠D,最后根据∠B+∠BCD=180°,可得∠D+∠BCD=180°,进而判定AD∥BE;(3)根据AD∥BE,可得∠E=∠1=∠2,再根据BF平分∠ABC,可得∠3=∠4,根据∠AFB是△BEF 的外角,得出∠AFB=∠4+∠E=∠4+∠1,即∠AFB=3+∠2,最后根据AD∥BC,得到∠ABC+∠BAD =180°,进而得到2∠AFB+∠CAF=180°.【解析】(1)∵∠BAC=∠DAE,∴∠BAC+∠CAF=∠DAE+∠CAF,∴∠BAF=∠CAD;(2)∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,∴∠B=∠D,∵AB∥CD,∴∠B+∠BCD=180°,∴∠D+∠BCD=180°,∴AD∥BE;(3)如图2,∵AD∥BE,∴∠E=∠1=∠2,∵BF平分∠ABC,∴∠3=∠4,∵∠AFB是△BEF的外角,∴∠AFB=∠4+∠E=∠4+∠1,∴∠AFB=3+∠2,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠3+∠4+∠1+∠CAF+∠2=180°,即2∠AFB+∠CAF=180°.故答案为:2∠AFB+∠CAF=180°.15.(2020秋•南岗区期末)已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N∠FGN,求∠MHG的度数.【分析】(1)根据已知条件和对顶角相等即可证明;(2)如图2,过点M作MR∥AB,可得AB∥CD∥MR.进而可以证明;(3)如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,过点N作HT∥GN,可得∠MHT =∠N=2α,∠GHT=∠FGN=2β,进而可得结论.【解析】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠EGF=∠AEG+∠GFC;(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点N作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CGH=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CGH=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.16.(2020春•汉阳区校级期中)(1)如图1,AB∥CD,点M为直线AB,CD所确定的平面内的一点,若∠A=105°+α,∠M=108°﹣α,请直接写出∠C的度数147°;(2)如图2,AB∥CD,点P为直线AB,CD所确定的平面内的一点,点E在直线CD上,AN平分∠P AB,射线AN的反向延长线交∠PCE的平分线于M,若∠P=30°,求∠AMC的度数;(3)如图3,点P与直线AB,CD在同一平面内,AN平分∠P AB,射线AN的反向延长线交∠PCD的平分线于M,若∠AMC=180°∠P,求证:AB∥CD.【分析】(1)直接添加辅助线AC,结合三角形内角和以及平行线的性质即可求解;(2)延长BA与CP交于Q,根据AN平分∠P AB,用含有∠BAN的式子表示∠MHC,再由AB∥CD,得到∠ECQ=∠CQA=210°﹣2∠BAN,通过CM平分∠PCE,得到∠MCH可以用含有∠BAN的式子表示,最后利用三角形内角和即可求出答案;(3)添加辅助线AC,证明∠BAC+∠DAC=180°,就得到了AB∥CD.【解析】(1)如图1,连接AC,在△AMC中,∠AMC+∠MAC+∠MCA=180°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠BAM+∠M+∠MCD=180°+180°=360°,∵∠BAM=105°+α,∠M=108°﹣α,∴∠MCD=360°﹣[105°+α+(108°﹣α)]=147°,故答案为:147°;(2)如图2,延长BA与CP交于点Q,CQ与AM交于点H,∵AN平分∠P AB,∴∠BAN=∠P AN,∴∠QAP=180°﹣2∠BAN,∵∠P=30°,∴∠CQA=∠P+∠QAP=30°+180°﹣2∠BAN=210﹣2∠BAN,∠MHC=∠NHP=∠NAP﹣∠P=∠BAN﹣30°,∵AB∥CD,∴∠ECQ=∠CQA=210°﹣2∠BAN,∵CM平分∠PCE,∴∠MCH∠ECP(210°﹣2∠BAN)=105°﹣∠BAN,∵∠AMC=180°﹣∠MHC﹣∠MCH,∴∠AMC=180°﹣(∠BAN﹣30°)﹣(105°﹣∠BAN)=105°;(3)如图3,连接AC,则∠P AC+∠PCA=180°﹣∠P,∠MAC+∠MCA=180°﹣∠M,∵∠AMC=180°∠D,∴∠MAC+∠MCA∠P,∴∠MAC+∠MCA+∠P AC+∠P A=180°∠P,即∠P AM+∠PCM=180°∠P,∵AN平分∠P AB,MC平分∠PCD,∴∠BAM=∠P AM,∠DCM=∠PCM,∴∠BAM+∠DCM=180°∠P,∴∠BCA+∠DCA=180°180°,∴AB∥CD.17.(2020春•黄陂区期末)如图,直线AB与CD交于点F,锐角∠CDE=α,∠AFC+α=180°.(1)求证:AB∥DE;(2)若G为直线AB(不与点F重合)上一点,∠FDG与∠DGB的角平分线所在的直线交于点P.①如图2,α=50°,G为FB上一点,请补齐图形并求∠DPG的度数;②直接写出∠DPG的度数为90°(结果用含α的式子表示).【分析】(1)利用邻补角的意义,得出∠D=∠AFD,根据内错角相等,两直线平行即可得结论;(2)①根据题意画出图形结合(1)即可求出∠DPG的度数;②结合①即可写出∠DPG的度数.【解析】(1)证明:∵∠AFC+∠AFD=180°,∠AFC+α=180°,∴∠AFD=α=∠CDE,∴AB∥DE;(2)解:①如图即为补齐的图形,∵∠FDG与∠DGB的角平分线所在的直线交于点P,∴∠FDG=2∠FDP=2∠GDP,∠DGB=2∠DGQ=2∠BGQ,由(1)知AB∥DE,∴∠DFB=180°﹣α=180°﹣50°=130°,∵∠DGB=∠FDG+∠DFG,∴2∠DGQ=2∠GDP+130°,∴∠DGQ=∠GDP+65°,∵∠DGQ=∠GDP+∠DPG,∴∠DPG=65°;②由①知∠DPG DFB(180°﹣α)=90°.故答案为:90°.18.(2020秋•南岗区期中)已知,AE∥BD,∠A=∠D.(1)如图1,求证:AB∥CD;(2)如图2,作∠BAE的平分线交CD于点F,点G为AB上一点,连接FG,若∠CFG的平分线交线段AG于点H,求证:∠ECF+2∠AFH=∠E+2∠BHF;(3)如图3,在(2)的条件下,连接AC,若∠ACE=∠BAC+∠BGM,过点H作HM⊥FH交FG的延长线于点M,且2∠E﹣3∠AFH=20°,求∠EAF+∠GMH的度数.【分析】(1)根据平行线的判定与性质即可证明结论;(2)过点E作EP∥CD,根据AB∥CD,可得AB∥EP,设∠F AB=α,∠CFH=β,根据平行线的判定与性质和角平分线定义,可得∠ECF+2∠AFH=∠E+2∠BHF;(3)延长DC至点Q,过点M作MN∥AB,结合(2)问可得∠EAF+∠GMH的度数.【解析】(1)证明:∵AE∥BD,∴∠A+∠B=180°,∵∠A=∠D,∴∠D+∠B=180°,∴AB∥CD;(2)证明:如图2,过点E作EP∥CD,∵AB∥CD,∴AB∥EP,∴∠PEA=∠EAB,∠PEC=∠ECF,∵∠AEC=∠PEC﹣∠PEA,∴∠AEC=∠ECF﹣∠EAB,即∠ECF=∠AEC+∠EAB,∵AF是∠BAE的平分线,∴∠EAF=∠F AB EAB,∵FH是∠CFG的平分线,∴∠CFH=∠HFG CFG,∵CD∥AB,∴∠BHF=∠CFH,∠CF A=∠F AB,设∠F AB=α,∠CFH=β,∵∠AFH=∠CFH﹣∠CF A=∠CFH﹣∠F AB,∴∠AFH=β﹣α,∠BHF=∠CFH=β,∴∠ECF+2∠AFH=∠AEC+∠EAB+2∠AFH=∠AEC+2α+2(β﹣α)=∠AEC+2β,∴∠ECF+2∠AFH=∠E+2∠BHF;(3)解:如图,延长DC至点Q,∵AB∥CD,∴∠QCA=∠CAB,∠BGM=∠DFG,∠CFH=∠BHF,∠CF A=∠F AG,∵∠ACE=∠BAC+∠BGM,∴∠ECQ+∠QCA=∠BAC+∠BGM,∴∠ECQ=∠BGM=∠DFG,∵∠ECQ+∠ECD=180°,∠DFG+∠CFG=180°,∴∠ECF=∠CFG,由(2)问知:∠ECF+2∠AFH=∠AEC+2∠BHF,∠CFG=2∠CFH=2∠BHF,∴∠AEC=2∠AFH,∵2∠AEC﹣3∠AFH=20°,∴∠AFH=20°,由(2)问知:∠CFM=2β,∠FHG=β,∵FH⊥HM,∴∠FHM=90°,∴∠GHM=90°﹣β,过点M作MN∥AB,∴MN∥CD,∴∠CFM+∠NMF=180°,∠GHM=∠HMN=90°﹣β,∴∠HMB=∠HMN=90°﹣β,由(2)问知:∠EAF=∠F AB,∴∠EAF=∠CF A=∠CFH﹣∠AFH=β﹣20°,∴∠EAF+∠GMH=β﹣20°+90°﹣β=70°,∴∠EAF+∠GMH=70°.19.(2020春•汉阳区期末)如图,∠1+∠2=180°,∠B=∠3.(1)判断DE与BC的位置关系,并说明理由;(2)若∠C=63°,求∠DEC的度数.【分析】(1)根据平行线的判定得出AB∥EF,根据平行线的性质得出∠ADE=∠3,求出∠ADE=∠B,根据平行线的判定得出即可;(2)根据平行线的性质得出∠C+∠DEC=180°,即可求出答案.【解析】(1)DE∥BC.理由:∵∠1+∠2=180°,∴AB∥EF,∴∠ADE=∠3,∵∠B=∠3,∴∠ADE=∠B,∴DE∥BC;(2)∵DE∥BC,∴∠C+∠DEC=180°,∵∠C=63°,∴∠DEC=117°.20.(2020秋•南岗区期中)如图,AE平分∠BAC,∠CAE=∠CEA.(1)如图1,求证:AB∥CD;(2)如图2,点F为线段AC上一点,连接EF,求证:∠BAF+∠AFE+∠DEF=360°;(3)如图3,在(2)的条件下,在射线AB上取点G,连接EG,使得∠GEF=∠C,当∠AEF=35°,∠GED=2∠GEF时,求∠C的度数.【分析】(1)根据角平分线的定义得出∠BAE=∠CAE,求出∠CEA=∠BAE,根据平行线的判定得出即可;(2)过F作FM∥AB,求出AB∥FM∥CD,根据平行线的性质得出∠BAF+∠AFE=180°,∠DEF+∠EFM=180°,即可求出答案;(3)设∠GEF=∠C=x°,求出∠GED=2x°,根据平行线的性质得出∠BAC=180°﹣x°,根据角平分线的定义得出∠BAE BAC=90°x°,根据平行线的性质得出∠BAE+∠AED=180°,得出方程90x+x﹣35+2x=180,求出x即可.【解析】(1)证明:∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CAE=∠CEA,∴∠CEA=∠BAE,∴AB∥CD;(2)证明:过F作FM∥AB,如图,∵AB∥CD,∴AB∥FM∥CD,∴∠BAF+∠AFE=180°,∠DEF+∠EFM=180°,∴∠BAF+∠AFM+∠DEF+∠EFM=360°,即∠BAF+∠AFE+∠DEF=360°;(3)解:设∠GEF=∠C=x°,∵∠GEF=∠C,∠GED=2∠GEF,∴∠GED=2x°,∵AB∥CD,∴∠C+∠BAC=180°,∴∠BAC=180°﹣x°,∵AE平分∠BAC,∴∠BAE BAC(180°﹣x°)=90°x°,由(1)知:AB∥CD,∴∠BAE+∠AED=180°,∵∠AEF=35°,∴90x+x﹣35+2x=180,解得:x=50,即∠C=50°.。
2020—2021年湘教版七年级数学下册《二元一次方程组的解法》同步练习题及参考答案二.docx
新课标 2017-2018学年湘教版七年级数学下册第2课时 加减消元法(2)要点感知 __________和__________是解二元一次方程组的两种方法,它们都是通过__________其中一个未知数(消元),使二元一次方程组转化为__________,从而__________,只是消元的方法不同.可以根据方程组的具体情况灵活选择适合它的消元方法.预习练习1-1 解以下两个方程组:①21,758;y x x y =-+=⎧⎨⎩ ②8625,17648,s t s t +=-=⎧⎨⎩较为简便的方法是( )A .①②均用代入法B .①②均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法1-2 解方程组323,5 2.x y x y -=--=⎧⎨⎩①② (1)若用代入法解,可把②变形,得y=__________,代入①,得__________;(2)若用加减法解,可把②×2,把两个方程的两边分别__________,得到的一元一次方程是__________.知识点1 用适当的方法解二元一次方程组1.用代入法解方程组1,24y x x y =--=⎧⎨⎩时,代入正确的是( ) A.x-2-x=4 B.x-2-2x=4 C.x-2+2x=4D.x-2+x=42.解方程组①2,359;x y x y =-=⎧⎨⎩②427,3210;x y x y -=+=⎧⎨⎩ ③0,341;x y x y +=-=⎧⎨⎩④459,237.x y x y +=-=⎧⎨⎩比较适宜的方法是( ) A .①②用代入法,③④用加减法B .②③用代入法,①④用加减法C .①③用代入法,②④用加减法D .②④用代入法,①③用加减法3.方程组326,254,x y x y -⎨=-=⎧⎩①②将①×2-②×3得( )A.3y=2B.4y+1=0C.y=0D.7y=104.同时满足方程23x+12y=1与3x+2y=5的解是( )A.x=2,y=3B.x=-3,y=4C.x=3,y=-2D.x=-3,y=-25.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值是__________.知识点2 利用二元一次方程组求未知系数6.在等式y=mx+n 中,当x=2时,y=1,当x=3时,y=3,则m ,n 的值为( )A.m=2,n=-3B.m=-2,n=-3C.m=2,n=3D.m=-2,n=37.若方程mx+ny=6的两个解是1,1,x y ==⎧⎨⎩2,1,x y ==-⎧⎨⎩则m ,n 的值为( )A.4,2B.2,4C.-4,-2D.-2,-48.如果二元一次方程组1,3223ax by ax by -=+=⎧⎨⎩的解是5,4.x y ==⎧⎨⎩那么a-b=__________.9.解方程组:(1)23,511;y x x y =-+=⎧⎨⎩①② (2)3416,5633;x y x y +=⎨=-⎧⎩①② (3)12,43230.y x x y -+=+⎧+⎪⎩=⎪⎨①②10.已知2,1x y ==⎧⎨⎩是方程组5,1ax by bx ay +=+=⎧⎨⎩的解,则a-b 的值是( )A.-1B.2C.3D.411.解方程组①3,252;y x x y =-=⎧⎨⎩②236,251;x y x y -=-=⎧⎨⎩③328,322;x y x y +=-=-⎧⎨⎩④,27 3.x y x y =--=-⎧⎨⎩方程组__________适宜用代入消元法,__________适宜用加减消元法.12.解方程组:(1)()()221,2215;x y x y -=--+-=⎧⎪⎨⎪⎩①② (2)13,2323.342x y x y ⎧⎪⎪⎨+=-=⎪⎪⎩①②13.若方程组,ax y b x by a +=-=⎧⎨⎩的解是1,1,x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.14.对于有理数,规定新运算:x*y=ax+by+xy ,其中a ,b 是常数,等式右边是通常的加法和乘法运算,已知2*1=7,(-3)*3=3,求13*6的值.