利用霍尔传感器设计直流电流检测电路.
霍尔电流传感器工作原理
霍尔电流传感器工作原理一、引言霍尔电流传感器是一种常用的电流测量设备,它利用霍尔效应来测量电流。
本文将详细介绍霍尔电流传感器的工作原理及其相关知识。
二、霍尔效应简介霍尔效应是指当电流通过导体时,在垂直于电流方向的磁场作用下,导体两侧会产生电势差。
这种现象是由美国物理学家爱德华·霍尔在1879年首次发现并研究的。
霍尔效应的原理是基于洛伦兹力的作用,即电流通过导体时,受到磁场力的作用。
三、霍尔电流传感器的结构霍尔电流传感器通常由霍尔元件、电源、信号处理电路和输出接口等组成。
1. 霍尔元件:霍尔元件是霍尔电流传感器的核心部件,它是一种半导体材料,常用的有n型和p型两种。
霍尔元件的特点是在磁场的作用下,产生垂直于电流和磁场方向的电势差。
2. 电源:电源为霍尔元件提供工作所需的电压,通常使用直流电源。
3. 信号处理电路:信号处理电路用于对霍尔元件输出的电势差进行放大、滤波和线性化处理,以便得到准确的电流测量结果。
4. 输出接口:输出接口将处理后的电流信号输出给用户,通常使用模拟电压输出或数字接口输出。
四、霍尔电流传感器的工作原理霍尔电流传感器的工作原理基于霍尔效应,具体过程如下:1. 施加电流:将待测电流通过霍尔电流传感器的导线。
2. 产生磁场:在电流通过的导线周围放置一个磁场源,产生一个垂直于电流方向的磁场。
3. 霍尔元件感应:磁场作用下,霍尔元件两侧产生电势差,即霍尔电压。
霍尔电压的大小与电流的强度成正比。
4. 信号处理:将霍尔电压经过信号处理电路进行放大、滤波和线性化处理,得到准确的电流测量结果。
5. 输出结果:将处理后的电流信号通过输出接口输出给用户,用户可以根据输出结果进行相应的判断和操作。
五、霍尔电流传感器的优势霍尔电流传感器相比传统的电流测量方法具有以下优势:1. 非接触式测量:霍尔电流传感器的测量不需要直接接触待测电流,避免了电流测量中的安全隐患。
2. 高精度:霍尔电流传感器的输出结果经过信号处理电路的处理,具有较高的测量精度。
基于霍尔传感器的电流检测模块设计
目录一、绪论------------------------------------------------------ 2概述----------------------------------------------------- 2霍尔传感器的发展趋势------------------------------------- 2二、整体设计方案-------------------------------------------- 3三、硬件电路的设计----------------------------------------- 4传感器模块----------------------------------------------- 4 A/D转换模块---------------------------------------------- 5数码管显示模块------------------------------------------- 6电源电路模块--------------------------------------------- 7复位模块------------------------------------------------- 8时钟模块------------------------------------------------- 8 四、系统的软件设计----------------------------------------- 9电流检测装置软件程序流程图------------------------------- 9系统程序设计--------------------------------------------- 94.2.1 定时器计数程序------------------------------------------ 94.2.2 外部中断程序-------------------------------------------- 104.2.3 初始化MCU程序------------------------------------------ 114.2.4 ADC启动、读取、转换程序-------------------------------- 114.2.5 霍尔传感器ACS712的计算函数程序------------------------- 134.2.6 数码管显示程序------------------------------------------ 134.2.7 主程序-------------------------------------------------- 14五、结论与展望---------------------------------------------- 16六、心得体会------------------------------------------------- 17七、附录------------------------------------------------------ 18八、参考文献------------------------------------------------- 21基于霍尔传感器的电流检测模块设计一、绪论概述近几年来,单片机已逐步深入应用到工农业生产各部门以及人们生活的各个方面。
