次函数最值的应用教学反思
函数的教学反思8篇
函数的教学反思8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、述职报告、演讲稿、心得体会、合同协议、条据文书、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, job reports, speeches, insights, contract agreements, documents, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!函数的教学反思8篇只有重视起教学反思的写作,我们才能在后续的教学中更好地展示自我,详细地教学反思是需要结合我们的教学过程的,以下是本店铺精心为您推荐的函数的教学反思8篇,供大家参考。
函数的极值与导数教学反思 导数与函数的单调性的教学反思
函数的极值与导数教学反思导数与函数的单调性的教学反思范文为教学中作为模范的文章,也经常用来指写作的模板。
经常用于文秘写作的参考,也可以作为演讲材料编写前的参考。
那么我们该如何写一篇较为完善的范文呢?以下是我为大家收集的优秀范文,欢迎大家共享阅读。
函数的极值与导数教学反思篇一本节课是一节新授课,教学内容是导数在讨论函数的单调性方面的应用,全组老师进行了仔细的反思研讨:第一、教学上应突出数学思想方法,本课时的定位是探究课,作为一堂探究课,同学是课堂的主体,必需把课堂时间交给同学。
本节课通过复习二次函数的单调性,让同学动手发觉探究原函数的单调性与其导数符号的关系,最终归纳出结论:一般地,设函数y=f(x)在某个区间内可导,则导函数的符号与函数的单调性之间具有如下关系:1)假如在某个区间内,函数的导数,则在这个区间上,函数是增加的。
2)假如在某个区间内,函数的导数,则在这个区间上,函数是削减的。
优点:1、从熟识的二次函数入手,简洁复习回顾以前学过的确定函数单调性的方法,使学问学习有连贯性。
2、由不熟识的三次函数单调性的确定问题,使同学体会到,用定义法太麻烦,而图像又不清晰,必需寻求一个新的解决方法,产生认知冲突,熟悉到再次讨论单调性的必要性。
3、从简洁的、熟识的二次函数图象入手,引导同学从函数的切线斜率变化观看函数单调性的变化,再与新学的导数联系起来,形成结论。
再用代数法求出导数进行验证。
另外,也使同学感受到解决数学问题的一般方法:从简洁到简单,从特别到一般,同时体会数形结合的思想方法。
4、同学分组探讨,用导数的几何意义和代数法两种方法探讨,每组选出中心发言人,将本组争论的结果公布出来,从而抽象概括一般性的结论。
这个过程充分体现了同学的合作学习、自主学习、探究学习。
其次、例题和变式练习体现层次性、思想性。
例题设计的两重用意:一是利用已知的二次函数的学问再次体验归纳结论的正确性,前面得到的是通过归纳得到的结论,没有严格的证明,这样处理有利于培育同学严谨的数学思想;二是对于二次以下的多项式函数,不仅可以通过用导数求单调性,也可以用图像法和定义法,都比较简洁,也为了突出再求三次、三次以上的多项式函数或图像比较难画时的函数的单调性,应用导数的优越性。
《函数》教学反思(精选8篇)
《函数》教学反思(精选8篇)《函数》教学反思(精选8篇)《函数》教学反思篇1初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.《函数》教学反思篇2初中阶段所学的函数包括一次函数,反比例函数,二次函数.他们都是从函数出函数的表达式和的定义入手,得图象,这样让学生对数形有个认识,也加深了对函数概念的理解.在教学中,根据函数的图象所经过的点的坐标,确定解析式是重点,学生必须掌握,这点大多数同学都掌握得较好.根据图象说出函数的性质,也是必须要掌握的,这一点要求学生有较强的观察能力,对于各种函数的图象要了如指掌.我在教学中重点是引导学生怎样去观察图象,从图象得出其性质.如在教一次函数图象性质时,先得出正比例函数的图象,由正比例函数图象引出一次函数图象性质,只要通过将正比例函数图象向上或向下平移就能得出一次函数图象的性质,这样学生用意掌握,且掌握得较好.反比例函数,二次函数性质也掌握的较快.总之,利用函数图象解题,既能调动学生的学习兴趣,又能使学生牢固掌握知识,并且还能灵活运用知识.《函数》教学反思篇3范文(一)《指数函数》是人教b版高中数学必修1第三章第二节第1课时,是继第二章函数的概念、函数的性质、一次函数、二次函数之后,学生要认识的一个新的函数。
关于《函数的应用》的教学反思