挑战自我15.阅读下列解方程组的方法,然后解决后面的问题:解方程组191817,171615x y x y +⎨=+=⎧⎩①②时,我们如果直接考虑消元,那将是繁不胜繁的,而采用下面的解法则是轻而易举的.解:①-②得,2x+2y=2,所以x+y=1.③将③×16,得16x+16y=16.④②-④,得x=-1,从而由③,得y=2.所以方程组的解是1,2.x y =-=⎧⎨⎩(1)请用上述的方法解方程组201420132012,201220112010;x y x y +=+=⎧⎨⎩(2)猜想关于x ,y 的方程组()()()21,12a x a y a ax a y a +++=+-=-⎧⎪⎨⎪⎩的解是什么?参考答案要点感知 加减消元法 代入消元法 消去 一元一次方程 求解 预习练习1-1 C1-2 (1)5x-2 3x-2(5x-2)=-3(2)相减 7x=7或-7x=-71.C2.C3.C4.C5.-16.A7.A8.09.(1)2,1.x y ==⎧⎨⎩ (2)6,1.2x y ==-⎧⎪⎨⎪⎩ (3)2,1.x y =-=⎧⎨⎩10.D 11.①④②③12.(1)把①代入②,得4(y-1)+y-1=5,解得y=2.把y=2代入①,得x-2=2×(2-1),解得x=4.故此方程组的解为4,2.x y ==⎧⎨⎩ (2)原方程组可化为3239,4318.x y x y +=⎨=-⎧⎩③④③×3+④×2,得17x=153,解得x=9.把x=9代入④,得36-3y=18,解得y=6.故此方程组的解为9,6.x y ==⎧⎨⎩ 13.解法1:把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩得1,1,a b b a +=-=⎧⎨⎩解得0,1.a b ==⎧⎨⎩ 把a=0,b=1代入(a+b)2-(a-b)(a+b),得原式=(0+1)2-(0-1)(0+1)=1-(-1)×1=2.解法2:把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩得1,1,a b b a +=-=⎧⎨⎩ 整理得1,1.a b a b -=-+=⎧⎨⎩由1,1.a b a b -=-+=⎧⎨⎩得(a+b)2-(a-b)(a+b)=12-(-1)×1=2. 14.由2*1=7得2a+b+2=7.①,由(-3)*3=3得-3a+3b-9=3.②,由①②得关于a 和b的方程组为:25,4.a b a b +=-=-⎧⎨⎩解得1,313.3a b ⎧⎪⎪⎨==⎪⎪⎩ 所以13*6=13×13+133×6+13×6=2819. 15.(1)201420132012,201220112010.x y x y +=⎨=+⎧⎩①② ①-②得,2x+2y=2,即x+y=1.③将③×2 011,得2 011x+2 011y=2 011,④②-④,得x=-1.把x=-1代入③,得y=2.所以方程组的解是1,2.x y =-=⎧⎨⎩ (2)根据系数的特点猜想关于x ,y 的方程组()()()21,12a x a y a ax a y a +++=+-=-⎧⎪⎨⎪⎩的解是1,2.x y =-=⎧⎨⎩。
人教版数学七年级培优竞赛讲练教程(10)二元一次方程组解的讨论
2021年人教版数学七年级培优和竞赛二合一讲练教程(10)二元一次方程组解的讨论【知识精读】二元一次方程组 222111c y b x a c y b x a 的解的情况有以下三种:1.当212121c c b b a a 时,方程组有无数多解。
(∵两个方程等效)①当212121c c b b a a 时,方程组无解。
(∵两个方程是矛盾的)②当2121b b a a (即a 1b 2-a 2b 1"`0)时,方程组有唯一的解:③ 1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可2.按二元一次方程整数解的求法进行。
求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再3.解含待定系数的不等式或加以讨论。
(见例2、3)【分类解析】例1. 选择一组a,c 值使方程组c y ax y x 275有无数多解, ②无解, ③有唯一的解①解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。
当 5∶a =1∶2"`7∶c 时,方程组无解。
②解得a=10, c"`14。
③当 5∶a"`1∶2时,方程组有唯一的解,即当a"`10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组3135y x a y x 的解是正数?解:把a 作为已知数,解这个方程组得23152331a y a x ∵ 00y x ∴ 023*******a a 解不等式组得 531331a a 解集是6311051 a 答:当a 的取值为6311051 a 时,原方程组的解是正数。
例3. m 取何整数值时,方程组1442y x my x 的解x 和y 都是整数?解:把m 作为已知数,解方程组得82881m y m x ∵x 是整数,∴m -8取8的约数±1,±2,±4,±8。
《第8章二元一次方程组》期末复习培优提升训练2020-2021学年人教版七年级数学下册
2021年人教版七年级数学下册《第8章二元一次方程组》期末复习培优提升训练(附答案)1.方程(m﹣2021)x|m|﹣2020+(n+3)y|n|﹣2=2022是关于x、y的二元一次方程,则()A.m=±2021;n=±3B.m=2021,n=3C.m=﹣2021,n=﹣3D.m=﹣2021,n=32.若,是方程ax+by=6的两组解,则a、b的值为()A.4,2B.2,4C.﹣4,﹣2D.﹣2,﹣43.由x+2y=1得到用x的代数式表示y的式子为()A.x=1﹣2y B.x=1+2y C.y=(1﹣x)D.y=(1+x)4.某人带了100元去市场买水果,他买了1千克的哈密瓜,2千克的青提葡萄,还剩30元.设哈密瓜每千克x元,青提葡萄每千克y元,得方程x+2y=70.下列说法中,正确的()A.1千克青提葡萄的价格可以是36元B.若1千克哈密瓜的价格是12元,则1千克青提葡萄的价格是20元C.若是方程x+2y=70的解,则m,n都可以表示哈密瓜、青提葡萄的单价D.若m,n分别表示哈密瓜、青提葡萄的单价,则m,n一定是方程x+2y=70的解5.某宾馆有三人间、四人间两种客房供游客居住(房间足够多),某旅行团24人入住该宾馆,要求入住的房间都住满,则入住方案有()种.A.4B.3C.2D.16.下列方程组中,是二元一次方程组的是()A.B.C.D.7.若二元一次方程组的解为,则m﹣n的值是()A.1B.2C.﹣D.38.若方程组的解中x+y=16,则k等于()A.15B.18C.16D.179.在《九章算术》中记载一道这样的题:“今有甲、乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,甲、乙持钱各几何?”题目大意是:甲、乙两人各带若干钱,如果甲得到乙所有钱的一半,那么甲共有钱50,如果乙得到甲所有钱的,那么乙也共有钱50.甲、乙两人各需带多少钱?设甲需带钱x,乙带钱y,根据题意可列方程组为()A .B .C .D .10.一个长方形周长是16cm,长与宽的差是1cm,那么长与宽分别为()A.5cm,3cm B.4.5cm,3.5cmC.6cm,4cm D.10cm,6cm11.方程组的解是()A .B .C .D .12.一种营养粥是由糯米、黑米和红豆三种主要原料配比后熬制而成,且权重之比为5:4:1.经市场了解发现,糯米、黑米和红豆的价格分别为6元/千克、8元/千克和20元/千克,仅从主要原料角度考虑,这种营养粥的成本价为()A.8.5元/千克B.6.8元/千克C.7.6元/千克D.8.2元/千克13.若关于x,y的方程2x|n|+3y m﹣2=0是二元一次方程,则m+n =.14.已知是二元一次方程2x﹣7y=8的一个解,则代数式17﹣4a+14b的值是.15.对于方程2x+3y=8,用含x的代数式表示y,则可以表示为.16.将一摞笔记本分给若干个同学,每个同学分8本,则差了7本.若设共有x个同学,y 本笔记本,则可列方程为.17.普通火车从绵阳至成都历时大约2小时,成绵城际快车开通后,时间大大缩短至几十分钟,现假定普通火车与城际快车两列对开的火车于同一时刻发车,其中普通火车由成都至绵阳,城际快车由绵阳至成都,这两车在途中相遇之后,各自用了80分钟和20分钟到达自己的终点绵阳、成都,则城际快车的平均速度是普通火车平均速度的倍.18.已知是关于x,y的二元一次方程组的解,则的值是.19.方程组:的解为.20.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余 4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x尺,绳子长为y 尺,则符合题意的方程组是.21.点点去文具店购买水笔和笔记本(水笔的单价相同,笔记本的单价相同).已知购买3支水笔和2本笔记本,则需要支付12元,够买1支水笔和2本笔记本,则需要支付8元.若点点购买1支水笔和1本笔记本,则需要支付元.22.在等式y=ax2+bx+c中,当x=1时,y=﹣2;当x=﹣1时,y=20;当x=与x=时,y的值相等,则a﹣b+c=.23.规定:关于x,y的二元一次方程ax+by=c有无数组解,每组解记为M(x,y),称M (x,y)为“团结点”,将这些“团结点”连接得到一条直线,称这条直线是“团结点”的“合作线”,回答下列问题:(1)已知A(﹣1,3),B(4,﹣1),C(1,2),则是“合作线”2x+3y=8的“团结点”的是;(2)设P(1,﹣1),Q(4,4)是“合作线”(m2+1)x+ny=8的两个“团结点”,求关于x,y的二元一次方程的正整数解;(3)已知h,t是实数,且,若是“合作线”2x﹣4y=s的一个“团结点”,求s的最大值与最小值的和.24.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x,y台,其中每台的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120(1)购买丙型设备台(用含x,y的代数式表示);(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了获利最多,应选择哪种购进方案?此时获利为多少?25.已知关于x,y的方程组,其中a是实数.(1)若x=y,求a的值;(2)若方程组的解也是方程x﹣5y=3的一个解,求(a﹣4)2021的值;(3)求k为何值时,代数式x2﹣kxy+9y2的值与a的取值无关,始终是一个定值,求出这个定值.26.解方程组:.27.某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,总费用为5700元,这所学校购买了多少个B型号篮球?28.已知x﹣2y+z=2x﹣y+z=3,且x,y,z的值中仅有一个为0,解这个方程组.29.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元.问购买铅笔11支,作业本5本,圆珠笔2支共需多少元?参考答案1.解:∵(m﹣2021)x|m|﹣2020+(n+3)y|n|﹣2=2022是关于x、y的二元一次方程,∴m﹣2021≠0,n+3≠0,|m|﹣2020=1,|n|﹣2=1,解得:m=﹣2021,n=3.故选:D.2.解:把,代入方程得:,①+②得:3a=12,解得:a=4,把a=4代入①得:4+b=6,解得:b=2.故选:A.3.解:方程x+2y=1,解得:y=(1﹣x).故选:C.4.解:∵设哈密瓜每千克x元,青提葡萄每千克y元,得方程x+2y=70,∴当y=36时,x=﹣2,此种情况不合实际,故选选项A不正确;当x=12时,12+2y=70,解得y=29,故选项B不正确;若是方程x+2y=70的解,则m,n不一定可以表示哈密瓜、青提葡萄的单价,如m =﹣2,n=36,故选项C不正确;若m,n分别表示哈密瓜、青提葡萄的单价,则m,n一定是方程x+2y=70的解,故选项D正确;故选:D.5.解:设入住三人间x间,入住四人间y间,则3x+4y=24,∴y=6﹣x,∵x、y都是非负整数,∴当x=0时,y=6,当x=4时,y=3,当x=8时,y=0,∴入住方案有3种:①入住四人间6间,②入住三人间4间,入住四人间3间,③入住三人间8间.故选:B.6.解:A.此方程组属于三元一次方程组,不符合题意.B.此选项方程组是二元一次方程组,符合题意.C.此方程组属于二元二次方程组,不符合题意;D.此方程组属于分式方程组,不符合题意;故选:B.7.解:①+②,得6x﹣6y=12,∴x﹣y=2.由于x=m,y=n,∴m﹣n=2.故选:B.8.解:由题意得,①+③得:4x=4k+11④,①×6+②得:20x=25k﹣30,即4x=5k﹣6⑤,⑤﹣④得:k=17,故选:D.9.解:设甲需带钱x,乙带钱y,根据题意,得:,故选:D.10.解:设这个长方形的长为xcm,宽为ycm,依题意得:,解得:.故选:B.11.解:,②+③得:x+y=﹣1④,把④代入①得﹣1﹣z=8,解得:z=﹣9,把z=﹣9代入②得:y=10,把z=﹣9代入③得:x=﹣11,则方程组的解为.故选:D.12.解:设营养粥的总质量是10a千克,则糯米、黑米和红豆分别是5a千克、4a千克、a千克,总成本价是:6×5a+8×4a+20×a=82a(元),∴成本价为:82a÷10a=8.2(元/千克).故选:D.13.解:根据题意得:|n|=1,m﹣2=1,解得:n=±1,m=3,∴m+n=3+1=4,m+n=3﹣1=2,∴m+n的值是2或4,故答案为:2或4.14.解:将代入二元一次方程2x﹣7y=8得:2a﹣7b=8.∴原式=17﹣2(2a﹣7b)=17﹣2×8=1.故答案为:1.15.解:方程2x+3y=8,解得:y=.故答案为:y=.16.解:设共有x个同学,有y个笔记本,由题意,得y=8x﹣7.故答案是:y=8x﹣7.17.解:设普通火车的平均速度为x千米/小时,城际快车的平均速度为y千米/小时,则两地间的距离为2x千米,依题意得:x+y=2x,解得:y=2x,∴=2.故答案为:2.18.解:把代入方程组,得.∴===.故答案为:.19.解:,①+②得:3x=15,解得:x=5,把x=5代入①得:5﹣y=3,解得:y=2,则方程组的解为.故答案为:.20.解:依题意得,故答案为:.21.解:设笔记本的单价为x元,水笔的单价为y元,依题意有,解得.∴点点购买1支水笔和1本笔记本,则需要支付2+3=5(元);故答案为:5.22.解:根据题意得:,解得:a=6,b=﹣11,c=3.∴a﹣b+c=20.故答案为:20.23.解:(1)将A,B,C三点坐标代入方程2x+3y=8,只有是方程2x+3y=8的解,∴“合作线”的团结点的是C(1,2).故答案为:C(1,2).(2)将代入P(1,﹣1),Q(4,4)方程(m2+1)x+ny=8得:得:.解得:.代入方程得:5x+6y=26.∴此方程的正整数解为:.(3)∵,∴=6﹣2|t|,|t|=.∵是“合作线”2x﹣4y=s的一个“团结点”,∴s=2﹣4|t|.∴s=2(6﹣2|t|)﹣4|t|=12﹣8|t|,或s=2﹣4×=4﹣12.∵≥0,|t|≥0,∴由s=12﹣8|t|,可得s有最大值12.由s=4﹣12,可得s有最小值﹣12.∴s的最大值与最小值的和为12﹣12=0.24.解:(1)购买丙型设备(60﹣x﹣y)台.故答案为:(60﹣x﹣y).(2)依题意,得:1000x+800y+500(60﹣x﹣y)=56000,整理得:5x+3y=260,∴x=52﹣y.又∵x,y,(60﹣x﹣y)均为正整数,∴y为5的倍数,当y=5时,x=49,60﹣x﹣y=6;当y=10时,x=46,60﹣x﹣y=4;当y=15时,x=43,60﹣x﹣y=2;当y=20时,x=40,60﹣x﹣y=0,不合题意,舍去.∴共有3种购进方案,方案1:购进甲型设备49台,乙型设备5台,丙型设备6台;方案2:购进甲型设备46台,乙型设备10台,丙型设备4台;方案3:购进甲型设备43台,乙型设备15台,丙型设备2台.(3)选择方案1的销售利润为260×49+190×5+120×6=14410(元);选择方案2的销售利润为260×46+190×10+120×4=14340(元);选择方案3的销售利润为260×43+190×15+120×2=14270(元).∵14410>14340>14270,∴购进甲型设备49台,乙型设备5台,丙型设备6台,获利最多,此时利润为14410元.25.解:(1)方程组,①×3+②得:5x=15a﹣5,解得:x=3a﹣1,把x=3a﹣1代入①得:y=a﹣2,则方程组的解为,令3a﹣1=a﹣2,解得a=;(2)把方程组代入方程得:3a﹣1﹣5a+10=3,解得:a=3,则(a﹣4)2021=(﹣1)2021=﹣1;(3)∵x2﹣kxy+9y2=(x﹣3y)2+6xy﹣kxy=25+(6﹣k)xy,且代数式x2﹣kxy+9y2的值与a的取值无关,∴当k=6时,代数式x2﹣kxy+9y2的值与a的取值无关,定值为25.26.解:,①+②×3,得10a=50,解得:a=5,把a=5代入②,得10+b=13,解得:b=3,所以方程组的解是.27.解:(1)设A型号篮球的价格为x元,B型号的篮球的价格为y元,依题意得:,解得:.答:A型号篮球的价格为50元、B型号篮球的价格为80元.(2)设这所学校买了m个A型号篮球,买了n个B型号篮球,依题意得:,解得:.答:这所学校购买了30个B型号篮球.28.解:原式化为,②﹣①得,x+y=0,∵x,y,z的值中仅有一个为0,∴z=0,由解得,∴原方程组的解为.29.解:设铅笔的单价为x元,作业本的单价为y元,圆珠笔的单价为z元,依题意得:,3×①﹣②得:11x+5y+2z=5.答:购买铅笔11支,作业本5本,圆珠笔2支共需5元.。