霍尔传感器的电流监测要讨论放大电路问题标定问题和
霍尔传感器的电流监测要讨论放大电路问题标定问题和电源问题一、引言霍尔传感器是一种常见的电流传感器,它通过检测磁场的变化来测量电流。
在实际应用中,为了提高测量精度和稳定性,需要对电流进行放大和标定。
同时,电源问题也需要考虑。
二、放大电路问题1. 放大电路原理放大电路是指将输入信号放大到一定程度后输出的电路。
在霍尔传感器中,由于输出信号较小(通常为几十毫伏),需要通过放大电路将其放大到适合采样的范围内。
2. 放大电路设计在设计放大电路时,需要考虑以下几个因素:(1)增益:增益是指输出信号与输入信号之比。
在实际应用中,增益需要根据实际情况进行调整。
(2)带宽:带宽是指能够通过放大器的频率范围。
在选择放大器时,需要考虑带宽是否足够。
(3)噪声:噪声是指杂乱信号对输出信号造成的影响。
在选择放大器时,需要考虑噪声大小是否符合要求。
3. 实例分析以OPA188为例进行分析。
OPA188是一款低功耗、高精度的运算放大器,适用于电流传感器等低功耗应用。
(1)增益设置在霍尔传感器中,通常采用不同的增益进行放大。
以OPA188为例,可以通过调整反馈电阻的大小来实现不同的增益。
例如,当反馈电阻为10kΩ时,增益为100;当反馈电阻为1kΩ时,增益为1000。
(2)带宽考虑在选择OPA188时,需要考虑其带宽是否足够。
根据数据手册可知,OPA188的带宽为10MHz,在大多数应用场景下都能满足要求。
(3)噪声问题在选择放大器时,需要考虑噪声大小是否符合要求。
根据数据手册可知,OPA188的噪声密度为4.5nV/√Hz,在大多数应用场景下都能满足要求。
三、标定问题1. 标定原理标定是指将实际测量值与理论值进行比较,并进行修正的过程。
在霍尔传感器中,由于存在误差和漂移等问题,需要进行标定以提高测量精度和稳定性。
2. 标定方法(1)零点校准:零点校准是指将输出信号在无电流情况下的值设置为0。
在实际应用中,可以通过调整放大电路的偏置电压来实现。
霍尔电流电压传感器、变送器的基本原理与使用方法
霍尔电流电压传感器、变送器的基本原理与使用方法一、霍尔电流电压传感器、变送器的基本原理与使用方法1( 霍尔器件霍尔器件是一种采用半导体材料制成的磁电转换器件。
如果在输入端通入控制电流I,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V。
CH如图1,1所示。
IBsin霍尔电势V的大小与控制电流I和磁通密度B的乘积成正比,即:V,KHCHHCΘ霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。
因此,使电流的非接触测量成为可能。
通过测量霍尔电势的大小间接测量载流导体电流的大小。
因此,电流传感器经过了电,磁,电的绝缘隔离转换。
2( 霍尔直流检测原理如图1,2所示。
由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔器件输出的电压讯号U可以间接反映出被测电流I的大小,即:I?B?U 01110我们把U定标为当被测电流I为额定值时,U等于50mV或100mV。
这就制成010霍尔直接检测(无放大)电流传感器。
3( 霍尔磁补偿原理原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。
所以称为霍尔磁补偿电流传感器。
这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。
霍尔磁补偿原理如图1,3所示。
从图1,3知道:Φ,Φ 12IN,IN 1122I,N/N?I 2I21当补偿电流I流过测量电阻R时,在R两端转换成电压。
做为传感器测量电2MM压U即:U,IR 02M0按照霍尔磁补偿原理制成了额定输入从0.01A,500A系列规格的电流传感器。
由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。
4( 磁补偿式电压传感器为了测量mA级的小电流,根据Φ,IN,增加N的匝数,同样可以获得高磁1111通Φ。
霍尔传感器 电流 电路
霍尔传感器电流电路霍尔传感器是一种基于霍尔效应原理工作的传感器,主要用于检测电流。
在电路中,霍尔传感器能够通过测量磁场的变化来间接地测量电流的大小,具有灵敏度高、精度高、响应速度快等优点。
电流是电荷在单位时间内通过导线的数量,是电路中非常重要的物理量。
在电路中,如果需要测量电流,传统的方法是使用电流表或电阻法来测量。
然而,这些方法在一些场景下存在一些局限性,例如需要断开电路进行接线、测量范围有限、测量精度不高等。
