2016年江苏南京市、盐城市高三一模数学试卷
江苏省盐城市南京市高2019届高2016级高三年级第一次模拟考试数学附加题
盐城市、南京市2020届高三年级第一次模拟考试 数学附加题 2020.01 注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题卡的密封线内.试题的答案写在答题..卡.上对应题目的答案空格内.考试结束后,交回答题纸卡. 21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答卷..卡.指定区域内.....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换已知圆C 经矩阵M =⎣⎡⎦⎤a 33 -2变换后得到圆C′:x 2+y 2=13,求实数a 的值.B .选修4—4:坐标系与参数方程在极坐标系中,直线ρcos θ+2ρsin θ=m 被曲线ρ=4sin θ截得的弦为AB ,当AB 是最长弦时,求实数m 的值.C .选修4—5:不等式选讲已知正实数a ,b ,c 满足1a +2b +3c=1,求a +2b +3c 的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,AA 1、BB 1是圆柱的两条母线, A 1B 1、AB 分别经过上下底面圆的圆心O 1、O ,CD 是下底面与AB 垂直的直径,CD =2.(1)若AA 1=3,求异面直线A 1C 与B 1D 所成角的余弦值;(2)若二面角A 1-CD -B 1的大小为π3,求母线AA 1的长.23.(本小题满分10分)设∑2ni =1(1-2x )i =a 0+a 1x +a 2x 2+…+a 2n x 2n (n ∈N *),记S n =a 0+a 2+a 4+…+a 2n .(1)求S n ;(2)记T n =-S 1C 1n +S 2C 2n -S 3C 3n +…+(-1)n S n C n n ,求证:|T n |≥6n 3恒成立.(第22题图)。
江苏省南京市、盐城市2016届高三第一次模拟考试试卷答案
江苏省南京市、盐城市2016届高三第一次模拟考试1. {-1} 【解析】由题意知A={-1,1},所以A ∩B={x|x ∈A 且x ∈B }={-1}.2.102【解析】方法一:由题意知z=(2+i)(1+i)(1-i)(1+i)=1+3i 2=12+32i ,所以|z|= 122+ 32 2= 102.方法二:|z|=|2+i||1-i|= 52= 102. 3. 3【解析】从5本书中取出2本书,基本事件有10个.从3本数学书中取出2本书的事件有3个,故所求的概率为310. 4. 17【解析】由伪代码可知,I 的取值依次为1,3,5,7,相应的S 的值为2,5,10,17.故输出的S 的值为17. 5. 17【解析】因为高一年级400人中抽取20人,所以高二年级360人中应抽取18人,所以高三年级学生中应抽取的人数为55-20-18=17(人). 6. 92【解析】设抛物线的方程为y 2=2px.由题意知32=2×1×p ,解得p=92,故其焦点到准线的距离为92. 7. -3【解析】作出约束条件表示的可行域如图中阴影部分所示,由图可知,当目标函数z=x-y 经过点(1,4)时,取得最小值,且最小值为1-4=-3.(第7题)8. 2【解析】由题意知正四棱锥的高为 ( 10)2-( 6)2=2,所以该正四棱锥的体积为1×2×(2 3)2=8,故原正方体的棱长为2. 9. 7【解析】在△ABC 中,因为cos B=35,所以sin B=45.又A=π4,所以sinC=sin (A+B )=sin A cos B+cos A sin B= 22×35+ 22×45=7 210.由正弦定理csin C =asin A ,得c=7.10. 20 【解析】设等比数列{a n }的公比为q ,若q=1,则S 6-2S 3=0,不符合题意,舍去,故q ≠1.因为S 6-2S 3=a 4+a 5+a 6-S 3=q 3S 3-S 3=(q 3-1)S 3=5,所以S 3=5q 3-1,且q 3-1>0,所以S 9-S 6=a 7+a 8+a 9=q 6·S 3=q 6·5q 3-1=5·(q 3-1+1)2q 3-1=5(q 3-1)+1q 3-1+2≥5×4=20.当且仅当q 3-1=1,即q= 23时取等号.故S 9-S 6的最小值为20. 11. -2【解析】方法一:由余弦定理得,BC 2=9+9-2×3×3×13=12,所以BC=2 所以cos ∠ABC= 33,所以AD ·BC =(BD -BA )·BC =13BC 2-BA ·BC =4-6=-2.方法二:如图,以BC所在直线为x轴、线段BC的中垂线为y轴,建立平面直角坐标系xOy,由方法一知B(-3,0),C(3,0),D-3,0,A(0,6),所以AD=-3,-6,BC=(23,0),所以AD·BC=-33,-6·(23,0)=-2.(第11题)12.x±3y+4=0【解析】方法一:设点B的坐标为(x0,y0),因为A是线段PB的中点,所以点A的坐标为x0-42,y02,所以(x0-1)2+y02=5,x0-4 2-12+y022=5,解得x0=2,y0=±2,所以直线l的方程为y=±13(x+4),即x±3y+4=0.方法二:设圆心C到直线l的距离为d,则CA2=d2+AB22=5,又CP2=d2+3AB22=25,解得d=52.设直线l的方程为y=k(x+4),则k+1=52,解得k=±13,所以直线l的方程为x±3y+4=0.13.-32,32【解析】因为f(x)是定义在R上的奇函数,所以f(0)=0,所以m=-1,所以f(x)=2x-1x.作出函数f(x)的图象如图(1)所示,则由此得到函数g(x)的图象如图(2)所示.若函数y=g (x )-t 有且只有一个零点,根据图象知直线y=t 与函数g (x )的图象有且只有一个交点.因为g (1)=-32,所以g (-1)=32,所以实数t 的取值范围是-32,32.图(1) 图(2)(第13题)14. 0,1e+1【解析】作出函数的图象如图所示,由图设点P 的横坐标为x 0,则点Q 的横坐标为-x 0.①若点P ,Q 都在y=-x 3+x 2(x<e )上,由OP ⊥OQ ,知-x 03+x 02x 0·x 03+x 02-x 0=-1,即x 04-x 02+1=0,方程无解.②若点P ,Q 分别在函数y 的两段上,由OP ⊥OQ ,知a ln x 0x 0·x 03+x 02-x 0=-1,即a=1(x0+1)·ln x0.令函数f(x)=1(x+1)·ln x,当x≥e时,f(x)为减函数,所以f(x)的值域为0,1e+1,故实数a的取值范围是0,1e+1.(第14题)15.(1)由图象知,A=2.(2分)因为T4=5π6-π3=π2,且ω>0,所以T=2π=2πω,即ω=1,(4分)所以f(x)=2sin(x+φ).又函数f(x)=2sin(x+φ)过点π3,2,所以π+φ=π+2kπ,k∈Z,即φ=π6+2kπ,k∈Z.又-π2<φ<π2,所以φ=π6,(6分)所以f(x)=2sin x+π6.(8分)(2)当x∈-π2,π2时,x+π6∈-π3,2π3,(10分)所以sin x+π6∈-32,1,所以f(x)∈[-3,2],因此,当x∈-π,π时,函数f(x)的值域为[-3,2].(14分)16.(1)在△A1BC中,因为O是A1C的中点,M是BC的中点,所以OM∥A1B.(4分)又OM⊄平面ABB1A1,A1B⊂平面ABB1A1,所以OM∥平面ABB1A1.(6分)(2)因为ABC-A1B1C1是直三棱柱,所以CC1⊥底面ABC,所以CC1⊥BC.又∠ACB=π,所以BC ⊥AC.因为CC1⊂平面ACC1A1,AC⊂平面ACC1A1,且CC1∩AC=C,所以BC⊥平面ACC1A1.(8分)又AC1⊂平面ACC1A1,所以BC⊥AC1.因为四边形ACC1A1是正方形,所以A1C⊥AC1.又BC⊂平面A1BC,A1C⊂平面A1BC,且BC∩A1C=C,所以AC1⊥平面A1BC.(12分)因为AC1⊂平面ABC1,所以平面ABC1⊥平面A1BC.(14分)17. 方法一:由条件①得,PA PB =5030=53. (2分)设PA=5x ,PB=3x , 则cos ∠PAB=(5x )2+162-(3x )22×16×5x=x10+85x , (6分)所以点P 到直线AB 的距离h=PA ·sin ∠PAB=5x · 1-x 10+85x= -14x 4+17x 2-64 = -14(x 2-34)2+225,(10分)所以当x 2=34,即x= 34时,h 取得最大值15 km .即垃圾发电厂P 的选址应满足PA=5 34 km ,PB=3 34 km .(14分)方法二:如图,以AB 所在直线为x 轴、线段AB 的中垂线为y 轴,建立平面直角坐标系xOy , (2分)(第17题)则A (-8,0),B (8,0). 由条件①,得PA =50=5. (4分)设P (x ,y )(y>0),则3 (x +8)2+y 2=5 (x -8)2+y 2, 化简得,(x-17)2+y 2=152(y>0),(10分)即点P 的轨迹是以点(17,0)为圆心、15为半径的圆且位于x 轴上方的半圆,则当x=17时,点P 到直线AB 的距离最大,且最大值为15 km . 故点P 的选址应满足在上述坐标系中,其坐标为(17,15)即可. (14分)18. (1) 因为椭圆C 的右焦点坐标为( 3,0), 所以圆心M 的坐标为 ±12,(2分)所以圆M 的方程为(x- 3)2+ y ±12 2=14. (2) ①因为圆M 与直线OP :y=k 1x 相切, 所以100k 1+1=2 55, 即(4-5x 02)k 12+10x 0y 0k 1+4-5y 02=0.(6分)同理,有(4-5x 02)k 22+10x 0y 0k 2+4-5y 02=0,所以k 1,k 2是方程(4-5x 02)k 2+10x 0y 0k+4-5y 02=0的两个根,(8分)所以k 1k 2=4-5y 024-5x 02=4-5 1-14x 02 4-5x 02=-1+54x 024-5x 02=-1.(10分)②设点P 1的坐标为(x 1,y 1),点P 2的坐标为(x 2,y 2),联立 y =k 1x ,x 24+y 2=1,解得x 12=41+4k 12,y 12=4k 121+4k 12.(12分)同理,x 22=41+4k 22,y 22=4k 221+4k 22,所以OP 2·OQ 2=41+4k 12+4k 121+4k 12·41+4k 22+4k 221+4k 22=4(1+k 12)1+4k 12·4(1+k 22)1+4k 22=4+4k 121+4k 12·1+16k 121+4k 12(14分)≤5+20k 1222(1+4k 12)2=254,当且仅当k 1=±12时取等号,所以OP ·OQ 的最大值为5. (16分) 19. (1) 由题意得,f'(x )=a (1-x )e x, 因为函数f (x )在x=0处的切线方程为y=x , 所以f'(0)=a 1=1,得a=1. (2) 由(1)知f (x )=x e x <1k +2x -x 2对任意的x ∈(0,2)恒成立,所以k+2x-x 2>0,即k>x 2-2x 对任意的x ∈(0,2)恒成立,所以k ≥0. (6分)又不等式整理可得k<e x x +x 2-2x ,令g (x )=e x x +x 2-2x ,所以g'(x )=e x (x -1)x 2+2(x-1)=(x-1)e x x 2+2,令g'(x )=0,得x=1. (8分)当x ∈(1,2)时,g'(x )>0,函数g (x )在(1,2)上单调递增; 当x ∈(0,1)时,g'(x )<0,函数g (x )在(0,1)上单调递减. 所以k<g (x )min =g (1)=e -1.综上所述,实数k 的取值范围是[0,e -1). (10分)(3) 结论是g'x 1+x 22<0. (11分)证明:由题意知函数g (x )=ln x-x-b , 所以g'(x )=1x-1=1-xx(x>0), 易得函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以只需证明x 1+x 22>1即可. (12分)因为x 1,x 2是函数g (x )的两个零点,所以 x 1+b =ln x 1,x 2+b =ln x 2,两式相减得x 2-x 1=ln x 2x 1.不妨令x2x 1=t>1,则x 2=tx 1, 则tx 1-x 1=ln t ,所以x 1=1t -1ln t ,x 2=t t -1ln t , 即证t +1t -1ln t>2, 即证明φ(t )=ln t-2·t -1t +1>0. (14分)因为φ'(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以φ(t )在(1,+∞)上单调递增,所以φ(t )>φ(1)=0.综上所述,函数g (x )总满足g'x 1+x 22<0成立. (16分)20. (1) 因为a n =2n 是逐项递增的,所以A i =2i ,B i =2i+1, 所以r i =2i -2i+1=-2i ,1≤i ≤m-1. (4分) (2) 若{a n }是逐项递减的,则A 1=a 1=1,B i =a m , 所以r i =a 1-a m >0,不满足r i =-2, 所以{a n }是逐项递增的.(6分)则A i =a i ,B i =a i+1,所以r i =a i -a i+1=-2,即a i+1-a i =2,1≤i ≤m-1, 所以{a n }是公差为2的等差数列,a n =1+2(n-1)=2n-1,1≤i ≤m-1. (10分)(3) 构造a n =n- 12n ,其中b n =n ,c n =- 12n . (12分)下面证明数列{a n }满足题意:因为a n =n- 12n ,所以数列{a n }是逐项递增的, (14分) 所以A i =a i =i- 12i ,B i =a i+1=i+1- 12i +1, 所以r i =a i -a i+1=-1- 1 i +1,1≤i ≤m-1. 因为r i+1-r i = -1- 12i +2 - -1- 12 i +1 = 12i +2>0, 所以数列{r i }是逐项递增的,满足题意. (16分)(注:等差数列{b n }的首项b 1任意,公差d 为正数,同时等比数列{c n }的首项c 1为负,公比q ∈(0,1),这样构造的数列{a n }都满足题意)江苏省无锡市2016届高三第一次模拟考试1. -1 【解析】因为A ∩B={-1,0},所以a=-1.2. 22【解析】方法一:因为z=(1-2i)(3+i)(3-i)(3+i)=5-5i 10=12-12i ,所以|z|= 12+ -12 = 22.方法二:|z|=|1-2i||3-i|= 5 10= 22. 3. 5【解析】由流程图可知,在循环的过程中,S 与A 的值依次为3,2;7,3;15,4;31,5;63,6.故判断框中的条件应为A ≤5,即M=5. 4. 2【解析】设[50,60]年龄段应抽取x 人,则根据分层抽样得,x 8=0.0050.005+0.015,解得x=2.5. 2sin 2x -π3【解析】由题意知g (x )=f x -π6 =2sin 2 x -π6,整理得g (x )=2sin 2x -π.6. 2【解析】从四个数中随机取两个数,基本事件有6个.其中一奇一偶的事件有4个:(1,2),(1,4),(3,2),(3,4),故所求的概率为46=23. 7. 725【解析】方法一:由题意知-45°<α-45°<45°,则cos (α-45°)=7 210,所以cos 2α=-sin (2α-90°)=-2sin (α-45°)·cos (α-45°)=-2× - 210×7 210=725. 方法二:由sin (α-45°)=- 210,展开得sin α-cos α=-15,所以0°<α<45°,平方得sin 2α=2425,因为0°<2α<90°,所以cos 2α=7.8.33【解析】方法一:设点O到平面VAB的距离为h.由题意知V三棱锥VOAB =V三棱锥OVAB,所以13×12×1=13×32×h,解得h=33.方法二:取AB的中点M,连接OM,VM,在Rt△VOM中,点O到VM的距离即为点O到平面VAB的距离.因为VO=1,OM=22,VM=62,所以点O到VM1×2262=33,故点O到平面VAB的距离为33.9.2+1【解析】设双曲线的标准方程为x 2a2-y2b2=1,则由题意知,AB=2c,2a=CA-CB=2(2-1)c,所以c=12-1=2+1,即双曲线的离心率为2+1.10. 8【解析】由题意知,数列{b n}是公差为1的等差数列,且b3=-2,所以b n=b3+(n-3)×1=n-5,所以a n+1-a n=n-5,所以a n+1=(a n+1-a n)+(a n-a n-1)+…+(a2-a1)+a1=n(n+1)2-5n+a1.令n=2,则a3=3-10+a1=1,解得a1=8.11.0,233【解析】如图,由正弦定理得|α|sinθ=1sin60°,所以|α|=23sin θ∈0,233.(第11题)12.5【解析】由题意知y'=1+1x2(x>0),所以在点P处的切线斜率为1+1x02,切线方程为y- x0-1x0=1+1x02(x-x0),该切线与x轴交于点A2x01+x02,0,与y轴交于点B0,-2x0.因为S△OAB=12·2x0·2x01+x02=13(其中x0>0),所以解得x0=5.13.14【解析】若圆C上存在两点A,B,使得PA·PB≤0,则∠APB≥90°.如图,过点P作圆C的两条切线PA0,PB0(A0,B0为切点),则∠A0PB0≥90°,故在Rt△PCA0中,只要∠CPA0≥45°即可.由正弦定理PC=CA00,得PC=2.因为sin∠CPA0≥2,所以PC≤22.又圆心C(2,0)到直线l:y=x+1的距离d=2,点P在线段EF上,所以EF≤2PC2-d2≤28-92=14,故线段EF长度的最大值是14.(第13题)14. 1e,1 【解析】当t ≥1时,f (t )-kt=ln t-kt ≤0恒成立,即k ≥ln t t.设g (x )=ln x(x ≥1),则g'(x )=1-ln x2,当x ∈(1,e )时,g'(x )>0,g (x )在(1,e )上单调递增;当x ∈(e ,+∞)时,g'(x )<0,g (x )在(e ,+∞)上单调递减.因此,当x=e 时,g (x )取得最大值,且最大值为1e,所以k ≥1e. 当0<t<1时,f (t )-kt=-t (t-1)2-kt ≤0恒成立,即k ≥-(t-1)2,因为-(t-1)2∈(-1,0),所以k ≥0; 当t=0时,f (t )=0=kt ,所以k ∈R ;当t<0时,f (t )-kt=t (t-1)2-kt ≤0,则k ≤(t-1)2,因为(t-1)2∈(1,+∞), 所以k ≤1.综上,实数k 的取值范围为 1e,1 .15. (1) 因为a ⊥b ,所以sin 2B-sin 2C+sin A (sin C-sin A )=0, 即sin A sin C=sin 2A+sin 2C-sin 2B. (2分)由正弦定理得ac=a 2+c 2-b 2, 所以cos B=a 2+c 2-b 22ac=12.(4分) 因为B ∈(0,π),所以B=π. (6分)(2) 因为c ·cos A=b , 所以b c =b 2+c 2-a 22bc,即b 2=c 2-a 2. (8分)又ac=a 2+c 2-b 2,b=2R sin B= 3, (10分)解得a=1,c=2,(12分)所以S △ABC =1ac sin B= 3.(14分)16. (1) 因为平面PAC ⊥平面ABC ,AC 为两平面的交线, 且AC ⊥BC ,BC ⊂平面ABC , 所以BC ⊥平面PAC.(2分)又PE ∥CB ,M ,N 分别为AE ,AP 的中点,所以MN ∥PE , (3分)所以MN ∥BC ,所以MN ⊥平面PAC. (5分)又MN ⊂平面CMN ,所以平面CMN ⊥平面PAC. (7分)(2) 因为PE ∥CB ,BC ⊂平面ABC ,PE ⊄平面ABC , 所以PE ∥平面ABC.(9分)设平面PAE 与平面ABC 的交线为l ,则PE ∥l. (10分) 又MN ∥平面ABC ,MN ⊂平面PAE ,所以MN ∥l , (11分) 所以MN ∥PE.(12分)因为M 是AE 的中点, 所以N 为PA 的中点.(14分)17. 方案一:如图(1),过点Q 分别作QM ⊥AC 于点M ,QN ⊥BC 于点N ,(第17题(1))因为△PQR 为等腰直角三角形,且QP=QR , 所以△RMQ ≌△PNQ , 所以QM=QN , 所以Q 为AB 的中点, (2分)则QM=QN=5m . (3分) 设∠RQM=α, 则RQ=5,α∈[0°,45°), 所以S △PQR =12×RQ 2=252cos 2α, (4分)所以S △PQR 的最小值为252m 2.(6分)方案二:如图(2),设CQ=x ,∠RQC=β,β∈(0°,90°),(第17题(2))在△RCQ 中,RQ=x cos β, (8分)在△BPQ 中,∠PQB=90°-β,∠BPQ=45°+β, 所以QP sin B =BQsin ∠BPQ, 即x22cos β=10-x,化简得x cos β=10sin β+2cos β, (10分)所以S △PQR =1×RQ 2=50(sin β+2cos β)2.因为(sin β+2cos β)2≤5, (12分)所以S △PQR 的最小值为10m 2. (13分)综上,应选用方案二.(14分)18. (1) 由题意知 c =1,a 2c-c =3,解得 a =2,c =1,所以b= 3,(2分)所以椭圆M 的方程为x 24+y 23=1, (4分)圆N 的方程为(x-1)2+y 2=5. (5分)由直线l :y=kx+m 与椭圆M 只有一个公共点,联立x24+y23=1, y=kx+m,得(3+4k2)x2+8kmx+4m2-12=0,①(6分)所以Δ=64k2m2-4(3+4k2)(4m2-12)=0,得m2=3+4k2.②(7分)由直线l:y=kx+m与圆N只有一个公共点,得|k+m|1+k=5,即k2+2km+m2=5+5k2,③(8分)将②代入③得km=1.④由②④且k>0,得k=1,m=2,(9分)所以直线l的方程为y=12x+2.(10分)(2)由(1)可知,点A的坐标为-1,32,(11分)点B的坐标为(0,2).(12分)设点P的坐标为(x0,y0),因为PBPA=22,则x02+(y0-2)2 (x0+1)2+y0-322=8,化简得7x02+7y02+16x0-20y0+22=0.⑤(13分)又点P(x0,y0)满足x02+y02-2x0=4,⑥将⑤-7×⑥得,3x0-2y0+5=0,即y0=3x0+52.⑦(14分)将⑦代入⑥得,13x02+22x0+9=0,解得x0=-1或x0=-9,代入⑦得,y0=1或y0=19,(15分)所以点P 的坐标为(-1,1)或 -913,1913 . (16分)19. (1) 当a=2时,函数f (x )=ln x+e , 则f'(x )=1x -e x2=x -ex 2(x>0), (2分)当x ∈(0,e )时,f'(x )<0,函数f (x )在(0,e )上单调递减; (3分) 当x ∈(e ,+∞)时,f'(x )>0,函数f (x )在(e ,+∞)上单调递增.(4分)所以函数f (x )的单调增区间为(e ,+∞),单调减区间为(0,e ). (2) 由题意知ln x+a +e-2x≥a 在(0,+∞)上恒成立,等价于x ln x+a+e -2-ax ≥0在(0,+∞)上恒成立. (6分) 令g (x )=x ln x+a+e -2-ax , 则g'(x )=ln x+1-a. 令g'(x )=0,得x=e a-1,(7分)所以g (x )的最小值为g (e a-1)=(a-1)e a-1+a+e -2-a e a-1=a+e -2-e a-1. (9分) 令t (x )=x+e -2-e x-1, 则t'(x )=1-e x-1. (10分)令t'(x )=0,得x=1,当x 变化时,t'(x ),t (x )(11分)所以当a ∈(0,1)时,g (x )的最小值 t (a )>t (0)=e -2-1e =e(e-2)-1e>0,所以a ∈(0,1); (12分)当a ∈[1,+∞)时,g (x )的最小值t (a )=a+e -2-e a-1≥0=t (2), (14分)所以a ∈[1,2]. (15分)综上,实数a 的取值范围为(0,2].(16分)20. (1) 由b n =2n-3且q=2,得a n+1-a n =4,所以数列{a n }为等差数列. (2分)又a 1=1,所以a n =4n-3.(4分)(2) 由条件可知a n -a n-1=q (b n -b n-1),所以a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=q (b n -b n-1)+q (b n-1-b n-2)+…+q (b 2-b 1)+a 1=qb n -qb 1+a 1=qb n -2q+1, (6分)不妨设{b n }的公比为λ(λ≠1),则a n =2qλn-1-2q+1.因为{a n }是等比数列,所以a 22=a 1a 3,解得q=12, (7分)经检验,a n =λn-1,此时{a n }是等比数列,所以q=12满足条件. (8分)(3) 由条件可知a n -a n-1=q (b n -b n-1),所以a n =(a n -a n-1)+(a n-1-a n-2)+…+(a 2-a 1)+a 1=q (b n -b n-1)+q (b n-1-b n-2)+…+q (b 2-b 1)+a 1=qb n -qb 1+a 1,即a n =q n+1-q 2+q , (10分)a 2n =q 2n+1-q 2+q.因为q ∈(-1,0),所以a 2n+2-a 2n =q 2n+3-q 2n+1=q 2n+1(q 2-1)>0,则数列{a 2n }逐项递增;(11分)a 2n+1-a 2n-1=q 2n+2-q 2n =q 2n (q 2-1)<0,则数列{a 2n-1}逐项递减.(12分)又a 2n -a 1=q 2n+1-q 2<0,所以数列{a n }的最大项为a 1=q=M , (13分)a 2n+1-a 2=q 2n+2-q 3=q 3(q 2n-1-1)>0,所以数列{a n }的最小项为a 2=q 3-q 2+q=m , (14分)所以M =q q 3-q 2+q =1q 2-q +1.因为q ∈(-1,0), 所以q 2-q+1∈(1,3), 所以M m∈ 13,1 ,所以M m的取值范围为 13,1 . (16分)江苏省苏州市2016届高三第一次模拟考试1. {2} 【解析】由题意知,集合A={x|x ≥ 5,x ∈N },则∁U A={x|2≤x< 5,x ∈N }={2}.2. -5 【解析】因为|z|=|a i||1+2i|=|a |5= 5,所以|a|=5,又a<0,所以a=-5.3. 3【解析】由题意知a=2,b= 5,所以c=3,所以双曲线的离心率为3. 4. 2【解析】由9+8+x +10+115=10,知x=12,所以方差为15×[(10-9)2+(10-8)2+(10-12)2+(10-10)2+(10-11)2]=2. 5. 9 【解析】由题意知a ·(a-b )=0,即a 2-a ·b=0,所以5-(x-4)=0,解得x=9.6. 53【解析】由流程图可知,在循环的过程中,x ,y ,z 的数据依次为1,2,3;2,3,5;3,5,8.故最后输出的y x的值是53. 7. (-∞,1] 【解析】当x ≤0时,0<2x ≤1;当x>0时,-x 2+1<1.所以函数f (x )的值域为(-∞,1]. 8. 1【解析】连续抛掷骰子两次,基本事件有36个.两次向上的数字之和等于7的事件有6个:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).故所求的概率为636=16. 9. 5【解析】半径为5的圆的周长是10π,由题意知2πr 1+2πr 2+2πr 3=10π,所以r 1+r 2+r 3=5. 10. -31【解析】由sin θ-2cos θ=-2,得sin θ=2cos θ-2,平方整理得125cos 2θ-40cos θ-21=0,解得cos θ=-725或cos θ=35(舍去),所以sin θ=-2425,所以sin θ+cos θ=-3125. 11. 5或6【解析】设等差数列{a n }的公差为d ,则 a 1+4d =15,a 1+9d =-10,解得 a 1=35,d =-5,所以数列{a n }的前n 项和为S n =-52n 2+752n ,则T n =S n+5-S n-1=-30n+165(n ≥2,n ∈N *).又T 1=S 6=135,所以对n ∈N *,总有|T n |=|-30n+165|,则当n=5或6时,|T 5|=|T 6|=15,此时|T n |取得最小值. 12. 18【解析】由题意知两平行线l 1,l 2将圆C 的周长四等分,所以相应弦所对的圆心角为90°,所以弦心距为 22×2 2=2.因为圆心C (1,2)到直线l 1:y=x+a 的距离为2=2,解得a=1±2 2,所以a=1+2 2,b=1-2 2或a=1-2 2,b=1+2 2,所以a 2+b 2=18. 13. 1【解析】令f (x )=0,得|sin x|=kx.当x ≥0时,如图,作出函数y 1=|sin x|和y 2=kx的图象.若函数f (x )有且只有三个零点,则当x ∈(π,2π)时,y 2=kx 与y 1=-sin x 相切,且x 0为切点的横坐标,即(-sin x )'|x =x 0=-sin x 0x 0,所以tan x 0=x 0,所以x 0(1+x 02)sin2x 0 =tan x 0(1+tan 2x 0)sin2x 0=sin x 0·cos x 0sin2x 0=12.(第13题)14. 4+4 23【解析】因为b=14a,a ∈(0,1),所以11-a +21-b =11-a +21-14a=11-a +24a -1+2=2a +1-4a 2+5a -1+2.令2a+1=t ,则a=t -12,原式=t -t 2+92t -92+2=192- t +92t+2≥192-2 t ·92t+2=4+4 23.当且仅当t=3 22,即a=3 2-24∈(0,1)时取等号.故原式的最小值为4+4 23. 