初一数学培优,二元一次方程组解的讨论
二元一次方程组解的讨论内容提要1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得) 2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)例题例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+c y ax y x 275 ① 有无数多解, ②无解, ③有唯一的解解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。
② 当 5∶a =1∶2≠7∶c 时,方程组无解。
解得a=10, c ≠14。
③当 5∶a ≠1∶2时,方程组有唯一的解,即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-0231502331a a解不等式组得⎪⎪⎩⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为6311051<<a 时,原方程组的解是正数。
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论一、二元一次方程组的定义二元一次方程组是由两个方程组成的方程集合,其中每个方程都是二元一次方程。
二元一次方程的一般形式为:ax + by = cdx + ey = f其中a、b、c、d、e、f是已知的实数,而x和y是未知数。
二、二元一次方程组的求解方法1.消元法:通过消去其中一个未知数的系数,将方程组化简为只包含一个未知数的方程。
然后可以通过代入的方法求解另一个未知数的值,从而得到方程组的解。
2. Cramer法则:利用行列式的性质求解二元一次方程组。
具体步骤如下:a)计算系数行列式:D=,abdb)x的系数行列式:Dx=,cbfc)y的系数行列式:Dy=,acdd)计算方程组的解:x=Dx/D,y=Dy/D3.代入法:将一个方程的解代入另一个方程中,从而得到只包含一个未知数的方程。
然后可以通过消元法或其他方法求解。
三、解的情况讨论1.唯一解:当二元一次方程组存在一个有序数对(x,y)使得方程组的两个方程同时成立时,方程组有唯一解。
2.无解:当二元一次方程组不存在有序数对(x,y)使得方程组的两个方程同时成立时,方程组无解。
3.无穷多解:当二元一次方程组存在无穷多个有序数对(x,y)使得方程组的两个方程同时成立时,方程组有无穷多解。
这种情况下,方程组的两个方程是两个平行直线。
四、实例演示考虑以下二元一次方程组:2x+3y=74x-y=2通过消元法可得:2x+3y=78x-2y=4将第二个方程化为y的表达式:y=4x-2将y的表达式代入第一个方程:2x+3(4x-2)=7化简得到:2x+12x-6=7合并同类项:14x-6=7解方程得到:14x=13,x=13/14将x的值代入y的表达式:y=4(13/14)-2,化简得到:y=3/7所以,方程组的解为(x,y)=(13/14,3/7)。
总结:二元一次方程组的解的讨论涉及到三种情况:唯一解、无解和无穷多解。
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论
初中数学竞赛精品标准教程及练习二元一次方程组解的讨论二元一次方程组是初中数学中的一个重要内容,也是数学竞赛中经常出现的题型。
解二元一次方程组的方法主要有代入法、消元法和等式法。
下面是对这三种方法进行详细讨论的精品标准教程。
一、代入法代入法是解二元一次方程组最常见的方法之一、它的基本思想是通过一个方程的解来代入另一个方程,从而得到另一个未知数的解。
例题1:解方程组2x+y=6x-y=2解析:由于第二个方程的形式比较简单,所以可以先解x,然后带入第一个方程来解y。
解方程x-y=2得到x=2+y将x=2+y代入第一个方程2x+y=6得到2(2+y)+y=6化简得4+2y+y=6化简得3y=2解得y=2/3带入第一个方程2x+y=6得到2x+2/3=6化简得2x=6-2/3化简得2x=16/3解得x=8/3所以,解得x=8/3,y=2/3二、消元法消元法是解二元一次方程组的另一种常见方法。
它的基本思想是通过消去一个未知数,得到只含有一个未知数的一次方程,从而求出这个未知数的值,然后代入原方程组来求出另一个未知数的值。
例题2:解方程组2x+y=6x-y=2解析:首先观察发现,两个方程都有x-y,所以可以消去y。
将第二个方程两边同时乘以2得到2x-2y=4将这个方程与第一个方程相加,得到(2x+y)+(2x-2y)=6+4化简得4x=10解得x=10/4=5/2将x=5/2带入第一个方程2(5/2)+y=6化简得5+y=6解得y=1所以,解得x=5/2,y=1三、等式法等式法是解二元一次方程组的另一种常见方法。
它的基本思想是将其中一个方程的左右两边都化成同样的形式,然后将两个方程相减或相加,从而消去一个未知数。
例题3:解方程组3x-2y=72x+3y=1解析:为了消去x或y,我们可以将第一个方程乘以3,将第二个方程乘以2,从而使得两个方程的x系数一样。
将第一个方程乘以3得到9x-6y=21将第二个方程乘以2得到4x+6y=2将两个方程相加,得到(9x-6y)+(4x+6y)=21+2化简得13x=23解得x=23/13将x=23/13带入第一个方程3(23/13)-2y=7化简得69/13-2y=7解得y=(69/13-7)/(-2)化简得y=5/13所以,解得x=23/13,y=5/13通过以上的讨论,我们可以看出代入法、消元法和等式法都是解二元一次方程组的有效方法。
七年级二元一次方程组用解问题决
为公教育个性化辅导教案二元一次方程组知识点归纳及解题技巧把两个一次方程联立在一起,那么这两个方程就组成了一个二元一次方程组。
有几个方程组成的一组方程叫做方程组。
如果方程组中含有两个未知数,且含未知数的项的次数都是一次,那么这样的方程组叫做二元一次方程组。
二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:代入消元法例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89y=59/7把y=59/7带入③,x=5-59/7即x=-24/7∴x=-24/7y=59/7 为方程组的解我们把这种通过“代入”消去一个未知数,从而求出方程组的解的方法叫做代入消元法(elim ination by substitution),简称代入法。
加减消元法例:解方程组x+y=9①x-y=5②解:①+②2x=14即x=7把x=7带入①得7+y=9解得y=-2∴x=7y=-2 为方程组的解像这种解二元一次方程组的方法叫做加减消元法(elimination by addition-subtraction),简称加减法。
二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
初中数学竞赛辅导 第十讲 二元一次方程的整数解(含答案)
第十讲 二元一次方程的整数解一、内容提要1、二元一次方程整数解存在的条件:在整系数方程ax +by =c 中,若a ,b 的最大公约数能整除c ,则方程有整数解。
即如果(a ,b )|c 则方程ax +by =c 有整数解显然a ,b 互质时一定有整数解。
例如方程3x +5y =1, 5x -2y =7, 9x +3y =6都有整数解。
反过来也成立,方程9x +3y =10和 4x -2y =1都没有整数解,∵(9,3)=3,而3不能整除10;(4,2)=2,而2不能整除1。
一般我们在正整数集合里研究公约数,(a ,b )中的a ,b 实为它们的绝对值。
2、二元一次方程整数解的求法:若方程ax +by =c 有整数解,一般都有无数多个,常引入整数k 来表示它的通解(即所有的解)。
k 叫做参变数。
方法一:整除法:求方程5x +11y =1的整数解解:x =5111y -=y y y y 2515101--=-- (1) , 设k k y (51=-是整数),则y =1-5k (2) , 把(2)代入(1)得x =k -2(1-5k )=11k -2∴原方程所有的整数解是⎩⎨⎧-=-=k y k x 51211(k 是整数) 方法二:公式法:设ax +by =c 有整数解⎩⎨⎧==00y y x x 则通解是⎩⎨⎧-=+=aky y bk x x 00(x 0,y 0可用观察法) 3、 求二元一次方程的正整数解:① 求出整数解的通解,再解x ,y 的不等式组,确定k 值② 用观察法直接写出。
二、例题例1求方程5x -9y =18整数解的通解解:x =53235310155918y y y y y -++=-++=+ 设k y =-53(k 为整数),y =3-5k , 代入得x =9-9k ∴原方程整数解是⎩⎨⎧-=-=k y k x 5399 (k 为整数) 又解:当x =o 时,y =-2,∴方程有一个整数解⎩⎨⎧-==20y x 它的通解是⎩⎨⎧--=-=k y y x 5290(k 为整数)从以上可知整数解的通解的表达方式不是唯一的。
2020—2021年湘教版七年级数学下册期末专题复习《二元一次方程组》及答案解析.docx
新课标 2017-2018学年湘教版七年级数学下册期末复习(一) 二元一次方程组考点一二元一次方程组及其相关概念【例1】下列方程组中,不是二元一次方程组的是( )A.258x yx y-==⎧⎨⎩ B.1x yx y z+==+⎧⎨⎩ C.3225x yx y-=+=⎧⎨⎩D.112 23113 32x yx y+=-=⎧⎪⎪⎨⎪⎪⎩【分析】根据二元一次方程组的定义判断.【解答】B【方法归纳】二元一次方程组必须满足三个条件:①方程组中的两个方程都是整式方程;②方程组中共含有两个未知数;③每个方程都是一次方程.变式练习:1.下列方程组是二元一次方程组的是( )A.31x yxy-==⎧⎨⎩ B.2532x yx y+==-⎧⎨⎩ C.212x yy x-==⎧⎨⎩D.12x yx y⎧-=+=⎪⎨⎪⎩2.下列四个解中是方程组16,223111x yx y-=+=-⎧⎪⎨⎪⎩的解是( )A.612xy=-=-⎧⎨⎩ B.82xy==-⎧⎨⎩ C.101xy==-⎧⎨⎩ D.112xy=-=⎧⎪⎨⎪⎩考点二二元一次方程组的解法【例2】解方程组:432,2 6.x yx y-=+=⎧⎨⎩①②【分析】根据方程组中系数的特点,先确定“消元”的对象,即先消去x或先消去y.【解答】②×2-①得5y=10,解得y=2.把y=2代入②得x=2.所以方程组的解为2,2. xy==⎧⎨⎩【方法归纳】解二元一次方程组时,应把握方程组的特点,选择较为简单的方法进行求解.当方程组中某个未知数的系数的绝对值等于1时,利用代入消元法求解比较简单;当方程组中某一个未知数的系数成倍数或绝对值相同,则采用加减消元法比较简单.3.解下列方程组:(1)358,21x yx y+=-=⎧⎨⎩; (2)21,3211.x yx y+=-=⎧⎨⎩考点三利用二元一次方程组求值【例3】已知关于x,y的方程组7,234mx nymx ny+=-=⎧⎨⎩的解为1,2,xy==⎧⎨⎩求m,n的值.【分析】根据方程组解的意义,将1,2,xy==⎧⎨⎩代入原方程组7,234mx nymx ny+=-=⎧⎨⎩得到一个关于m,n的方程组,解这个新方程组即可.【解答】由题意,将1,2,xy==⎧⎨⎩代入方程组7,234mx nymx ny+=-=⎧⎨⎩中,得2726 4.m nm n+=-=⎧⎨⎩,解这个新方程组,得51. mn==⎧⎨⎩,【方法归纳】二元一次方程组的解是指同时符合两个方程的未知数的值,当已知方程组的解时,都是把解代入方程组,得到新的方程组,再解方程组,从而求出字母的值.4.已知,x ay b==⎧⎨⎩是方程组27,25x yx y+=+=⎧⎨⎩的解,则a-b的值为( )A.2B.1C.0D.-15.已知关于x、y的方程组11,225mx nymx ny-=+=⎧⎪⎨⎪⎩的解为2,3,xy==⎧⎨⎩求m、n的值.考点四 利用二元一次方程组解决实际问题【例4】在水果店里,小李买了5 kg 苹果,3 kg 梨,老板少要2元,收了50元;老王买了11 kg 苹果,5 kg 梨,老板按九折收钱,收了90元.该店的苹果和梨的单价各是多少元?【分析】本题中的关键语句是:小李买了5 kg 苹果,3 kg 梨,老板少要2元,收了50元;老王买了11 kg 苹果,5 kg 梨,老板按九折收钱,收了90元,由此得两个相等关系:(1)5 kg 苹果的金额+3 kg 梨的金额=50+2;(2)(11 kg 苹果的金额+5 kg 梨的金额)×0.9=90.【解答】设该店的苹果和梨的单价分别是x 元/kg 、y 元/kg ,根据题意,得()5352,0.911590.x y x y +=+=⎧⎨⎩解得5,9.x y ==⎧⎨⎩答:该店的苹果和梨的单价分别是5元/kg 、9元/kg .【方法规纳】用方程或方程组解应用题,解题的关键要抓住题中的关键语句构建方程或方程组模型.6.将一摞笔记本分给若干同学,每个同学6本,则剩下9本;每个同学8本,又差3本.问共有多少本笔记本、多少个同学?7.我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需要190元;购买2件甲商品和3件乙商品需要220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?复习测试:一、选择题(每小题3分,共24分)1.下列方程组中,不是二元一次方程组的是( ) A.2232x y y x ⎧-==⎪⎨⎪⎩ B.12x y x y +=-=⎧⎨⎩ C.12x y xy +==⎧⎨⎩ D.23x yx y =-=⎧⎨⎩2.