关于《函数的应用》的教学反思关于《函数的应用》的教学反思篇一:函数的应用教学反思在新课程中,教学过程要符合学生学习过程,学生在学习过程中应该以探究、实践、合作学习为重,要善于引导学生积极参与教学过程中的探讨活动,让学生在动手实践、自主探究与合作交流的过程中来学习数学。
教师的教学活动要能激发学生探求新知识的兴趣和欲望,逐步培养他们提问的意识,鼓励学生多思考。
同时还要关注他们在数学学习过程中的变化和发展,关注学习方法与习惯的养成。
在初中一元二次方程和二次函数学习的基础上,教学中通过比较一元二次方程的根与对应的二次函数的图象和x轴的交点的横坐标之间的关系,给出函数的零点的概念,并揭示了方程的根与对应的函数的零点之间的关系.然后,通过探究介绍了判断一个函数在某个给定区间存在零点的方法和二分法.并且,教科书在“用二分法求函数零点的步骤”中渗透了算法的思想,为学生后续学习算法内容埋下伏笔.教学中,对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.分三步来展开这部分的内容.第一步,从学生认为较简单的一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.除了函数模型的应用之外,还要介绍函数的零点与方程的根的关系,用二分法求方程的近似解,以及几种不同增长的函数模型.教科书在处理上,以函数模型的应用这一内容为主线,以几个重要的函数模型为对象或工具,将各部分内容紧密结合起来,使之成为一个系统的整体.教学中应当注意贯彻教科书的这个意图,是学生经历函数模型应用的完整。
篇二:函数的应用教学反思在相当长的时间准确选点进行个别指导,更不能在最后引伸出几个高难题而剥夺部分学生的作业时间。
一次函数的应用反思
一次函数的应用(3)教学反思
函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容.在本节教学设计中,进一步体现了“问题情境——建立数学模型——应用与拓展”的模式.让学生从实际问题中抽象出函数及一次函数的概念、图象、性质,进而利用一次函数及其图象解决有关现实问题.
本节课是在学生已经掌握了一次函数的图象和有关性质的基础上,对有关知识进行应用和拓展.在教学过程中,教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决实际问题的能力.。
一次函数教学反思通用[15篇]
一次函数教学反思通用[15篇]一次函数教学反思1一、结合实际,引入概念正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想以及提高解题能力的基础,在数学教学过程中,数学概念的教学就尤为重要,对这项活动的把握是自始至终存在的教学难点。
本节课对一次函数、正比例函数的概念学习仅作“了解”要求,故我们根据实际问题列出函数表达式,进一步归纳得出形如y=kx+b(k,b为常数;k≠0) 的函数叫做一次函数,特别地,b当 b=0时,一次函数叫做正比例函数。
在这里教师会引导学生观察x的次数,由此让学生加深对“一次”的理解。
然后教师马上举几个例子让学生判断,比如“ y=-2x+1”、“ y=x2+5”等等。
这里大部分学生能够从形式上正确判断,即达到了“了解”目的。
二、直观教学,激发主体探索。
(1)学生用描点法画出一次函数的图象,教师结合PPT展示,让学生从直观上看出一次函数图象是一条直线,进而利用直线公理得出可用两点法画一次函数图象。
(2)借助几何画板的动画演示让学生直接感受并发现一次函数的增减性。
当点在直线上运动时,横坐标向右移动而纵坐标向上移动,或者横坐标向右移动而纵坐标向下移动,则形象的理解“y随x的增大而增大”和“y随x的增大而减小”的意义。
学生在观看动画的过程中理解函数变化过程的规律,归纳出函数的增减性。
(3)借助几何画板的动画演示让学生直接感受并发现平移的规律,对于相同的.k值,随着b值的不同,函数图象上移或下移。
学生在观看动画的过程中理解函数图象平移的规律。
三、修正教学设计,改善教学。
环节一、正比例函数、一次函数的概念教学设计里只有两个实际问题分别来引入一次函数、正比例函数的概念。
需要多加几个实际问题来引入概念,毕竟学生对概念的认识和理解是一个难点。
环节二、一次函数的图象原设计中,在归纳出一次函数图象是一条直线后,我们用“两点确定一条直线”公理引出两点法来画一次函数的图象。
这里设计不足的是,用这两点画出来的图象就是该一次函数图象吗?如果加上以下的小环节也许就可以解决这个缺陷:(1)从画出的该直线上取两个点,让学生验证是否满足函数表达式;(2)由函数表达式取几个点的坐标,判断它们是否在所画的函数图象上。