15. (1) 由余弦定理知a cos B+b cos A=a ·a 2+c 2-b 22ac+b ·b 2+c 2-a 22bc=2c 22c =c ,(3分)所以a cos B +b cos Ac=1, 所以cos C=12. (5分)又C ∈(0,π),所以C=π3.(7分)(2) 因为S △ABC =1ab sin C=2 3, 所以ab=8. (10分)又因为a+b=6,所以c 2=a 2+b 2-2ab cos C=(a+b )2-3ab=12, (13分)所以c=2 3.(14分)16. (1) 如图,连接AC ,因为E ,F 分别是AB ,BC 的中点,所以EF 是△ABC 的中位线,所以EF ∥AC.(2分)由直棱柱ABCD -A 1B 1C 1D 1知AA 1CC 1, 所以四边形AA 1C 1C 为平行四边形, 所以AC ∥A 1C 1. (5分) 所以EF ∥A 1C 1,故A 1,C 1,F ,E 四点共面.(7分)(第16题)(2) 如图,连接BD ,在直棱柱ABCD -A 1B 1C 1D 1中,DD 1⊥平面A 1B 1C 1D 1,A 1C 1⊂平面A 1B 1C 1D 1,所以DD1⊥A1C1.(9分)因为底面A1B1C1D1是菱形,所以A1C1⊥B1D1.又DD1⊂平面BB1D1D,B1D1⊂平面BB1D1D,DD1∩B1D1=D1,所以A1C1⊥平面BB1D1D.(11分)因为OD⊂平面BB1D1D,所以OD⊥A1C1.又OD⊥A1E,A1C1∩A1E=A1,A1C1⊂平面A1C1FE,A1E⊂平面A1C1FE,所以OD⊥平面A1C1FE.(14分)17.(1)如图,以AB所在的直线为x轴、AB的中垂线为y轴,建立平面直角坐标系xOy,因为AB=2 m,所以半圆O的半径为1 m,则半圆O的方程为x2+y2=1(-1≤x≤1,y≤0).(3分)因为水深CD=0.4 m,所以OD=0.6 m,在Rt△ODM中,DM=OM2-OD2=1-0.62=0.8(m),(5分)所以MN=2DM=1.6 m,故渠中水面的宽度为1.6 m.(6分)(第17题)(2)为使挖出的土最少,等腰梯形的两腰必须与半圆O相切.设切点为P(cos θ,sin θ)-π<θ<0是BC上的一点,如图,过点P作半圆的切线得直角梯形OCFE,则切线EF的方程为x cos θ+y sin θ=1.(8分),0,令y=0,得E1cosθ,-1.令y=-1,得F1+sinθcosθ设直角梯形OCFE的面积为S,则S=12(CF+OE )·OC=121cos θ+1+sin θcos θ×1=2+sin θ2cos θ-π2<θ<0. (10分)S'=cos θcos θ-(2+sin θ)(-sin θ)2cos 2θ=1+2sin θ2,令S'=0,解得θ=-π6.当-π2<θ<-π6时,S'<0,函数S 在 -π2,-π6上单调递减; 当-π6<θ<0时,S'>0,函数S 在 -π6,0 上单调递增. (12分)所以当θ=-π6时,面积S 取得最小值,且最小值为 32.此时CF=1+sin -π6 cos -π6= 33,即当渠底宽为2 33 m 时,所挖的土最少. (14分)18. (1) 由题意知B (0,1),C (0,-1),焦点F ( ,0),当直线PM 过椭圆O 的右焦点F 时,直线PM 的方程为 3+y -1=1,即y= 33x-1.联立 x 24+y 2=1,y = 33x -1,解得 x =837,y =17或 x =0,y =-1(舍去),即点M 的坐标为 8 3,1 . (2分)连接BF ,则直线BF 的方程为x 3+y 1=1, 即x+ 3y- 3=0. 又BF=a=2,点M 到直线BF 的距离为d=8 37+ 3×17- 3 1+( 3)=2 372= 37,(4分)故△FBM 的面积为S △MBF =12·BF ·d=12×2× 37= 37. (5分)(2) 方法一:①设P (m ,-2),且m ≠0,则直线PM 的斜率为k=-1-(-2)0-m=-1,则直线PM 的方程为y=-1x-1.联立 y =-1m x -1,x 24+y 2=1,消去y ,得1+4m 2x 2+8m x=0,解得点M 的坐标为-8mm 2+4,4-m 2m 2+4, (8分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m , 所以k 1·k 2=-3m ·14m=-34为定值.(10分)②由①知,PB =(-m ,3),PM=-8mm 2+4-m ,4-m 2m 2+4+2=-m 3-12m m 2+4,m 2+12m 2+4,所以PB ·PM =(-m ,3)·-m 3+12m m 2+4,m 2+12m 2+4=m 4+15m 2+36m 2+4.(13分)令m 2+4=t>4,则PB ·PM =(t -4)2+15(t -4)+36t=t 2+7t -8t =t-8t+7.因为y=t-8+7在t ∈(4,+∞)上单调递增,所以PB ·PM =t-8+7>4-8+7=9,故PB ·PM 的取值范围为(9,+∞).(16分)方法二:①设点M 的坐标为(x 0,y 0)(x 0≠0),则直线PM 的方程为y=y 0+1x 0x-1,令y=-2,得点P 的坐标为-x 0y0+1,-2, (7分)所以k 1=y 0-1x 0,k 2=-2-1-x 0y 0+1=3(y 0+1)x 0,所以k 1·k 2=y 0-1x 0·3(y 0+1)x 0=3(y 02-1)x 02=3(y 02-1)4(1-y 02)=-34为定值.(10分)②由①知,PB= x 0y 0+1,3 , PM = x 0+x 00,y 0+2 ,所以PB ·PM =x 0y 0+1x 0+x 0y 0+1 +3(y 0+2)=x 02(y 0+2)(y 0+1)2+3(y 0+2)=4(1-y 02)(y 0+2)(y 0+1)2+3(y 0+2)=(7-y 0)(y 0+2)y 0+1.(13分)令t=y 0+1∈(0,2), 则PB·PM =(8-t )(t +1)t =-t+8t+7. 因为y=-t+8t+7在t ∈(0,2)上单调递减, 所以PB ·PM =-t+8t +7>-2+82+7=9, 故PB·PM 的取值范围为(9,+∞). (16分)19. (1) 若q=0,则a n+1-a n =p ·3n-1, 所以a 2=a 1+p=12+p ,a 3=a 2+3p=12+4p.由数列{a n }为等比数列,得 1+p 2=1· 1+4p ,解得p=0或p=1. (3分) 当p=0时,a n+1=a n ,所以a n =12符合题意; (4分)当p=1时,a n+1-a n =3n-1, 所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)=12+(1+3+…+3n-2)=12+1-3n -11-3=12·3n-1,所以a n +1n=3符合题意. (6分)(2) 方法一:若p=1,则a n+1-a n =3n-1-nq ,所以a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)=12+(1+3+…+3n-2)-[1+2+…+(n-1)]q=12[3n-1-n (n-1)q ].(8分)因为数列{a n }的最小项为a 4,所以对任意的n ∈N *,有12[3n-1-n (n-1)q ]≥a 4=12(27-12q )恒成立,即3n-1-27≥(n 2-n-12)q 对任意的n ∈N *恒成立. (10分) 当n=1时,有-26≥-12q , 所以q ≥13;当n=2时,有-24≥-10q , 所以q ≥12;当n=3时,有-18≥-6q ,所以q ≥3; 当n=4时,有0≥0,所以q ∈R ; (12分)当n ≥5时,n 2-n-12>0, 所以有q ≤3n -1-27n 2-n -12恒成立. 令c n =3n -1-27n 2-n -12(n ≥5,n ∈N *), 则c n+1-c n =2(n 2-2n -12)3n -1+54n(n -16)(n -9)>0,即数列{c n }为逐项递增数列, 所以q ≤c 5=274.(15分)综上所述,q 的取值范围为 3,274. (16分)方法二:因为p=1,a n+1-a n =3n-1-nq , 又a 4为数列{a n }的最小项, 所以 a 4-a 3≤0,a 5-a 4≥0,即 9-3q ≤0,27-4q ≥0,所以3≤q ≤274.(8分)此时a 2-a 1=1-q<0,a 3-a 2=3-2q<0, 所以a 1>a 2>a 3≥a 4. (10分)当n ≥4时,令b n =a n+1-a n ,则b n+1-b n =2·3n-1-q ≥2·34-1-274>0, 所以b n+1>b n ,所以0≤b 4<b 5<b 6<…, 所以a 4≤a 5<a 6<a 7<….(14分)综上所述,当3≤q ≤274时,a 4为数列{a n }的最小项, 故所求q 的取值范围为 3,27 . (16分)20. (1) 当a=1时,f (x )=e x (2x-1)-x+1,f'(x )=e x (2x+1)-1, (1分)令f'(x )=0,则x=0.当x ∈(0,+∞)时,e x >1,2x+1>1,所以f'(x )>0,所以函数f (x )在(0,+∞)上单调递增; 当x ∈(-∞,0)时,0<e x <1,2x+1<1,所以f'(x )<0,所以函数f (x )在(-∞,0)上单调递减. (4分) 所以函数f (x )的单调增区间为(0,+∞),单调减区间为(-∞,0). (2) ①由f (x )<0得e x (2x-1)<a (x-1). 当x=1时,不等式显然不成立; 当x>1时,a>e x (2x -1)x -1; 当x<1时,a<e x (2x -1)x -1. (6分)记g (x )=e x (2x -1)x -1,g'(x )=e x (2x +1)(x -1)-e x (2x -1)(x -1)2=e x (2x 2-3x )(x -1)2,所以函数g (x )在(-∞,0)和 32,+∞ 上单调递增,在(0,1)和 1,32上单调递减. 所以当x>1时,a>g 32=4e 32;当x<1时,a<g (0)=1. (8分)综上所述,实数a 的取值范围为(-∞,1)∪(4e 32,+∞). (9分)②由①知,当a<1时,x 0∈(-∞,1), 由f (x 0)<0,得g (x 0)>a.又g (x )在(-∞,0)上单调递增,在(0,1)上单调递减,且g (0)=1>a ,所以g (-1)≤a ,即a ≥32e,所以3≤a<1;(12分)当a>4e 32时,x 0∈(1,+∞), 由f (x 0)<0,得g (x 0)<a.又g (x )在 1,3 上单调递减,在 3,+∞ 上单调递增,且g 3 =4e 32<a , 所以 g (2)<a ,g (3)≥a ,解得3e 2<a ≤5e 32.(15分)综上所述,实数a 的取值范围为 32e,1 ∪ 3e 2,5e 32. (16分)江苏省常州市2016届高三第一次模拟考试1. 2-2i 【解析】由题意知z=52+i-i =2-i -i =2-2i . 2. {2}【解析】由题意知∁U A={2,4},则B ∩∁U A={2}.3. 6 【解析】根据分层抽样应抽取初中学校20×3010+30+60=6(所).4. 5【解析】由题意知双曲线C 的渐近线y=-b x 过点P (1,-2),所以b =2,所以该双曲线的离心率e=c = 1+ b2= 5.5. -∞,32【解析】因为(-x 2+2 ∈(-∞,2 所以函数f (x )=log 2(-x 2+2 )的值域为-∞,32. 6. 910【解析】从5名学生中选出3名学生,基本事件有10个.只有选出的“3名学生全是女生”这1个事件不符合要求,故所求的概率为1-1=9. 7. 2【解析】由流程图可知,在循环的过程中,S 与k 的值依次为-1,2;2,3;3,4;-12,5;23,6;…,3,2 014;-12,2 015;23,2 016.故最后输出的S 的值是23.8. 3 【解析】由题意知V三棱锥MPAD=V三棱锥PADM=13× 12×2× 3 ×3= 3.9. 152【解析】作出不等式组表示的可行域如图中阴影部分所示,由图可知,当目标函数z=2x+y 经过点 54,5 时,取得最大值,且最大值为2×54+5=152.(第9题)10. 2【解析】由a ⊥b ,知a ·b=0,即4x +2x -2=0,解得2x =1,所以a=(1,1),b=(1,-1),所以a-b=(0,2),故|a-b|=2. 11. 117【解析】设等比数列{a n }的公比为q (q>0),由题意知49(q 2+q 4)=40,解得q=3,所以a 1=19,则原式=a 1(q 6+q 7+q 8)9=32+33+34=117. 12.7+4 34【解析】如图,建立平面直角坐标系,则AB=(4,0),AD =(0,4).设AP =(x ,y ),则BC 所在直线为4x+3y=16.由(x ,y )=m (4,0)+n (0,4),得x=4m ,y=4n (m ,n>0),所以16m+12n=16,即m+34n=1,那么1m +1n =1m +1nm+34n=74+3n 4m +m n ≥74+2 3n 4m ·m n =74+ 3=7+4 34.当且仅当3n 2=4m 2时取等号.(第12题)13.-203,4【解析】设点P的坐标为(x,y),则x+3y-b=0.若切线长PB=2PA,则(x-4)2+y2-4=4(x2+y2-1),即3x2+3y2+8x-16=0,即4x2+(8-2b)x+b2-16=0.由题意知Δ=(8-2b)2-16(b2-16)>0,即3b2+8b-80<0,解得-203<b<4,所以实数b的取值范围是-203,4.14.[-3,e2]【解析】当x≤0时,由f(x)≥kx恒成立,知2x2-3x≥kx恒成立,则k≥2x-3恒成立.令g(x)=2x-3,则k≥g(x)max=g(0)=-3,所以k≥-3;当x>0时,先求函数y=e x+e2(x>0)的图象的过坐标原点的切线.设切点为(x0,y0),由y'=e x,得e x0=y0x0,即x0·e x0=e x0+e2.当x0>2时,x0·e x0>e x0+e2;当0<x0<2时,x0·e x0<e x0+e2.故上述方程有唯一的解x0=2,即y=e x+e2过坐标原点的切线方程是y=e2·x.要使e x+e2≥kx恒成立,则k≤e2.综上,实数k的取值范围是[-3,e2].15.(1)因为A+B+C=π,所以A=π-(B+C).由cos(B-C)=1-cos A,得cos(B-C)=1+cos(B+C),展开,整理得sin B·sin C=12.(2分)(2)因为b,a,c成等比数列,所以a2=bc,由正弦定理得sin2A=sin B sin C,所以sin2A=1.(6分)因为A∈(0,π),所以sin A=2,又因为边a 不是最大边,所以A=π4. (8分) (3) 因为B+C=π-A=3π,所以cos (B+C )=cos B cos C-sin B sin C=- 2,sin (B+C )= 2,所以cos B cos C=1- 2, (10分)所以tan B+tan C=sin B cos B +sin C cos C =sin(B +C )cos B cos C = 221- 22=-2- 2.(14分)16. (1) 连接AC 1,BC 1,因为四边形AA 1C 1C 是矩形,D 是A 1C 的中点, 所以D 是AC 1的中点. (2分)在△ABC 1中,因为D ,E 分别是AC 1,AB 的中点, 所以DE ∥BC 1.(4分)又DE ⊄平面BB 1C 1C ,BC 1⊂平面BB 1C 1C , 所以ED ∥平面BB 1C 1C.(6分) (2) 因为△ABC 是正三角形,E 是AB 的中点,所以CE ⊥AB. 又因为在正三棱柱A 1B 1C 1-ABC 中,平面ABC ⊥平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,CE ⊂平面ABC , 所以CE ⊥平面ABB 1A 1. 又A 1B ⊂平面ABB 1A 1, 所以CE ⊥A 1B.(9分)在矩形ABB 1A 1中, 因为A 1B 11= 2=B 1B, 所以Rt △A 1B 1B ∽Rt △B 1BE , 所以∠B 1A 1B=∠BB 1E ,所以∠B 1A 1B+∠A 1B 1E=∠BB 1E+∠A 1B 1E=90°, 所以A 1B ⊥B 1E.(12分)又因为CE ⊂平面B 1CE ,B 1E ⊂平面B 1CE ,CE ∩B 1E=E ,所以A 1B ⊥平面B 1CE. (14分)17. (1) 由题意得dk +a 1-d =k 2+2, ①2dk +a 1-d =(k +2)2, ②(2分)②-①,得d=4+2k .因为k ∈N *,d 为整数,所以k=1或k=2. (4分)当k=1时,d=6,代入①,解得a 1=3, 所以a n =6n-3;当k=2时,d=5,代入①,解得a 1=1, 所以a n =5n-4.(6分)综上,k=1,a n =6n-3或k=2,a n =5n-4. (2) 因为a 1>1,所以a n =6n-3,所以S n =3n 2. (7分)由S 2S m=T 3,得123m 2=1+q+q 2, 整理,得q 2+q+1-4m 2=0. (9分)因为Δ=1-4 1-4m 2≥0, 所以m 2≤163.因为m ∈N *,所以m=1或m=2. (11分)当m=1时,q=- 13-12(舍去),q= 13-12; 当m=2时,q=0或q=-1(均舍去). 综上所述,q=13-12. (14分)18. (1) 在△COP 中,CP 2=CO 2+OP 2-2CO ·OP cos θ=10-6cos θ,所以△CDP 的面积S △CDP = 34CP 2= 32(5-3cos θ).又因为△COP 的面积S △COP =12OC ·OP ·sin θ=32sin θ,(6分)所以S=S△CDP+S△COP-S扇形OBP=1 23sinθ-33cosθ-θ +532,0<θ≤θ0<π,cos θ0=1-10512.(9分)注:定义域占2分.当DP所在直线与半圆相切时,设θ取得最大值θ0,此时在△COP中,OP=1,OC=3,∠CPO=30°,CP=10-6cos θ0,由正弦定理得10-6cos θ0=6sin θ0,cos θ0=1-10512或cos θ0=1+10512(舍去)(2)存在.由(1)知,S'=123cos θ+33sin θ-1=3sin θ+π6-12,(12分)当0<θ<θ0时,S'>0,所以当θ=θ0时,S取得最大值.(14分)另解:因为0<θ<π,所以存在唯一的θ0∈π2,π ,使得sin θ0+π6=16.当0<θ<θ0<π时,S'>0,所以当θ=θ0时,S取得最大值此时cos θ0+π6=-356,cos θ0=cosθ0+π6-π6=1-10512.(16分)19.(1)由题意知abc=23,a=2,又a2=b2+c2,解得b=3,c=1,(4分)所以椭圆C的方程为x 24+y23=1.(5分)(2)点A在椭圆C上.证明如下:设切点为Q(x0,y0),x0≠0,则x02+y02=3,切线l的方程为x0x+y0y-3=0.当y P =2 3时,x P =3-2 3y 0x 0, 即点P 的坐标为3-2 3y 0,2 3 , 则k OP =2 33-23y 0x 0=2x 03-2y ,(7分)所以k OA =2y 0- 30,则直线OA 的方程为y=2y 0- 30x. (9分)联立y =2y 0- 32x 0x ,x 0x +y 0y -3=0,解得 x =06- 3y 0y =0 3)6- 3y 即点A 的坐标为6x 06- 3y ,0 3)6- 3y . (11分)因为6-3y 024+0 3)6-3y 032=0202 3y 03y 2-123y +36=02 3y 03y 2-123y +36=1,所以点A 的坐标满足椭圆C 的方程. (14分)当y P =-2 时,同理可得点A 的坐标也满足椭圆C 的方程, 综上,点A 在椭圆C 上.(16分)20.(1)由题意知F(x)=|x2-ln x-b|+2b+1,记t(x)=x2-ln x,x∈12,2,则t'(x)=2x-1x,令t'(x)=0,得x=2.(1分)当1<x<2时,t'(x)<0,函数t(x)在1,2上单调递减;当22<x<2时,t'(x)>0,函数t(x)在22,2上单调递增.又t12=14+ln 2,t(2)=4-ln 2,t22=1+ln22且t(2)-t12=154-2ln 2>0,所以函数t(x)的值域为1+ln22,4-ln 2.(3分)当b∈[1,3]时,记v(t)=|t-b|+2b+1,则v(t)=-t+3b+1,1+ln22≤t≤b, t+b+1,b<t≤4-ln2.因为函数v(t)在1+ln22,b 上单调递减,在(b,4-ln 2]上单调递增,且v1+ln22=3b+1-ln22,v(4-ln 2)=b+5-ln 2,v1+ln22-v(4-ln 2)=2b+ln2-92,所以当b≤9-ln24时,最大值M(b)=v(4-ln 2)=b+5-ln 2;当b>9-ln24时,最大值M (b )=v1+ln22 =3b+1-ln22. 所以M (b )=b +5-ln2,1≤b ≤9-ln2,3b+1-ln22,9-ln24<b ≤3.(5分)(2) 由题意知h (x )=ln xx(x>0), ①h'(x )=1-ln x 2,h'(x 0)=1-ln x0x 02, 所以y (x )=1-ln x 0x 02(x-x 0)+y 0. g (x )=ln xx -y 0-1-ln x 0x 02(x-x 0),且g (x 0)=0, (7分)g'(x )=1-ln x x 2-1-ln x 0x 02,g'(x 0)=0. 令G (x )=g'(x )=1-ln x x 2-1-ln x 0x 02, G'(x )=-3+2ln x 3, 所以g'(x )在(0,e 32)上单调递减,在(e 32,+∞)上单调递增. 若x 0<e 32,则当x ∈(0,x 0)时,g'(x )>0,g (x )单调递增,g (x )<g (x 0)=0;当x ∈(x 0,e 32)时,g'(x )<0,g (x )单调递减,g (x )<g (x 0)=0,不符合题意;若x 0>e 32,则当x ∈(e 32,x 0)时,g'(x )<0,g (x )单调递减,g (x )>g (x 0)=0;当x ∈(x 0,+∞)时,g'(x )>0,g (x )单调递增,g (x )>g (x 0)=0,不符合题意; 若x 0=e 32,则当x ∈(0,e 32)时,g (x )<0;当x ∈(e 32,+∞)时,g (x )>0,符合题意.综上,存在x 0满足要求,且x 0的取值集合为{e 32}.(10分)。
江苏省盐城市南京市高2019届高2016级高三年级第一次模拟考试数学参考答案及评分标准
盐城市、南京市2020届高三年级第一次模拟考试 数学参考答案及评分标准 2020.01说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.(-∞,0] 2.5 3.23 4.真 5.6 6.2 7.2 38.3 9.23 10.7 11.33 12.10 13.4 14.-12二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.(本小题满分14分)解:(1)由sin(B +π6)=2cos B ,可知32sin B +12cos B =2cos B ,即sin B =3cos B .因为cos B ≠0,所以tan B =3.又B ∈(0,π),故B =π3. ……………………………………………2分由cos C =63,C ∈(0,π), 可知sin C =1-cos 2C =33. ……………………………4分 在△ABC 中,由正弦定理b sin B =c sin C ,可得 AC sin π3=ABsin C,所以AB =2. ………………………………………………………………7分 (2)由(1)知B =π3,所以A ∈(0,π3)时,π3-A ∈(0,π3),由cos(B -A )=45,即cos(π3-A )=45,所以sin(π3-A )=1-cos 2(π3-A )=35,………………………10分所以sin A =sin[π3-(π3-A )]=sin π3cos(π3-A )-cos π3sin(π3-A )=32×45-12×35=43-310. ………………14分 16.(本小题满分14分)证明:(1)连结AC 交BD 于点O ,连结OP .因为AC 1//平面PBD ,AC 1⊂平面ACC 1, 平面ACC 1∩平面BDP =OP ,所以AC 1//OP . ………………………3分 因为四边形ABCD 是正方形,对角线AC 交BD 于点O , 所以点O 是AC 的中点,所以AO =OC ,所以在△ACC 1中,PC 1PC =AO OC =1. …………………6分(2)连结A 1C 1.因为ABCD -A 1B 1C 1D 1为长方体,所以侧棱C 1C ⊥平面ABCD . 又BD ⊂平面ABCD ,所以CC 1⊥BD . ………………………8分 因为底面ABCD 是正方形,所以AC ⊥BD .………………………10分 又AC ∩CC 1=C ,AC ⊂面ACC 1A 1, CC 1⊂面ACC 1A 1,所以BD ⊥面ACC 1A 1. …………………………………………12分 又因为A 1P ⊂面ACC 1A 1,所以BD ⊥A 1P . ……………………………14分17.(本小题满分14分)解:(1)设⊙P 半径为r ,则AB =4(2-r ),所以⊙P 的周长2πr =BC ≤216-4(2-r )2, …………………………………4分 解得 r ≤16π2+4,故⊙P 半径的取值范围为(0,16π2+4]. ……………………………………6分 (2)在(1)的条件下,油桶的体积V =πr 2·AB =4πr 2(2-r ).……………………………8分设函数f (x )=x 2(2-x ),x ∈(0,16π2+4],所以f '(x )=4x -3x 2,由于16π2+4<43,A 1(第16题图)所以f '(x )>0在定义域上恒成立,故f (x )在定义域上单调递增,即当r =16π2+4时,体积取到最大值.……………………………………………13分答:⊙P 半径的取值范围为(0,16π2+4].当r =16π2+4米时,体积取到最大值.…………14分18.(本小题满分16分)解:(1)由当PF 2⊥x 轴时,x 0=1,可知c =1. ………………………………2分将x 0=1,y 0=e 代入椭圆方程得1a 2+e 2b2=1.由e =c a =1a ,b 2=a 2-c 2=a 2-1,所以1a 2+1a 2(a 2-1)=1,解得a 2=2,故b 2=1,所以椭圆C 的方程为x 22+y 2=1.…………………………………………………4分(2)方法一:设A (x 1,y 1),由AF 1→=λF 1P →,得⎩⎨⎧-1-x 1=λ(x 0+1),-y 1=λy 0,即⎩⎨⎧x 1=-λx 0-λ-1, y 1=-λy 0,代入椭圆方程,得(-λx 0-λ-1)22+(-λy 0)2=1. …………………………8分又由x 202+y 0=1,得(λx 0)22+(λy 0)2=λ2,两式相减得(λ+1)(2λx 0+λ+1)2=1-λ2.因为λ+1≠0,所以2λx 0+λ+1=2(1-λ),故λ=13+2x 0. ……………………………………………………12分同理可得μ=13-2x 0, ……………………………………………………14分故λ+μ=13+2x 0+13-2x 0=69-4x 20≥23,当且仅当x 0=0时取等号,故λ+μ的最小值为23.………………………………16分方法二:由点A ,B 不重合可知直线P A 与x 轴不重合, 故可设直线P A 的方程为x =my -1,联立⎩⎪⎨⎪⎧ x 22+y 2=1, x =my -1,消去x ,得(m 2+2)y 2-2my -1=0.设A (x 1,y 1),则y 0y 1=-1m 2+2,所以y 1=-1(m 2+2)y 0. ……………………8分将点P (x 0,y 0)代入椭圆的方程得x 202+y 02=1,代入直线P A 的方程得x 0=my 0-1,所以m =x 0+1y 0.由AF 1→=λF 1P → ,得-y 1=λy 0,故λ=-y 1y 0=1(m 2+2)y 20=1(x 0+1)2+2y 20 =1(x 0+1)2+2(1-12x 20)=13+2x 0. …………………………………………12分 同理可得μ=13-2x 0. …………………………………………14分故λ+μ=13+2x 0+13-2x 0=69-4x 20≥23,当且仅当x 0=0时取等号,故λ+μ的最小值为23. ……………………………16分注:(1)也可设P (2cos θ,sin θ)得λ=13+22cos θ,其余同理.(2)也可由1λ+1μ=6,运用基本不等式求解λ+μ的最小值.19.(本小题满分16分)解:(1)因为b 2=4,且数列{b n }是“M (q )数列”,所以q =b 3-b 2b 2-b 1=7-44-1=1,所以b n +1-b nb n -b n -1=1,n ≥2,即b n +1-b n =b n -b n -1 ,n ≥2, ………………………………2分 所以数列{b n }是等差数列,其公差为b 2-b 1=3,所以数列{b n }通项公式为b n =1+(n -1)×3,即b n =3n -2. …………………4分 (2)由b n +1=2S n -12n +λ,得b 2=32+λ,b 3=4+3λ=7,故λ=1.方法一:由b n +1=2S n -12n +1,得b n +2=2S n +1-12(n +1)+1,两式作差得b n +2-b n +1=2b n +1-12,即b n +2=3b n +1-12,n ∈N *.又b 2=52,所以b 2=3b 1-12,所以b n +1=3b n -12对n ∈N *恒成立, ……………………6分则b n +1-14=3(b n -14).因为b 1-14=34≠0,所以b n -14≠0,所以b n +1-14b n -14=3,即{b n -14}是等比数列,……………………………………………………8分所以b n -14=(1-14)×3n -1=14×3n ,即b n =14×3n +14,所以b n +2-b n +1b n +1-b n=(14×3n +2+14)-(14×3n +1+14)(14×3n +1+14)-(14×3n +14)=3,所以{b n +1-b n }是公比为3的等比数列,故数列{b n }是“M (q )数列”.