方程5x+2y=-9与下列方程构成的方程组的解为2,12x y ⎧=-=⎪⎨⎪⎩的是( )A.x+2y=1B.3x+2y=-8C.5x+4y=-3D.3x-4y=-83.方程组5,210x y x y +=+=⎧⎨⎩①,②由②-①,得正确的方程是( )A.3x=10B.x=5C.3x=-5D.x=-54.若x、y满足方程组37,35,x yx y+=+=⎧⎨⎩则x-y的值等于( )A.-1B.1C.2D.35.已知方程组2313,3530.9a ba b-=+=⎧⎨⎩的解是8.3,1.2,ab==⎧⎨⎩则方程组()()()()223113,325130.9x yx y+--=++-=⎧⎪⎨⎪⎩的解是( )A.8.31.2xy==⎧⎨⎩ B.10.32.2xy==⎧⎨⎩ C.6.32.2xy==⎧⎨⎩ D.10.30.2xy==⎧⎨⎩6.已知3,2xy=-=-⎧⎨⎩是方程组1,2ax cycx by+=-=⎧⎨⎩的解,则a,b间的关系是( )A.4b-9a=1B.3a+2b=1C.4b-9a=-1D.9a+4b=17.小亮解方程组2,212x y Ax y+=-=⎧⎨⎩时,得到它的解为5,.xy B==⎧⎨⎩由于不小心滴上了两滴墨水,刚好遮住了两个数A和B,则这两个数分别为( )A.4和6B.6和4C.2和8D.8和-28.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是( )A.12人,15人B.14人,13人C.15人,12人D.13人,14人二、填空题(每小题4分,共16分)9.请写出一个解为2,3xy=-=⎧⎨⎩的二元一次方程组:____________________.10.方程组0,26x yx y-=+=⎧⎨⎩的解是__________.11.关于x、y的方程组2,x y mx my n-=+=⎧⎨⎩的解是1,3,xy==⎧⎨⎩则|m+n|的值是__________.12.某体育场的环形跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是____________________.三、解答题(共60分)13.(12分)解方程组:(1)1,22;x yx y-=+=⎧⎨⎩ (2)()()41312,2.23x y yx y--=--+=⎧⎪⎨⎪⎩14.(8分)已知关于x,y的二元一次方程组221,21x y kx y k+=++=-⎧⎨⎩的解互为相反数,求k的值.15.(9分)小峰对雨欣说,有这样一个式子ax+by,当x=1,y=4时,它的值是7;当x=2,y=3时,它的值是4;你知道当x=2,y=1时,它的值是多少吗?雨欣想了想,很快就做出了正确答案.你知道聪明的雨欣是怎样做的吗?16.(9分)某学校组织学生乘汽车去自然保护区野营,先以60 km/h的速度走平路,后又以30 km/h的速度爬坡,共用了6.5 h;原路返回时,汽车以40 km/h 的速度下坡,又以50 km/h的速度走平路,共用了6 h.问平路和坡路各有多远?17.(10分)已知方程组3,3228x yax by+=+=⎧⎨⎩与方程组16,37ax byx y+=-=-⎧⎨⎩的解相同,求3a-2b的值.18.(12分)某镇水库的可用水量为12 000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?参考答案变式练习1.B2.C3.(1)1,1x y ==⎧⎨⎩; (2)3,1.x y ==-⎧⎨⎩4.A5.将23x y ==⎧⎨⎩,代入方程组,得312,2223 5.m n m n -=+=⎧⎪⎨⎪⎩①②②-①得92n=92,即n=1.将n=1代入②得m=1.则1,1.m n ==⎧⎨⎩6.设共有笔记本x 本,同学y 个.由题意,得69,83.x y y x -=-=⎧⎨⎩解得45,6.x y ==⎧⎨⎩答:共有45本笔记本,6个同学.7.设打折前一件甲商品需要x 元,一件乙商品需要y 元,由题意得 3190,23220.x y x y +=+=⎧⎨⎩解得50,40.x y ==⎧⎨⎩打折前购买10件甲商品和10件乙商品需要:10×(50+40)=900(元). 900-735=165(元).答:这比不打折前少花165元.复习测试1.C2.D3.B4.A5.C6.D7.D8.C9.答案不唯一,如1,5x y x y +=-=-⎧⎨⎩10.2,2x y ==⎧⎨⎩11.3 12.()()30400,80400x y y x ⎧+=-=⎪⎨⎪⎩ 13.(1)1,0.x y ==⎧⎨⎩ (2)2,3.x y ==⎧⎨⎩14.由题意得3x+3y=3k ,即x+y=k ,因为x ,y 互为相反数,所以k=0. 15.根据题意,得4723 4.a b a b +=+=⎧⎨⎩,①②①×2-②,得5b=10,b=2.将b=2代入①,得a=-1.所以这个式子为-x+2y.将x=2,y=1代入上式,得-2+2×1=0.16.设平路x km,坡路y km,根据题意,得6.5,60306,5040x yx y ⎧⎪+=+=⎪⎨⎪⎪⎩即2390,451200,x y x y +=+=⎧⎨⎩解得150,120.x y ==⎧⎨⎩答:平路150 km,坡路120 km.17.解方程组3,37x y x y +=-=-⎧⎨⎩得1,4.x y =-=⎧⎨⎩把1,4.x y =-=⎧⎨⎩代入方程组3228,16ax by ax by +=+=⎧⎨⎩得3828,416.a b a b -+=-+=⎧⎨⎩解得4,5.a b ==⎧⎨⎩所以3a-2b=3×4-2×5=2.18.(1)设年降水量为x 万立方米,每人年平均用水量为y 立方米,则12000201620,12000152015,x y x y +=⨯+=⨯⎧⎨⎩解得200,50.x y ==⎧⎨⎩答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该镇居民年平均用水量为z 立方米才能实现目标,则 12 000+25×200=20×25z ,解得z =34.所以50-34=16.答:该镇居民人均每年需要节约16立方米的水才能实现目标.。
七年级初一数学数学第八章 二元一次方程组的专项培优练习题(附解析
七年级初一数学数学第八章 二元一次方程组的专项培优练习题(附解析一、选择题1.若关于x ,y 的方程组()348217x y mx m y +=⎧⎨+-=⎩的解也是二元一次方程x -2y =1的解,则m 的值为( )A .52B .32C .12D .12.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2- B .2 C .6- D .63.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x 人,小学在校生y 人,由题意可列方程组( )A .30008%11%300010%x y x y +=⎧⎨+=⨯⎩B .30008%11%3000(110%)x y x y +=⎧⎨+=+⎩C .()()300018%111%300010%x y x y +=⎧⎨+++=⨯⎩D .30008%11%10%x y x y +=⎧⎨+=⎩ 4.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩ 5.甲、乙两人练习跑步,如果让甲先跑10m ,那么乙跑5s 就追上了甲;如果让甲先跑2s ,那么乙跑4s 就追上了甲,求甲、乙两人的速度.若设甲、乙两人的速度分别为 /, /x m s y m s ,则下列方程组中正确的是( )A .()()510422x y x y x ⎧-=⎪⎨-=⎪⎩B .5105442y x y x x =+⎧⎨-=⎩C .()551042x y x y y -=⎧⎨-=⎩D .5510424x y x y=+⎧⎨-=⎩ 6.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )A .200B .201C .202D .2037.如图,将正方形ABCD 的一角折叠,折痕为AE ,点B 落在点B ′处,B AD ∠'比BAE ∠大48︒.设BAE ∠和B AD ∠'的度数分别为x ︒和y ︒,那么x 和y 满足的方程组是( )A .4890y x y x -=⎧⎨+=⎩B .482y x y x -=⎧⎨=⎩C .48290x y y x -=⎧⎨+=⎩D .48290y x y x -=⎧⎨+=⎩8.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .675cm 2 9.以方程组21x y y x +=⎧⎨=-⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限10.两位同学在解方程组时,甲同学由278ax by x cx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C 写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为 A .452a b c ===-,, B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,, 二、填空题11.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a xb yc a x b y c +-=⎧⎨+-=⎩的解为__________. 12.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个.13.已知点 C 、D 是线段AB 上两点(不与端点A 、B 重合),点A 、B 、C 、D 四点组成的所有线段的长度都是正整数,且总和为29,则线段AB 的长度为__________________ .14.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.15.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由A、B、C三种饼干搭配而成,每袋礼包的成本均为A、B、C三种饼干成本之和.每袋甲类礼包有5包A种饼干、2包B种饼干、8包C种饼干;每袋丙类礼包有7包A种饼干、1包B种饼干、4包C种饼干.已知甲每袋成本是该袋中A种饼干成本的3倍,利润率为30%,每袋乙的成本是其售价的56,利润是每袋甲利润的49;每袋丙礼包利润率为25%.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为4:6:5,则当天该网店销售总利润率为__________.16.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B、C产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______. 17.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人.18.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.19.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm,小红所搭的“小树”的高度为22 cm,设每块A型积木的高为x cm,每块B型积木的高为y cm,则x=__________,y=__________.20.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.三、解答题21.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.22.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 23.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.24.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.25.小红用110根长短相同的小木棍按照如图所示的方式,连续摆正方形或六边形,要求相邻的图形只有一条公共边.(1)小红首先用m 根小木棍摆出了p 个小正方形,请你用等式表示,m p 之间的关系: ;(2)小红用剩下的小木棍摆出了一些六边形,且没有木棍剩余.已知他摆出的正方形比六边形多4个,请你求出摆放的正方形和六边形各多少个?(3)小红重新用50根小木棍,摆出了s 排,共t 个小正方形.其中每排至少含有1个小正方形,每排含有的小正方形的个数可以不同.请你用等式表示,s t 之间的关系,并写出所有,s t 可能的取值.26.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A 、B 两种原料,生产甲产品需要A 种原料4吨/件,B 种原料2吨/件,生产乙产品需要A 种原料3吨/件,B 种原料1吨/件,每个季节该厂能获得A 种原料120吨,B 种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A ,B 两种原料还剩下多少吨?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】联立不含m 的方程求出x 与y 的值,进而求出m 的值即可.【详解】解:联立得:34821x y x y +=⎧⎨-=⎩①②, ①+②2⨯得:510x =,解得:2x =,把2x =代入①得:12y =, 把2x =,12y =代入得:12(21)72m m +-=, 解得:52m =. 故选:A .【点睛】 此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.2.C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键.3.A解析:A【分析】根据定量可以找到两个等量关系:现在初中在校人数+现在小学在校人数=3000;一年后初中在校增加的人数加一年后小学在校增加的人数=一年后全校学生增加的人数,列出方程即可解答【详解】设这所学校现初中在校生x 人,小学在校生y 人,则30008%11%300010%x y x y +=⎧⎨+=⨯⎩故选A【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程4.D解析:D【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键. 5.B解析:B【分析】本题有两个相等关系:如果让甲先跑10m ,那么乙跑5s 就追上了甲;如果让甲先跑2s ,那么乙跑4s 就追上了甲,然后根据追及问题的特点“两者路程相等”即可列出方程组.【详解】解:设甲、乙两人的速度分别为/, /x m s y m s ,根据题意得:5105442y x y x x=+⎧⎨-=⎩. 故选:B .【点睛】 本题考查了二元一次方程组的应用之行程问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.6.A解析:A【分析】分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答.【详解】解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得:43{2x y n x y m+=+=, 则两式相加得5()m n x y +=+,∵x 、y 都是正整数∴m n +一定是5的倍数;∵200、201、202、203四个数中,只有200是5的倍数,∴m n +的值可能是200.故选A.