《一次函数》八年级数学教学反思10篇
《一次函数》八年级数学教学反思10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《一次函数》八年级数学教学反思10篇下面是本店铺分享的《一次函数》八年级数学教学反思10篇(一次函数教后反思),供大家参阅。
二次函数中线段长度的最值问题教学实例及反思
二次函数中线段长度的最值问题教学实例及反思四川外国语大学附属外国语学校 肖庆笔者在初三复习二次函数中线段长度的最值问题时,用一题多变的形式将其各种题型逐一呈现,在层层递进中归纳出通性通法,同时也对相关的解题技巧进行了梳理。
现将教学实例及课后反思总结出来,希望能抛砖引玉,与大家共同探讨。
我将二次函数中线段长度的最值问题分成了两个大类:,第一类:可求出线段长度的解析式,再利用二次函数知识求最值;第二类:用“将军饮马”模型可解决的线段最值问题。
第一类问题复习中,我遵循“由浅入深”的原则先给出了此类问题中最简单,最基础的一个作为复习的例题。
例1:如图1,抛物线223y x x =-++ 与X 轴交与点A 和点B ,与y 轴交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作y 轴的 平行线交直线BC 于点Q ,求线段PQ 的最大值。
教学引导:点P 和Q 点的横坐标相同,可先假设出来,然后利用函数的解析式表示出两个点的纵坐标,相减后可得线段PQ 长度的解析式, 再利用二次函数相关知识求其最大值。
过点P 可作的y 轴平行线,当然也可作X 轴的平行线,引出变例1。
变例1:如图2,抛物线223y x x =-++ 与X 轴交与点A 和点B ,与y 轴交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作X 轴的 平行线交直线BC 于点Q ,求线段PQ 的最大值。
教学引导:点P 和Q 点的纵坐标相同,但要用假设的纵坐标表示出横坐标 有一定难度,可考虑利用例1的方法解变例1。
即过点P 作y 轴的平行线交BC 于点D ,可证明D 30PQ CBO ∠=∠=︒,则PQ =。
除了过点P 作坐标轴的平行线外,我再将条件更改为过点P 作直线BC 的平行垂线,引出变例2。
变例2:如图3,抛物线223y x x =-++ 与X 轴交与点A 和点B ,与y 轴交于点C ,在直线BC 上方的抛物线上有一点P ,过点P 作直线的垂线于点E ,求线段PE 的最大值。
函数教学反思(精选5篇)
函数教学反思函数教学反思(精选5篇)作为一位刚到岗的教师,教学是重要的工作之一,借助教学反思我们可以拓展自己的教学方式,那么写教学反思需要注意哪些问题呢?下面是小编帮大家整理的函数教学反思(精选5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
函数是中学教学中非常重要的内容,是学生第一次学习数形结合,正比例函数是一次函数特例,是学生第一次涉及到一个具体的函数的学习和研究,也是初中数学中的一种简单最基本的函数,是后面学习一次函数的基础。
今天的教学重点是正比例函数的定义和特点,学生在完成目标导学时,较好地完成课本中的问题,合作探究讨论也比较热烈,效果较好。
关于发展观察、分析、归纳、概括等数学思维能力的反思。
从课堂教学的现场情况看,本节课有四个环节蕴含着观察、分析、比较、归纳、概括等数学思维的活动。
下面分别加以分析:第一个环节是正比例函数概念的形成过程。
通过对不同的函数解析式的观察、分析,再加上反例的映衬(对比),学生发现了正比例函数解析表达式的基本结构:一个常量与自变量的积(y=kx)。
因此,在这一环节,教师给学生提供了自己发现和解决问题的机会,较好地发展了学生的思维能力。
“自主探究”是当前课程改革积极倡导的学习方式。
但是,在日常教学中,我们发现,面对一个新的问题,学生常常不知道从哪里着手解决问题,特别是新知识的探究过程。
追其根源,主要是缺乏探究问题的基本策略。
如果能够通过本节内容的学习使学生了解函数学习的基本程序和策略,那么,在今后学习一次函数、反比例函数、二次函数等函数的时候,或许无需教师提醒学生就知道如何探究了。
理论上说:“没有教不会的学生,只有不会教的老师。
”但对大面积的小学就已经对学习绝望的孩子我真的心有余而力不足。
我只能尽我最大的努力让更多的孩子能跟的上,不要对数学绝望。
函数一直是初中数学教学的重点,当然也是难点。