………10分 方法二:同方法一得b n +1=3b n -12对n ∈N *恒成立, ……………………6分则b n +2=3b n +1-12,两式作差得b n +2-b n +1=3(b n +1-b n ).……………………8分因为b 2-b 1=32≠0,所以b n +1-b n ≠0,所以b n +2-b n +1b n +1-b n=3,所以{b n +1-b n }是公比为3的等比数列,故数列{b n }是“M (q )数列”.………10分 (3)由数列{b n }是“M (2)数列”,得b n +1-b n =(b 2-b 1)×2n -1.又b 3-b 2b 2-b 1=2,即7-b 2b 2-1=2,所以b 2=3,所以b 2-b 1=2,所以b n +1-b n =2n , 所以当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =2n -1+2n -2+…+2+1=2n -1.当n =1时上式也成立,所以b n =2n -1. ………………………………12分 假设存在正整数m ,n ,使得40392019<b m b n <40402019,则40392019<2m -12n -1<40402019.由2m -12n -1>40392019>1,可知2m -1>2n -1,所以m >n . 又m ,n 为正整数,所以m -n ≥1.又2m -12n -1=2m -n (2n -1)+2m -n -12n -1=2m -n +2m -n -12n -1<40402019, 所以2m -n <40402019<3,所以m -n =1, ………………………………14分所以2m -12n -1=2+12n -1,即40392019<2+12n -1<40402019,所以20212<2n<2020,所以n =10,m =11,故存在满足条件的正整数m ,n ,其中m =11,n =10. ………………………16分20.(本小题满分16分)解:(1)由函数f (x )为奇函数,得f (x )+f (-x )=0在定义域上恒成立,所以 e x -a e -x -mx +e -x -a e x +mx =0,化简可得 (1-a )·(e x +e -x )=0,所以a =1. ………………………………3分 (2)方法一:由(1)可得f (x )=e x-e -x-mx ,所以f '(x )=e x +e -x-m =e 2x -m e x +1e x.①当m ≤2时,由于e 2x -m e x +1≥0恒成立,即f '(x )≥0恒成立,故不存在极小值. …………………………………5分 ②当m >2时,令e x =t ,则方程t 2-mt +1=0有两个不等的正根t 1,t 2 (t 1<t 2), 故可知函数f (x )=e x -e -x -mx 在(-∞,ln t 1),(ln t 2,+∞)上单调递增, 在(ln t 1,ln t 2)上单调递减,即在ln t 2处取到极小值,所以,m 的取值范围是(2,+∞).……………………………………………9分 方法二:由(1)可得f (x )=e x -e -x -mx ,令g (x )=f '(x )=e x +e -x -m , 则g ′ (x )=e x-e -x=e 2x -1ex .故当x ≥0时,g ′(x )≥0;当x <0时,g ′(x )<0, …………………………………5分 故g (x )在(-∞,0)上递减,在(0,+∞)上递增,所以g (x )min =g (0)=2-m .①若2-m ≥0,则g (x )≥0恒成立,所以f (x )单调递增,此时f (x )无极值点.……6分 ②若2-m <0,即m >2时,g (0)=2-m <0.取t =ln m ,则g (t )=1m >0.又函数g (x )的图象在区间[0,t ]上不间断,所以存在x 0∈ (0,t ),使得 g (x 0)=0. 又g (x )在(0,+∞)上递增,所以x ∈(0,x 0)时,g (x )<0,即f '(x )<0;x ∈(x 0,+∞)时,g (x )>0,即f '(x )>0, 所以f (x 0)为f (x )极小值,符合题意.所以,m 的取值范围是(2,+∞). …………………………………………9分(3)由x 0满足e x 0+e-x 0=m ,代入f (x )=e x -e -x -mx ,消去m ,可得f (x 0)=(1-x 0)e x 0-(1+x 0)e -x 0. ……………………………11分 构造函数h (x )=(1-x )e x -(1+x )e -x ,所以h ′(x )=x (e -x -e x ). 当x ≥0时,e -x-e x=1-e 2xex ≤0,所以当x ≥0时,h ′(x )≤0恒成立,故h (x )在[0,+∞)上为单调减函数,其中h (1)=-2e , ………………13分则f (x 0)≥-2e 可转化为h (x 0)≥h (1),故x 0≤1. ………………15分由e x 0+e-x 0=m ,设y =e x +e -x ,可得当x ≥0时,y’=e x -e -x ≥0,所以y =e x +e -x 在(0,1]上递增,故m ≤e +1e .综上,m 的取值范围是(2,e +1e].…………………………………………16分盐城市、南京市2020届高三年级第一次模拟考试 数学附加题参考答案及评分标准 2020.01说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答.卷纸指...定区域内....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换解:设圆C 上任一点(x ,y ),经矩阵M 变换后得到圆C’上一点(x’,y’),所以⎣⎡⎦⎤a 33 -2 ⎣⎡⎦⎤ x y =⎣⎡⎦⎤ x ′ y ′,所以⎩⎨⎧ ax +3y =x ′, 3x -2y =y ′. ………………………5分又因为(x ′)2+(y ′)2=13,所以圆C 的方程为(ax +3y )2+(3x -2y )2=13, 化简得(a 2+9)x 2+(6a -12)xy +13y 2=13,所以⎩⎨⎧ a 2+9=13, 6a -12=0,解得a =2.所以,实数a 的值为2. …………………………………10分 B .选修4—4:坐标系与参数方程解:以极点为原点,极轴为x 轴的正半轴(单位长度相同)建立平面直角坐标系,由直线ρcos θ+2ρsin θ=m ,可得直角坐标方程为x +2y -m =0.又曲线ρ=4sin θ,所以ρ2=4ρsin θ,其直角坐标方程为x 2+(y -2)2=4,………………5分 所以曲线ρ=4sin θ是以(0,2)为圆心,2为半径的圆.为使直线被曲线(圆)截得的弦AB 最长,所以直线过圆心(0,2), 于是0+2×2-m =0,解得m =4.所以,实数m 的值为4. ………………………………………10分 C .选修4—5:不等式选讲解:因为1a +2b +3c =1,所以1a +42b +93c=1.由柯西不等式得a +2b +3c =(a +2b +3c )(1a +42b +93c)≥(1+2+3)2,即a +2b +3c ≥36, ………………………………………………………………………5分 当且仅当1a a =42b 2b =93c3c,即a =b =c 时取等号,解得a =b =c =6,所以当且仅当a =b =c =6时,a +2b +3c 取最小值36. ………………………………10分 22.(本小题满分10分)解:(1)以CD ,AB ,OO 1所在直线建立如图所示空间直角坐标系O -xyz .由CD =2,AA 1=3,所以A (0,-1,0),B (0,1,0),C (-1,0,0),D (1,0,0), A 1(0,-1,3),B 1(0,1,3),从而A 1C →=(-1,1,-3),B 1D →=(1,-1,-3), 所以cos <A 1C →,B 1D →>=-1×1+1×(-1)+(-3)×(-3)(-1)2+12+(-3)2×12+(-1)2+(-3)2=711,所以异面直线A 1C 与B 1D 所成角的余弦值为711.………………4分(2)设AA 1=m >0,则A 1(0,-1,m ),B 1(0,1,m ),所以A 1C →=(-1,1,-m ), B 1D →=(1,-1,-m ),CD →=(2,0,0), 设平面A 1CD 的一个法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·CD →=2x 1=0,n 1·A 1C →=-x 1+y 1-mz 1=0,所以x 1=0,令z 1=1,则y 1=m ,所以平面A 1CD 的一个法向量n 1=(0,m ,1). 同理可得平面B 1CD 的一个法向量n 2=(0,-m ,1). 因为二面角A 1-CD -B 1的大小为π3,所以|cos <n 1,n 2>|=|m ×(-m )+1×1m 2+12×(-m )2+12|=12,解得m =3或m =33, 由图形可知当二面角A 1-CD -B 1的大小为π3时,m =3.……………………10分注:用传统方法也可,请参照评分. 23.(本小题满分10分)解:(1)令x =1,得a 0+a 1+a 2+…+a 2n =0.令x =-1,得a 0-a 1+a 2-a 3+…-a 2n -1+a 2n =31+32+…+32n =32(9n -1).两式相加得2(a 0+a 2+a 4+…+a 2n )=32(9n -1),所以S n =34(9n -1).…………………………………3分(2)T n =-S 1C 1n +S 2C 2n -S 3C 3n +…+(-1)n S n C nn=34{[-91C 1n +92C 2n -93C 3n +…+(-1)n 9n C n n ]-[-C 1n +C 2n -C 3n +…+(-1)n C n n ]} =34{[90C 0n -91C 1n +92C 2n -93C 3n +…+(-1)n 9n C n n ]-[C 0n -C 1n +C 2n -C 3n +…+(-1)n C n n ]} =34[90C 0n -91C 1n +92C 2n -93C 3n +…+(-1)n 9n C n n ] =34[C 0n (-9)0+C 1n (-9)1+C 2n (-9)2+…+C n n (-9)n ] =34[1+(-9)]n =34×(-8)n . …………………………………………7分 要证|T n |≥6n 3,即证34×8n ≥6n 3,只需证明8n -1≥n 3,即证2n -1≥n .当n =1,2时,2n -1≥n 显然成立.当n ≥3时,2n -1=C 0n -1+C 1n -1+…+C n -1n -1≥C 0n -1+C 1n -1=1+(n -1)=n ,即2n -1≥n , 所以2n -1≥n 对n ∈N *恒成立.综上,|T n |≥6n 3恒成立.………………………………………………………10分注:用数学归纳法或数列的单调性也可证明2n -1≥n 恒成立,请参照评分.。
江苏省南京市、盐城市2016届高三第一次模拟考试附加题
江苏省南京市、盐城市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,AB为圆O的直径,直线CD与圆O相切于点D,AC⊥CD,DE⊥AB,C,E分别为垂足,连接AD,BD.若AC=4,DE=3,求BD的长.(第21-A题) B.选修4-2:矩阵与变换已知矩阵M=a021(a∈R)的一个特征值为2,在平面直角坐标系xOy中,若曲线C在矩阵M对应的变换作用下得到的曲线的方程为x2+y2=1,求曲线C的方程.C.选修4-4:坐标系与参数方程在极坐标系中,已知点A的极坐标为2π4,圆E的极坐标方程为ρ=4cos θ+4sin θ,试判断点A和圆E的位置关系.D.选修4-5:不等式选讲已知正实数a,b,c,d满足a+b+c+d=1.求证:1+2a+1+2b+1+2c+1+2d≤26.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直三棱柱ABC-A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=2,设BD=λDC(λ∈R).(1)若λ=1,求直线DB1与平面A1C1D所成角的正弦值;(2)若二面角B1-A1C1-D的大小为60°,求实数λ的值.(第22题)23.(本小题满分10分)已知集合M={1,2,3,…,n}(n∈N*,n≥3),记M的含有三个元素的子集的个数为S n,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为T n.(1)分别求T3S3,T4S4,T5S5,T6S6的值;(2)猜想T nS n的表达式,并给出证明.江苏省无锡市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21. A.选修4-2:矩阵与变换(本小题满分10分)已知矩阵A=1002,B=1201,若矩阵AB-1对应的变换把直线l变为直线l':x+y-2=0,求直线l的方程.B.选修4-4:坐标系与参数方程(本小题满分10分)已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若直线l的极坐标方程为ρsin θ-π4=32.(1)把直线l的极坐标方程化为直角坐标方程;(2)已知P为曲线C:x=4cosθ,y=3sinθ(θ为参数)上一点,求点P到直线l的距离的最大值.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)甲、乙、丙三名射击运动员射中目标的概率分别为12,a,a(0<a<1),三人各射击一次,击中目标的次数记为ξ.(1)求ξ的分布列及数学期望;(2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求实数a的取值范围.23.(本小题满分10分)如图,在正四棱柱ABCD-A1B1C1D1中,已知AD=1,D1D=2,P为棱CC1的中点.(1)设二面角A-A1B-P的大小为θ,求sinθ的值;(2)设M为线段A1B上的一点,求AMMP的取值范围.(第23题)江苏省苏州市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,四边形ABDC内接于圆,BD=CD,过点C的圆的切线与AB的延长线交于点E.(1)求证:∠EAC=2∠DCE;(2)若BD⊥AB,BC=BE,AE=2,求AB的长.(第21-A题) B.选修4-2:矩阵与变换已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=11,且点(1,-2)在矩阵M对应的变换作用下得到点(9,15),求矩阵M.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C1的参数方程是x=t,y=3t3(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=2,求曲线C1与C2的交点在平面直角坐标系中的直角坐标.D.选修4-5:不等式选讲已知函数f(x)= x+1a+|x-a|(a>0).(1) 求证:f (x )≥2;(2) 若f (3)<5,求实数a 的取值范围.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. (本小题满分10分)一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为1.假设该网民是否购买这三种商品相互独立.(1) 求该网民至少购买2种商品的概率;(2) 用随机变量η表示该网民购买商品的种数,求η的概率分布和数学期望.23. (本小题满分10分)如图,是由若干个小正方形组成的k 层三角形图阵,第一层有1个小正方形,第二层有2个小正方形,依此类推,第k 层有k 个小正方形.除去最底下的一层,每个小正方形都放置在它下一层的两个小正方形之上.现对第k 层的每个小正方形用数字进行标注,从左到右依次记为x 1,x 2,…,x k ,其中x i ∈{0,1}(1≤i ≤k ),其他小正方形的数字是它下面两个小正方形标注的数字之和,依此规律,记第一层的小正方形标注的数字为x 0. (1) 当k=4时,若要求x 0为2的倍数,则有多少种不同的标注方法? (2) 当k=11时,若要求x 0为3的倍数,则有多少种不同的标注方法?(第23题)江苏省常州市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,△ABC是圆O的内接三角形,且AB=AC,AP∥BC,弦CE的延长线交AP于点D.求证:AD2=DE·DC.(第21-A题)B.选修4-2:矩阵与变换已知矩阵M=a24b的属于特征值8的一个特征向量是e=11,点P(-1,2)在矩阵M对应的变换作用下得到点Q,求点Q的坐标.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C:x=6cosα,y=2sinα(α为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,且直线l的极坐标方程为ρ(cos θ+3sin θ)+4=0.求曲线C上的点到直线l的最大距离.D.选修4-5:不等式选讲已知|x|<2,|y|<2,求证:|4-xy|>2|x-y|.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. (本小题满分10分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,已知侧面ADD 1A 1⊥底面ABCD ,D 1A=D 1D= 底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD=2AB=2BC=2.(1) 在平面ABCD 内找一点F ,使得D 1F ⊥平面AB 1C ; (2) 求二面角C -B 1A -B 的平面角的余弦值.(第22题)23. (本小题满分10分)已知数列{a n }满足a n =a n +1-a -n -1a -a -1,a ≠-1,0,1.设b=a+1a.(1) 求证:a n+1=ba n -a n-1(n ≥2,n ∈N *);(2) 当n 为奇数时,a n =∑i =0n -12(-1)i C n -iib n-2i ,猜想当n 为偶数时,a n 关于b 的表达式,并用数学归纳法证明.江苏省镇江市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21. 【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,在直径为AB的半圆上有两点M,N,已知AN与BM交于点P,求证:AP·AN+BP·BM=AB2.(第21-A题)B.选修4-2:矩阵与变换求矩阵3113的特征值及对应的特征向量.C.选修4-4:坐标系与参数方程已知直线l的极坐标方程为ρsin θ-π3=3,曲线C的参数方程为x=2cosθ,y=2sinθ(θ为参数),若点P是曲线C上的任意一点,求点P到直线l的距离的最大值.D.选修4-5:不等式选讲已知x,y均为正数,且x>y,求证:x+4x-2xy+y≥y+3.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在棱长为3的正方体ABCD-A1B1C1D1中,已知A1E=CF=1.(1)求两条异面直线AC1与BE所成角的余弦值;(2)求直线BB1与平面BED1F所成角的正弦值.(第22题)23.(本小题满分10分)求证:对一切正整数n,5n+2·3n-1+1能被8整除.江苏省扬州市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.(本小题满分10分)已知直线l:x+y=1在矩阵A=m n01对应的变换作用下得到直线l':x-y=1,求矩阵A.22.(本小题满分10分)在极坐标系中,求圆ρ=8sin θ上的点到直线θ=π3(ρ∈R)的距离的最大值.23.(本小题满分10分)某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球、乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球.若摸中甲箱中的红球,则可获奖金m元;若摸中乙箱中的红球,则可获奖金n元.活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.(1)如果参与者先在乙箱中摸球,求其恰好获得奖金n元的概率;(2)若要使得该参与者获奖金的期望值较大,请你帮他设计摸箱子的顺序,并说明理由. 24.(本小题满分10分)已知函数f(x)=2x-3x2,若数列{a n}满足:a1=14,a n+1=f(a n).(1)求证:对任意的n∈N*,都有0<a n<13;(2)求证:31-3a1+31-3a2+…+31-3a n≥4n+1-4.江苏省泰州市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21. 【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,圆O是△ABC的外接圆,D是劣弧BC的中点,连接AD并延长,与以C为切点的切线交于点P,求证:PCPA =BDAC.(第21-A题)B.选修4-2:矩阵与变换已知矩阵M=-1252x的一个特征值为-2,求M2.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知直线C1:x=t+1,y=7-2t(t为参数)与椭圆C2:x=a cosθ,y=3sinθ(θ为参数,a>0)的一条准线的交点在y轴上,求实数a的值.D.选修4-5:不等式选讲已知正实数a,b,c满足a+b2+c3=1,求证:1a2+1b4+1c6≥27.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直三棱柱ABC-A1B1C1中,已知AC=3,BC=4,AB=5,AA1=4. (1)设AD=λAB,异面直线AC1与CD所成角的余弦值为91050,求λ的值;(2)若D是AB的中点,求二面角D-CB1-B的余弦值.(第22题)23.(本小题满分10分)已知k,m∈N*,若存在互不相等的正整数a1,a2,…,a m,使得a1a2,a2a3,…,a m-1a m,a m a1同时小于k,则记f(k)为满足条件的m的最大值.(1)求f(6)的值.(2)对于给定的正整数n(n≥2):①当n(n+2)<k≤(n+1)(n+2)时,求f(k)的解析式;②当n(n+1)<k≤n(n+2)时,求f(k)的解析式.江苏省苏北四市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21. 【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,∠PAQ是直角,圆O与射线AP相切于点T,与射线AQ相交于点B,C.求证:BT平分∠OBA.(第21-A题)B.选修4-2:矩阵与变换已知矩阵A=12-14,求矩阵A的特征值和特征向量.C.选修4-4:坐标系与参数方程在极坐标系中,圆C的极坐标方程为ρ2-8ρsin θ-π3+13=0,已知点A的极坐标为1,3π2,点B的极坐标为3,3π2,P为圆C上一点,求△PAB的面积的最小值.D.选修4-5:不等式选讲已知x,y均为正数,且x>y,求证:2x+1x2-2xy+y2≥2y+3.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在直三棱柱ABC-A1B1C1中,已知底面三角形ABC是直角三角形,AB=AC=1,AA1=2,P是棱BB1上一点,满足BP=λBB1(0≤λ≤1).(1)若λ=13,求直线PC与平面A1BC所成角的正弦值;(2)若二面角P-A1C-B的正弦值为23,求λ的值.(第22题)23.(本小题满分10分)已知数列{a n}满足a n=3n-2,f(n)=1a1+1a2+…+1a n,g(n)=f(n2)-f(n-1).(1)求证:g(2)>13;(2)求证:当n≥3时,g(n)>13.江苏省南通市2016届高三第一次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,圆O的直径AB=10,C为圆O上一点,BC=6,过点C作圆O的切线l,AD⊥l于点D,且交圆O于点E,求DE的长.(第21-A题)B.选修4-2:矩阵与变换已知矩阵M=1022,求矩阵M的逆矩阵M-1的特征值.C.选修4-4:坐标系与参数方程,圆C的方程为ρ=42sin θ(圆心为点C),求直线在极坐标系中,已知点A的极坐标为2,π4AC的极坐标方程.D.选修4-5:不等式选讲已知a≥0,b≥0,求证:a6+b6≥ab(a4+b4).【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在四棱锥S-ABCD中,已知底面ABCD为矩形,SA⊥平面ABCD,AB=1,AD=AS=2,P是棱SD上一点,且SP=1PD.2(1)求直线AB与CP所成角的余弦值;(2)求二面角A-PC-D的余弦值.(第22题)23.(本小题满分10分)已知函数f0(x)=x(sin x+cos x),设f n(x)为f n-1(x)的导数,n∈N*. (1)求f1(x),f2(x)的解析式;(2)写出f n(x)的解析式,并用数学归纳法证明.江苏省南京市2016届高三期初模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O相切于点A,且与CD的延长线交于点E,求证:AD2=AB·ED.(第21-A题)B.选修4-2:矩阵与变换已知点P(3,1)在矩阵A=a2b-1对应的变换作用下得到点P'(5,-1).试求矩阵A和它的逆矩阵A-1.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,圆C的参数方程为x=m+2cosα,y=2sinα(α为参数,m为常数).在以原点O为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos θ-π4=2.若直线l与圆C有两个公共点,求实数m的取值范围.D.选修4-5:不等式选讲已知实数x,y,z满足x+5y+z=9,求x2+y2+z2的最小值.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤..现有4发子弹,该射手一旦22.(本小题满分10分)假定某射手射击一次命中目标的概率为23射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为X.(1)求X的概率分布;(2)求数学期望E(X).23.(本小题满分10分)如图,在正方形ABCD和矩形ACEF中,已知AB=2,CE=1,CE⊥平面ABCD.(1)求异面直线DF与BE所成角的余弦值;(2)求二面角A-DF-B的大小.(第23题)江苏省南京市、盐城市、连云港市2016届高三第二次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,在Rt△ABC中,AB=BC.以AB为直径的圆O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交圆O于点F.求证:BE·CE=EF·EA.(第21-A题) B.选修4-2:矩阵与变换已知a,b是实数,若点(2,3)在矩阵A=3ab-2所对应的变换T作用下得到点(3,4).(1)求a,b的值;(2)若矩阵A的逆矩阵为B,求B2.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.直线l的极坐标方程为ρsinπ3-θ =32,椭圆C的参数方程为x=2cos t,y=3sin t(t为参数).(1)求直线l的直角坐标方程与椭圆C的普通方程;(2)若直线l与椭圆C交于A,B两点,求线段AB的长.D.选修4-5:不等式选讲解不等式:|x-2|+x|x+2|>2.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. (本小题满分10分)甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1) 求比赛结束后甲的进球数比乙的进球数多1个的概率;(2) 设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ).23. (本小题满分10分)设(1-x )n =a 0+a 1x+a 2x 2+…+a n x n ,n ∈N *,n ≥2. (1) 设n=11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值; (2) 设b k =k +1n -k a k+1(k ∈N ,k ≤n-1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n-1),求 S mC n -1m 的值.江苏省南通市、泰州市、扬州市、淮安市2016届高三第二次模拟考试 数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21. 【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤. A . 选修4-1:几何证明选讲如图,AB 是圆O 的直径,C 为圆O 外一点,且AB=AC ,BC 交圆O 于点D ,过D 作圆O 的切线交AC 于点E.求证:DE ⊥AC.(第21-A 题)B.选修4-2:矩阵与变换在平面直角坐标系xOy中,设点A(-1,2)在矩阵M=-1001对应的变换作用下得到点A',将点B(3,4)绕点A'逆时针旋转90°得到点B',求点B'的坐标.