【点睛】本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.7.D解析:D【分析】根据由将正方形ABCD 的一角折叠,折痕为AE ,∠B'AD 比∠BAE 大48°的等量关系即可列出方程组.【详解】解:.设BAE ∠和B AD ∠'的度数分别为x ︒和y ︒由题意可得:48290y x y x -=⎧⎨+=⎩故答案为D.【点睛】本题考查了二元一次方程组的应用,根据翻折变换的性质以及正方形的四个角都是直角寻找等量关系是解答本题的关键. 8.D解析:D【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2.故选D.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.9.A解析:A【分析】先根据代入消元法解方程组,然后判断即可;【详解】21x y y x +=⎧⎨=-⎩, 把1y x =-代入2x y +=中,得:12x x -+=, 解得:32x =, ∴31122y =-=, ∴点31,22⎛⎫ ⎪⎝⎭在第一象限. 故选A .【点睛】本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键.10.A解析:A【分析】把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答.【详解】解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得: 3223148a b c -=⎧⎨+=⎩①②, 由②得:c 2=-,四个选项中行只有A 符合条件.故选择:A.【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.二、填空题11.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为,将解方程组变形为,∴关于,的方程组的解为,解得,故答案为:.【点睛】本题考查了二元一次方程组的解法 解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】 将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可. 【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.12.无数【分析】把x 看做已知数求出y ,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13 xy=⎧⎨=⎩;∵当x、y是整数时,9-x是8的倍数,∴x可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13xy=⎧⎨=⎩;无数.【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x看做已知数求出y.13.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.14.30【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框解析:30【分析】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得可列方程k=9a+7=7b+4=5c+2(k,a,b,c都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k,甲取了a次,乙取了b次,丙取了c次.根据题意得:k=9a+7=7b+4=5c+2(k,a,b,c都是正整数)∴9a+7=5c+2,∴9a=5(c-1),∴a是5的倍数.不妨设a=5m(m为正整数),∴k=45m+7=7b+4,∴b=4533(1)677m mm++=+,∵b和m都是正整数,∴m的最小值为6.∴a=5m=30.故答案为:30.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.15.25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为解析:25%【分析】设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.【详解】解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:5x+2y+8z=15x,∴5x=y+4z,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;∵每袋乙的成本是其售价的56,利润是每袋甲利润49,可知每袋乙礼包的利润是:4.5x×49=2x,则乙礼包的售价为12x,成本为10x;由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x,成本为12x;∵甲、乙、丙三种礼包袋数之比为4:6:5,∴19.54612515415610512100%25% 415610512x x x x x xx x x⨯+⨯+⨯-⨯-⨯-⨯⨯=⨯+⨯+⨯,∴总利润率是25%,故答案为:25%.【点睛】本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.16.34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A 型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意解析:34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B 型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.17.48【分析】设选洪崖洞的有a人,选长江索道的有b人,选李子坝轻轨站的有c人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可解析:48【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可.【详解】解:设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列方程:c=d ﹣8,a=xd (x >1,且为整数),d+a=5(b+c ),b+a=c+d+24,整理可得:283727d b a b =-⎧⎨=-⎩, 当x=2时,解得b=16,d=﹣20,不符合题意,舍去;当x=3时,解得b=6,d=10,a=30,c=2,则旅行团共有6+10+30+2=48人;当x >3时,求得的b 均为负数,不符合题意.故答案为48.【点睛】本题主要考查列方程,解多元一次方程,解此题的关键在于根据题意准确列出方程. 18.3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k 的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.19.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A 的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组23233222x yx y+=⎧⎨+=⎩,再求解45xy=⎧⎨=⎩.故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.20.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.三、解答题21.(1)60天,40天;(2)方案③既省时又省钱.【分析】(1)设甲小组单独修完需要x 天,乙小组单独修完需要y 天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.【详解】解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天. 根据题意,得()16168,20.x y x y ⎧=+⎨-=⎩解得60,40.x y =⎧⎨=⎩答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元);方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为()96016168++×(120+80+10)=5040(元). 比较知,方案③既省时又省钱.故答案为(1)60天,40天;(2)方案③既省时又省钱.【点睛】解答本题的关键是读懂题意,找到等量关系,正确列出方程,再求解.22.952m ≤≤ 【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】 本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.23.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0,|21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积), 根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示,则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示,则OGP BPE ∠=∠,PE 平分OPB ∠,OPE BPE ∴∠=∠,OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠,FEP OPE ∴∠=∠,CEP CEF FEP ∠=∠+∠,CEP CEF OPE ∴∠=∠+∠,CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.24.(1)手动型汽车560台,自动型汽车400台;(2)577.6万元.【分析】(1)根据题意设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,根据政策出台前一个月及出台后的第一月销售量,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)由题意根据总价=单价×数量结合政府按每台汽车价格的5%给购买汽车的用户补贴,即可求出结论.【详解】解:(1)设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,依题意,得:()()960130%125%1228x y x y +=⎧⎪⎨+++=⎪⎩, 解得:560400x y =⎧⎨=⎩. 答:在政策出台前一个月,销售的手动型汽车560台,自动型汽车400台.(2)[560×(1+30%)×9+400×(1+25%)×10]×5%=577.6(万元).答:政府对这1228台汽车用户共补贴了577.6万元.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(1)31p m +=;(2)正方形有16个,六边形有12个;(3)216s t =⎧⎨=⎩,515s t =⎧⎨=⎩,814s t =⎧⎨=⎩或1113s t =⎧⎨=⎩【解析】。
初中数学培优:二元一次方程组解的讨论
初中数学培优:二元一次方程组解的讨论【知识精读】1. 二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(∵两个方程等效) ② 当212121c c b b a a ≠=时,方程组无解。
(∵两个方程是矛盾的) ③ 当2121b b a a ≠(即a 1b 2-a 2b 1≠0)时,方程组有唯一的解: ⎪⎪⎩⎪⎪⎨⎧--=--=1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)2. 方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3. 求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)【分类解析】例1. 选择一组a,c 值使方程组⎩⎨⎧=+=+cy ax y x 275 ① 有无数多解, ②无解, ③有唯一的解解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解解比例得a=10, c=14。
② 当 5∶a =1∶2≠7∶c 时,方程组无解。
解得a=10, c ≠14。
③当 5∶a ≠1∶2时,方程组有唯一的解,即当a ≠10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组⎩⎨⎧=+=+3135y x a y x 的解是正数? 解:把a 作为已知数,解这个方程组 得⎪⎪⎩⎪⎪⎨⎧-=-=23152331a y a x ∵⎩⎨⎧>>00y x ∴⎪⎪⎩⎪⎪⎨⎧>->-0231502331a a 解不等式组得⎪⎪⎩⎪⎪⎨⎧><531331a a 解集是6311051<<a 答:当a 的取值为6311051<<a 时,原方程组的解是正数。
【教育学习文章】七年级下册数学二元一次方程组解的讨论竞赛辅导资料
七年级下册数学二元一次方程组解的讨论竞赛辅导资料本资料为woRD文档,请点击下载地址下载全文下载地址课件www.5yk 初中数学竞赛辅导资料(11)二元一次方程组解的讨论甲内容提要.二元一次方程组的解的情况有以下三种:①当时,方程组有无数多解。
(∵两个方程等效)②当时,方程组无解。
(∵两个方程是矛盾的)③当(即a1b2-a2b1≠0)时,方程组有唯一的解:(这个解可用加减消元法求得)2.方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。
3.求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。
(见例2、3)乙例题例1. 选择一组a,c值使方程组①有无数多解,②无解,③有唯一的解解:①当5∶a=1∶2=7∶c时,方程组有无数多解解比例得a=10, c=14。
②当5∶a=1∶2≠7∶c时,方程组无解。
解得a=10, c≠14。
③当5∶a≠1∶2时,方程组有唯一的解,即当a≠10时,c不论取什么值,原方程组都有唯一的解。
例2. a取什么值时,方程组的解是正数?解:把a作为已知数,解这个方程组得∵∴解不等式组得解集是6答:当a的取值为6时,原方程组的解是正数。
例3. m取何整数值时,方程组的解x和y都是整数?解:把m作为已知数,解方程组得∵x是整数,∴m-8取8的约数±1,±2,±4,±8。
∵y是整数,∴m-8取2的约数±1,±2。
取它们的公共部分,m-8=±1,±2。
解得m=9,7,10,6。
经检验m=9,7,10,6时,方程组的解都是整数。
例4(古代问题)用100枚铜板买桃,李,榄橄共100粒,己知桃,李每粒分别是3,4枚铜板,而榄橄7粒1枚铜板。
问桃,李,榄橄各买几粒?解:设桃,李,榄橄分别买x, y, z粒,依题意得由(1)得x=100-y-z把(3)代入(2),整理得y=-200+3z-设得z=7k,y=-200+20k,x=300¬-27k∵x,y,z都是正整数∴解得(k是整数)∴10<k<, ∵k是整数,∴k=11即x=3(桃), y=20(李), z=77(榄橄)丙练习11.不解方程组,判定下列方程组解的情况:①②③2.a取什么值时方程组的解是正数?3.a取哪些正整数值,方程组的解x和y都是正整数?4.要使方程组的解都是整数,k应取哪些整数值?5.(古代问题)今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,鸡翁,鸡母,鸡雏都买,可各买多少?一下答案练习11.①无数多个解②无解③唯一的解2.a>13.a=14.–5,-3,-1,15.课件www.5yk。