本节课作为函数教学的第一节,其重要性不言而喻。
如果上好了这节课,可以说接下来同学们对函数的理解程度就大大加深,对后续教学的帮助将非常大。
函数的最大值和最小值(教案与课后反思
函数的最大值和最小值一、教学目标:1. 让学生理解函数的最大值和最小值的概念。
2. 让学生掌握求函数最大值和最小值的方法。
3. 培养学生解决实际问题的能力。
二、教学内容:1. 函数的最大值和最小值的定义。
2. 求函数最大值和最小值的方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数的最大值和最小值的定义,求最大值和最小值的方法。
2. 教学难点:如何运用方法求解实际问题中的最大值和最小值。
四、教学方法:1. 采用讲授法,讲解函数最大值和最小值的概念及求解方法。
2. 利用案例分析,让学生理解最大值和最小值在实际问题中的应用。
3. 开展小组讨论,培养学生合作解决问题的能力。
五、教学过程:1. 引入新课:通过生活中的例子,如购物时如何选择最划算的商品,引出函数的最大值和最小值的概念。
2. 讲解概念:详细讲解函数的最大值和最小值的定义,让学生明确最大值和最小值的意义。
3. 方法讲解:讲解求函数最大值和最小值的方法,并通过示例进行演示。
4. 案例分析:分析实际问题中的最大值和最小值,让学生了解最大值和最小值在生活中的应用。
5. 小组讨论:让学生分组讨论,运用所学方法解决实际问题。
6. 课堂小结:总结本节课的主要内容,强调最大值和最小值的概念及求解方法。
7. 课后作业:布置相关练习题,巩固所学知识。
课后反思:本节课通过生活中的例子引入最大值和最小值的概念,让学生容易理解。
在讲解方法时,结合示例进行演示,有助于学生掌握。
在案例分析和小组讨论环节,学生能够积极参与,运用所学知识解决实际问题。
但部分学生在理解最大值和最小值的应用时仍有一定难度,需要在今后的教学中加强引导和练习。
六、教学评价:1. 通过课堂提问、作业批改和课后访谈等方式,了解学生对函数最大值和最小值概念的理解程度。
2. 评估学生在实际问题中运用最大值和最小值方法的能力。
3. 根据学生的表现,调整教学策略,以提高教学质量。
七、教学拓展:1. 引导学生关注其他类型的函数(如二次函数、指数函数等)的最大值和最小值问题。
《九年级数学复习专题——最值问题》教学反思
《九年级数学复习专题——最值问题》教
学反思
一、关于设计思路
在一轮复过程中,知识点的复为主、能力点的培养为辅的复策略可以帮助学生对初中数学知识的全覆盖,但是在复中发现,最值问题出现的频率较高,学生对最值问题无感觉、无办法、无从下手,为了帮助学生能有效应对数学中的最值问题,决定设计一个专题帮助学生找到解决最值问题的一般思路及解决办法。
二、关于设计意图
基于最值问题是数学中的难点,于是我将最值问题归纳为:与代数式有关的最值、构建函数求最值、图形运动中的最值及综合性问题中的最值四块进行探究。
与代数式有关的最值、构建函数求最值的问题帮助学生建立函数模型,用建模的思想帮助学生解决代数最值问题;图形运动中的最值帮助学生建立基本的数学模型如三角形的三边关系、垂线段最短,利用这些基本的几何原来解决几何最值问题;综合性问题中的最值问题帮助学生寻找并建立数学问题中的未知与已知的关系,利用转化的思想,找到解决问题的办法。
三、关于教学反思
通过专题的讲授,提升学生对数学问题的分析能力、解决问题的能力是讲授设想的出发点。
而对能力的培养主要施展阐发在:参与数学问题探究的积极性、自立性,获取数学探究的活动经验,提高数学认知程度。
通过专题的讲授,在能力培养上我努力做到了以下几点
(1)帮助学生建立了函数模型、几何基本原理等“建模的思想”解决最值问题的思路;
(2)帮助学生在数学探究活动中获取数学活动经验、丰富数学认知的数学研究能力;
(3)通过及时指导、适度归纳,找到解决数学中最值问题的一般方法,即通法的渗透。
一次函数的应用教学反思篇
教学方法:选择合适的教学方 法,提高教学效果
教学效果:关注学生的学习反 馈,及时调整教学方法
教学反思:定期进行教学反思, 总结经验教训,提高教学水平
评价机制的完善与创新
评价方式:多元化,包括课 堂表现、作业完成情况、考 试成绩等
评价标准:明确、具体、可 操作性强
评价反馈:及时、准确、有 针对性,帮助学生改进学习
案例分析方法与思路
选取典型案例:选择具有代表性的案例进行分析 分析案例背景:了解案例发生的背景和条件 确定教学目标:明确案例教学的目标和要求 设计教学过程:设计符合教学目标和要求的教学过程 分析教学效果:分析案例教学对学生学习效果的影响 总结反思:总结案例教学的经验和教训,提出改进建议