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,已知直线x=-1+55t,y=-1+255t(t为参数)与曲线x=sinθ,y=cos2θ(θ为参数)相交于A,B两点,求线段AB的长.D.选修4-5:不等式选讲已知a,b,c∈R,4a2+b2+2c2=4,求2a+b+c的最大值.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)一个摸球游戏,规则如下:在一不透明的纸盒中,装有6个大小相同、颜色各异的玻璃球.参加者交费1元可玩1次游戏,从中有放回地摸球3次.参加者预先指定盒中的某一种颜色的玻璃球,然后摸球:当所指定的玻璃球不出现时,游戏费被没收;当所指定的玻璃球出现1次、2次、3次时,参加者可相应获得游戏费的0倍、1倍、k倍的奖励(k∈N*),且游戏费仍退还给参加者.记参加者玩1次游戏的收益为X元.(1)求概率P(X=0)的值;(2)为使收益X的数学期望不小于0元,求k的最小值.23.(本小题满分10分)设S4k=a1+a2+…+a4k(k∈N*),其中a i∈{0,1}(i=1,2,…,4k).当S4k除以4的余数是b(b=0,1,2,3)时,数列a1,a2,…,a4k的个数记为m(b).(1)当k=2时,求m(1)的值;(2)求m(3)关于k的表达式,并化简.江苏省苏州市、无锡市、常州市、镇江市2016届高三第二次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,直线AB与圆O相切于点B,直线AO交圆O于D,E两点,BC⊥DE,垂足为C,且AD=3DC,BC=2,求圆O的直径.(第21-A题)B.选修4-2:矩阵与变换设矩阵M=1012,N=1201,试求曲线y=sin x在矩阵MN对应的变换作用下得到的曲线方程.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,直线l的参数方程为x=3+12t,y=32t(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=23sin θ.设P为直线l上一动点,当P到圆心C的距离最小时,求点P的直角坐标.D.选修4-5:不等式选讲已知函数f(x)=3x+6,g(x)=14-x,若存在实数x,使得f(x)+g(x)>a成立,求实数a的取值范围.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在长方体ABCD-A1B1C1D1中,已知AA1=AB=2AD=2,E为AB 的中点,F为D1E上的一点,D1F=2FE.(1)求证:平面DFC⊥平面D1EC;(2)求二面角A-DF-C的大小.(第22题)23.(本小题满分10分)在杨辉三角形中,从第3行开始,除1以外,其他每一个数值是它上面的两个数值之和,该三角形数阵的开头几行如图所示.(1)在杨辉三角形中是否存在某一行,该行中三个相邻的数之比为3∶4∶5?若存在,试求出是第几行;若不存在,请说明理由.(2)已知n,r为正整数,且n≥r+3,求证:任何四个相邻的组合数C n r,C n r+1,C n r+2,C n r+3不能构成等差数列.(第23题)江苏省南京市2016届高三第三次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,已知半圆O的半径为2,P是直径BC延长线上的一点,PA与半圆O相切于点A,H是OC的中点,AH⊥BC.(1)求证:AC是∠PAH的平分线;(2)求PC的长.(第21-A题)B. 选修4-2:矩阵与变换已知曲线C:x2+2xy+2y2=1,矩阵A=1210所对应的变换T将曲线C变成曲线C1,求曲线C1的方程.C. 选修4-4:坐标系与参数方程设极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.已知椭圆C的参数方程为x=2cosθ,y=sinθ(θ为参数),点M的极坐标为1,π2.若P是椭圆C上任意一点,试求PM的最大值,并求出此时点P的直角坐标.D. 选修4-5:不等式选讲求函数f(x)=5x+8-2x的最大值.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)从0,1,2,3,4这五个数中任选三个不同的数组成一个三位数,记X为所组成的三位数各位数字之和.(1)求X是奇数的概率;(2)求X的概率分布列及数学期望.23.(本小题满分10分)在平面直角坐标系xOy中,点P(x0,y0)在曲线y=x2(x>0)上.已知A(0,-1),P n(x0n,y0n),n∈N*.记直线AP n的斜率为k n.(1)若k1=2,求点P1的坐标;(2)若k1为偶数,求证:k n为偶数.江苏省苏北四市2016届高三第三次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. 选修4-1:几何证明选讲如图,AB是圆O的直径,弦BD,CA的延长线相交于点E,过点E作BA的延长线的垂线,垂足为F.求证:AB2=BE·BD-AE·AC.(第21-A题)B. 选修4-2:矩阵与变换已知矩阵A=12-14,向量α=53,计算A5α.C. 选修4-4:坐标系与参数方程在极坐标系中,直线l的极坐标方程为θ=π3(ρ∈R),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为x=2sinα,y=1-cos2α(α为参数),求直线l与曲线C的交点P的直角坐标.D. 选修4-5:不等式选讲已知a,b∈R,a>b>e,求证:b a>a b.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明,证明过程或演算步骤.22.(本小题满分10分)已知甲箱中装有3个红球、3个黑球,乙箱中装有2个红球、2个黑球,这些球除颜色外完全相同.某商场举行有奖促销活动,设奖规则如下:每次分别从以上两个箱中各随机摸出2个球,共4个球.若摸出的4个球都是红球,则获得一等奖;若摸出的球中有3个红球,则获得二等奖;若摸出的球中有2个红球,则获得三等奖;其他情况不获奖.每次摸球结束后将球放回原箱中.(1)求在1次摸奖后,获得二等奖的概率;(2)若连续摸奖2次,求获奖次数X的分布列及数学期望E(X).23.(本小题满分10分)在集合A={1,2,3,4,…,2n}中,任取m(m≤n,m,n∈N*)个元素构成集合A m.若A m的所有元素之和为偶数,则称A m为A的偶子集,其个数记为f(m);若A m的所有元素之和为奇数,则称A m为A的奇子集,其个数记为g(m).令F(m)=f(m)-g(m).(1)当n=2时,求F(1),F(2),F(3)的值;(2)求F(m).江苏省南通市、扬州市、泰州市2016届高三第三次模拟考试数学附加题注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内.21.【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,在△ABC中,∠CAB=2∠B,∠ACB的平分线交AB于点D,∠CAB的平分线交CD于点E.求证:AD·BC=BD·AC.(第21-A题)B.选修4-2:矩阵与变换在平面直角坐标系xOy中,直线x+y-2=0在矩阵A=1a12对应的变换作用下得到直线x+y-b=0(a,b∈R),求a+b的值.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,曲线C的参数方程为x=2cosα+3,y=2sinα(α为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=π6.若直线l与曲线C交于A,B两点,求线段AB的长.D.选修4-5:不等式选讲已知x>0,y>0,z>0,且xyz=1,求证:x3+y3+z3≥xy+yz+zx.【必做题】第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)上一点P34,m 到准线的距离与到原点O的距离相等,抛物线的焦点为F.(1)求抛物线的方程;(2)如图,若A为抛物线上一点(异于原点O),点A处的切线交x轴于点B,过点A作准线的垂线,垂足为E,试判断四边形AEBF的形状,并证明你的结论.(第22题(2))23.(本小题满分10分)甲、乙两人进行围棋比赛,共比赛2n(n∈N*)局.根据以往比赛胜负的情况知道,每局甲胜的概率和乙胜的概率均为12.如果某人获胜的局数多于另一人,则此人赢得比赛.记甲赢得比赛的概率为P(n).(1)求P(2)与P(3)的值;(2)试比较P(n)与P(n+1)的大小,并证明你的结论.。
2016南京、盐城高三一模数学试卷(含附加题)
南京市、盐城市2016届高三年级第一次模拟考试数学试题参考公式:锥体的体积公式:13V Sh =.其中S 为底面积,h 为高.一、填空题1.已知集合:{}{}210,1,2,5A x x B =-==-,则AB =_______.2.已知复数21iz i+=-(i 是虚数单位),则z =________. 3.书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为____. 4.运行如图所示的伪代码,其结果为_______.5.某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为________.6.在平面直角坐标系xOy 中,已知抛物线C 的顶点在坐标原点,焦点在x 轴上,若曲线C 经过点P (1,3),则其焦点到准线的距离为_______.7.已知实数x,y 满足50220x y x y +-≤⎧⎨-+≥⎩,则目标函数z x y =-的最小值为_______.8.设一个正方体与底面边长为23,侧棱长为10的正四棱锥的体积相等,则该正方体的棱长为______.9.在△ABC 中,设a,b,c 分别为角A,B,C 的对边,若a =5,A =4π,cos B =35,则边c =______. 10.设n S 是等比数列{}n a 的前n 项和,{}0n a >若6325S S -=,则96S S -最小值为________. 11.如图,在△ABC 中,AB =AC =3,1cos 23BAC DC BD ∠==,,则AD BC 的值为_______.12.过点P (-4, 0)的直线l 与圆C :()2215x y -+=相交于A ,B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为____________.13.设f (x )是定义在R 上的奇函数,且()22x x m f x =+,设()(),1(),1f x xg x f x x ⎧>⎪=⎨-<⎪⎩,若函数y=g (x )-t 有且只有一个零点,则实数t 的取值范围是___________.14.设函数32,ln ,x x x ey a x x e ⎧-+<=⎨≥⎩的图像上存在两点P ,Q ,使得△POQ 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是_________.二、解答题15.设函数()()sin 0,,22f x A x A x R ππωϕϕ⎛⎫=+>-<<∈ ⎪⎝⎭的部分图象如图所示.(1)求函数()y f x =的解析式;(2)当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,求f (x )的取值范围.16.如图,已知直三棱柱ABC — A 1B 1C 1的侧面ACC 1A 1是正方形,点O 是侧面ACC 1A 1的中心, 2ACB π∠=,M 是棱BC 的中点.(1)求证:OM ∥平面ABB 1A 1; (2)求证:平面ABC 1⊥平面A 1BC .17.A ,B 是两个垃圾中转站,B 在A 的正东方向16千米处,AB 的南面为居民生活区。
G3MN108——南京市、盐城市2016届高三年级第一次模拟考试
南京市、盐城市2016届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)参考公式锥体的体积公式:13V Sh =,其中S 为底面积,h 为高. 一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}210A x x =-=,{}1,2,5B =-,则AB = ▲ .2.已知复数21iz i+=-(i 是虚数单位),则||z = ▲ . 3.书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为 ▲ . 4.运行如图所示的伪代码,其结果为 ▲ .5.某校高一年级有学生400人,高二年级有学生360人, 现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽 取的人数为 ▲ .6.在平面直角坐标系xOy 中,已知抛物线C 的顶点在坐标原点,焦点在x 轴上,若曲线C 经过点(1,3)P ,则其焦点到准线的距离为 ▲ .7.已知实数,x y 满足50,220,0,x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩则目标函数z x y =-的最小值为 ▲ .8.设一个正方体与底面边长为▲ .9.在ABC ∆中,设,,a b c 分别为角,,A B C 的对边,若5a =,4A π=,3cos 5B =,则边c = ▲ . 10.设n S 是等比数列{}n a 的前n 项和,0n a >,若6325S S -=,则96S S -的最小值为 ▲ .11.如图,在ABC ∆中,3AB AC ==,1cos 3BAC ∠=,2DC BD =,则AD BC ⋅的值为 ▲ .S ←1For I From 1 To 7 step 2 S ←S + I End For Print S第4题图ABCD第11题12.过点(4,0)P -的直线l 与圆22:(1)5C x y -+=相交于,A B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 ▲ .13.设()f x 是定义在R 上的奇函数,且()22xx mf x =+,设(),1,()(),1,f x xg x f x x >⎧=⎨-≤⎩若函数()y g x t =-有且只有一个零点,则实数t 的取值范围是 ▲ .14.设函数32,,ln ,x x x e y a x x e ⎧-+<=⎨≥⎩的图象上存在两点,P Q ,使得POQ ∆是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)设函数()sin()(0,0,,)22f x A x A x R ππωϕωϕ=+>>-<<∈的部分图象如图所示.(1)求函数()y f x =的解析式; (2)当[,]22x ππ∈-时,求()f x 的取值范围16.(本小题满分14分)如图,已知直三棱柱111ABC A B C -的侧面11ACC A 是正方形,点O 是侧面11ACC A 的中心,2ACB π∠=,M 是棱BC 的中点.(1)求证://OM 平面11ABB A ; (2)求证:平面1ABC ⊥平面1A BC .第15题图ACBM OA 1C 1B 1第16题图如图所示,,A B 是两个垃圾中转站,B 在A 的正东方向16千米处,AB 的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在AB 的北面建一个垃圾发电厂P . 垃圾发电厂P 的选址拟满足以下两个要求(,,A B P 可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P 到直线AB 的距离要尽可能大). 现估测得,A B 两个中转站每天集中的生活垃圾量分别约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,设点00(,)M x y 是椭圆22:14x C y +=上一点,从原点O 向圆22200:()()M x x y y r -+-=作两条切线分别与椭圆C 交于点,P Q ,直线,OP OQ 的斜率分别记为12,k k .(1)若圆M 与x 轴相切于椭圆C 的右焦点,求圆M 的方程;(2)若r =. ①求证:1214k k =-;②求OP OQ ⋅的最大值.B A · ·居民生活区第17题图 北第18题图已知函数()xaxf x e =在0x =处的切线方程为y x =. (1)求a 的值;(2)若对任意的(0,2)x ∈,都有21()2f x k x x<+-成立,求k 的取值范围; (3)若函数()ln ()g x f x b =-的两个零点为12,x x ,试判断12()2x x g +'的正负,并说明理由.20.(本小题满分16分)设数列{}n a 共有(3)m m ≥项,记该数列前i 项12,,,i a a a 中的最大项为i A ,该数列后m i -项12,,,i i m a a a ++中的最小项为i B ,(1,2,3,,1)i i i r A B i m =-=-.(1)若数列{}n a 的通项公式为2n n a =,求数列{}i r 的通项公式;(2)若数列{}n a 满足11a =,2i r =-,求数列{}n a 的通项公式;(3)试构造一个数列{}n a ,满足n n n a b c =+,其中{}n b 是公差不为零的等差数列,{}n c 是等比数列,使得对于任意给定的正整数m ,数列{}i r 都是单调递增的,并说明理由.南京市、盐城市2016届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4—1:几何证明选讲)如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于点D ,AC ⊥CD ,DE ⊥AB ,C 、E 为垂足,连接,AD BD . 若4AC =,3DE =,求BD 的长.B .(选修4—2:矩阵与变换) 设矩阵 02 1a ⎡⎤=⎢⎥⎣⎦M 的一个特征值为2,若曲线C 在矩阵M 变换下的方程为221x y +=,求曲线C 的方程.C .(选修4—4:坐标系与参数方程) 在极坐标系中,已知点A的极坐标为)4π-,圆E 的极坐标方程为4cos 4sin ρθθ=+,试判断点A 和圆E 的位置关系.D .(选修4—5:不等式选讲)已知正实数,,,a b c d 满足1a b c d +++=.≤ABDEO第21(A )题图C·[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)直三棱柱111ABC A B C -中,AB AC ⊥,2AB =,4AC =,12AA =,BD DC λ=. (1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值; (2)若二面角111B AC D --的大小为60︒,求实数λ的值.23.(本小题满分10分)设集合{}1,2,3,,(3)M n n =≥,记M 的含有三个元素的子集个数为n S ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为n T .(1)求33T S ,44TS ,55T S ,66T S 的值; (2)猜想n nTS 的表达式,并证明之.BACDB 1A 1C 1第22题图南京市、盐城市2016届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1. {}1-2.3. 3104. 175. 176. 927. 3-8.29. 7 10. 20 11. 2- 12. 340x y ±+= 13. 33[,]22-14. 1(0,]1e +14二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.解:(1)由图象知,2A =, …………2分又54632T πππ=-=,0ω>,所以22T ππω==,得1ω=. …………4分 所以()2sin()f x x ϕ=+,将点(,2)3π代入,得2()32k k Z ππϕπ+=+∈,即2()6k k Z πϕπ=+∈,又22ππϕ-<<,所以6πϕ=. …………6分所以()2sin()6f x x π=+. …………8分(2)当[,]22x ππ∈-时,2[,]633x πππ+∈-, …………10分所以sin()[6x π+∈,即()[f x ∈. …………14分16.证明:(1)在1A BC ∆中,因为O 是1AC 的中点,M 是BC 的中点, 所以1//OM A B . ..............4分又OM ⊄平面11ABB A ,1A B ⊂平面11ABB A ,所以//OM 平面11ABB A . ..............6分 (2)因为111ABC A B C -是直三棱柱,所以1CC ⊥底面ABC ,所以1CC BC ⊥,又2ACB π∠=,即BC AC ⊥,而1,CC AC ⊂面11ACC A ,且1CC AC C =,所以BC ⊥面11ACC A . ..............8分 而1AC ⊂面11ACC A ,所以BC ⊥1AC ,又11ACC A 是正方形,所以11AC AC ⊥,而,BC 1AC ⊂面1A BC ,且1BC AC C =, 所以1AC ⊥面1A BC . .............12分 又1AC ⊂面1ABC ,所以面1ABC ⊥面1A BC . ..............14分 17.解法一:由条件①,得505303PA PB ==. ...............2分 设5,3PA x PB x ==,则222(5)16(3)8cos 2165105x x x PAB x x+-∠==+⨯⨯, ..............6分所以点P 到直线AB 的距离sin 5h PA PAB x =∠=== ...............10分所以当234x =,即x 时,h 取得最大值15千米.即选址应满足PA =千米,PB =. ...............14分解法二:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴,建立平面直角坐标系. ........2分则(8,0),(8,0)A B -. 由条件①,得505303PA PB ==. ...............4分 设(,)(0)P x y y >,则化简得2(17)x y y-+=, ...............10分 即点P 的轨迹是以点(17,0)为圆心、15为半径的圆位于x 轴上方的半圆. 则当17x =时,点P 到直线AB 的距离最大,最大值为15千米.所以点P 的选址应满足在上述坐标系中其坐标为(17,15)即可. ...............14分 18.解:(1)因为椭圆C 右焦点的坐标为,所以圆心M 的坐标为1)2±,........2分从而圆M 的方程为2211(()24x y +±=. …………4分 (2)①因为圆M 与直线1:OP y k x ==, 即222010010(45)10450x k x y k y -++-=, …………6分 同理,有222020020(45)10450x k x y k y -++-=,所以12,k k 是方程2220000(45)10450x k x y k y -++-=的两根, …………8分 从而22200012222001545(1)1451444545454x x y k k x x x ---+-====----. …………10分 ②设点111222(,),(,)P x y P x y ,联立12214y k xx y =⎧⎪⎨+=⎪⎩,解得222111221144,1414k x y k k ==++, ……12分 同理,222222222244,1414k x y k k ==++,所以222212222211224444()()14141414k k OP OQ k k k k ⋅=+⋅+++++ 22221211222212114(1)4(1)4411614141414k k k k k k k k ++++=⋅=⋅++++ ……………14分 221221520()252(14)4k k +≤=+, 当且仅当112k =±时取等号. 所以OP OQ ⋅的最大值为52.……16分 19. 解:(1)由题意得(1)()xa x f x e -'=,因函数在0x =处的切线方程为y x =,所以(0)11af '==,得1a =. ……………4分(2)由(1)知21()2x x f x e k x x =<+-对任意(0,2)x ∈都成立,所以220k x x +->,即22k x x >-对任意(0,2)x ∈都成立,从而0k ≥. ……………6分又不等式整理可得22x e k x x x<+-,令2()2x e g x x x x =+-, 所以22(1)()2(1)(1)(2)0x xe x e g x x x x x-'=+-=-+=,得1x =, ……………8分 当(1,2)x ∈时,()0g x '>,函数()g x 在(1,2)上单调递增,同理,函数()g x 在(0,1)上单调递减,所以min ()(1)1k g x g e <==-,综上所述,实数k 的取值范围是[0,1)e -. ……………10分(3)结论是12()02x x g +'<. ……………11分 证明:由题意知函数()ln g x x x b =--,所以11()1xg x x x-'=-=,易得函数()g x 在(0,1)单调递增,在(1,)+∞上单调递减,所以只需证明1212x x +>即可. 12分 因为12,x x 是函数()g x 的两个零点,所以1122ln ln x b x x b x +=⎧⎨+=⎩,相减得2211ln xx x x -=,不妨令211xt x =>,则21x tx =,则11ln tx x t -=,所以11ln 1x t t =-,2ln 1t x t t =-, 即证1ln 21t t t +>-,即证1()ln 201t t t t ϕ-=->+, ………14分 因为22214(1)()0(1)(1)t t t t t t ϕ-'=-=>++,所以()t ϕ在(1,)+∞上单调递增,所以()(1)0t ϕϕ>=, 综上所述,函数()g x 总满足12()02x x g +'<成立. ……………16分20.解:(1)因为2n n a =单调递增,所以2i i A =,12i i B +=, 所以1222i i i i r +=-=-,11i m ≤≤-. ……………4分(2)根据题意可知,i i a A ≤,1i i B a +≤,因为20i i i r A B =-=-<,所以i i A B < 可得1i i i i a A B a +≤<≤即1i i a a +<,又因为1,2,3,,1i m =-,所以{}n a 单调递增,……7分则i i A a =,1i i B a +=,所以12i i i r a a +=-=-,即12i i a a +-=,11i m ≤≤-,所以{}n a 是公差为2的等差数列,12(1)21n a n n =+-=-,11i m ≤≤-. ………10分 (3)构造1()2nn a n =-,其中n b n =,1()2nn c =-. …………12分下证数列{}n a 满足题意.证明:因为1()2nn a n =-,所以数列{}n a 单调递增,所以1()2ii i A a i ==-,1111()2i i i B a i ++==+-, ……………14分所以1111()2i i i i r a a ++=-=--,11i m ≤≤-,因为2121111[1()][1()]()0222i i i i i r r ++++-=-----=>,所以数列{}i r 单调递增,满足题意. …………16分(说明:等差数列{}n b 的首项1b 任意,公差d 为正数,同时等比数列{}n c 的首项1c 为负,公比(0,1)q ∈,这样构造的数列{}n a 都满足题意.)附加题答案21. A 、解:因为CD 与O 相切于D ,所以CDA DBA ∠=∠, …………2分又因为AB 为O 的直径,所以90ADB ∠=︒.又DE AB ⊥,所以EDA DBA ∆∆,所以EDA DBA ∠=∠,所以EDA CDA ∠=∠.…4分 又90ACD AED ∠=∠=︒,AD AD =,所以ACD AED ∆≅∆.所以4AE AC ==,所以5AD ==, ……… 6分又DE AE BD AD =,所以154DE BD AD AE =⋅=. ………10分 B 、由题意,矩阵M 的特征多项式()()((1)f a λλλ=--,因矩阵M 有一个特征值为2,(2)0f =,所以2a =. …………4分所以 2 0M 2 1x x x y y y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,即22x x y x y '=⎧⎨'=+⎩,代入方程221x y +=,得22(2)(2)1x x y ++=,即曲线C 的方程为22841x xy y ++=.…10分C 、解:点A 的直角坐标为(2,2)-, ………2分圆E 的直角坐标方程为22(2)(2)8x y -+-=, …………6分 则点A 到圆心E的距离4d r ==>=所以点A 在圆E 外. …………10分D 、解:因24(12121212)a b c d ≤+++++++, …6分又1a b c d +++=,所以224≤,≤ ……10分 22.解:分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,1(0,0,2)A ,1(2,0,2)B ,1(0,4,2)C ………2分 (1)当1λ=时,D 为BC 的中点,所以(1,2,0)D ,1(1,2,2)DB =-,11(0,4,0)AC =,1(1,2,2)A D =-,设平面11AC D 的法向量为1(,,)n x y z =则4020y x z =⎧⎨-=⎩,所以取1(2,0,1)n =,又111111cos ,||||3DBn DB n DB n ⋅<>===所以直线1DB 与平面11AC D …………6分 (2)BD DC λ=,24(,,0)11D λλλ∴++,11(0,4,0)AC ∴=,124(,,2)11A D λλλ=-++, 设平面11AC D 的法向量为1(,,)n x y z =,则402201y x z λ=⎧⎪⎨-=⎪+⎩, 所以取1(1,0,1)n λ=+. …………8分 又平面111A BC 的一个法向量为2(0,0,1)n =,由题意得121|cos ,|2nn <>=,12=,解得1λ=或1λ=(不合题意,舍去), 所以实数λ1. …………10分23.解:(1)332T S =,4452T S =,553T S =,6672T S =. ……………4分 (2)猜想12n n T n S +=. ……………5分下用数学归纳法证明之.证明:①当3n =时,由(1)知猜想成立; ②假设当(3)n k k =≥时,猜想成立,即12k k T k S +=,而3k k S C =,所以得312k k k T C +=. 6分 则当1n k =+时,易知311k k S C ++=,而当集合M 从{}1,2,3,,k 变为{}1,2,3,,,1k k +时,1k T +在k T 的基础上增加了1个2,2个3,3个4,…,和(1)k -个k , ……………8分所以1k k T T +=+213243(1)k k ⨯+⨯+⨯++-3222223412[]2k k k C C C C C +=++++⋅⋅⋅+ 3322233412[]2k k k C C C C C +=++++⋅⋅⋅+3311222k k k C C ++-=+3122k k C ++=1(1)12k k S +++=,即11(1)12k k T k S ++++=. 所以当1n k =+时,猜想也成立.综上所述,猜想成立. ……………10分 (说明:未用数学归纳法证明,直接求出n T 来证明的,同样给分.)。