初一数学二元一次方程组解题技巧
初一数学二元一次方程组解题技巧初一数学中主要涉及的关于二元一次方程组的解题技巧有以下几点:1.代入法:将一个方程的解代入另一个方程中,从而得到另一个未知数的值。
例如,对于方程组-3x+2y=45x-3y=7可以先解第一个方程得到x=(2y-4)/3,然后将这个x的值代入第二个方程,从而得到y的值。
2.加减消元法:通过两个方程相加或相减,消除一个未知数,从而得到剩下的未知数的值。
例如,对于方程组2x+3y=83x-2y=11可以将两个方程相加,得到5x+y=19,然后解这个方程得到x=3,再将这个x的值代入一个方程,从而得到y的值。
3.系数比较法:通过观察两个方程的系数之间的关系,进行比较,从而得到未知数的值。
例如,对于方程组3x+4y=102x+3y=7可以观察到第一个方程的系数3和第二个方程的系数2之间存在关系,即3=2x+1、根据这个关系可以算出x的值,然后将x的值代入一个方程,从而得到y的值。
4.交叉消元法:通过两个方程相乘或相除,消除一个未知数,从而得到剩下的未知数的值。
例如,对于方程组3x+2y=82x-3y=7可以将两个方程相乘,得到6x^2-18y^2=56,然后解这个方程得到x^2=10,再将这个x的值代入一个方程,从而得到y的值。
5.图解法:将两个方程转化为直线的形式,在坐标系中画出两条直线,通过观察直线的交点来确定方程组的解。
例如,对于方程组x+y=52x-y=1可以将两个方程转化为直线的形式,即y=5-x和y=2x-1,然后在坐标系中画出这两条直线,通过观察交点(2,3)来确定方程组的解。
以上是初一数学中关于二元一次方程组解题的一些常见技巧。
在解题过程中,也可以根据具体情况灵活运用这些技巧,多加练习,提高解题的能力。
2020-2021初中数学方程与不等式之二元一次方程组难题汇编附答案
2020-2021初中数学方程与不等式之二元一次方程组难题汇编附答案一、选择题1.若12x y =⎧⎨=-⎩是关于x 和y 的二元一次方程1ax y +=的解,则a 的值等于( )A .3B .1C .1-D .3-【答案】A 【解析】 【分析】将方程的解代入所给方程,再解关于a 的一元一次方程即可. 【详解】解:将12x y =⎧⎨=-⎩代入1ax y +=得,21a -=,解得:3a =. 故选:A . 【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大.2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为( )A.15 B.﹣15 C.16 D.﹣16【答案】B【解析】【分析】把方程组的解代入方程组可得到关于a、b的方程组,解方程组可求a,b,再代入可求(a+b)(a-b)的值.【详解】解:∵是关于x、y的方程组的解,∴解得∴(a+b)(a-b)=(-1+4)×(-1-4)=-15.故选:B.【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.4.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x张制盒身,y张制盒底,得方程组()A.1204016x yy x+=⎧⎨=⎩B.1204332x yy x+=⎧⎨=⎩C.12040210x yy x+=⎧⎨=⨯⎩D.以上都不对【答案】C【解析】【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组.【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x=40y;制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x+y=120,故可得方程组120 40210x yy x+=⎧⎨=⨯⎩.故选:C.【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.5.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A .6B .-6C .9D .-9【答案】B 【解析】 【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值. 【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得: 693ax x +=+,即(6)12a x +=, ∵原方程无解, ∴60a +=, 解得6a =-. 故选B. 【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.6.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .9【答案】B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.7.下列4组数值,哪个是二元一次方程2x+3y =5的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【答案】B 【解析】 【分析】二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解. 【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C 、把x =2,y =﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D 、把x =4,y =1代入方程,左边=11≠右边,所以不是方程的解. 故选B . 【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.8.已知方程组32422x y x y -=⎧⎨-=⎩,则()2x y --=( )A .14B .12C .2D .4【答案】A 【解析】32422x y x y =①=②-⎧⎨-⎩, ①-②得:x-y=2, 则原式=-22=14. 故选A.9.《九章算术》中记载:“今有共买羊,人出五,不足四十五人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( ). A .54573y x y x =+⎧⎨=-⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=+⎩D .54573y x y x =-⎧⎨=-⎩【解析】 【分析】根据羊价不变即可列出方程组. 【详解】解:由“若每人出5钱,还差45钱”可以表示出羊价为:545y x =+,由“若每人出7钱,还差3钱”可以表示出羊价为:73y x =+,故方程组为54573y x y x =+⎧⎨=+⎩.故选C.【点睛】本题考查了二元一次方程组的应用,正确理解题意,明确羊价不变是列出方程组的关键.10.下面几对数值是方程组233,22x y x y +=⎧⎨-=-⎩的解的是( )A .1,x y =⎧⎨=⎩B .1,2x y =⎧⎨=⎩C .0,1x y =⎧⎨=⎩D .2,1x y =⎧⎨=⎩【答案】C 【解析】 【分析】利用代入法解方程组即可得到答案. 【详解】23322x y x y +=⎧⎨-=-⎩①②, 由②得:x=2y-2③,将③代入①得:2(2y-2)+3y=3, 解得y=1,将y=1代入③,得x=0,∴原方程组的解是01x y =⎧⎨=⎩,故选:C. 【点睛】此题考查二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.11.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( ) A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【解析】 【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可. 【详解】 解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =, ∴方程组的解为75a b =⎧⎨=⎩,故选:A . 【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.12.已知a ,b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a +b 的值是( )A .﹣8B .8C .4D .﹣4【答案】B 【解析】 【分析】方程组中的两个方程相加,即可得出答案. 【详解】解:2226a b a b -=⎧⎨+=⎩①②,①+②,得:3a+b=8, 故选B . 【点睛】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解题的关键.13.对于实数a 、b 定义运算“※”:22()()a ab a b a b ab b a b ⎧-≥=⎨-<⎩※,例如2424428=-⨯=※,若x ,y 是方程组33814x y x y -=⎧⎨-=⎩的解,则y ※x 等于( ) A .3 B .3- C .1- D .6-【答案】D 【解析】 【分析】先根据方程组解出x 和y 的值,代入新定义计算即可得出答案. 【详解】解:∵33814x y x y -=⎧⎨-=⎩∴21x y =⎧⎨=-⎩所以()()2y x=-12=-12-2=-2-4=-6⨯※※.故选:D . 【点睛】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.14.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C 【解析】 【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程. 【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道, 依题意得:()532072x y x y ----=, 化简得:6292x y -=. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.15.|21|0a b -+=,则2019()b a -等于( ) A .1- B .1C .20195D .20195-【答案】A 【解析】 【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值. 【详解】12110a b -+=, 所以50,210,a b a b ++=⎧⎨-+=⎩①②由②,得21b a =+③,将③代入①,得2150a a +++=, 解得2a =-, 把2a =-代入③中, 得3b =-, 所以20192019()(1)1b a -=-=-.故选A. 【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( ) A .8374x yx y-=⎧⎨+=⎩B .8374x yx y+=⎧⎨-=⎩C .8374y x y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】A 【解析】 【分析】设有x 人,物品价值y 钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组. 【详解】设有x 人,物品价值y 钱,由题意,得83 74x yx y -=⎧⎨+=⎩, 故选A.17.幼儿园阿姨分别给甲、乙两个小朋友若干颗糖果,她们数了一下,甲说“把你的一半给我,我就有14颗糖果”,乙说:“那把你的一半给我,我就有16颗糖果.”那么原来甲小朋友有糖果( )颗. A .6 B .8C .10D .12【答案】B 【解析】 【分析】设原来甲小朋友有x 颗,乙小朋友有y 颗,根据描述建立二元一次方程组求解. 【详解】设原来甲小朋友有x 颗,乙小朋友有y 颗,由题意得:11421162x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩解得812x y =⎧⎨=⎩∴甲小朋友原来有8颗 故选B . 【点睛】本题考查二元一次方程组的应用,题目较简单,根据描述建立方程是解题的关键.18.如果21x y =-⎧⎨=⎩是二元一次方程mx+y=3的一个解,则m 的值是( )A .-2B .2C .-1D .1【答案】C 【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】 把21x y =-⎧⎨=⎩代入方程得:-2m+1=3,解得:m=-1, 故选:C .19.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A.7385y xy x=-⎧⎨=+⎩B.7385y xy x=+⎧⎨-=⎩C.7385y xy x=+⎧⎨+=⎩D.7385y xy x=+⎧⎨=+⎩【答案】A【解析】【分析】根据关键语句“若每组7人,余3人”可得方程7y+3=x;“若每组8人,则缺5人.”可得方程8y-5=x,联立两个方程可得方程组.【详解】设运动员人数为x人,组数为y组,由题意得:73 85y xy x=-⎧⎨=+⎩.故选A.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.20.已知2,1.xy=⎧⎨=⎩是方程25+=x ay的解,则a的值为( )A.1 B.2 C.3 D.4【答案】A【解析】将21xy=⎧⎨=⎩代入方程2x+ay=5,得:4+a=5,解得:a=1,故选:A.。
2020-2021初中数学方程与不等式之二元一次方程组解析含答案