而霍尔传感器则可以通过非接触的方式来测量电流,不需要断开电路进行接线,避免了测量中断的情况,提高了测量的便利性和安全性。
同时,霍尔传感器可以在较大的电流范围内进行测量,且精度较高,能够满足工业生产和科研领域对电流测量的要求。
霍尔传感器的工作原理是利用霍尔效应,即当导体中有电流通过时,垂直于电流方向的方向上会产生磁场。
而霍尔传感器中的霍尔元件则可以感受到这个磁场的变化。
当电流通过导线时,霍尔元件中会产生电压信号,该电压信号的大小与电流的大小成正比。
通过测量这个电压信号,就可以间接地得到电流的大小。
为了确保测量的准确性和稳定性,霍尔传感器通常需要进行校准。
校准的过程主要包括两个方面:零点校准和增益校准。
零点校准是指在没有电流通过时,测量得到的电压信号应该为零。
而增益校准则是指在已知电流通过时,测量得到的电压信号与电流值之间应该存在一个固定的比例关系。
通过这两个校准步骤,可以提高测量的准确性和可靠性。
在实际应用中,霍尔传感器广泛用于电力系统、电动车辆、电子设备等领域。
例如在电力系统中,电流的测量对于电网的运行和管理非常重要。
通过安装霍尔传感器,可以实时地监测电流的变化,及时发现异常情况,保障电网的安全稳定运行。
霍尔传感器还可以与其他传感器结合使用,实现更多功能。
例如与温度传感器结合,可以测量电流和温度的变化,用于电力系统的温升监测;与压力传感器结合,可以测量电流和压力的变化,用于电动车辆的制动系统等。
霍尔型传感器信号调理电路的设计
霍尔型传感器信号调理电路的设计【摘要】所谓信号调理就是通过电子元器件的有机组合,对传感器输出的信号进行调节、变换和整理的过程。
信号调理电路的具体设计需要综合考虑数据采集的目的、现场环境及控制系统的算法设计等各种因素。
本文论述了霍尔型电压、电流传感器信号的调理电路的具体实现方法,并应用试验方法验证了电路的可靠性等有关特征参数。
【关键词】传感器;信号调理;放大器;电路设计;霍尔当代社会中在工业控制等方面,经常要将电流、电压、温度、湿度等模拟量转换成数字量,然后在微处理器内作进一步运算和处理,完成相应的数据存储、数据传输和数据输出,达到分析和控制的目的。
模拟量的采集一般使用传感器来将它们转换为电气量来进行处理。
然而传感器送出的信号往往不能满足处理器输入信号的要求,这就需要我们设计相应的信号调理电路来把这种不合要求的信号变换为符合处理器输入信号要求的信号。
此电路设计的优化程度如何,直接关系到微处理器采集到的信号的准确程度。
霍尔型电压、电流传感器具有结构简单、体积小、坚固、频率响应宽、动态范围大、无触点、使用寿命长、可靠性高、易微型化和集成化等优点,在测量技术、自动化技术和信息处理等新技术领域得到广泛的应用。
本文就其输出信号特点设计了相应的信号调理电路,并且通过实验验证了所设计电路的可行性及可靠性。
1 霍尔型传感器霍尔传感器是一种磁传感器。
用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。
它采用双电源供电,可采集电压、电流等电气信号,输出信号可以是电压信号,也可以是电流信号。
本文以LV28-P型霍尔电压传感器为例说明霍尔型传感器输出信号调理电路的设计过程。
传感器LV 28-P的原边与副边之间是绝缘的,主要用于测量直流、交流电压和脉冲电压。
其各参数指标如下:1)电参数IP N:原边额定有效值电流10mA IS N:副边额定有效值电流25mAKN:转换率2500:1000 VC:电源电压(±5%)±15V2)精度-动态参数XG:总精度@IP N,TA = 25℃±0.6 %IO T :IO 的温漂:0℃~+25℃± 0.2mA+25℃~70℃± 0.3mATr:响应时间@90% of VPmax 40μs。
浅谈霍尔电流传感器ACS785ACS712系列电流检测方式
浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式电流检测方式一、检测电阻+运放优势:成本低、精度较高、体积小劣势:温漂较大,精密电阻的选择较难,无隔离效果。
分析:这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。
检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。
运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。
二、电流互感器CT/电压互感器PT在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。
而CT 和PT 就是特殊的变压器。
基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。
PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。
CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。