2016年江苏省南京市、盐城市高考一模数学试卷【解析版】
2016年江苏省南京市、盐城市高考数学一模试卷一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.(5分)已知集合A={x|x2﹣1=0},B={﹣1,2,5},则A∩B=.2.(5分)已知复数z=(i是虚数单位),则|z|=.3.(5分)书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为.4.(5分)运行如图所示的伪代码,其结果为.5.(5分)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为.6.(5分)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.7.(5分)已知实数x,y满足,则目标函数z=x﹣y的最小值为.8.(5分)设一个正方体与底面边长为2,侧棱长为的正四棱锥的体积相等,则该正方体的棱长为.9.(5分)在△ABC中,设a,b,c分别为角A,B,C的对边,若a=5,A=,cos B=,则边c=.10.(5分)设S n是等比数列{a n}的前n项和,a n>0,若S6﹣2S3=5,则S9﹣S6的最小值为.11.(5分)如图,在△ABC中,AB=AC=3,cos∠BAC=,=2,则•的值为.12.(5分)过点P(﹣4,0)的直线l与圆C:(x﹣1)2+y2=5相交于A,B两点,若点A恰好是线段PB的中点,则直线l的方程为.13.(5分)设f(x)是定义在R上的奇函数,且f(x)=2x+,设g(x)=.若函数y=g(x)﹣t有且只有一个零点,则实数t的取值范围是.14.(5分)设函数y=的图象上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是.二、解答题(共6小题,满分90分)15.(14分)设函数f(x)=A sin(ωx+φ)(A>0,ω>0,﹣<φ<,x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣,]时,求f(x)的取值范围.16.(14分)如图,已知直三棱柱ABC﹣A1B1C1的侧面ACC1A1是正方形,点O 是侧面ACC1A1的中心,∠ACB=,M是棱BC的中点.(1)求证:OM∥平面ABB1A1;(2)求证:平面ABC1⊥平面A1BC.17.(14分)如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB的北面建一个垃圾发电厂P.垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大).现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?18.(16分)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:+y2=1上一点,从原点O向圆M:(x﹣x0)2+(y﹣y0)2=r2作两条切线分别与椭圆C交于点P,Q.直线OP,OQ的斜率分别记为k1,k2(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;(2)若r=,①求证:k1k2=﹣;②求OP•OQ的最大值.19.(16分)已知函数f(x)=在x=0处的切线方程为y=x.(1)求a的值;(2)若对任意的x∈(0,2),都有f(x)<成立,求k的取值范围;(3)若函数g(x)=lnf(x)﹣b的两个零点为x1,x2,试判断g′()的正负,并说明理由.20.(16分)设数列{a n}共有m(m≥3)项,记该数列前i项a1,a2,…a i中的最大项为A i,该数列后m﹣i项a i+1,a i+2,…,a m中的最小项为B i,r i=A i﹣B i(i=1,2,3,…,m﹣1).(1)若数列{a n}的通项公式为a n=2n,求数列{r i}的通项公式;(2)若数列{a n}满足a1=1,r i=﹣2,求数列{a n}的通项公式;(3)试构造一个数列{a n},满足a n=b n+c n,其中{b n}是公差不为零的等差数列,{c n}是等比数列,使得对于任意给定的正整数m,数列{r i}都是单调递增的,并说明理由.选作题:在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内选修4-1:几何证明选讲(满分10分)21.(10分)如图,AB为⊙O的直径,直线CD与⊙O相切于点D,AC⊥CD,DE⊥AB,C、E为垂足,连接AD,BD.若AC=4,DE=3,求BD的长.选修4-2:矩阵-变换22.(10分)设矩阵的一个特征值为2,若曲线C在矩阵M变换下的方程为x2+y2=1,求曲线C的方程.选修:4-4:坐标系与参数方程23.在极坐标系中,已知点A的极坐标为(2,﹣),圆E的极坐标方程为ρ=4cosθ+4sinθ,试判断点A和圆E的位置关系.选修:4-5:不等式选讲24.已知正实数a,b,c,d满足a+b+c+d=1.求证:+++≤2.[必做题](第25、26题,每小题10分,计20分.请把答案写在答题纸的指定区域内)25.(10分)直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ.(1)若λ=1,求直线DB1与平面A1C1D所成角的正弦值;(2)若二面角B1﹣A1C1﹣D的大小为60°,求实数λ的值.26.(10分)设集合M={1,2,3,…,n}(n≥3),记M的含有三个元素的子集个数为S n,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为T n.(1)求,,,的值;(2)猜想的表达式,并证明之.2016年江苏省南京市、盐城市高考数学一模试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上)1.(5分)已知集合A={x|x2﹣1=0},B={﹣1,2,5},则A∩B={﹣1}.【解答】解:∵集合A={x|x2﹣1=0}={﹣1,1},B={﹣1,2,5},∴A∩B={﹣1}.故答案为:{﹣1}.2.(5分)已知复数z=(i是虚数单位),则|z|=.【解答】解:复数z===,则|z|==.故答案为:.3.(5分)书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为.【解答】解:∵书架上有3本数学书,2本物理书,从中任意取出2本,基本事件总数n==10,则取出的两本书都是数学书包含的基本事件个数m=,∴取出的两本书都是数学书的概率p=.故选为:.4.(5分)运行如图所示的伪代码,其结果为17.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=1+1+3+5+7的值,所以S=1+1+3+5+7=17.故答案为:17.5.(5分)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽取的人数为17.【解答】解:设从高一年级学生中抽出x人,由题意得=,解得x=18,则从高三年级学生中抽取的人数为55﹣20﹣18=17人,故答案为:17.6.(5分)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【解答】解:由题意,可设抛物线的标准方程为y2=2px,因为曲线C经过点P(1,3),所以p=,所以其焦点到准线的距离为.故答案为:.7.(5分)已知实数x,y满足,则目标函数z=x﹣y的最小值为﹣3.【解答】解:作作出不等式组对应的平面区域如图:由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线经过点A时,此时直线y=x﹣z截距最大,z最小.由,得,此时z min=1﹣4=﹣3.故答案为:﹣3.8.(5分)设一个正方体与底面边长为2,侧棱长为的正四棱锥的体积相等,则该正方体的棱长为2.【解答】解:已知正四棱锥S﹣ABCD中,底面ABCD是边长为2的正方形,SB=,过S作SE⊥底面ABCD,垂足为E,过E作EF⊥BC,交BC于F,连结SF,则EF=BF=,SF==,SE==2,===8,∴V S﹣ABCD设该正方体的棱长为a,∵一个正方体与底面边长为2,侧棱长为的正四棱锥的体积相等,∴a3=8,解得a=2.故答案为:2.9.(5分)在△ABC中,设a,b,c分别为角A,B,C的对边,若a=5,A=,cos B=,则边c=7.【解答】解:∵cos B=,a=5,A=,∴sin B==,∴由正弦定理可得:b===4,∴由余弦定理可得:b2=a2+c2﹣2ac cos B,即:32=25+c2﹣6c,解得:c=7或﹣1(舍去).故答案为:7.10.(5分)设S n是等比数列{a n}的前n项和,a n>0,若S6﹣2S3=5,则S9﹣S6的最小值为20.【解答】解:设等比数列{a n}的公比q>0,q≠1.∵S6﹣2S3=5,∴﹣=5.∴=5.∴q>1.则S9﹣S6=﹣=•q6==5+10≥5×+10=20,当且仅当q3=2,即q =时取等号.∴S9﹣S6的最小值为20.故答案为:20.11.(5分)如图,在△ABC中,AB=AC=3,cos∠BAC=,=2,则•的值为﹣2.【解答】解:∵=﹣,∴•=(+)•,=(+)•,=(+﹣)(﹣),=(+)(﹣),=(•+﹣2),=(3×3×+32﹣2×32),=﹣2,故答案为:﹣2.12.(5分)过点P(﹣4,0)的直线l与圆C:(x﹣1)2+y2=5相交于A,B两点,若点A恰好是线段PB的中点,则直线l的方程为x±3y+4=0.【解答】解:由割线定理,可得(PC﹣)(PC+)=P A•PB,∴20=2P A2,∴P A2=10设A(x,y),则(x+4)2+y2=10,与圆C:(x﹣1)2+y2=5,联立可得x=﹣1,y=±1∴直线l的方程为x±3y+4=0.故答案为:x±3y+4=0.13.(5分)设f(x)是定义在R上的奇函数,且f(x)=2x+,设g(x)=.若函数y=g(x)﹣t有且只有一个零点,则实数t的取值范围是[﹣,].【解答】解:∵f(x)是定义在R上的奇函数,且f(x)=2x+,∴f(0)=0,即f(0)=1+m=0,得m=﹣1,则f(x)=2x﹣,则g(x)=,则当x>1时,函数为增函数,且当x→1时,g(x)→=2﹣=,当x≤1时,函数为减函数,且g(x)≥g(1)=﹣()=﹣2=﹣,由y=g(x)﹣t=0得g(x)=t,作出函数g(x)和y=t的图象如图:要使函数y=g(x)﹣t有且只有一个零点,则函数g(x)与y=t只有一个交点,则﹣≤t≤,故答案为:[﹣,]14.(5分)设函数y=的图象上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是(0,].【解答】解:假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),∵△POQ是以O为直角顶点的直角三角形,∴•=0,即﹣t2+f(t)(t3+t2)=0(*)若方程(*)有解,存在满足题设要求的两点P、Q;若方程(*)无解,不存在满足题设要求的两点P、Q.若0<t<e,则f(t)=﹣t3+t2代入(*)式得:﹣t2+(﹣t3+t2)(t3+t2)=0即t4﹣t2+1=0,而此方程无解,因此t≥e,此时f(t)=alnt,代入(*)式得:﹣t2+(alnt)(t3+t2)=0,即=(t+1)lnt(**)令h(x)=(x+1)lnx(x≥e),则h′(x)=lnx+1+>0,∴h(x)在[e,+∞)上单调递增,∵t≥e∴h(t)≥h(e)=e+1,∴h(t)的取值范围是[e+1,+∞).∴对于0<a≤,方程(**)总有解,即方程(*)总有解.故答案为:(0,].二、解答题(共6小题,满分90分)15.(14分)设函数f(x)=A sin(ωx+φ)(A>0,ω>0,﹣<φ<,x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣,]时,求f(x)的取值范围.【解答】解:(1)由图象知,A=2,…(2分)又==,ω>0,所以T=2π=,得ω=1.…(4分)所以f(x)=2sin(x+φ),将点(,2)代入,得+φ=2k(k∈Z),即φ=+2kπ(k∈Z),又﹣<φ<,所以,φ=.…(6分)所以f(x)=2sin(x+).…(8分)(2)当x∈[﹣,]时,x+∈[﹣,],…(10分)所以sin(x+)∈[﹣,1],即f(x)∈[﹣,2].…(14分)16.(14分)如图,已知直三棱柱ABC﹣A1B1C1的侧面ACC1A1是正方形,点O 是侧面ACC1A1的中心,∠ACB=,M是棱BC的中点.(1)求证:OM∥平面ABB1A1;(2)求证:平面ABC1⊥平面A1BC.【解答】证明:(1)在△A1BC中,因为O是A1C的中点,M是BC的中点,所以OM∥A1B,…(4分)又OM⊄平面ABB1A1,A1B⊂平面ABB1A1,所以OM∥平面ABB1A1.…(6分)(2)因为ABC﹣A1B1C1是直三棱柱,所以CC1⊥底面ABC,所以CC1⊥BC,又∠ACB=,即BC⊥AC,而CC1,AC⊂面ACC1A1,且CC1∩AC=C,所以BC⊥面ACC1A1,…(8分)而AC1⊂面ACC1A1,所以BC⊥AC1,又ACC1A1是正方形,所以A1C⊥AC1,而BC,A1C⊂面A1BC,且BC∩A1C=C,所以AC1⊥面A1BC,…(12分)又AC1⊂面ABC1,所以面ABC1⊥面A1BC.…(14分)17.(14分)如图所示,A,B是两个垃圾中转站,B在A的正东方向16千米处,AB的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB的北面建一个垃圾发电厂P.垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大).现估测得A,B两个中转站每天集中的生活垃圾量分别约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?【解答】解:由条件①,得==,∵P A=5x,∴PB=3x,则cos∠P AB==+,由同角的平方关系可得sin∠P AB=,所以点P到直线AB的距离h=P A sin∠P AB=5x•=,∵cos∠P AB≤1,∴+≤1,∴2≤x≤8,所以当x2=34,即x=时,h取得最大值15千米.即选址应满足P A=5千米,PB=3千米.18.(16分)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:+y2=1上一点,从原点O向圆M:(x﹣x0)2+(y﹣y0)2=r2作两条切线分别与椭圆C交于点P,Q.直线OP,OQ的斜率分别记为k1,k2(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;(2)若r=,①求证:k1k2=﹣;②求OP•OQ的最大值.【解答】解:(1)椭圆C的右焦点是(,0),x=,代入+y2=1,可得y =±,∴圆M的方程:(x﹣)2+(y)2=;(2)因为直线OP:y=k1x,OQ:y=k2x,与圆R相切,所以直线OP:y=k1x与圆M:(x﹣x0)2+(y﹣y0)2=联立,可得(1+k12)x2﹣(2x0+2k1y0)x+x02+y02﹣=0同理(1+k22)x2﹣(2x0+2k2y0)x+x02+y02﹣=0,由判别式为0,可得k1,k2是方程(x02﹣)k2﹣2x0y0k+y02﹣=0的两个不相等的实数根,∴k1k2=,因为点M(x0,y0)在椭圆C上,所以y2=1﹣,所以k1k2==﹣;(3)(i)当直线OP,OQ不落在坐标轴上时,设P(x1,y1),Q(x2,y2),因为4k1k2+1=0,所以+1=0,即y12y22=x12x22,因为P(x1,y1),Q(x2,y2)在椭圆C上,所以y12y22=(1﹣)(1﹣)=x12x22,整理得x12+x22=4,所以y12+y22=1所以OP2+OQ2=5.(ii)当直线落在坐标轴上时,显然有OP2+OQ2=5,综上:OP2+OQ2=5所以OP•OQ≤(OP2+OQ2)=2.5,所以OP•OQ的最大值为2.5.19.(16分)已知函数f(x)=在x=0处的切线方程为y=x.(1)求a的值;(2)若对任意的x∈(0,2),都有f(x)<成立,求k的取值范围;(3)若函数g(x)=lnf(x)﹣b的两个零点为x1,x2,试判断g′()的正负,并说明理由.【解答】解:(1)函数f(x)=的导数为f′(x)=,在x=0处的切线斜率为,由切线的方程y=x,可得a=1;(2)由题意可得x2﹣2x<k<+x2﹣2x在x∈(0,2)恒成立,由x2﹣2x=(x﹣1)2﹣1∈(﹣1,0),可得k≥0;由h(x)=+x2﹣2x的导数为h′(x)=(x﹣1)(2+),可得0<x<1时,h′(x)<0,h(x)递减;1<x<2时,h′(x)>0,h(x)递增.即有h(x)在x=1处取得最小值,且为e﹣1,则k<e﹣1.综上可得k的范围是[0,e﹣1);(3)函数g(x)=lnf(x)﹣b的两个零点为x1,x2,即为b=lnx﹣x有两个零点,y=lnx﹣x的导数为y′=﹣1,当x>1时,y′<0,函数递减;0<x<1时,y′>0,函数递增.即有x=1处取得最大值,且为﹣1.画出y=b和y=lnx﹣x的图象,可得>1,g(x)=lnx﹣x﹣b的导数为g′(x)=﹣1,g′()=﹣1<0,则g′()为负的.另解:由题意可得g(x)=lnx﹣x﹣b,g′(x)=﹣1=,可得g(x)在(0,1)递增,在(1,+∞)递减,只需证>1即可.由x1,x2为g(x)的两个零点,可得x1+b=lnx1,x2+b=lnx2,相减可得,x2﹣x1=ln,令t=>1,则x2=tx1,tx1﹣x1=lnt,则x1=,x2=,即证lnt>2,即证φ(t)=lnt﹣2•>0,φ′(t)=﹣=>0,φ(t)在(1,+∞)递增,可得φ(t)>φ(1)=0,综上可得,g(x)满足g′()<0.20.(16分)设数列{a n}共有m(m≥3)项,记该数列前i项a1,a2,…a i中的最大项为A i,该数列后m﹣i项a i+1,a i+2,…,a m中的最小项为B i,r i=A i﹣B i(i=1,2,3,…,m﹣1).(1)若数列{a n}的通项公式为a n=2n,求数列{r i}的通项公式;(2)若数列{a n}满足a1=1,r i=﹣2,求数列{a n}的通项公式;(3)试构造一个数列{a n},满足a n=b n+c n,其中{b n}是公差不为零的等差数列,{c n}是等比数列,使得对于任意给定的正整数m,数列{r i}都是单调递增的,并说明理由.【解答】解:(1)因为a n=2n单调递增,所以A i=2i,B i=2i+1,所以r i=A i﹣B i=﹣2i,1≤i≤m﹣1;(2)根据题意可知,a i≤A i,B i≤a i+1,因为r i=A i﹣B i=﹣2<0,所以A i<B i,可得a i≤A i<B i≤a i+1,即a i<a i+1,又因为i=1,2,3,…,m﹣1,所以{a n}单调递增,则A i=a i,B i=a i+1,所以r i=a i﹣a i+1=﹣2,即a i+1﹣a i=2,1≤i≤m﹣1,所以{a n}是公差为2的等差数列,a n=1+2(n﹣1)=2n﹣1,1≤i≤m﹣1;(3)构造a n=n﹣()n,其中b n=n,c n=﹣()n,下证数列{a n}满足题意.证明:因为a n=n﹣()n,所以数列{a n}单调递增,所以A i=a i=i﹣()i,B i=a i+1=i+1﹣()i+1,所以r i=a i﹣a i+1=﹣1﹣()i+1,1≤i≤m﹣1,因为r i+1﹣r i=[﹣1﹣()i+2]﹣[﹣1﹣()i+1]=()i+2>0,所以数列{r i}单调递增,满足题意.(说明:等差数列{b n}的首项b1任意,公差d为正数,同时等比数列{c n}的首项c1为负,公比q∈(0,1),这样构造的数列{a n}都满足题意.)选作题:在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内选修4-1:几何证明选讲(满分10分)21.(10分)如图,AB为⊙O的直径,直线CD与⊙O相切于点D,AC⊥CD,DE⊥AB,C、E为垂足,连接AD,BD.若AC=4,DE=3,求BD的长.【解答】解:因为CD与⊙O相切于点D,所以∠CDA=∠DBA,…(2分)又因为AB为⊙O的直径,所以∠ADB=90°.又DE⊥AB,所以△EDA∽△DBA,所以∠EDA=∠DBA,所以∠EDA=∠CDA.…(4分)又∠ACD=∠AED=90°,AD=AD,所以△ACD≌△AED.所以AE=AC=4,所以AD=5,…(6分)又=,所以BD=.…(10分)选修4-2:矩阵-变换22.(10分)设矩阵的一个特征值为2,若曲线C在矩阵M变换下的方程为x2+y2=1,求曲线C的方程.【解答】解:由题意,矩阵M的特征多项式f(λ)=(λ﹣a)(λ﹣1),因矩阵M有一个特征值为2,f(2)=0,所以a=2.…(4分)所以M==,即,代入方程x2+y2=1,得(2x)2+(2x+y)2=1,即曲线C的方程为8x2+4xy+y2=1.…(10分)选修:4-4:坐标系与参数方程23.在极坐标系中,已知点A的极坐标为(2,﹣),圆E的极坐标方程为ρ=4cosθ+4sinθ,试判断点A和圆E的位置关系.【解答】解:∵点A的极坐标为(2,﹣),∴点A的直角坐标为(2,﹣2),…(2分)∵圆E的极坐标方程为ρ=4cosθ+4sinθ,∴圆E的直角坐标方程为(x﹣2)2+(y﹣2)2=8,…(6分)则点A(2,﹣2)到圆心E(2,2)的距离d==4>r=2,所以点A在圆E外.…(10分)选修:4-5:不等式选讲24.已知正实数a,b,c,d满足a+b+c+d=1.求证:+++≤2.【解答】证明:运用分析法证明.要证+++≤2,由正实数a,b,c,d满足a+b+c+d=1,即证(+++)2≤24,即有(+++)2≤4(1+2a+1+2b+1+2c+1+2d),由柯西不等式可得,上式显然成立.则原不等式成立.[必做题](第25、26题,每小题10分,计20分.请把答案写在答题纸的指定区域内)25.(10分)直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,=λ.(1)若λ=1,求直线DB1与平面A1C1D所成角的正弦值;(2)若二面角B1﹣A1C1﹣D的大小为60°,求实数λ的值.【解答】解:(1)分别以AB,AC,AA1所在直线为x,y,z轴,建立空间直角坐标系.则A(0,0,0),B(2,0,0),C(0,4,0),A1(0,0,2),B1(2,0,2),C1(0,4,2),…(2分)当λ=1时,D为BC的中点,∴D(1,2,0),=(1,﹣2,2),=(0,4,0),=(1,2,﹣2),设平面A1C1D的法向量为=(x,y,z),则,取x=2,得=(2,0,1),又cos<>===,∴直线DB1与平面A1C1D所成角的正弦值为.…(6分)(2)∵=,∴D(,,0),∴=(0,4,0),=(,,﹣2),设平面A1C1D的法向量为=(x,y,z),则,取z=1,得=(λ+1,0,1).…(8分)又平面A1B1C1的一个法向量为=(0,0,1),∵二面角B1﹣A1C1﹣D的大小为60°,∴|cos<>|=||==,解得或(不合题意,舍去),∴实数λ的值为.…(10分)26.(10分)设集合M={1,2,3,…,n}(n≥3),记M的含有三个元素的子集个数为S n,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为T n.(1)求,,,的值;(2)猜想的表达式,并证明之.【解答】解:(1)当n=3时,M={1,2,3),S3=1,T3=2,=2,当n=4时,M={1,2,3,4),S4=4,T4=2+2+3+3=10,=,=3,=(2)猜想=.下用数学归纳法证明之.证明:①当n=3时,由(1)知猜想成立;②假设当n=k(k≥3)时,猜想成立,即=,而S k=∁k3,所以得T k=∁k3,则当n=k+1时,易知S k+1=C k+13,而当集合M从{1,2,3,…,k}变为{1,2,3,…,k,k+1}时,T k+1在Tk的基础上增加了1个2,2个3,3个4,…,和(k﹣1)个k,所以T k+1=T k+2×1+3×2+4×3+…+k(k﹣1),=∁k3+2(C22+C32+C42+…+∁k2),=∁k3+2(C33+C32+C42+…+∁k2),=C k+13+2C k+13,=C k+13,=S k+1,即=.即所以当n=k+1时,猜想也成立.综上所述,猜想成立.。
南京市、盐城市2016届高三一模数学