2020-2021初中数学方程与不等式之二元一次方程组解析含答案一、选择题1.已知关于x ,y 的方程组34{3x y ax y a+=--=,其中-3≤a≤1,给出下列结论:①当a=1时,方程组的解也是方程x +y=4-a 的解;②当a=-2时,x 、y 的值互为相反数;③若x≤1,则1≤y≤4;④5{1x y ==-是方程组的解,其中正确的是( )A .①②B .③④C .①②③D .①②③④【答案】C 【解析】 【分析】 【详解】 解:解方程组34{3x y a x y a +=--=,得12{1x ay a=+=-,∵-3≤a ≤1,∴-5≤x ≤3,0≤y≤4,①当a=1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确; ②当a=-2时,x=1+2a=-3,y=1-a=3,x ,y 的值互为相反数,结论正确; ③当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1, ∴-3≤a ≤0∴1≤1-a ≤4∴1≤y ≤4结论正确, ④5{1x y ==-不符合-5≤x≤3,0≤y≤4,结论错误;故选:C . 【点睛】本题考查二元一次方程组的解;解一元一次不等式组.2.二元一次方程3420x y +=的正整数解有( ) A .1组 B .2组C .3组D .4组【答案】A 【解析】 【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得. 【详解】∵由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A . 【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.3.已知关于x 的方程x-2m=7和x-5=3m 是同解方程,则m 值为( ) A .1 B .-1C .2D .-2【答案】C 【解析】 【分析】根据同解方程,可得方程组,根据解方程组,可得答案. 【详解】 解:由题意,得2753x m x m -=⎧⎨-=⎩①②, 由①得:7+2x m =, 由②得:3+5x m =, ∴7+23+5m m =, 解得:2m =, 故选C. 【点睛】本题考查了同解方程,利用同解方程得出方程组是解题关键.4.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x 个班,分配到的入场券有y 张,列出方程组为( ) A .1051215x yx y+=⎧⎨-=⎩B .1051215x yx y -=⎧⎨+=⎩C .1051215x y x y =-⎧⎨+=⎩D .1051215x yx y -=⎧⎨=+⎩【答案】A 【解析】 【分析】假设初一班级共有x 个班,分配到的入场券有y 张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组. 【详解】设初一班级共有x 个班,分配到的入场券有y 张, 则1051215x yx y +=⎧⎨-=⎩.故选:A .【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.5.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组 ( )A .1204010x y y x +=⎧⎨=⎩B .1201040x y y x +=⎧⎨=⎩C .1204020x y y x +=⎧⎨=⎩D .1202040x y y x +=⎧⎨=⎩【答案】C 【解析】 【分析】首先根据题意可以得出以下两个等量关系:①制作盒身的白铁皮张数+制作盒底的白铁皮的张数=120,②盒身的个数×2=盒底的个数,据此进一步列出方程组即可. 【详解】∵一共有120张白铁皮,其中x 张制作盒身,y 张制作盒底, ∴120x y +=,又∵每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套罐头盒, ∴4020y x =,∴可列方程组为:1204020x y y x +=⎧⎨=⎩,故选:C. 【点睛】本题主要考查了二元一次方程组的实际应用,根据题意正确找出相应的等量关系是解题关键.6.若关于x ,y 的方程组2315x y m x y +=-⎧⎨-=⎩的解满足x +y =3,则m 的值为 ( )A .-2B .2C .-1D .1【答案】D 【解析】 【分析】首先把m 看成常数,然后进一步解关于x 与y 的方程组,求得用m 表示的x 与y 的值后,再进一步代入3x y +=加以求解即可. 【详解】由题意得:2315x y m x y +=-⎧⎨-=⎩①②,∴由①−②可得:()2315x y x y m +--=--,化简可得:336y m =-,即:2y m =-, 将其代入②可得:25x m -+=, ∴3x m =+ ∵3x y +=, ∴323m m ++-=, ∴1m =, 故选:D. 【点睛】本题主要考查了二元一次方程组的综合运用,熟练掌握相关方法是解题关键.7.若方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则,a b 的值为( )A .42a b =⎧⎨=⎩B .24a b =⎧⎨=⎩C .24a b =-⎧⎨=-⎩D .42a b =-⎧⎨=-⎩【答案】A 【解析】 【分析】将方程的两组解代入6ax by +=中,可以得到一个关于a,b 的二元一次方程组,解方程组即可. 【详解】∵方程6ax by +=的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,∴626a b a b +=⎧⎨-=⎩解得42a b =⎧⎨=⎩,故选:A . 【点睛】本题主要考查二元一次方程的解,掌握二元一次方程组的解法是解题的关键.8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩,给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是() A .①② B .①③C .②③D .①②③【答案】D 【解析】 【分析】①将5k =代入方程组可得3563510x y x y +=⎧⎨+=⎩,解方程组即可作出判断;②将10k =代入方程组可得35631010x y x y +=⎧⎨+=⎩求得方程组的解后,再将解代入61516x y +=即可作出判断;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,根据k 为整数即可作出判断.【详解】解:①当5k =时,关于x 、y 的二元一次方程组为:3563510x y x y +=⎧⎨+=⎩,此时方程组无解,故本说法正确;②当10k =时,关于x 、y 的二元一次方程组为:35631010x y x y +=⎧⎨+=⎩,解得2345x y ⎧=⎪⎪⎨⎪=⎪⎩,将其代入61516x y +=,能使其左右两边相等,故本说法正确;③解356310x y x ky +=⎧⎨+=⎩得20231545x k y k ⎧=-⎪⎪-⎨⎪=⎪-⎩,因为k 为整数而x 、y 不能都为整数,故本说法正确. 故选:D 【点睛】此题考查了二元一次方程(组)的解、解二元一次方程组等,方程组的解即为能使方程组中两方程同时成立的未知数的值.9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.10.已知a ,b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a +b 的值是( )A .﹣8B .8C .4D .﹣4【答案】B 【解析】 【分析】方程组中的两个方程相加,即可得出答案. 【详解】 解:2226a b a b -=⎧⎨+=⎩①②,①+②,得:3a+b=8, 故选B . 【点睛】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解题的关键.11.已知2728x y x y +=⎧⎨+=⎩,那么x y -的值是( )A .-1B .0C .1D .2【答案】A 【解析】 【分析】观察方程组,利用第一个方程减去第二个方程即可求解. 【详解】2728x y x y ①②+=⎧⎨+=⎩, ①-②得,故选A. 【点睛】本题考查了二元一次方程的解法,利用整体思想可以是本题解决过程变得简单.12.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( ) A .8374x yx y -=⎧⎨+=⎩B .8374x yx y +=⎧⎨-=⎩C .8374y x y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】A 【解析】 【分析】设有x 人,物品价值y 钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组. 【详解】设有x 人,物品价值y 钱,由题意,得83 74x yx y -=⎧⎨+=⎩, 故选A.13.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩ D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆,根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A .本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.14.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( )A .7B .7±CD .【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9, ∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.15.A 地至B 地的航线长9360km ,一架飞机从A 地顺风飞往B 地需12h ,它逆风飞行同样的航线要13h ,则飞机无风时的平均速度是( )A .720km/hB .750 km/hC .765 km/hD .780 km/h【答案】B 【解析】 【分析】设飞机无风时的平均速度为x 千米/时,风速为y 千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解. 【详解】设飞机无风时的平均速度为x 千米/时,风速为y 千米/时,由题意得,12()936013()9360x y x y +=⎧⎨-=⎩,解得,75030x y =⎧⎨=⎩,答:飞机无风时的平均速度为750千米/时, 故选B . 【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.16.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A .7385y x y x =-⎧⎨=+⎩B .7385y x y x =+⎧⎨-=⎩C .7385y x y x =+⎧⎨+=⎩D .7385y x y x =+⎧⎨=+⎩【答案】A 【解析】 【分析】根据关键语句“若每组7人,余3人”可得方程7y+3=x ;“若每组8人,则缺5人.”可得方程8y-5=x ,联立两个方程可得方程组. 【详解】设运动员人数为x 人,组数为y 组, 由题意得:7385y x y x =-⎧⎨=+⎩.故选A . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.17.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/小时,下坡路的平均速度是5千米/小时,若设小颖上坡用了min x ,下坡用了min y ,根据题意可列方程组( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩【答案】B【解析】 【分析】根据路程=时间乘以速度得到方程35 1.26060x y +=,再根据总时间是16分钟即可列出方程组. 【详解】∵她去学校共用了16分钟, ∴x+y=16,∵小颖家离学校1200米, ∴351.26060x y +=, ∴35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩, 故选:B. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意列出方程组,注意时间单位,这是解题中容易出现错误的地方.18.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( ) A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A 【解析】 【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可. 【详解】 解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =, ∴方程组的解为75a b =⎧⎨=⎩,故选:A . 【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.19.用5个大小相同的小长方形拼成了如图所示的大长方形,若大长方形的周长是28,则每个小长方形的周长是( )A .12B .14C .13D .16【答案】A【解析】【分析】设小长方形的长为x,宽为y ,根据题意列出方程组,解方程组求出x,y 的值,进而可求小长方形的周长.【详解】设小长方形的长为x,宽为y ,根据题意有 2(3)228x y y x x =⎧⎨++⨯=⎩ 解得42x y =⎧⎨=⎩∴小长方形的周长为(42)212+⨯= ,故选:A .【点睛】本题主要考查二元一次方程组的应用,读懂题意列出方程组是解题的关键.20.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B【解析】【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可.【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.。
2020-2021初中数学方程与不等式之二元一次方程组图文答案
2020-2021初中数学方程与不等式之二元一次方程组图文答案一、选择题1.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B 【解析】 【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可. 【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.2.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底40个,一个盒身与两个盒底配成一套,现有120张白铁皮,设用x 张制盒身,y 张制盒底,得方程组( ) A .1204016x y y x+=⎧⎨=⎩B .1204332x y y x +=⎧⎨=⎩C .12040210x y y x+=⎧⎨=⨯⎩D .以上都不对【答案】C 【解析】 【分析】根据题意可知,本题中的等量关系是(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,从而列方程组. 【详解】解:根据题意,盒身的个数×2=盒底的个数,可得;2×10x =40y ; 制作盒身的白铁皮张数+制作盒底的白铁皮张数=120,可得x +y =120,故可得方程组12040210x y y x +=⎧⎨=⨯⎩.故选:C . 【点睛】本题考查了根据实际问题抽象二元一次方程组的知识,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.3.二元一次方程3420x y +=的正整数解有( ) A .1组 B .2组C .3组D .4组【答案】A 【解析】 【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得. 【详解】∵由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A . 【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.4.如果方程组3921ax y x y +=⎧⎨-=⎩无解,则a 为( )A .6B .-6C .9D .-9【答案】B 【解析】 【分析】用代入法或加减法把未知数y 消去,可得方程(6)12a x +=,由原方程无解可得60a +=,由此即可解得a 的值.【详解】把方程21x y -=两边同时乘以3,再与方程39ax y +=相加,消去y 得: 693ax x +=+,即(6)12a x +=,∵原方程无解, ∴60a +=, 解得6a =-.故选B.【点睛】本题考查了二元一次方程组解的问题,明白“关于某一个未知数的一元一次方程无解,则这个未知数的系数为0”是解答本题的关键.5.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m为( )A.8 B.232C.