它的工作原理和变压器相似。
也称作TA 或LH(旧符号)工作特点和要求:1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。
2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。
3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。
4、变换的准确性。
PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。
电磁式电压互感器的工作原理和变器相同。
也称作TV 或YH(旧符号)。
工作特点和要求:1、一次绕组与高压电路并联。
2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。
3、二次绕组有一点直接接地。
霍尔传感器电机转速测量系统设计
霍尔传感器电机转速测量系统设计09电子1班刘荣 090406130 摘要:本文介绍了霍尔传感器测速的原理,设计了基于单片机AT89C51的直流电机转速测量系统。
完成了电机转速测量系统的硬件电路设计、霍尔传感器测量电路的设计、显示电路的设计。
测量转速的霍尔传感器和机轴同轴连接,机轴每转一周,产生一定量的脉冲个数,由霍尔器件电路部分输出幅度为12V的脉冲。
经光电隔离器后成为输出幅度为5V转数计数器的计数脉冲。
控制定时器计数时间,即可实现对电机转速的测量。
在显示电路设计中,通过1602实现在LCD上直观地显示电机的转速值。
并对电机转速测量系统的硬件电路、显示电路进行了调试。
与软件配合,采用模块化方法进行了软件设计,编制了电机转速的测量设计了测量模块、转速模块、报警模块、显示模块等的C51程序,并通过PROTEUSE软件进行了仿真,实现了显示、报警功能。
仿真实验表明所设计的硬件电路及软件程序是正确的,满足设计要求。
关键词:电机转速测量;霍尔传感器;单片机;89C51;LCD液晶显示Abstract:The principles of motor speed measurements with hall sensor was described in this article and DC motor speed measurement system which is based on AT89C51 was designed, and the corresponding hardware circuit designs was also completed accordingly. The hall sensor is connected with crankshaft by coaxial junction. Every revolution of the crankshaft will generate a certain amount of pulses whose amplitude is 12v. The opto-coupler turns these certain amount of pulses into 5-amplitude count impulse. The motor speed can be measured by controlling the time. In the design of display circuit, the number of motor speed is displayed in LCD directly through 1602. The motor speed measurement system and the hardware circuits, display circuit function are debugged to cooperate with the software to display and alarm users. Combination of hardware circuit design, softwares were designed by a modular approach using C51 program, such as the motor speed measurement module, alarm module, display module etc., All these programs were simulated through PROTEUSE.The simulation results have proved that the hardware circuits design and software program is correct, and the system can meet the designing requirement completely.Key WordS: Motor Speed Measurement; Hall Sensor; Microcomputer; 89C51;LCD正文根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。