南京市、盐城市2016届高三年级第一次模拟考试数 学 试 题一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}210A x x =-=,{}1,2,5B =-,则A B = ▲ .2.已知复数21iz i+=-(i 是虚数单位),则||z = ▲ . 3.书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为 ▲ . 4.运行如图所示的伪代码,其结果为 ▲ .5.某校高一年级有学生400人,高二年级有学生360人, 现采用分层抽样的方法从全校学生中抽出55人,其中从高一年级学生中抽出20人,则从高三年级学生中抽 取的人数为 ▲ .6.在平面直角坐标系xOy 中,已知抛物线C 的顶点在坐标原点,焦点在x 轴上,若曲线C 经过点(1,3)P ,则其焦点到准线的距离为 ▲ .7.已知实数,x y 满足50,220,0,x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩则目标函数z x y =-的最小值为 ▲ .8.设一个正方体与底面边长为▲ .4A π=,9.在ABC ∆中,设,,a b c 分别为角,,A B C 的对边,若5a =,3cos 5B =,则边c = ▲ .10.设n S 是等比数列{}n a 的前n 项和,0n a >,若6325S S -=,则96S S -的最小值为 ▲ .11.如图,在ABC ∆中,3AB AC ==,1cos 3BAC ∠=,2DC BD = ,则AD BC ⋅的值为 ▲ .12.过点(4,0)P -的直线l 与圆22:(1)5C x y -+=相交于,A B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 ▲ .13.设()f x 是定义在R 上的奇函数,且()22x x mf x =+,设(),1,()(),1,f x xg x f x x >⎧=⎨-≤⎩ 若函数S ←1For I From 1 To 7 step 2 S ←S + I End For Print S第4题图AB CD第11题图()y g x t =-有且只有一个零点,则实数t 的取值范围是 ▲ .14.设函数32,,ln ,x x x e y a x x e ⎧-+<=⎨≥⎩的图象上存在两点,P Q ,使得POQ ∆是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)设函数()sin()(0,0,,)22f x A x A x R ππωϕωϕ=+>>-<<∈的部分图象如图所示.(1)求函数()y f x =的解析式; (2)当[,]22x ππ∈-时,求()f x 的取值范围16.(本小题满分14分)如图,已知直三棱柱111ABC A B C -的侧面11ACC A 是正方形,点O 是侧面11ACC A 的中心,2ACB π∠=,M 是棱BC 的中点.(1)求证://OM 平面11ABB A ; (2)求证:平面1ABC ⊥平面1A BC .17.(本小题满分14分)如图所示,,A B 是两个垃圾中转站,B 在A 的正东方向16千米处,AB 的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在AB 的北面建一个垃圾发电厂P . 垃圾发电厂P 的选址拟满足以下两个要求(,,A B P 可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P 到直线AB 的距离要尽可能大). 现估测得,A B 两个中转站每天集中的生活垃圾量分别第15题图A CB M OA 1C 1B 1 第16题图约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,设点00(,)M x y 是椭圆22:14x C y +=上一点,从原点O 向圆22200:()()M x x y y r -+-=作两条切线分别与椭圆C 交于点,P Q ,直线,OP OQ 的斜率分别记为12,k k .(1)若圆M 与x 轴相切于椭圆C 的右焦点,求圆M 的方程;(2)若r =. ①求证:1214k k =-; ②求OP OQ ⋅的最大值.19.(本小题满分16分)已知函数()xaxf x e =在0x =处的切线方程为y x =. (1)求a 的值;(2)若对任意的(0,2)x ∈,都有21()2f x k x x<+-成立,求k 的取值范围; B A · ·居民生活区第17题图 北第18题图(3)若函数()ln ()g x f x b =-的两个零点为12,x x ,试判断12()2x x g +'的正负,并说明理由.20.(本小题满分16分)设数列{}n a 共有(3)m m ≥项,记该数列前i 项12,,,i a a a 中的最大项为i A ,该数列后m i -项12,,,i i m a a a ++ 中的最小项为i B ,(1,2,3,,1)i i i r A B i m =-=- .(1)若数列{}n a 的通项公式为2n n a =,求数列{}i r 的通项公式; (2)若数列{}n a 满足11a =,2i r =-,求数列{}n a 的通项公式;(3)试构造一个数列{}n a ,满足n n n a b c =+,其中{}n b 是公差不为零的等差数列,{}n c 是等比数列,使得对于任意给定的正整数m ,数列{}i r 都是单调递增的,并说明理由.南京市、盐城市2016届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 、D 四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4—1:几何证明选讲)如图,AB 为⊙O 的直径,直线CD 与⊙O 相切于点D ,AC ⊥CD ,DE ⊥AB ,C 、E 为垂足,连接,AD BD . 若4AC =,3DE =,求BD 的长. DCB .(选修4—2:矩阵与变换) 设矩阵 02 1a ⎡⎤=⎢⎥⎣⎦M 的一个特征值为2,若曲线C 在矩阵M 变换下的方程为221x y +=,求曲线C 的方程.C .(选修4—4:坐标系与参数方程) 在极坐标系中,已知点A的极坐标为)4π-,圆E 的极坐标方程为4cos 4sin ρθθ=+,试判断点A 和圆E 的位置关系.D .(选修4—5:不等式选讲)已知正实数,,,a b c d 满足1a b c d +++=.≤[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)直三棱柱111ABC A B C -中,AB AC ⊥,2AB =,4AC =,12AA =,BD DC λ=. (1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值; (2)若二面角111B AC D --的大小为60︒,求实数λ的值.AC DB 1A 1C 123.(本小题满分10分)设集合{}1,2,3,,(3)M n n =≥ ,记M 的含有三个元素的子集个数为n S ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为n T .(1)求33T S ,44TS ,55T S ,66T S 的值; (2)猜想n nTS 的表达式,并证明之.南京市、盐城市2016届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1. {}1-2.3. 3104. 175. 176. 927. 3-8.29. 7 10. 20 11. 2- 12. 340x y ±+= 13. 33[,]22-14. 1(0,]1e +14二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.解:(1)由图象知,2A =, …………2分又54632T πππ=-=,0ω>,所以22T ππω==,得1ω=. …………4分所以()2sin()f x x ϕ=+,将点(,2)3π代入,得2()32k k Z ππϕπ+=+∈,即2()6k k Z πϕπ=+∈,又22ππϕ-<<,所以6πϕ=. …………6分所以()6f x π=+. …………8分(2)当[,]22x ππ∈-时,2[,]633x πππ+∈-, …………10分所以sin()[6x π+∈,即()[]f x ∈. …………14分16.证明:(1)在1A BC ∆中,因为O 是1AC 的中点,M 是BC 的中点, 所以1//OM A B . ..............4分又OM ⊄平面11ABB A ,1A B ⊂平面11ABB A ,所以//OM 平面11ABB A . (6)分(2)因为111ABC A B C -是直三棱柱,所以1CC ⊥底面ABC ,所以1CC BC ⊥,又2ACB π∠=,即BC AC ⊥,而1,CC AC ⊂面11ACC A ,且1CC AC C = ,所以BC ⊥面11ACC A . ..............8分 而1AC ⊂面11ACC A ,所以BC ⊥1AC , 又11ACC A 是正方形,所以11AC AC ⊥,而,BC 1AC ⊂面1A BC ,且1BC AC C = , 所以1AC ⊥面1A BC . .............12分又1AC ⊂面1ABC ,所以面1ABC ⊥面1A BC . ..............14分17.解法一:由条件①,得505303PA PB ==. ...............2分设5,3PA x PB x ==,则222(5)16(3)8c o s 2165105x x x PAB x x+-∠==+⨯⨯, (6)分所以点P 到直线AB的距离sin 5h PA PAB x =∠=== ...............10分所以当234x =,即x 时,h 取得最大值15千米. 即选址应满足PA =千米,PB =千米. ...............14分解法二:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴,建立平面直角坐标系. ...............2分则(8,0),(8,0)A B -. 由条件①,得505303PA PB ==. ...............4分 设(,)(0)P x y y >,则化简得2(17)x y y-+=, ...............10分 即点P 的轨迹是以点(17,0)为圆心、15为半径的圆位于x 轴上方的半圆. 则当17x =时,点P 到直线AB 的距离最大,最大值为15千米. 所以点P的选址应满足在上述坐标系中其坐标为(17,1即可. ...............14分18.解:(1)因为椭圆C 右焦点的坐标为,所以圆心M 的坐标为1)2±, ...............2分从而圆M的方程为2211(()24x y -+±=. …………4分(2)①因为圆M 与直线1:OP y k x ==, 即222010010(45)10450x k x y k y -++-=, …………6分同理,有222020020(45)10450x k x y k y -++-=,所以12,k k 是方程2220000(45)10450x k x y k y -++-=的两根, …………8分从而222000122220001545(1)1451444545454x x y k k x x x ---+-====----. …………10分②设点111222(,),(,)P x y P x y ,联立12214y k xx y =⎧⎪⎨+=⎪⎩,解得222111221144,1414k x y k k ==++, …………12分同理,222222222244,1414k x y k k ==++,所以222212222211224444()()14141414k k OP OQ k k k k ⋅=+⋅+++++22221211222212114(1)4(1)4411614141414k k k k k k k k ++++=⋅=⋅++++ ……………14分221221520()252(14)4k k +≤=+, 当且仅当112k =±时取等号. 所以OP OQ ⋅的最大值为52. ……………16分19. 解:(1)由题意得(1)()xa x f x e -'=,因函数在0x =处的切线方程为y x =, 所以(0)11af '==,得1a =. ……………4分(2)由(1)知21()2x x f x e k x x =<+-对任意(0,2)x ∈都成立, 所以220k x x +->,即22k x x >-对任意(0,2)x ∈都成立,从而0k ≥. ……………6分又不等式整理可得22x e k x x x<+-,令2()2x e g x x x x =+-,所以22(1)()2(1)(1)(2)0x xe x e g x x x x x-'=+-=-+=,得1x =, ……………8分当(1,2)x ∈时,()0g x '>,函数()g x 在(1,2)上单调递增,同理,函数()g x 在(0,1)上单调递减,所以min ()(1)1k g x g e <==-,综上所述,实数k 的取值范围是[0,1)e -. ……………10分(3)结论是12()02x x g +'<. ……………11分证明:由题意知函数()ln g x x x b =--,所以11()1x g x x x-'=-=, 易得函数()g x 在(0,1)单调递增,在(1,)+∞上单调递减,所以只需证明1212x x +>即可. ……12分因为12,x x 是函数()g x 的两个零点,所以1122ln ln x b x x b x +=⎧⎨+=⎩,相减得2211ln xx x x -=,不妨令211x t x =>,则21x tx =,则11ln tx x t -=,所以11ln 1x t t =-,2ln 1t x t t =-, 即证1ln 21t t t +>-,即证1()ln 201t t t t ϕ-=->+, ……………14分因为22214(1)()0(1)(1)t t t t t t ϕ-'=-=>++,所以()t ϕ在(1,)+∞上单调递增,所以()(1)0t ϕϕ>=, 综上所述,函数()g x 总满足12()02x x g +'<成立. ……………16分20.解:(1)因为2n n a =单调递增,所以2i i A =,12i i B +=,所以1222i i i i r +=-=-,11i m ≤≤-. ……………4分(2)根据题意可知,i i a A ≤,1i i B a +≤,因为20i i i r A B =-=-<,所以i i A B <可得1i i i i a A B a +≤<≤即1i i a a +<,又因为1,2,3,,1i m =- ,所以{}n a 单调递增, ……………7分则i i A a =,1i i B a +=,所以12i i i r a a +=-=-,即12i i a a +-=,11i m ≤≤-,所以{}n a 是公差为2的等差数列,12(1)21n a n n =+-=-,11i m ≤≤-. ……………10分(3)构造1()2nn a n =-,其中n b n =,1()2nn c =-. ……………12分下证数列{}n a 满足题意.证明:因为1()2nn a n =-,所以数列{}n a 单调递增,所以1()2ii i A a i ==-,1111()2i i i B a i ++==+-, ……………14分所以1111()2i i i i r a a ++=-=--,11i m ≤≤-,因为2121111[1()][1()]()0222i i i i i r r ++++-=-----=>,所以数列{}i r 单调递增,满足题意. ……………16分(说明:等差数列{}n b 的首项1b 任意,公差d 为正数,同时等比数列{}n c 的首项1c 为负,公比(0,1)q ∈,这样构造的数列{}n a 都满足题意.)附加题答案21. A 、解:因为CD 与O 相切于D ,所以CDA DBA ∠=∠, …………2分又因为AB 为O 的直径,所以90ADB ∠=︒. 又DE AB ⊥,所以EDA DBA ∆∆ ,所以EDA DBA ∠=∠,所以EDA CDA ∠=∠. …………4分又90ACD AED ∠=∠=︒,AD AD =,所以ACD AED ∆≅∆.所以4AE AC ==,所以5AD ==,………… 6分又DE AE BD AD =,所以154DE BD AD AE =⋅=. …………10分B 、由题意,矩阵M 的特征多项式()()((1)f a λλλ=--,因矩阵M 有一个特征值为2,(2)0f =,所以2a =. …………4分所以 2 0M 2 1x x x y y y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦,即22x x y x y '=⎧⎨'=+⎩,代入方程221x y +=,得22(2)(2)1x x y ++=,即曲线C 的方程为22841x xy y ++=. ………10分C 、解:点A 的直角坐标为(2,2)-, …………2分圆E的直角坐标方程为22(2)(2)8x y -+-=, …………6分则点A 到圆心E的距离4d r ==>=所以点A 在圆E 外. …………10分D 、解:因24(12121212)a b c d ≤+++++++, ………6分又1a b c d +++=,所以224≤,即…………10分 22.解:分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,1(0,0,2)A ,1(2,0,2)B ,1(0,4,2)C …………2分(1)当1λ=时,D 为BC 的中点,所以(1,2,0)D ,1(1,2,2)DB =- ,11(0,4,0)AC = ,1(1,2,2)A D =- ,设平面11AC D 的法向量为1(,,)n x y z =则4020y x z =⎧⎨-=⎩,所以取1(2,0,1)n =,又111111cos ,||||DB n DB n DB n ⋅<>===所以直线1DB 与平面11AC D…………6分(2)BD DC λ= ,24(,,0)11D λλλ∴++,11(0,4,0)AC ∴= ,124(,,2)11A D λλλ=-++ , 设平面11AC D 的法向量为1(,,)n x y z = ,则402201y x z λ=⎧⎪⎨-=⎪+⎩, 所以取1(1,n λ=+. …………8分又平面111A B C 的一个法向量为2(0,0,1)n = ,由题意得121|cos ,|2n n <>= ,12=,解得1λ=或1λ=(不合题意,舍去), 所以实数λ1. …………10分23.解:(1)332T S =,4452T S =,553T S =,6672T S =. ……………4分 (2)猜想12n n T n S +=. ……………5分下用数学归纳法证明之.证明:①当3n =时,由(1)知猜想成立;②假设当(3)n k k =≥时,猜想成立,即12k k T k S +=,而3k k S C =,所以得312k k k T C +=. ……6分则当1n k =+时,易知311k k S C ++=,而当集合M 从{}1,2,3,,k 变为{}1,2,3,,,1k k + 时,1k T +在k T 的基础上增加了1个2,2个3,3个4,…,和(1)k -个k , ……………8分所以1k k T T +=+213243(1)k k ⨯+⨯+⨯++- 3222223412[]2k k k C C C C C +=++++⋅⋅⋅+ 3322233412[]2k k k C C C C C +=++++⋅⋅⋅+3311222k k k C C ++-=+3122k k C ++=1(1)12k k S +++=,即11(1)12k k T k S ++++=. 所以当1n k =+时,猜想也成立.综上所述,猜想成立. ……………10分(说明:未用数学归纳法证明,直接求出n T 来证明的,同样给分.)。
(2016.3.23)南京市、盐城市2016届高三年级第二次模拟考试数学word版含答案
南京市、盐城市2016届高三年级第二次模拟考试数 学 2016.03注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.设集合A ={x |-2<x <0},B ={x |-1<x <1},则A ∪B =▲________. 2.若复数z =(1+m i)(2-i)(i 是虚数单位)是纯虚数,则实数m 的值为 ▲ . 3.将一骰子连续抛掷两次,至少有一次向上的点数为1的概率是 ▲ .4.如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若 一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为▲________.5.执行如图所示的流程图,则输出的k 的值为 ▲ .6.设公差不为0的等差数列{a n }的前n 项和为S n .若S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10等(第5题图)(第4题图)于 ▲ .7.如图,正三棱柱ABC —A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A —A 1EF 的体积是▲________.8.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,且它的图象过点(-π12,-2),则φ的值为▲________.9.已知函数f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则不等式f (x )≥-1的解集是▲________.10.在平面直角坐标系xOy 中,抛物线y 2=2px (p >0) 的焦点为F ,双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别与抛物线交于A ,B 两点(A ,B 异于坐标原点O ).若直线AB 恰好过点F ,则双曲线的渐近线方程是▲________.11.在△ABC 中,A =120°,AB =4.若点D 在边BC 上,且BD →=2DC →,AD =273,则AC 的长为▲________.12.已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为▲________. 13.已知函数f (x )=ax 2+x -b (a ,b 均为正数),不等式f (x )>0的解集记为P ,集合Q ={x |-2-t <x <-2+t }.若对于任意正数t ,P ∩Q ≠∅,则1a -1b 的最大值是▲________.14.若存在两个正实数x 、y ,使得等式x +a (y -2e x )(ln y -ln x )=0成立,其中e 为自然对数的底数,则实数a 的取值范围为▲________.(第7题图)ABCA 1B 1FC 1EANBPMC二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)已知α为锐角,cos (α+π4)=55.(1)求tan(α+π4)的值;(2)求sin(2α+π3)的值.16.(本小题满分14分)如图,在三棱锥P —ABC 中,平面P AB ⊥平面ABC ,P A ⊥PB ,M ,N 分别为AB ,P A 的中点. (1)求证:PB ∥平面MNC ;(2)若AC =BC ,求证:P A ⊥平面MNC .17.(本小题满分14分)如图,某城市有一块半径为1(单位:百米)的圆形景观,圆心为C ,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处(图中阴影部分)只有一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆C 相切的小道AB .问:A ,B 两点应选在何处可使得小道AB 最短?(第16题图)18. (本小题满分16分)在平面直角坐标系xOy 中,点C 在椭圆M :x 2a 2+y 2b 2=1(a >b >0)上.若点A (-a ,0),B (0,a3),且AB →=32BC →.(1)求椭圆M 的离心率;(2)设椭圆M 的焦距为4,P ,Q 是椭圆M 上不同的两点,线段PQ 的垂直平分线为直线l ,且直线l 不与y 轴重合.①若点P (-3,0),直线l 过点(0,-67),求直线l 的方程;②若直线l 过点(0,-1) ,且与x 轴的交点为D ,求D 点横坐标的取值范围.19.(本小题满分16分)对于函数f (x ),在给定区间[a ,b ]内任取n +1(n ≥2,n ∈N *)个数x 0,x 1,x 2,…,x n ,使得a =x 0<x 1<x 2<…<x n -1<x n =b ,记S =n -1∑i =0|f (x i +1)-f (x i )|.若存在与n 及x i (i ≤n ,i ∈N )均无关的正数A ,使得S ≤A 恒成立,则称f (x )在区间[a ,b ]上具有性质V . (1)若函数f (x )=-2x +1,给定区间为[-1,1],求S 的值;(2)若函数f (x )=xex ,给定区间为[0,2],求S 的最大值;(3)对于给定的实数k ,求证:函数f (x )=k ln x -12x 2 在区间[1,e ]上具有性质V .20.(本小题满分16分)已知数列{a n }的前n 项和为S n ,且对任意正整数n 都有a n =(-1)n S n +p n (p 为常数,p ≠0). (1)求p 的值;(2)求数列{a n }的通项公式;(3)设集合A n ={a 2n -1,a 2n },且b n ,c n ∈A n ,记数列{nb n },{nc n }的前n 项和分别为P n ,Q n . 若b 1≠c 1,求证:对任意n ∈N *,P n ≠Q n .南京市、盐城市2016届高三年级第二次模拟考试数学附加题 2016.03注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷纸指...定区域内....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,在Rt △ABC 中,AB =BC .以AB 为直径的⊙O 交AC 于点D ,过D 作DE ⊥BC ,垂足为E ,连接AE 交⊙O 于点F .求证:BE ⋅CE =EF ⋅EA .B .选修4—2:矩阵与变换已知a ,b 是实数,如果矩阵A =⎣⎢⎡⎦⎥⎤3 a b -2 所对应的变换T 把点(2,3)变成点(3,4).(1)求a ,b 的值.(2)若矩阵A 的逆矩阵为B ,求B 2.C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为ρsin(π3-θ)=32,椭圆C 的参数方程为⎩⎨⎧x =2cos t ,y =3sin t(t 为参数) .(1)求直线l 的直角坐标方程与椭圆C 的普通方程;(2)若直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.D .选修4—5:不等式选讲解不等式:|x -2|+x |x +2|>2A【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出 文字说明、证明过程或演算步骤. 22.(本小题满分10分)甲、乙两人投篮命中的概率分别为23与12,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E (ξ).23.(本小题满分10分)设(1-x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ∈N *,n ≥2.(1)设n =11,求|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|的值;(2)设b k =k +1n -k a k +1(k ∈N ,k ≤n -1),S m =b 0+b 1+b 2+…+b m (m ∈N ,m ≤n -1),求|S mC m n -1 | 的值.南京市、盐城市2016届高三年级第二次模拟考试数学参考答案说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1. {x |-2<x <1} 2.-2 3.1136 4. 9 5. 5 6. 19 7. 8 38.-π12 9. [-4,2] 10.y =±2x 11.3 12. [2-22,2+22]13. 12 14.a <0或a ≥1e二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)解:(1)因为α∈(0,π2),所以α+π4∈(π4,3π4),所以sin (α+π4)=1-cos 2(α+π4)=255,………………………………………………………3分所以tan(α+π4)=sin(α+π4)cos(α+π4)=2.……………………………………………………………………6分(2)因为sin(2α+π2)=sin[2(α+π4)]=2 sin (α+π4) cos (α+π4)=45,………………………………9分cos(2α+π2)=cos[2(α+π4)]=2 cos 2(α+π4)-1=-35,……………………………………………12分所以sin(2α+π3)=sin[(2α+π2)-π6]=sin(2α+π2)cos π6-cos(2α+π2)sin π6=43+310.……………14分ANBPMC16.(本小题满分14分)证:(1)因为M ,N 分别为AB ,P A 的中点,所以MN ∥PB . …………………………………2分 因为MN ⊂平面MNC ,PB ⊄平面MNC ,所以PB ∥平面MNC . ……………………………………4分 (2)因为P A ⊥PB ,MN ∥PB ,所以P A ⊥MN . ……………6分因为AC =BC ,AM =BM ,所以CM ⊥AB . ……………8分 因为平面P AB ⊥平面ABC ,CM ⊂平面ABC ,平面P AB ∩平面ABC =AB , 所以CM ⊥平面P AB . …………………………………12分 因为P A ⊂平面P AB ,所以CM ⊥P A .因为P A ⊥MN ,MN ⊂平面MNC ,CM ⊂平面MNC ,MN ∩CM =M ,所以P A ⊥平面MNC. ……………………………………………………………………14分 17.(本小题满分14分)解法一:如图,分别由两条道路所在直线建立直角坐标系xOy . 设A (a ,0),B (0,b )(0<a <1,0<b <1), 则直线AB 方程为x a +yb =1,即bx +ay -ab =0.因为AB 与圆C 相切,所以|b +a -ab |b 2+a2=1.……………4分 化简得 ab -2(a +b )+2=0,即ab =2(a +b )-2.……………6分因此AB = a 2+b 2= (a +b )2-2ab = (a +b )2-4(a +b )+4= (a +b -2)2.………………8分因为0<a <1,0<b <1,所以0<a +b <2, 于是AB =2-(a +b ). 又ab =2(a +b )-2≤(a +b 2)2,解得0<a +b ≤4-22,或a +b ≥4+22.因为0<a +b <2,所以0<a +b ≤4-22,………………………………………12分所以AB =2-(a +b ) ≥2-(4-22)=22-2,当且仅当a =b =2-2时取等号,所以AB 最小值为22-2,此时a =b =2-2.答:当A ,B 两点离道路的交点都为2-2(百米)时,小道AB 最短.……………14分解法二:如图,连接CE ,CA ,CD ,CB ,CF . 设∠DCE =θ,θ∈(0,π2),则∠DCF =π2-θ.在直角三角形CDA 中,AD =tan θ2.………………4分在直角三角形CDB 中,BD =tan(π4-θ2),………6分所以AB =AD +BD =tan θ2+tan(π4-θ2)=tan θ2+1-tanθ2 1+tanθ2.………………………8分令t =tan θ2,0<t <1,则AB =f (t )=t +1-t 1+t ==t +1+21+t-2≥22-2,当且仅当t =2-1时取等号.………………………12分所以AB 最小值为22-2,此时A ,B 两点离两条道路交点的距离是1-(2-1)=2-2.答:当A ,B 两点离道路的的交点都为2-2(百米)时,小道AB 最短.……………14分18.(本小题满分16分)解:(1)设C (x 0,y 0),则AB →=(a ,a 3),BC →=(x 0,y 0-a 3).因为AB →=32BC →,所以(a ,a 3)=32(x 0,y 0-a 3)=(32x 0,32y 0-a 2),得⎩⎨⎧x 0=23a ,y 0=59a ,………………………………………………………2分代入椭圆方程得a 2=95b 2.因为a 2-b 2=c 2,所以e =c a =23.………………………………………4分(2)①因为c =2,所以a 2=9,b 2=5,所以椭圆的方程为x 29+y 25=1,设Q (x 0,y 0),则x 029+y 025=1.……① ………………………………………………6分因为点P (-3,0),所以PQ 中点为(x 0-32,y 02),因为直线l 过点(0,-67),直线l 不与y 轴重合,所以x 0≠3,所以y 02+67x 0-32·y 0x 0+3=-1, ………………………………………………8分化简得x 02=9-y 02-127y 0.……②将②代入①化简得y 02-157y 0=0,解得y 0=0(舍),或y 0=157.将y 0=157代入①得x 0=±67,所以Q 为(±67,157),所以PQ 斜率为1或59,直线l 的斜率为-1或-95,所以直线l 的方程为y =-x +67或y =-95x +67.……………………………………………10分②设PQ :y =kx +m ,则直线l 的方程为:y =-1kx -1,所以x D =-k .将直线PQ 的方程代入椭圆的方程,消去y 得(5+9k 2)x 2+18kmx +9m 2-45=0.