-232D.-192【答案】B【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2,解得:m=232,故选:B.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.下列4组数值,哪个是二元一次方程2x+3y=5的解?()A.35xy=⎧⎪⎨=⎪⎩B.11xy=⎧⎨=⎩C.23xy=⎧⎨=-⎩D.41xy=⎧⎨=⎩【答案】B【解析】【分析】二元一次方程2x+3y=5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】A、把x=0,y=35代入方程,左边=0+95=95≠右边,所以不是方程的解;B、把x=1,y=1代入方程,左边=右边=5,所以是方程的解;C、把x=2,y=﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D、把x=4,y=1代入方程,左边=11≠右边,所以不是方程的解.故选B.【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x ,y 的值代入原方程验证二元一次方程的解.7.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( ) A .8374y xy x+=⎧⎨-=⎩B .8374x yx y +=⎧⎨-=⎩C .8374x yx y-=⎧⎨+=⎩D .8374y xy x-=⎧⎨+=⎩【答案】C 【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y -=⎧⎨+=⎩, 故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.8.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d +=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x byc e x fy d⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d +=⎧⎨+=⎩,∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.9.方程组的解为,则被遮盖的前后两个数分别为( )A .1、2B .1、5C .5、1D .2、4【答案】C 【解析】 【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解. 【详解】 根据,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5 故被遮盖的两个数分别为5和1. 故选C. 【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.10.三个二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则k 的值是( ) A .3 B .163-C .-2D .4【答案】D 【解析】 【分析】先结合37x y -=,231x y +=,求出x 、y 的值,然后代入9y kx =-,即可求出k 的值. 【详解】 解:根据题意,有37231x y x y -=⎧⎨+=⎩, 解得:21x y =⎧⎨=-⎩;把21x y =⎧⎨=-⎩代入9y kx =-,得 291k -=-,解得:4k =; 故选:D . 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握代入消元法和加减消元法.11.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( ) A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A 【解析】 【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可. 【详解】 解:由题意得:10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A . 【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.12.已知a ,b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a +b 的值是( )A .﹣8B .8C .4D .﹣4【答案】B 【解析】 【分析】方程组中的两个方程相加,即可得出答案. 【详解】 解:2226a b a b -=⎧⎨+=⎩①②,①+②,得:3a+b=8, 故选B . 【点睛】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解题的关键.13.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,若每人出8钱,则多了3钱;若每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A .8374x y x y -=⎧⎨+=⎩B .8374x yx y +=⎧⎨-=⎩C .8374y x y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】A 【解析】 【分析】设有x 人,物品价值y 钱,根据题意相等关系:①8×人数﹣3=物品价值,②7×人数+4=物品价值,可列方程组. 【详解】设有x 人,物品价值y 钱,由题意,得83 74x yx y -=⎧⎨+=⎩, 故选A.14.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( ) A .7B .7±CD.【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.15.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( ) A .4种 B .3种C .2种D .1种【答案】B 【解析】【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为非负整数即可得. 【详解】设购买篮球x 个,排球y 个, 根据题意可得120x+90y=1200, 则y=4043x-, ∵x 、y 均为正整数,∴x=1、y=12或x=4、y=8或x=7、y=4,所以购买资金恰好用尽的情况下,购买方案有3种, 故选B .【点睛】本题考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.16.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A .B .C .D .【答案】A 【解析】 【分析】设甲需带钱x ,乙带钱y ,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得. 【详解】解:设甲需带钱x ,乙带钱y ,根据题意,得:故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.17.若关于x ,y 的方程组3,25x y m x y m -=+⎧⎨+=⎩的解满足x >y >0,则m 的取值范围是( ).A .m >2B .m >-3C .-3<m <2D .m <3或m >2【答案】A 【解析】 【分析】先解方程组用含m 的代数式表示出x 、y 的值,再根据x >y >0列不等式组求解即可. 【详解】解325x y m x y m -=+⎧⎨+=⎩,得212x m y m =+⎧⎨=-⎩. ∵x >y >0, ∴21220m m m +>-⎧⎨->⎩ , 解之得m >2. 故选A. 【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,用含m 的代数式表示出x 、y 的值是解答本题的关键.18.方程组2x y x y 3n+=⎧+=⎨⎩的解为{x 2y ==n ,则被遮盖的两个数分别为( )A .2,1B .5,1C .2,3D .2,4【答案】B 【解析】把x=2代入x+y=3中,得:y=1, 把x=2,y=1代入得:2x+y=4+1=5, 故选B .19.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为( )A .﹣1B .1C .2D .0【答案】B 【解析】 【分析】把43x y ==⎧⎨⎩代入方程组25bx ay by ax +⎧⎨+⎩==,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值. 【详解】把43x y ==⎧⎨⎩代入方程组25bx ay by ax +⎧⎨+⎩==, 得:432345b a b a =①=②+⎧⎨+⎩,①+②,得:7(a+b )=7, 则a+b=1. 故选B . 【点睛】此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.理解定义是关键.20.已知关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩,满足12x y ≥,则下列结论:①2a ≥-;②53a =-时,x y =;③当1a =-时,关于x y 、的方程组135x y a x y a +=-⎧⎨-=+⎩的解也是方程2x y +=的解;④若1y ≤,则1a ≤-,其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 ①解方程组得322x a y a =+⎧⎨=--⎩,由12x y ≥得到关于a 的不等式,解之可得答案;②将x =y 代入方程组,求出a 的值,即可做出判断;③将x =y 代入322x a y a =+⎧⎨=--⎩求出x 、y 的值,从而依据x =y 得出答案;④由y≤1得出关于a 的不等式,解之可得.【详解】解:关于x 、y 的方程组135x y a x y a +=-⎧⎨-=+⎩, 解得:322x a y a =+⎧⎨=--⎩. ①∵12x y ≥, ∴a +3≥−a−1,解得a≥−2,故①正确;②将x =y 代入322x a y a =+⎧⎨=--⎩,得:4353x a ⎧=⎪⎪⎨⎪=-⎪⎩, 即当x =y 时,a =53-,此结论正确; ③当a =−1时,20x y =⎧⎨=⎩,满足x +y =2,此结论正确; ④若y≤1,则−2a−2≤1,解得a≥−32,此结论错误; 故选:C .【点睛】本题考查了二元一次方程组的解,解题的关键是牢记二元一次方程组的解题方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年人教版数学初一讲练
(培优和竞赛二合一)
(10)二元一次方程组解的讨论
【知识精读】
二元一次方程组 222111c y b x a c y b x a 的解的情况有以下三种:
1.当21212
1c c b b a a 时,方程组有无数多解。
(∵两个方程等效)①当21212
1c c b b a a 时,方程组无解。
(∵两个方程是矛盾的)②当2121b b a a (即a 1b 2-a 2b 1
"`0)时,方程组有唯一的解:③ 1221211212211221b a b a a c a c y b a b a b c b c x (这个解可用加减消元法求得)
方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元2.一次方程整数解的求法进行。
求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待3.定系数的不等式或加以讨论。
(见例2、3)
【分类解析】
例1. 选择一组a,c 值使方程组
c y ax y x 275有无数多解, ②无解, ③有唯一的解
①解: ①当 5∶a=1∶2=7∶c 时,方程组有无数多解
解比例得a=10, c=14。
当 5∶a =1∶2"`7∶c 时,方程组无解。
②解得a=10, c"`14。
③当 5∶a"`1∶2时,方程组有唯一的解,
即当a"`10时,c 不论取什么值,原方程组都有唯一的解。
例2. a 取什么值时,方程组
3135y x a y x 的解是正数?解:把a 作为已知数,解这个方程组
得
23152331a y a x ∵ 00y x ∴ 023*******a a 解不等式组得 531331a a 解集是63
11051 a 答:当a 的取值为631105
1 a 时,原方程组的解是正数。
例3. m 取何整数值时,方程组
1442y x my x 的解x 和y 都是整数?解:把m 作为已知数,解方程组得
82881m y m x ∵x 是整数,∴m -8取8的约数±1,±2,±4,±8。
∵y 是整数,∴m -8取2的约数±1,±2。
取它们的公共部分,m -8=±1,±2。
解得 m=9,7,10,6。
经检验m=9,7,10,6时,方程组的解都是整数。
例4(古代问题)用100枚铜板买桃,李,榄橄共100粒,己知桃,李每粒分别是3,4枚铜板,而榄橄7粒1枚铜板。
问桃,李,榄橄各买几粒?
解:设桃,李,榄橄分别买x, y, z 粒,依题意得
)2(1007143)1(100z y x z y x 由(1)得x= 100-y -z (3)
把(3)代入(2),整理得
y=-200+3z -7z
设k
z 7(k 为整数) 得z=7k, y=-200+20k, x=300-27k
∵x,y,z 都是正整数∴ 07020200027300k k k 解得 0.10.9100k k k (k 是整数)
∴10<k<9111, ∵k 是整数, ∴k=11
即x=3(桃), y=20(李), z=77(榄橄) (答略)
【实战模拟】
不解方程组,判定下列方程组解的情况:1.① 96332y x y x ② 32432y x y x ③
153153y x y x a 取什么值时方程组 2
29691322a a y x a a y x 的解是正数?
2.a 取哪些正整数值,方程组
a y x a y x 24352的解x 和y 都是正整数?3.要使方程组
12y x k ky x 的解都是整数, k 应取哪些整数值?4.(古代问题)今有鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,鸡
5.翁,鸡母,鸡雏都买,可各买多少?
练习10①无数多个解 ②无解 ③唯一的解1.
a>1 3. a=1 4. –5,-3,-1,1
2.5. 78154鸡雏=鸡母=鸡翁= 81118鸡雏=鸡母=鸡翁=
84412鸡雏=鸡母=鸡翁=
------------------------- 赠予------------------------
【幸遇•书屋】
你来,或者不来
我都在这里,等你、盼你
等你婉转而至
盼你邂逅而遇
你想,或者不想
我都在这里,忆你、惜你
忆你来时莞尔
惜你别时依依
你忘,或者不忘
我都在这里,念你、羡你
念你袅娜身姿
羡你悠然书气
人生若只如初见
任你方便时来
随你心性而去
却为何,有人
为一眼而愁肠百转
为一见而不远千里
晨起凭栏眺
但见云卷云舒
风月乍起
春寒已淡忘
如今秋凉甚好
几度眼迷离
感谢喧嚣
把你高高卷起
砸向这一处静逸
惊翻了我的万卷和其中的一字一句
幸遇只因这一次
被你拥抱过,览了被你默诵过,懂了
被你翻开又合起被你动了奶酪和心思
不舍你的过往
和过往的你
记挂你的现今
和现今的你
遐想你的将来
和将来的你
难了难了
相思可以这一世。