霍尔传感器测电流,电压,功率
功率放大器简介利用三极的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。
因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。
经过不断的电流及电压放大,就完成了功率放大。
功率放大器原理////////////////////////////////////////////////////电参量的测量方法1电压、电流信号的测量电流的测量可采用磁平衡式霍尔电流传感器(亦称为零磁通式霍尔传感器)。
如图3所示。
当被测电流I IN流过原边回路时,在导线周围产生磁场H IN这个磁场被聚磁环聚集,并感应给霍尔器件,使其有一个信号U H输出;这一信号经放大器A 放大,输人到功率放大器中Q1,Q2中,这时相应的功率管导通,从而获得一个补偿电流I O;由于此电流通过多匝绕组所产生的磁场H O与原边回路电流所产生的磁场H IN相反;因而补偿了原来的磁场,使霍尔器件的输出电压U H逐渐减小,最后当I O与匝数相乘N2I O所产生的磁场与原边N1I IN所产生的磁场相等时,I O不再增加,这时霍尔器件就达到零磁通检测作用。
这一平衡所建立的时间在1μs之内,这是一个动态平衡过程,即原边回路电流I IN的任何变化均会破坏这一平衡的磁场,一旦磁场失去平衡,就有信号输出,经过放大后,立即有相应的电流流过副边线圈进行补偿。
因此从宏观上看副边补偿电流的安匝数在任何时间都与原边电流的安匝数保持相等,即N1I IN=N2I O,所以I IN=N2I O/N1 (I IN为被测电流,即磁芯中初级绕组中的电流,N1为初级绕组的匝数;I O为补偿绕组中的电流;N2为补偿绕组的匝数)。
直流无刷电机电流检测电路设计
图 1:检流运放放大电路
图 2:电机检流保护电路功能框图
该系统中,电机运行电压和控制信号电压分属 于不同的性质和大小级别,因此,电流检测电 路中的采样和保护电路还须整流等功能。普通 二极管可以实现各类整流,但由于其非线性的 特性,会使小信号发生失真,甚至使严重的畸 变。考虑利用集成运放加入深度负反馈来设计 一种可靠的高性能检测电路。该电路通过二极 管引入深度负反馈,保证在小信号时,uo 与 ui 保持良好的比例关系,相较于普通的整流电路, 大大地提高了电流精度。如图 1 所示。
目前检测电路电流的方法主要有检流电 阻、晶体管、电流互感器、罗氏线圈、霍尔效 应器件、比率式等方法。检流电阻配合 AD 采 样方式进行电流检测,可实现成本低,电路简 单,精度高等制作要求。本文采用低阻值电阻 进行电流采样,经过 LM358 运放构成的电路 进行整流及运算后,送入功率管,通过 ADC 采样,DSP 做出相应的控制处理信号。 2 电流检测电路设计
采用 LM358 高速双运算放大器,内部包 含两个独立运算放大器,高增益、内部频率补 偿。电源电压很宽,可实现单双电源工作模式。 使用 LM358 构成高精度半波整流电路和加法 器,可节省控制板空间,使电路设计更加简洁 和精巧。
直流无刷电机电流检测始端是将 A 相、 C 相中 -100A~100A 大电流转化为 -4V~4V 的 小电压信号。考虑到霍尔传感器体积较大,成 本较高,该检流电路由检流电阻和运算放大电 路组成。根据无刷直流电机 IA+IB+IC=0, 可得, IB=-(IA+IC)。B 相电流可由反相求和得到。, 得到 A、B、C 相电流后,分别对 A、B、C 使 用 LM358 构成的高精度半波整流模块进行半 波整流,再将整流过的 A、B、C 三相电压信 号求和反相,得到进入功率管电流的瞬时值对 应的电压值。
霍尔传感器在直流电流检测中的应用
霍尔传感器在直流电流检测中的应用一、本文概述随着电力电子技术的快速发展,直流电流检测在许多领域,如能源管理、电机控制、电池监测等,都扮演着至关重要的角色。
霍尔传感器作为一种非接触式的电流检测器件,因其高精度、快速响应和宽测量范围等优点,在直流电流检测中得到了广泛应用。
本文旨在深入探讨霍尔传感器在直流电流检测中的工作原理、应用优势、实际案例以及面临的挑战和未来的发展趋势。
通过本文的阅读,读者可以对霍尔传感器在直流电流检测中的应用有一个全面而深入的理解,为相关领域的研发和应用提供有益的参考。
二、霍尔传感器基础知识霍尔传感器,又称为霍尔效应传感器,是一种基于霍尔效应的磁电转换器件。
霍尔效应是物理学家霍尔于1879年发现的,它描述了磁场对载流导体产生的影响。
简单来说,当电流通过放置在磁场中的导体时,导体中的电荷会受到洛伦兹力的作用,从而在垂直于磁场和电流的方向上产生电势差,这个电势差被称为霍尔电势差,其大小与磁场强度和电流强度成正比,与导体的厚度成反比。
霍尔传感器主要由霍尔元件、放大器、温度补偿电路、保护电路等组成。
霍尔元件是传感器的核心部分,它负责将磁场和电流转化为电势差信号。