…………①, 设P (x 1,y 1),Q (x 2,y 2),中点为N ,x N =x 1+x 22=-9km 5+9k 2,代入直线PQ 的方程得y N =5m 5+9k 2,……………………………………12分 代入直线l 的方程得9k 2=4m -5. ……② 又因为△=(18km )2-4(5+9k 2) (9m 2-45)>0,化得m 2-9k 2-5<0. ………………………………………………14分 将②代入上式得m 2-4m <0,解得0<m <4,所以-113<k <113,且k ≠0,所以x D =-k ∈(-113,0)∪(0,113).综上所述,点D 横坐标的取值范围为(-113,0)∪(0,113).………………………………16分19.(本小题满分16分)(1)解:因为函数f (x )=-2x +1在区间[-1,1]为减函数, 所以f (x i +1)<f (x i ),所以|f (x i +1)-f (x i )|= f (x i )-f (x i +1).S =n -1∑i =0|f (x i +1)-f (x i )|=[ f (x 0)-f (x 1)]+[ f (x 1)-f (x 2)]+…+[ f (x n -1)-f (x n )]=f (x 0)-f (x n )=f (-1)-f (1)=4. …………………………………………2分(2) 解:由f ′(x )=1-xex =0,得x =1.当x <1时,f ′(x )>0,所以f (x )在(-∞,1)为增函数; 当x >1时,f ′(x )<0,所以f (x )在(1,+∞)为减函数;所以f (x )在x =1时取极大值1e . ……………………………………4分设x m ≤1<x m +1,m ∈N ,m ≤n -1,则S =n -1∑i =0|f (x i +1)-f (x i )|=|f (x 1)-f (0)|+…+|f (x m )-f (x m -1)|+|f (x m +1)-f (x m )|+|f (x m +2)-f (x m +1)|+…+|f (2)-f (x n -1)| =[f (x 1)-f (0)]+…+[f (x m )-f (x m -1)]+|f (x m +1)-f (x m )|+[f (x m +1)-f (x m +2)]+…+[f (x n -1)-f (2)] =[f (x m )-f (0)]+|f (x m +1)-f (x m )|+[f (x m +1)-f (2)]. …………………………………………6分 因为|f (x m +1)-f (x m )|≤[f (1)-f (x m )]+[f (1)-f (x m +1)],当x m =1时取等号, 所以S ≤f (x m )-f (0)+f (1)-f (x m )+f (1)-f (x m +1)+f (x m +1)-f (2) =2 f (1)-f (0)-f (2)=2(e -1)e 2.所以S 的最大值为2(e -1)e 2. …………………………………………8分(3)证明:f ′(x )=kx -x =k -x 2x,x ∈[1,e].①当k ≥e 2时,k -x 2≥0恒成立,即f ′(x )≥0恒成立,所以f (x )在[1,e]上为增函数,所以S =n -1∑i =0|f (x i +1)-f (x i )|=[ f (x 1)-f (x 0)]+[ f (x 2)-f (x 1)]+…+[ f (x n )-f (x n -1)]=f (x n )-f (x 0)=f (e)-f (1)=k +12-12e 2.因此,存在正数A =k +12-12e 2,都有S ≤A ,因此f (x )在[1,e]上具有性质V .……………10分②当k ≤1时,k -x 2≤0恒成立,即f ′(x )≤0恒成立,所以f (x )在[1,e]上为减函数,所以S =n -1∑i =0|f (x i +1)-f (x i )|=[ f (x 0)-f (x 1)]+[ f (x 1)-f (x 2)]+…+[ f (x n -1)-f (x n )]=f (x 0)-f (x n )= f (1)-f (e)= 12e 2-k -12.因此,存在正数A =12e 2-k -12,都有S ≤A ,因此f (x )在[1,e]上具有性质V .……………12分③当1<k <e 2时,由f ′(x )=0,得x =k ;当f ′(x )>0,得1≤x <k ;当f ′(x )<0,得k <x ≤e ,因此f (x )在[1,k )上为增函数,在(k ,e]上为减函数.设x m ≤k <x m +1,m ∈N ,m ≤n -1则S =n -1∑i =1|f (x i +1)-f (x i )|=|f (x 1)-f (x 0)|+…+|f (x m )-f (x m -1)|+ |f (x m +1)-f (x m )|+ |f (x m +2)-f (x m +1)|+…+|f (x n )-f (x n -1)| =f (x 1)-f (x 0)+…+f (x m )-f (x m -1) + |f (x m +1)-f (x m )|+ f (x m +1)-f (x m +2) +…+f (x n -1)-f (x n ) =f (x m )-f (x 0) + |f (x m +1)-f (x m )| + f (x m +1)-f (x n )≤f (x m )-f (x 0) + f (x m +1)-f (x n )+ f (k )-f (x m +1)+ f (k )-f (x m )=2 f (k )-f (x 0)-f (x n )=k ln k -k -[-12+k -12e 2]=k ln k -2k +12+12e 2.因此,存在正数A =k ln k -2k +12+12e 2,都有S ≤A ,因此f (x )在[1,e]上具有性质V .综上,对于给定的实数k ,函数f (x )=k ln x -12x 2 在区间[1,e]上具有性质V .……………16分20.(本小题满分16分)解:(1)由a 1=-S 1+p ,得a 1=p2.………………………………………………………2分由a 2=S 2+p 2,得a 1=-p 2,所以p2=-p 2.又p ≠0,所以p =-12. …………………………………………………………3分(2)由a n =(-1)n S n +(-12)n ,得⎩⎨⎧a n =(-1)n S n +(-12)n , ……①a n +1=-(-1)nS n +1+(-12)n +1, ……②①+②得a n +a n +1=(-1)n (-a n +1)+12×(-12)n . …………………………………………5分当n 为奇数时,a n +a n +1=a n +1-12×(12)n ,所以a n =-(12)n +1. ………………………………………………………………7分当n 为偶数时,a n +a n +1=-a n +1+12×(12)n ,所以a n =-2a n +1+12×(12)n =2×(12)n +2+12×(12)n =(12)n ,所以a n=⎩⎨⎧-12n +1,n 为奇数, n ∈N *,12n, n 为偶数,n ∈N *.………………………………………………9分(3)A n ={-14n ,14n },由于b 1≠c 1,则b 1 与c 1一正一负,不妨设b 1>0,则b 1=14,c 1=-14.则P n =b 1+2b 2+3b 3+…+nb n ≥14-(242+343+…+n4n ).…………………………………………12分设S =242+343+…+n 4n ,则14S =243+…+n -14n +n 4n +1,两式相减得34S =242+143+…+14n -n 4n +1=116+116×1-(14)n -11-14-n 4n +1=748-112×14n -1-n 4n +1<748.所以S <748×43=736,所以P n ≥14-(242+143+…+14n )>14-736=118>0.………………………14分因为Q n = c 1+2 c 2+3 c 3+…+n c n ≤-14+S <-14+736 =-118<0,所以P n ≠Q n . ………………………………………………………………16分南京市、盐城市2016届高三年级第二次模拟考试 数学附加题参考答案及评分标准 2016.03说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指...定区域内....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲证明:连接BD .因为AB 为直径,所以BD ⊥AC . 因为AB =BC ,所以AD =DC .……………………4分 因为DE ⊥BC ,AB ⊥BC ,所以DE ∥AB ,…………6分 所以CE =EB .………………………………………8分 因为AB 是直径,AB ⊥BC ,所以BC 是圆O 的切线,所以BE 2=EF ⋅EA ,即BE ⋅CE =EF ⋅EA .……………………………………………………10分 B .选修4—2:矩阵与变换解:(1)由题意,得⎣⎢⎡⎦⎥⎤ 3 a b -2 ⎣⎡⎦⎤23=⎣⎡⎦⎤34,得6+3a =3,2b -6=4,………………………4分所以a =-1,b =5.……………………………………………………………………………6分(2)由(1),得A =⎣⎢⎡⎦⎥⎤ 3 -1 5 -2.由矩阵的逆矩阵公式得B =⎣⎢⎡⎦⎥⎤2 -1 5 -3.…………………8分所以B 2=⎣⎢⎡⎦⎥⎤-1 1 -5 4. ………………………………………………………10分C .选修4—4:坐标系与参数方程解:(1)由ρsin(π3-θ)=32 ,得ρ(32cos θ-12sin θ)=32,即32x -12y=32,化简得y=3x -3,所以直线l 的直角坐标方程是y=3x -3.………………………………2分A由(x 2)2+(y 3)2=cos 2t +sin 2t =1,得椭圆C 的普通方程为x 24+y 23=1.……………………………4分 (2)联立直线方程与椭圆方程,得⎩⎪⎨⎪⎧y=3x -3, x 24+y 23=1,消去y ,得x 24+(x -1)2=1,化简得5x 2-8x =0,解得x 1=0,x 2=85, ………………………………8分所以A (0,-3),B (85,353),则AB =(0-85)2+(-3-353)2=165. ………………………………10分D .选修4—5:不等式选讲解:当x ≤-2时,不等式化为(2-x )+x (-x -2)>2,解得-3<x ≤-2; ………………………………………………3分 当-2<x <2时,不等式化为(2-x )+x (x +2)>2,解得-2<x <-1或0<x <2; …………………………………………………6分 当x ≥2时,不等式化为(x -2)+x (x +2)>2,解得x ≥2; ………………………………………………………9分 所以原不等式的解集为{x |-3<x <-1或x >0}.……………………………………………………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)比赛结束后甲的进球数比乙的进球数多1个有以下几种情况: 甲进1球,乙进0球;甲进2球,乙进1球;甲进3球,乙进2球. 所以比赛结束后甲的进球数比乙的进球数多1个的概率P =C 1323(13)2(12)3+C 23(23)2(13)C 13(12)3+C 33(23)3C 23(12)3=1136.……………………………………………4分(2)ξ的取值为0,1,2,3,所以 ξ的概率分布列为……………………………………………………………………………………8分所以数学期望E (ξ)=0×724+1×1124+2×524+3×124=1.………………………………………10分23.(本小题满分10分)解:(1)因为a k =(-1)k C kn ,当n =11时,|a 6|+|a 7|+|a 8|+|a 9|+|a 10|+|a 11|=C 611+C 711+C 811+C 911+C 1011+C 1111=12( C 011+C 111+…+C 1011+C 1111)=210=1024.………………………………………………3分(2)b k =k +1n -k a k +1=(-1)k +1 k +1n -kC k +1n =(-1)k +1 C kn ,……………………………………5分当1≤k ≤n -1时,b k =(-1)k +1 C k n = (-1)k +1 (C k n -1+C k -1n -1)=(-1)k +1 C k -1n -1+(-1)k +1 C kn -1=(-1)k -1 C k -1n -1-(-1)k C kn -1. ……………………………………7分当m =0时,|S m C m n -1 |=|b 0C 0n -1|=1. ……………………………………8分 当1≤m ≤n -1时,S m =-1+k =1∑m[(-1)k -1 C k -1n -1-(-1)k C k n -1]=-1+1-(-1)m C m n -1=-(-1)m C mn -1,所以|S m C m n -1|=1. 综上,|S mC m n -1 |=1. ……………………………………10分。
南京市、盐城市高三第一次模拟考试数学试题(原卷版).docx
一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.)1.已知集合{3,1,1,2}A =--,集合[0,)B =+∞,则AB = .2. 若复数(1)(3)z i ai =+-(i 为虚数单位)为纯虚数,则实数a = .3. 现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为 .4. 根据如图所示的伪代码,最后输出的S 的值为 .110Print S For I From To S S I End For S←←+5. 若一组样本数据2,3,7,8,a 的平均数为5,则该组数据的方差2s = .6. 在平面直角坐标系xOy 中,若中心在坐标原点上的双曲线的一条准线方程为12x =,且它的一个顶点与抛物线24y x =-的焦点重合,则该双曲线的渐进线方程为 .7. 在平面直角坐标系xOy 中,若点(,1)P m 到直线4310x y --=的距离为4,且点P 在不等式23x y +≥表示的平面区域内,则m = .8. 在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=,侧棱PA ⊥底面ABCD ,2PA =,E 为AB 的中点,则四面体PBCE 的体积为 .9. 设函数()cos(2)f x x ϕ=+,则“()f x 为奇函数”是“2πϕ=”的 条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10. 在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点关于点(1,2)P 成中心对称,则直线AB 的方程为 . 11. 在ABC ∆中,2BC =,23A π=,则AB AC ⋅的最小值为 . 12. 若函数()f x 是定义在R 上的偶函数,且在区间[0.)+∞上是单调增函数.如果实数t 满足1(l n )(l n )2(1)f t f f t+<时,那么t 的取值范围是 .13. 若关于x 的不等式2(20)lg 0aax x-≤对任意的正实数x 恒成立,则实数a 的取值范围是 .14. 已知等比数列{}n a 的首项为43,公比为13-,其前n 项和为n S ,若1n n A S B S ≤-≤对*n N ∈恒成立,则B A -的最小值为 .二、解答题 (本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2c =,3C π=.(1)若ABC ∆的面积等于3,求a ,b ;(2)若sin sin()2sin2C B A A +-=,求ABC ∆的面积.16. 如图,在正三棱锥111ABC A B C -中,E ,F 分别为1BB ,AC 的中点. (1)求证://BF 平面1A EC ; (2)求证:平面1A EC ⊥平面11ACC A .17. 如图,现要在边长为100m 的正方形ABCD 内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为xm (x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为215x m 的圆形草地.为了保证道路畅通,岛口宽不小于60m ,绕岛行驶的路宽均不小于10m . (1)求x 的取值范围;(运算中2取1.4)(2)若中间草地的造价为a 元2/m ,四个花坛的造价为433ax 元2/m ,其余区域的造价为1211a元2/m ,当x 取何值时,可使“环岛”的整体造价最低?18. 在平面直角坐标系xOy 中,已知过点3(1,)2的椭圆C :22221(0)x y a b a b +=>>的右焦点为(1,0)F ,过焦点F 且与x 轴不重合的直线与椭圆C 交于A ,B 两点,点B 关于坐标原点的对称点为P ,直线PA ,PB 分别交椭圆C 的右准线l 于M ,N 两点. (1)求椭圆C 的标准方程;(2)若点B 的坐标为833(,)55,试求直线PA 的方程;(3)记M ,N 两点的纵坐标分别为M y ,N y ,试问M N y y ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.19. 已知函数()x f x e =,2()1(,)g x ax bx a b R =++∈.(1)若0a ≠,则a ,b 满足什么条件时,曲线()y f x =与()y g x =在0x =处总有相同的切线? (2)当1a =时,求函数()()()g x h x f x =的单调减区间; (3)当0a =时,若()()f x g x ≥对任意的x R ∈恒成立,求b 的取值的集合. 20. 设等差数列{}n a 的前n 项和为n S ,已知12a =,622S =. (1)求n S ;(2)若从{}n a 中抽取一个公比为q 的等比数列{}n k a ,其中11k =,且12n k k k <<<,*n k N ∈.①当q 取最小值时,求{}n k 的通项公式;②若关于*()n n N ∈的不等式16n n S k +>有解,试求q 的值.数学附加题21. (选做题)(在A 、B 、C 、D 四小题中只能选做2题)A .如图,AB ,CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若98PC =,12OP =,求PD 的长.B .已知曲线C :1xy =,若矩阵22222222M ⎡⎤-⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换将曲线C 变为曲线C ',求曲线C '的方程. C .在极坐标系中,圆C 的方程为2cos a ρθ=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为3242x t y t =+⎧⎨=+⎩(t 为参数),若直线l 与圆C 相切,求实数a 的值.D .已知1x ,2x ,3x 为正实数,若1231x x x ++=,求证:2223211231x x x x x x ++≥. (必做题)22. 已知点(1,2)A 在抛物线Γ:22y px =上.(1)若ABC ∆的三个顶点都在抛物线Γ上,记三边AB ,BC ,CA 所在直线的斜率分别为1k ,2k ,3k ,求123111k k k -+的值; (2)若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为1k ,2k ,3k ,4k ,求12341111k k k k -+-的值. 23. 设m 是给定的正整数,有序数组(1232,,,m a a a a )中2i a =或2-(12)i m ≤≤.(1)求满足“对任意的1k m ≤≤,*k N ∈,都有2121k ka a -=-”的有序数组(1232,,,m a a a a )的个数A ;(2)若对任意的1k l m ≤≤≤,k ,*l N ∈,都有221||4li i k a =-≤∑成立,求满足“存在1k m ≤≤,使得2121k ka a -≠-”的有序数组(1232,,,m a a a a )的个数B。
2016南京盐城一模试卷数学分析
本次模拟考试延续了往年南京一模的风格,整体偏难,不易得分。
主要考察了学 运用知识点解决问题的能力。
试卷结构设置不太合理,送分题较少(第1、2、3、4、5、6、7),(注,第4题考察与往不同,难度低。
考察的是学生知不知道),从第8题往后,大部分的题目需要一定量的运算,如果知识点掌握不够熟练的话,容易陷入大量的运算中,时间、精力都不足以在两个小时内解决整张试题。
而知识点能够融会贯通的话,就能在审题后作出判断,选择较为灵活的方法相对快速解题(例如10、12、17题)。
解答题第15、16题在掌握基础知识点的前提下,细心解答可得满分。
第18、19、20考察的是“硬功夫”,每个题目都设置了三小文。
大量运算不可避免,很难得满分,但如果学生平时留心这类答题的解题套路(如第19题第二小问考察了近年的热点“分离参数法”),得前两问的分还是合理的。
南京市、盐城市2016届高三年级第一次模拟考试数学 试 题(总分160分,考试时间120分钟)参考公式锥体的体积公式:13V Sh =,其中S 为底面积,h 为高. 一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合{}210A x x =-=,{}1,2,5B =-,则A B = ▲ .2.已知复数21iz i+=-(i 是虚数单位),则||z = ▲ . 3.书架上有3本数学书,2本物理书,从中任意取出2本,则取出的两本书都是数学书的概率为 ▲ . 4.运行如图所示的伪代码,其结果为 ▲ .教师评语:这道题不是很常规,for 循环语句考的少,小部分学生不懂For I From 1 To 7 step 2含义,像刘宇轩、方勇就错了这道题,而且之后订正都没想起这个语句的含义。
考的就是学生知识的死角。
5.某校高一年级有学生400人,高二年级有学生360人, 现采用分层抽样的方法从全校学生中抽出55人,其中 从高一年级学生中抽出20人,则从高三年级学生中抽 取的人数为 ▲ .6.在平面直角坐标系xOy 中,已知抛物线C 的顶点在坐标原点,焦点在x 轴上,若曲线C 经过点(1,3)P ,则其焦点到准线的距离为 ▲ .7.已知实数,x y 满足50,220,0,x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩则目标函数z x y =-的最小值为 ▲ .8.设一个正方体与底面边长为则该正方体的棱长为 ▲ .S ←1For I From 1 To 7 step 2 S ←S + I End For Print S第4题图9.在ABC ∆中,设,,a b c 分别为角,,A B C 的对边,若5a =,4A π=,3cos 5B =,则边c = ▲ .10.设n S 是等比数列{}n a 的前n 项和,0n a >,若6325S S -=,则96S S -的最小值为 ▲ .教师评语:这道题结合了数列公式和基本不等式 11.如图,在ABC ∆中,3AB AC ==,1cos 3BAC ∠=,2DC BD = ,则AD BC ⋅的值为 ▲ .12.过点(4,0)P -的直线l 与圆22:(1)5C x y -+=相交于,A B 两点,若点A 恰好是线段PB 的中点,则直线l 的方程为 ▲ .教师评语:用解析方法很难算,也浪费时间,圆的问题应先寻求平面几何方法13.设()f x 是定义在R 上的奇函数,且()22xx mf x =+,设(),1,()(),1,f x x g x f x x >⎧=⎨-≤⎩若函数()y g x t =-有且只有一个零点,则实数t 的取值范围是 ▲ .教师评语:常规函数与方程的应用题,很常规,而且难度偏易14.设函数32,,ln ,x x x e y a x x e ⎧-+<=⎨≥⎩的图象上存在两点,P Q ,使得POQ ∆是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是 ▲ .教师评语:此题为2015南通密卷第4套第19题的第三问,陈文杰,张徐都写过,难度中等二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)设函数()sin()(0,0,,)22f x A x A x R ππωϕωϕ=+>>-<<∈的部分图象如图所示.(1)求函数()y f x =的解析式; (2)当[,]22x ππ∈-时,求()f x 的取值范围16.(本小题满分14分)如图,已知直三棱柱111ABC A B C -的侧面11ACC A 是正方形,点O 是侧面11ACC A 的中心,2ACB π∠=,M 是棱BC 的中点.(1)求证://OM 平面11ABB A ; (2)求证:平面1ABC ⊥平面1A BC .第15题图ACBM OA 1C 1B 1第16题图AB D第11题图17.(本小题满分14分)如图所示,,A B 是两个垃圾中转站,B 在A 的正东方向16千米处,AB 的南面为居民生活区. 为了妥善处理生活垃圾,政府决定在AB 的北面建一个垃圾发电厂P . 垃圾发电厂P 的选址拟满足以下两个要求(,,A B P 可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P 到直线AB 的距离要尽可能大). 现估测得,A B 两个中转站每天集中的生活垃圾量分别约为30吨和50吨,问垃圾发电厂该如何选址才能同时满足上述要求?教师评语:题目本身符合近两年对函数应用这一块知识点的考察模式,并且本题解法很多,掌握住其中一种就能顺利得分。
2016届南京、盐城高三数学期末试卷
2016届高三模拟考试试卷(一)数 学(满分160分,考试时间120分钟)2016.1 参考公式:锥体的体积公式:V =13Sh ,其中S 为底面积,h 为高.一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={x|x 2-1=0},B ={-1,2,5},则A ∩B =________.2. 已知复数z =2+i1-i(i 是虚数单位),则|z|=________.3. 书架上有3本数学书,2本物理书.若从中随机取出2本,则取出的2本书都是数学书的概率为________.4. 运行如图所示的伪代码,其结果为________. S ←1For I From 1 To 7 Step 2 S ←S +I End For Print S5. 某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽取55人,其中从高一年级学生中抽取20人,则从高三年级学生中抽取的人数为________.6. 在平面直角坐标系xOy 中,已知抛物线C 的顶点在坐标原点,焦点在x 轴上,若曲线C 经过点P(1,3),则其焦点到准线的距离为________.7. 已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -5≤0,2x -y +2≥0,y ≥0,则目标函数z =x -y 的最小值为________.8. 若一个正方体与底面边长为23,侧棱长为10的正四棱锥的体积相等,则该正方体的棱长为________.9. 在△ABC 中,设a ,b ,c 分别为角A ,B ,C 的对边,若a =5,A =π4,cosB =35,则边c =________.10. 设S n 是等比数列{a n }的前n 项和,a n >0,若S 6-2S 3=5,则S 9-S 6的最小值为________.11. 如图,在△ABC 中,AB =AC =3,cos ∠BAC =13,DC →=2BD →,则AD →·BC →的值为________.12. 在平面直角坐标系xOy 中,过点P(-4,0)的直线l 与圆C :(x -1)2+y 2=5相交于A 、B 两点.若点A 恰好是线段PB 的中点,则直线l 的方程为____________.13. 设f(x)是定义在R 上的奇函数,且f(x)=2x +m2x ,设g(x)=⎩⎪⎨⎪⎧f (x ),x>1,f (-x ),x ≤1,若函数y =g(x)-t 有且只有一个零点,则实数t 的取值范围是________.14. 设函数y =⎩⎪⎨⎪⎧-x 3+x 2,x<e ,alnx ,x ≥e 的图象上存在两点P 、Q ,使得△POQ 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)设函数f(x)=Asin (ωx +φ)⎝⎛⎭⎫A>0,ω>0,-π2<φ<π2,x ∈R 的部分图象如图所示.(1) 求函数y =f(x)的解析式;(2) 当x ∈⎣⎡⎦⎤-π2,π2时,求f(x)的取值范围.16.(本小题满分14分) 如图,已知直三棱柱ABCA 1B 1C 1的侧面ACC 1A 1是正方形,点O 是侧面ACC 1A 1的中心,∠ACB =π2,M 是棱BC 的中点.求证:(1) OM ∥平面ABB 1A 1; (2) 平面ABC 1⊥平面A 1BC.如图所示,A,B是两个垃圾中转站,B在A的正东方向16 km处,直线AB的南面为居民生活区.为了妥善处理生活垃圾,政府决定在AB的北面建一个垃圾发电厂P.垃圾发电厂P的选址拟满足以下两个要求(A,B,P可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点P到直线AB的距离要尽可能大).现估测得A,B两个中转站每天集中的生活垃圾量分别约为30 t和50 t,问垃圾发电厂该如何选址才能同时满足上述要求?如图,在平面直角坐标系xOy 中,设点M(x 0,y 0)是椭圆C :x 24+y 2=1上一点,从原点O 向圆M :(x -x 0)2+(y -y 0)2=r 2(r>0)作两条切线分别与椭圆C 交于点P ,Q ,直线OP ,OQ 的斜率分别记为k 1,k 2.(1) 若圆M 与x 轴相切于椭圆C 的右焦点,求圆M 的方程;(2) 若r =255.① 求证:k 1k 2=-14;② 求OP·OQ 的最大值.已知函数f(x)=axe x 的图象在x =0处的切线方程为y =x ,其中e 是自然对数的底数.