放大器则负责将这个微弱的电势差信号放大,使其能够被后续电路所识别和处理。
温度补偿电路则用于补偿由于温度变化引起的霍尔元件性能变化,保证传感器的测量精度。
保护电路则用于防止传感器在异常情况下受损。
霍尔传感器具有多种优点,如响应速度快、测量精度高、功耗低、抗干扰能力强等。
因此,它在直流电流检测中得到了广泛应用。
在直流电流检测中,霍尔传感器通常被用来测量导体中的电流强度,其输出信号可以直接反映电流的大小和方向。
通过合理的电路设计,我们可以将霍尔传感器的输出信号转换为标准的模拟信号或数字信号,从而实现对直流电流的精确测量和控制。
霍尔传感器作为一种重要的磁电转换器件,其基于霍尔效应的工作原理使其在直流电流检测中具有广泛的应用前景。
随着科技的不断发展,霍尔传感器将会在更多的领域发挥其独特的作用。
霍尔传感器实验报告
霍尔传感器原理及其应用年级:2009级姓名:彭春华学号:200908063093专业:电子信息工程指导老师:刘刚2012年6月摘要20 世纪末,集成霍尔传感器技术得到了迅猛发展,各种性能的集成霍尔传感器不断涌现,它们已在汽车、纺织、化工、通讯、电机、电信、计算机等各个领域得到广泛的应用,特别是由集成开关型霍尔传感器制成的无刷直流电机(霍尔电机) 已经进入千家万户. 广泛应用于录音机、摄录像设备、VCD 、DVD 、及新型助力自行车等家用电器中. 笔者将集成开关型霍尔传感器及其计时装置应用于力学实验中,同时还可对该传感器的特性参数进行测量. 由于保留了传统的实验方法,所以使实验的内容更具综合性,它一方面能让学生从多角度地了解和掌握一些经典的测量手段和操作技能.另一方面由于加入了用集成开关型霍尔传感器来测量时间或周期的新方法,使学生对这种传感器的特性及在自动测量和自动控制中的作用有进一步的认识,从而真正领略这一最新传感技术的风采. 传统实验与现代化技术相结合对推进素质教育,培养想象能力和创新能力是十分有用的. 而这类实验已在我校的中学物理实验研究课程中开设,教师和学生都很有兴趣,教学效果很好。
霍尔的实验原理当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产 生电位差,如图1所示,这种现象就称为霍尔效应。
两端具有的电位差值称为霍尔电势U ,其表达式为U= dB I K **其中K 为霍尔系数,I 为薄片中通过的电流,B 为外加磁场(洛伦慈力Lorrentz )的磁感应强度,d图1 是薄片的厚度。
由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。
霍尔接近开关是用“霍尔效应”的磁感应现象来实现电子开关的开关,工作电压范围5-24V 。
霍尔传感器对磁场感应特别灵敏,所以与他配合工作的是一块小磁铁。
当磁铁与它接近时。
若B 在一定值以上时,霍尔传感器输出高电平,若B 小于一定值时,霍尔传感器会输出低电平。
霍尔传感器交直流位移实验
J I A N G S U U N I V E R S I T Y 传感器课程设计说明书霍尔传感器交直流位移实验学院机械工程学院班级测控1201学生姓名学号指导教师2015年1月10日至1 月19日目录摘要 ----------------------------------------------------------------------------------------------------- 3第一章霍尔传感器发展历程 --------------------------------------------------------------------- 4第二章霍尔传感器工作原理 --------------------------------------------------------------------- 52.1 霍尔效应 ------------------------------------------------------------------------------------ 52.2 霍尔元件 ------------------------------------------------------------------------------------ 52.3霍尔元件的主要特性及材料 ----------------------------------------------------------- 6第三章霍尔元件的误差及补偿------------------------------------------------------------------ 73.1霍尔元件的零位误差与补偿 ----------------------------------------------------------- 73.2霍尔元件的温度误差及补偿 ----------------------------------------------------------- 7第四章测量电路设计与数据处理--------------------------------------------------------------- 