(1) 求实数a 的值;(2) 若对任意的x ∈(0,2),都有f(x)<1k +2x -x 2成立,求实数k 的取值范围;(3) 若函数g(x)=lnf(x)-b(b ∈R )的两个零点为x 1,x 2,试判断g′⎝⎛⎭⎫x 1+x 22的正负,并说明理由.设数列{a n}共有m(m∈N,m≥3)项,记该数列前i项a1,a2,…,a i中的最大项为A i,该数列后m-i项a i+1,a i+2,…,a m中的最小项为B i,r i=A i-B i(i=1,2,3,…,m-1).(1) 若数列{a n}的通项公式为a n=2n,求数列{r i}的通项公式;(2) 若数列{a n}是单调数列,且满足a1=1,r i=-2,求数列{a n}的通项公式;(3) 试构造一个数列{a n},满足a n=b n+c n,其中{b n}是公差不为零的等差数列,{c n}是等比数列,使得对于任意给定的正整数m(m∈N,m≥3),数列{r i}都是单调递增的,并说明理由.2016届高三模拟考试试卷(一)数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 为圆O 的直径,直线CD 与圆O 相切于点D ,AC ⊥CD ,DE ⊥AB ,C 、E 为垂足,连结AD ,BD.若AC =4,DE =3,求BD 的长.B. (选修4-2:矩阵与变换)设矩阵M =⎣⎢⎡⎦⎥⎤a 02 1(a ∈R )的一个特征值为2.在平面直角坐标系xOy 中若曲线C 在矩阵M变换下得到的曲线的方程为x 2+y 2=1,求曲线C 的方程.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知点A 的极坐标为⎝⎛⎭⎫22,-π4,圆E 的极坐标方程为ρ=4cos θ+4sin θ,试判断点A 和圆E 的位置关系.D. (选修4-5:不等式选讲)已知正实数a ,b ,c ,d 满足a +b +c +d =1.求证:1+2a +1+2b +1+2c +1+2d ≤2 6.【必做题】 第22、23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在直三棱柱ABCA 1B 1C 1中,AB ⊥AC ,AB =2,AC =4,AA 1=2,设BD →=λDC →(λ∈R ). (1) 若λ=1,求直线DB 1与平面A 1C 1D 所成角的正弦值; (2) 若二面角B 1A 1C 1D 的大小为60°,求实数λ的值.23.设集合M ={1,2,3,…,n}(n ∈N ,n ≥3),记M 的含有三个元素的子集个数为S n ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为T n .(1) 分别求T 3S 3,T 4S 4,T 5S 5,T 6S 6的值;(2) 猜想T nS n关于n 的表达式,并证明之.2016届高三模拟考试试卷(一)(南京、盐城)数学参考答案及评分标准1. {-1}2.102 3. 310 4.17 5. 17 6. 927. -3 8. 2 9. 7 10. 20 11. -2 12. x ±3y +4=0 13. ⎣⎡⎦⎤-32,32 14. ⎝⎛⎦⎤0,1e +1 15. 解:(1) 由图象知,A =2,(2分)又T 4=5π6-π3=π2,ω>0,所以T =2π=2πω,得ω=1.(4分) 所以f(x)=2sin(x +φ),将点⎝⎛⎭⎫π3,2代入,得π3+φ=π2+2k π(k ∈Z ),即φ=π6+2k π(k ∈Z ).又-π2<φ<π2,所以φ=π6.(6分)所以f(x)=2sin ⎝⎛⎭⎫x +π6.(8分)(2) 当x ∈⎣⎡⎦⎤-π2,π2时,x +π6∈⎣⎡⎦⎤-π3,2π3,(10分)所以sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤-32,1,即f(x)∈[-3,2].(14分)16. 证明:(1) 在△A 1BC 中,因为O 是A 1C 的中点,M 是BC 的中点,所以OM ∥A 1B.(4分) 又OM平面ABB 1A 1,A 1B平面ABB 1A 1,所以OM ∥平面ABB 1A 1.(6分)(2) 因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥底面ABC ,所以CC 1⊥BC. 又∠ACB =π2,即BC ⊥AC ,而CC 1,AC平面ACC 1A 1,且CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.(8分) 而AC 1平面ACC 1A 1,所以BC ⊥AC 1.又ACC 1A 1是正方形,所以A 1C ⊥AC 1.而BC ,A 1C 平面A 1BC ,且BC ∩A 1C =C ,所以AC 1⊥平面A 1BC.(12分) 又AC 1平面ABC 1,所以平面ABC 1⊥平面A 1BC.(14分)17. 解:(解法1)由条件①,得PA PB =5030=53.(2分)设PA =5x ,PB =3x ,则cos ∠PAB =(5x )2+162-(3x 2)2×16×5x =x 10+85x ,(6分)所以点P 到直线AB 的距离h =PAsin ∠PAB =5x·1-⎝⎛⎭⎫x 10+85x 2=-14x 4+17x 2-64 =-14(x 2-34)2+225,(10分)所以当x 2=34,即x =34时,h 取得最大值15 km ,即选址应满足PA =534 km ,PB =334 km.(14分)(解法2) 以AB 所在直线为x 轴,线段AB 的中垂线为y 轴,建立平面直角坐标系.(2分)则A(-8,0),B(8,0).由条件①,得PA PB =5030=53.(4分) 设P(x ,y)(y >0),则3(x +8)2+y 2=5(x -8)2+y 2,化简,得(x -17)2+y 2=152(y >0),(10分)即点P 的轨迹是以点(17,0)为圆心,15为半径的位于x 轴上方的半圆.则当x =17时,点P 到直线AB 的距离最大,最大值为15 km.所以点P 的选址应满足在上述坐标系中其坐标为(17,15)即可.(14分)18. (1) 解: 因为椭圆C 右焦点的坐标为(3,0),所以圆心M 的坐标为⎝⎛⎭⎫3,±12,(2分)从而圆M 的方程为(x -3)2+⎝⎛⎭⎫y±122=14.(4分) (2) ① 证明:因为圆M 与直线OP :y =k 1x 相切,所以|k 1x 0-y 0|k 21+1=255, 即(4-5x 20)k 21+10x 0y 0k 1+4-5y 20=0,(6分) 同理,有(4-5x 20)k 22+10x 0y 0k 2+4-5y 20=0,所以k 1,k 2是方程(4-5x 20)k 2+10x 0y 0k +4-5y 20=0的两根,(8分) 从而k 1k 2=4-5y 204-5x 20=4-5⎝⎛⎭⎫1-14x 204-5x 20=-1+54x 204-5x 20=-14.(10分) ② 解:设点P 1(x 1,y 1),P 2(x 2,y 2),联立⎩⎪⎨⎪⎧y =k 1x ,x 24+y 2=1,解得x 21=41+4k 21,y 21=4k 211+4k 21,(12分)同理,x 22=41+4k 22,y 22=4k 221+4k 22, 所以OP 2·OQ 2=⎝⎛⎭⎫41+4k 21+4k 211+4k 21·⎝⎛⎭⎫41+4k 22+4k 221+4k 22=4(1+k 21)1+4k 21·4(1+k 22)1+4k 22=4+4k 211+4k 21·1+16k 211+4k 21(14分) ≤⎝⎛⎭⎫5+20k 2122(1+4k 21)2=254,当且仅当k 1=±12时取等号.所以OP·OQ 的最大值为52.(16分) 19. 解: (1) 由题意得f′(x)=a (1-x )e x ,因函数在x =0处的切线方程为y =x , 所以f′(0)=a 1=1,得a =1.(4分) (2) 由(1)知f(x)=x e x <1k +2x -x 2对任意x ∈(0,2)都成立, 所以k +2x -x 2>0,即k >x 2-2x 对任意x ∈(0,2)都成立,从而k ≥0.(6分)又不等式整理可得k <e x x +x 2-2x ,令g(x)=e x x+x 2-2x , 所以g′(x)=e x (x -1)x 2+2(x -1)=(x -1)⎝⎛⎭⎫e x x 2+2=0,得x =1,(8分) 当x ∈(1,2)时,g ′(x)>0,函数g(x)在(1,2)上单调递增,同理,函数g(x)在(0,1)上单调递减,所以k <g(x)min =g(1)=e -1.综上所述,实数k 的取值范围是[0,e -1).(10分)(3) 结论是g′⎝⎛⎭⎫x 1+x 22<0.(11分)证明:由题意知函数g(x)=lnx -x -b ,所以g′(x)=1x -1=1-x x, 易得函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以只需证明x 1+x 22>1即可.(12分) 因为x 1,x 2是函数g(x)的两个零点,所以⎩⎪⎨⎪⎧x 1+b =lnx 1,x 2+b =lnx 2,相减得x 2-x 1=ln x 2x 1. 不妨令x 2x 1=t >1,则x 2=tx 1,则tx 1-x 1=lnt ,所以x 1=1t -1lnt ,x 2=t t -1lnt , 即证t +1t -1lnt>2,即证φ(t)=lnt -2·t -1t +1>0.(14分) 因为φ′(t)=1t -4(t +1)2=(t -1)2t (t +1)2>0,所以φ(t)在(1,+∞)上单调递增,所以φ(t)>φ(1)=0.综上所述,函数g(x)总满足g′⎝⎛⎭⎫x 1+x 22<0成立.(16分)20. 解:(1) 因为a n =2n 单调递增,所以A i =2i ,B i =2i +1,所以r i =2i -2i +1=-2i ,1≤i ≤m -1.(4分)(2) 若{a n }单调递减,则A i =a 1=1,B i =a m ,所以r i =a 1-a m >0,不满足r i =-2,所以{a n }单调递增.(6分)则A i =a i ,B i =a i +1,所以r i =a i -a i +1=-2,即a i +1-a i =2,1≤i ≤m -1,所以{a n }是公差为2的等差数列,a n =1+2(n -1)=2n -1,1≤n ≤m -1.(10分)(3) 构造a n =n -⎝⎛⎭⎫12n ,其中b n =n ,c n =-⎝⎛⎭⎫12n.(12分) 下证数列{a n }满足题意.证明:因为a n =n -⎝⎛⎭⎫12n ,所以数列{a n }单调递增,所以A i =a i =i -⎝⎛⎭⎫12i ,B i =a i +1=i +1-⎝⎛⎭⎫12i +1,(14分) 所以r i =a i -a i +1=-1-⎝⎛⎭⎫12i +1,1≤i ≤m -1.因为r i +1-r i =⎣⎡⎦⎤-1-⎝⎛⎭⎫12i +2-⎣⎡⎦⎤-1-⎝⎛⎭⎫12i +1=⎝⎛⎭⎫12i +2>0, 所以数列{r i }单调递增,满足题意.(16分)(说明:等差数列{b n }的首项b 1任意,公差d 为正数,同时等比数列{c n }的首项c 1为负,公比q ∈(0,1),这样构造的数列{a n }都满足题意.)2016届高三模拟考试试卷(一)(南京、盐城)数学附加题参考答案及评分标准21. A. 解:因为CD 与圆O 相切于D ,所以∠CDA =∠DBA.(2分)因为AB 为圆O 的直径,所以∠ADB =90°.又DE ⊥AB ,所以△EDA ∽△DBA ,所以∠EDA =∠DBA ,所以∠EDA =∠CDA.(4分) 又∠ACD =∠AED =90°,AD =AD ,所以△ACD ≌△AED.所以AE =AC =4,所以AD =AE 2+DE 2=5.(6分)又DE BD =AE AD ,所以BD =DE AE ·AD =154.(10分) B. 解:由题意,矩阵M 的特征多项式f(λ)=(λ-a)(λ-1),因矩阵M 有一个特征值为2,f(2)=0,所以a =2.(4分)所以M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2021⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧x′=2x ,y ′=2x +y , 代入方程x 2+y 2=1,得(2x)2+(2x +y)2=1,即曲线C 的方程为8x 2+4xy +y 2=1.(10分)C. 解:点A 的直角坐标为(2,-2),(2分)圆E 的直角坐标方程为(x -2)2+(y -2)2=8,(6分)则点A 到圆心E 的距离d =(2-2)2+(-2-2)2=4>r =22,所以点A 在圆E 外.(10分)D. 证明:因为(1+2a +1+2b +1+2c +1+2d)2≤4(1+2a +1+2b +1+2c +1+2d),(6分)又a +b +c +d =1,所以(1+2a +1+2b +1+2c +1+2d)2≤24,即1+2a +1+2b +1+2c +1+2d ≤2 6.(10分)22. 解:分别以AB ,AC ,AA 1所在直线为x ,y ,z 轴建立空间直角坐标系.则A(0,0,0),B(2,0,0),C(0,4,0),A 1(0,0,2),B 1(2,0,2),C 1(0,4,2).(2分)(1) 当λ=1时,D 为BC 的中点,所以D(1,2,0),DB 1→=(1,-2,2),A 1C 1→=(0,4,0),A 1D →=(1,2,-2).设平面A 1C 1D 的法向量为n 1=(x ,y ,z), 则⎩⎪⎨⎪⎧4y =0,x -2z =0,所以取n 1=(2,0,1). 又cos 〈DB 1→,n 1〉=DB 1→·n 1|DB 1→||n 1|=435=4155, 所以直线DB 1与平面A 1C 1D 所成角的正弦值为4155.(6分) (2) 因为BD →=λDC →,所以D ⎝ ⎛⎭⎪⎫2λ+1,4λλ+1,0,所以A 1C 1→=(0,4,0),A 1D →=⎝ ⎛⎭⎪⎫2λ+1,4λλ+1,-2. 设平面A 1C 1D 的法向量n 1=(x ,y ,z),则⎩⎪⎨⎪⎧4y =0,2λ+1x -2z =0, 所以取n 1=(λ+1,0,1).又平面A 1B 1C 1的一个法向量为n 2=(0,0,1),由题意得|cos 〈n 1,n 2〉|=12, 所以1(λ+1)2+1=12,解得λ=3-1或λ=-3-1(不合题意,舍去), 所以实数λ的值为3-1.(10分) 23. 解:(1) T 3S 3=2,T 4S 4=52,T 5S 5=3,T 6S 6=72.(4分) (2) 猜想T n S n =n +12.(5分) 下用数学归纳法证明之.证明:① 当n =3时,由(1)知猜想成立;② 假设当n =k(k ≥3)时,猜想成立,即T k S k =k +12,而S k =C 3k ,所以得T k =k +12C 3k.(6分) 则当n =k +1时,易知S k +1=C 3k +1,而当集合M 从{1,2,3,…,k}变为{1,2,3,…,k ,k +1}时,T k +1在T k 的基础上增加了1个2,2个3,3个4,…,和(k -1)个k ,所以T k +1=T k +2×1+3×2+4×3+…+k(k -1)=k +12C 3k+2[C 22+C 23+C 24+…+C 2k ] =k +12C 3k +2[C 33+C 23+C 24+…+C 2k ]=k -22C 3k +1+2C 3k +1=k +22C 3k +1=(k +1)+12S k +1, 即T k +1S k +1=(k +1)+12. 所以当n =k +1时,猜想也成立.综上所述,猜想成立.(10分)(说明:未用数学归纳法证明,直接求出T n 来证明的,同样给分.)古今名言 敏而好学,不耻下问——孔子业精于勤,荒于嬉;行成于思,毁于随——韩愈兴于《诗》,立于礼,成于乐——孔子己所不欲,勿施于人——孔子读书破万卷,下笔如有神——杜甫读书有三到,谓心到,眼到,口到——朱熹立身以立学为先,立学以读书为本——欧阳修读万卷书,行万里路——刘彝黑发不知勤学早,白首方悔读书迟——颜真卿书卷多情似故人,晨昏忧乐每相亲——于谦书犹药也,善读之可以医愚——刘向莫等闲,白了少年头,空悲切——岳飞发奋识遍天下字,立志读尽人间书——苏轼鸟欲高飞先振翅,人求上进先读书——李苦禅立志宜思真品格,读书须尽苦功夫——阮元非淡泊无以明志,非宁静无以致远——诸葛亮熟读唐诗三百首,不会作诗也会吟——孙洙《唐诗三百首序》书到用时方恨少,事非经过不知难——陆游问渠那得清如许,为有源头活水来——朱熹旧书不厌百回读,熟读精思子自知——苏轼书痴者文必工,艺痴者技必良——蒲松龄声明访问者可将本资料提供的内容用于个人学习、研究或欣赏,以及其他非商业性或非盈利性用途,但同时应遵守著作权法及其他相关法律的规定,不得侵犯本文档及相关权利人的合法权利。
南京市、盐城市2016届高三第一次模拟考试 数学-推荐下载
南京市、盐城市 2016 届高三年级第一次模拟考试
锥体的体积公式:V 1 Sh ,其中 S 为底面积, h 为高. 3
一、填空题(本大题共 14 小题,每小题 5 分,计 70 分. 不需写出解答过程,请把答案写在 答题纸的指定位置上)
1.已知集合 A x x2 1 0 , B 1, 2,5,则 A B = ▲ .
(2)若 r 2 5 . 5
①求证:
k1k2
②求 OP OQ 的最大值.
1 4
;
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
南京市、盐城市高三第一次模拟考试数学试题(原卷版).docx
高中数学学习材料马鸣风萧萧*整理制作一、填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.)1.已知集合{3,1,1,2}A =--,集合[0,)B =+∞,则AB = .2. 若复数(1)(3)z i ai =+-(i 为虚数单位)为纯虚数,则实数a = .3. 现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为 .4. 根据如图所示的伪代码,最后输出的S 的值为 .110Print S For I From To S S I End For S←←+5. 若一组样本数据2,3,7,8,a 的平均数为5,则该组数据的方差2s = .6. 在平面直角坐标系xOy 中,若中心在坐标原点上的双曲线的一条准线方程为12x =,且它的一个顶点与抛物线24y x =-的焦点重合,则该双曲线的渐进线方程为 .7. 在平面直角坐标系xOy 中,若点(,1)P m 到直线4310x y --=的距离为4,且点P 在不等式23x y +≥表示的平面区域内,则m = .8. 在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=,侧棱PA ⊥底面ABCD ,2PA =,E 为AB 的中点,则四面体PBCE 的体积为.9. 设函数()cos(2)f x x ϕ=+,则“()f x 为奇函数”是“2πϕ=”的 条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10. 在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点关于点(1,2)P 成中心对称,则直线AB 的方程为 . 11. 在ABC ∆中,2BC =,23A π=,则AB AC ⋅的最小值为 . 12. 若函数()f x 是定义在R 上的偶函数,且在区间[0.)+∞上是单调增函数.如果实数t 满足1(l n )(l n )2(1)f t f f t+<时,那么t 的取值范围是 .13. 若关于x 的不等式2(20)lg 0aax x-≤对任意的正实数x 恒成立,则实数a 的取值范围是 .14. 已知等比数列{}n a 的首项为43,公比为13-,其前n 项和为n S ,若1n n A S B S ≤-≤对*n N ∈恒成立,则B A -的最小值为 .二、解答题 (本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)15. 在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,已知2c =,3C π=.(1)若ABC ∆的面积等于3,求a ,b ;(2)若sin sin()2sin2C B A A +-=,求ABC ∆的面积.16. 如图,在正三棱锥111ABC A B C -中,E ,F 分别为1BB ,AC 的中点. (1)求证://BF 平面1A EC ; (2)求证:平面1A EC ⊥平面11ACC A .17. 如图,现要在边长为100m 的正方形ABCD 内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为xm (x 不小于9)的扇形花坛,以正方形的中心为圆心建一个半径为215x m 的圆形草地.为了保证道路畅通,岛口宽不小于60m ,绕岛行驶的路宽均不小于10m . (1)求x 的取值范围;(运算中2取1.4)(2)若中间草地的造价为a 元2/m ,四个花坛的造价为433ax 元2/m ,其余区域的造价为1211a元2/m ,当x 取何值时,可使“环岛”的整体造价最低?18. 在平面直角坐标系xOy 中,已知过点3(1,)2的椭圆C :22221(0)x y a b a b +=>>的右焦点为(1,0)F ,过焦点F 且与x 轴不重合的直线与椭圆C 交于A ,B 两点,点B 关于坐标原点的对称点为P ,直线PA ,PB 分别交椭圆C 的右准线l 于M ,N 两点. (1)求椭圆C 的标准方程;(2)若点B 的坐标为833(,)55,试求直线PA 的方程;(3)记M ,N 两点的纵坐标分别为M y ,N y ,试问M N y y ⋅是否为定值?若是,请求出该定值;若不是,请说明理由.19. 已知函数()x f x e =,2()1(,)g x ax bx a b R =++∈.(1)若0a ≠,则a ,b 满足什么条件时,曲线()y f x =与()y g x =在0x =处总有相同的切线? (2)当1a =时,求函数()()()g x h x f x =的单调减区间; (3)当0a =时,若()()f x g x ≥对任意的x R ∈恒成立,求b 的取值的集合.20. 设等差数列{}n a 的前n 项和为n S ,已知12a =,622S =. (1)求n S ;(2)若从{}n a 中抽取一个公比为q 的等比数列{}n k a ,其中11k =,且12n k k k <<<,*n k N ∈.①当q 取最小值时,求{}n k 的通项公式;②若关于*()n n N ∈的不等式16n n S k +>有解,试求q 的值.数学附加题21. (选做题)(在A 、B 、C 、D 四小题中只能选做2题)A .如图,AB ,CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若98PC =,12OP =,求PD 的长.B .已知曲线C :1xy =,若矩阵22222222M ⎡⎤-⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换将曲线C 变为曲线C ',求曲线C '的方程. C .在极坐标系中,圆C 的方程为2cos a ρθ=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为3242x t y t =+⎧⎨=+⎩(t 为参数),若直线l 与圆C 相切,求实数a 的值.D .已知1x ,2x ,3x 为正实数,若1231x x x ++=,求证:2223211231x x x x x x ++≥. (必做题)22. 已知点(1,2)A 在抛物线Γ:22y px =上.(1)若ABC ∆的三个顶点都在抛物线Γ上,记三边AB ,BC ,CA 所在直线的斜率分别为1k ,2k ,3k ,求123111k k k -+的值;(2)若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为1k ,2k ,3k ,4k ,求12341111k k k k -+-的值. 23. 设m 是给定的正整数,有序数组(1232,,,m a a a a )中2i a =或2-(12)i m ≤≤.(1)求满足“对任意的1k m ≤≤,*k N ∈,都有2121k ka a -=-”的有序数组(1232,,,m a a a a )的个数A ;(2)若对任意的1k l m ≤≤≤,k ,*l N ∈,都有221||4li i k a =-≤∑成立,求满足“存在1k m ≤≤,使得2121k ka a -≠-”的有序数组(1232,,,m a a a a )的个数B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年江苏南京市、盐城市高三一模数学试卷
一、填空题(共14小题;共70分)
1. 已知集合,,那么 ______.
2. 已知复数,那么 ______.
3. 已知书架上有本数学书,本物理书,若从中随机取出本,则取出的本书都是数学书的概
率为______.
4. 运行如图所示的伪代码,其输出的结果的值为______.
S 1
For I From 1 To 7 Step 2
S S+I
Eed For
Print S
5. 某校高一年级有学生人,高二年级有学生人,现采用分层抽样的方法从全校学生抽取
人,其中从高一年级学生中抽取人,则从高三年级学生中抽取的人数为______.
6. 在平面直角坐标系中,已知抛物线的顶点为坐标原点,焦点在轴上.若曲线经过点
,则其焦点到准线的距离为______.
7. 设,满足约束条件则目标函数的最大值为______.
8. 若某个正方体与底面边长为,侧棱长为的正四棱锥的体积相等,则该正方体的棱长为
______.
9. 在中,内角,,所对的边分别为,,,若,,,则的值
为______.
10. 已知等比数列的前项和为,且.若,则的最小值为
______.
11. 如图,在中,若,,,则的值为______.
12. 在平面直角坐标系中,已知过点的直线与圆相交于,
两点.若恰好是线段的中点,则直线的方程为______.
13. 已知是定义在上的奇函数,且,函数,
若函数有且只有一个零点,则实数的取值范围是______.
14. 若函数的图象上存在两点,,使得是以为直角顶点的直角
三角形(其中为坐标原点),且斜边的中点恰好在轴上,则实数的取值范围是______.
二、解答题(共6小题;共78分)
15. 设函数的部分图象如图所示.
(1)求函数的解析式;
(2)当时,求的取值范围.
16. 如图,已知直三棱柱的侧面是正方形,点是侧面的中心,
,是棱的中点.
(1)求证: 平面;
(2)求证:平面平面.
17. 如图,,是两个垃圾中转站,在的正东方向处,直线的南面为居民生活
区.为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂.垃圾发电厂的选址拟满足以下两个要求(,,可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,且比例系数相同;②垃圾发电厂应尽量远离居民生活区(这里参考的指标是点到直线的距离要尽可能大).现估测得,两个中转站每天集中的生活垃圾量分别约为和,问:垃圾发电厂该如何选址才能同时满足上述要求?
18. 如图,在平面直角坐标系中,设是椭圆上一点,从原点向圆
作两条切线分别与椭圆交于点,,直线,的斜率分别记为,.
(1)若圆与轴相切于椭圆的右焦点,求圆的方程.
(2)若.
①求证:;
②求的最大值.
19. 已知函数的图象在处的切线方程为.
(1)求实数的值;
(2)若对任意的,都有成立,求实数的取值范围;
(3)若函数的两个零点为,,试判断的正负,并给出证明.
20. 设数列共有项,记该数列前项,,,中的最大项为,该数
列后项,,,中的最小项为,.
(1)若数列的通项公式为,求数列的通项公式;
(2)若数列是单调数列,且满足,,求数列的通项公式;
(3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是逐项递增的,并给出证明.
答案
第一部分
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
第二部分
15. (1)由图象知,,
又,,所以,得.
所以,将点代入,得,
即,又,所以.
所以.
(2)当时,,
所以,即.
16. (1)在中,因为是的中点,是的中点,
所以.
又平面,平面,所以 平面.(2)因为是直三棱柱,所以底面,所以,又,即,而面,且,
所以面.
而面,所以,
又是正方形,所以,而面,且,所以面.
又面,所以面面.
17. 方法一:由条件①得,.
设,,
则,
所以点到直线的距离
所以当,即时,取得最大值.
即垃圾发电厂的选址应满足,.
方法二:如图,以所在直线为轴、线段的中垂线为轴,建立平面直角坐标系,,.
由条件①得,.
设,则,
化简得,,
即点的轨迹是以点为圆心,为半径的圆且位于轴上方的半圆,
则当时,点到直线的距离最大,且最大值为.
故点的选址应满足在上述坐标系中,其坐标为即可.
18. (1)因为椭圆的右焦点坐标为,
所以圆心的坐标为,
所以圆的方程为.
(2)①因为圆与直线相切,
,
即.
同理,有,
所以,时方程的两个根,
所以.
②设点的坐标为,点的坐标为,
联立
解得,.
同理,,
所以
当且仅当时取等号,
所以的最大值为.
19. (1)由题意得,,
因为函数在处的切线方程为,
所以,得.
(2)由(1)知对任意的恒成立,所以,即对任意的恒成立,所以.
又不等式整理可得,
令,
所以.
令,得.
当时,,函数在上单调递增;
当时,,函数在上单调递减.
所以.
综上所述,实数的取值范围是.
(3)结论是 .
证明:
由题意知函数,
所以,
易得函数在上单调递增,在上单调递减,
所以只需证明即可.
因为,是函数的两个零点,
所以两式相减得.
不妨令,
则,
则,
所以,,
即证.
即证明.
因为.
所以在上单调递增,
所以.
综上所述,函数总满足成立.
20. (1)因为是逐项递增的,
所以,,
所以,.
(2)若是逐项递减的,则,,
所以,不满足,
所以是逐项递增的.
则,,
所以,
即,,
所以是公差为的等差数列,,.(3)构造,其中,.
下面证明数列满足题意:
因为,
所以数列是逐项递增的,
所以,,
所以,.
因为,
所以数列是逐项递增的,满足题意.。