84.1模型的建立 ---------------------------------------------------------------------------------- 84.2霍尔传感器直流位移实验电路设计-------------------------------------------------- 94.3霍尔传感器直流位移实验数据处理------------------------------------------------ 114.4霍尔传感器交流位移实验电路设计------------------------------------------------ 124.5霍尔传感器交流位移实验数据处理------------------------------------------------ 17 第五章课程设计总结----------------------------------------------------------------------------- 18 参考文献 ---------------------------------------------------------------------------------------------- 19 致谢 ----------------------------------------------------------------------------------------------------- 20摘要20 世纪末, 霍尔传感器是基于霍尔效应而将被测量转化成电动势输出的一种传感器。
(多图)一种无刷直流电机电流高精度采样及保护电路的设计
(多图)一种无刷直流电机电流高精度采样及保护电路的设计在无刷直流电机控制系统中,电流采样及保护电路作为其中的一个反馈环节,作用是对电机运行时的电流进行实时检测采集,经过处理后,把电流信号转换为控制系统可以识别的小电压信号,让控制系统可以做出相应的控制和保护动作。
由于电机电流是交流电流,因此电流采样及保护电路需要具备整流功能,普通整流电路的核心元件是具有单向导电性能的二极管,通常使用1个、2个或4个二极管组成半波、全波或者桥式整流电路。
但二极管在小信号时表现为非线性,这将使整流的波形产生失真(小信号部分),更为严重的是,二极管存在死区电压,在输人信号小于死区电压时,二极管并未导通,因此使输出信号产生严重畸变,引起误差,小信号时这种误差将不可忽略。
为了提高精度,文中利用集成运放的放大作用和深度负反馈产生的特性来克服二极管的非线性造成的误差,为某型号无刷直流电机设计了一种可靠性高、精度高的采样保护电路。
1 高精度半波整流电路整流电路是把正、负交变的电压转换为单极性电压的电路。
本文的半波高精度整流电路是在比例放大电路中加入二极管,利用二极管的单向导电性实现正副两半周内引入不同深度的负反馈。
按这种思路构成的半波高精度整流电路如图1所示。
图1 半波高精度整流电路在ui>0期间(0~t1、t2~t3)。
当ui还很小时,D1和D2均截止,运放处于开环状态,开环放大倍数很大。
因此ui只需稍大,就会使u0'足够大,且为正值。
只要u0'大于0.7 V,就会使D1导通,而D2截止(a点为零电位),因此D1和Rf串联引入了适度的负反馈,这时的电路相当于反相比例放大电路,因此输出为。
输出u0与输入ui成比例关系,u0与波形-ui的形状相同,但按一定的比例放大或者缩小了,若R1=Rf,则u0=-ui。
由以上分析可知,即使输入电压ui小于二极管的起始导通电压,仍有输出。
在ui<0期间(t1~t2)。
利用霍尔传感器芯片设计直流电流检测电路
- 221. [2 ] 刘君华. 现代检测技术与测试系统设计[ M] . 西安 :西安交通大
学出版社 ,1999. 167 - 172. 作者简介 :
邓重一 (1962 - ) ,男 ,湖南宁远县人 ,学士 ,讲师 。研究方向 : 检 测技术 ,信号处理 ,EDA 技术 。
实验数据见表 1 。
表 1 电流测量数据 Tab 1 Measured data of current
次数 i 1 2 3 4 5 6
Ii (mA) 5. 00 10. 00 15. 00 20. 00 25. 00 30. 00
Io i (mA) 4. 93 10. 01 14. 82 19. 73 24. 65 29. 64
图 2 中的电流 I 相当于被检测电流 。芯片 2 脚不 用 。改变电流 I 就是改变了磁感应强度 B 。测试曲线 见图 3 。
图 3 测试曲线 Fig 3 Test curve
令芯片 5 ,6 脚外接电阻器为 R56 。 图 3 中 :曲线 1 : R56 → ∞;曲线 2 : R56 = 0 ;曲线
压力变送器等其它类似工作机理的非电量精密测控 系统中 。 参考文献 :
[1 ] 范建伟. TC9XX 系列第二代斩波自动稳零运算放大器[J ] . 电子 科技 ,1997 , (1) :34 - 36.
作者简介 : 杨小玲 (1968 - ) ,女 ,福建泉州人 ,福州大学信息学院讲师 ,主要
从事电子线路 、智能仪器等方面的教学与科研工作 。
的。
电路经过校正后 , 最佳工作状态为图 3 中曲线 3 ,有 | Δm3 | = 0. 13 V ,同理得 δL3 = 7. 6 %。可见线 性度得到很大的改善 。图 3 中曲线 2 (即 R56 = 0) ;消 除了不平衡电压 ,但线性度改善不多 。只有当 R56 调 到 100Ω 时 (曲线 3) , 既消除了不平衡电压 , 又获得
直流电电流测量方法
直流电电流测量方法测量直流电电流是电学领域中的基本问题之一。
在电力系统、电子设备和电气工程中,测量直流电电流是必不可少的。
本文介绍了几种常见的直流电电流测量方法,包括直接测量和间接测量方法。
下面是本店铺为大家精心编写的4篇《直流电电流测量方法》,供大家借鉴与参考,希望对大家有所帮助。
《直流电电流测量方法》篇1一、直接测量方法直接测量方法是通过将测量设备连接到直流电路中,直接测量电流的大小。
下面介绍几种常见的直接测量方法。
1. 电流表测量法电流表是一种专门用于测量电流的仪器。
在直流电路中,将电流表串联在电路中,可以测量电路中的电流大小。
电流表的读数可以直接表示电流的大小。
2. 伏安法测量法伏安法是一种通过测量电压和电流来计算功率的方法。
在直流电路中,可以将一个电阻连接到电路中,通过测量电阻上的电压和电流,可以使用伏安法来计算电路中的电流大小。
3. 欧姆定律测量法欧姆定律指出,在恒定温度下,通过一个电阻的电流与电压成正比。
在直流电路中,可以将一个已知电阻连接到电路中,通过测量电阻上的电压和电流,可以使用欧姆定律来计算电路中的电流大小。
二、间接测量方法间接测量方法是通过测量与电流相关的其他物理量,例如电压、电阻、功率等,来计算电流的大小。
下面介绍几种常见的间接测量方法。
1. 功率测量法功率是电流和电压的乘积。
在直流电路中,可以通过测量电路中的功率和电压,使用功率测量法来计算电路中的电流大小。
2. 电阻测量法在直流电路中,可以通过测量电路中的电阻和电压,使用欧姆定律来计算电路中的电流大小。
3. 电流传感器测量法电流传感器是一种专门用于测量电流的传感器。
在直流电路中,可以将电流传感器连接到电路中,通过测量传感器输出的电压或电流信号,可以使用电流传感器来测量电路中的电流大小。
以上是几种常见的直流电电流测量方法。
《直流电电流测量方法》篇2直流电电流测量方法可以分为直接检测和间接检测两种。
直接检测的方法是将直流电流表直接串入被测量回路中进行测量。
霍尔传感器及测量电路
信息科学与工程学院传感器课程设计实习设计报告设计题目:霍尔传感器及测量电路专业:电子信息工程班级:学生:学号:指导教师:2019 年12 月26 日目录1. 概述 (1)1.1 设计目标 (1)1.2 霍尔传感器的简要叙述 (1)1.3 相关技术的国内状况 (2)2. 基本原理与设计思路 (3)2.1 霍尔传感器及测量电路基本原理 (3)2.1.1 霍尔效应 (3)2.1.2 线性霍尔SS495A1 基本信息 (3)2.1.3 SS495 输出特性 (4)2.1.4 传感器SS495的引脚图及功能说明 (4)2.1.5 测量电路基本原理 (5)2.2 霍尔传感器及测量电路基本设计思路 (6)3. 电路设计 (7)3.1 总体电路原理框图 (7)3.2 零点调整电路的设计 (8)3.3 反向比例运放降压功能电路设计 (9)3.4 反相器电路设计 (9)4. 仿真 (10)4.1 仿真方法 (10)4.2 仿真结果 (10)5. 总结 (12)6. 参考文献 (13)1. 概述1.1 设计目标(1)传感器:SS495 或类似性能传感器, 磁场检测范围:-600Gs-600Gs。
(2)设计传感器测量电路,在要求的测量范围内,电路输出的满量程电压值为3000mV。
(3)进行仿真实验,给出仿真结果。
(4)完成信号处理电路PCB 板设计。
1.2 霍尔传感器的简要叙述霍尔传感器是基于霍尔效应制作的一种传感器。
1879 年美国科学家霍尔首先再金属材料中发现了霍尔效应,但由于金属材料的霍尔效应太弱而没有得到应用。
随着半导体技术的发展,人们开始用半导体材料制成霍尔元件,由于它的霍尔效应显著而没有得到应用和发展。
霍尔传感器是基于霍尔效应将被测量(如电流、磁场、位移、压力、压差、转=速等)转换成电动势输出的一种传感器。
虽然它的转换率较低、温度影响大、要求转换精度较高时必须进行温度补偿,但因霍尔式传感器具有结构简单、体积小、坚固、频率响应宽(从直流到微波)、动态范围(输出电动势的变化)大、非接触、使用寿命长、可靠性高、易于微型化和集成化等特点,还是在测量技术、自动技术和信息处理的方面得到了广泛的应用。