05
议
教学效果评估
学生掌握程度:理解一次函数的概念、性质和图像 教学方式:讲解、练习、讨论相结合 教学难点:理解一次函数的图像和性质 改进建议:增加实例讲解,加强练习,提高学生理解能力
教学方法的优缺点分析
优点:直观易懂,易于学 生理解
缺点:缺乏互动,难以激 发学生兴趣
改进建议:增加互动环节, 提高学生参与度
案例总结与启示
案例背景:一次函数在数学中的应用
教学目标:让学生理解一次函数的概念 和性质 教学过程:通过实例讲解和练习,让学 生掌握一次函数的应用
教学效果:学生能够理解和应用一次函 数,提高了数学思维能力
启示:在教学中,要注重实例讲解和练 习,让学生更好地理解和掌握数学知识。
教学评价与反馈机
07
学生参与度评估
作业完成度:学生完成作业 的质量和数量
课堂参与度:学生回答问题 的积极性和主动性
学习态度:学生对待学习的 态度和热情
学习效果:学生对知识的理 解和掌握程度
一次函数的应用教学反思4篇 一次函数应用题教学反思
一次函数的应用教学反思4篇一次函数应用题教学反思一次函数的应用教学反思1本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。
一、有效的“复习回顾”学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。
在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。
二、有效的“新知探究”根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式,并理解确定正比例函数表达式的方法和条件。
三、有效的“拓展延伸”设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。
四、有效的“感悟收获”通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的理解,通过“感悟收获”解决本节课的重点和难点。
五、有效的“巩固提高”通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。
六、有效的“作业布置”根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。
以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家一次函数的应用教学反思2从整体上反思在这节课中我总体完成了知识目标,但是过程目标与情感态度价值观目标在课堂中体现的不过好,完成了重点但没有更好的突破难点,整体的课堂环节较为完整。
首先将课堂实施做以反思:在创设情境,这块在课堂实施过程中做得还算可以,基本上达到预设效果,但在揭示课题时语言组合的还不够完美。
函数的最大值和最小值(教案与课后反思
函数的最大值和最小值教学内容:本节课主要讲解函数的最大值和最小值的概念,以及如何求解函数的最大值和最小值。
教学目标:1. 理解函数的最大值和最小值的概念。
2. 学会使用图像法求解函数的最大值和最小值。
3. 学会使用导数法求解函数的最大值和最小值。
教学准备:1. 教学课件。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入函数的最大值和最小值的概念。
2. 举例说明函数的最大值和最小值的意义。
二、函数的最大值和最小值的概念(10分钟)1. 讲解函数的最大值和最小值的定义。
2. 给出函数的最大值和最小值的判定条件。
三、图像法求解函数的最大值和最小值(10分钟)1. 讲解图像法求解函数的最大值和最小值的方法。
2. 举例说明图像法求解函数的最大值和最小值的步骤。
四、导数法求解函数的最大值和最小值(10分钟)1. 讲解导数法求解函数的最大值和最小值的方法。
2. 举例说明导数法求解函数的最大值和最小值的步骤。
五、练习题讲解(10分钟)1. 讲解练习题的解题思路。
2. 逐个解答学生提出的疑问。
教学反思:本节课通过讲解函数的最大值和最小值的概念,以及如何求解函数的最大值和最小值,使学生掌握了这一重要知识点。
在教学过程中,采用图像法和导数法两种方法进行讲解,使得学生能够更好地理解和运用。
通过练习题的讲解,巩固了学生所学的知识,并解答了学生提出的疑问。
总体来说,本节课的教学效果较好,学生对函数的最大值和最小值的概念和求解方法有了较为深入的理解。
但在教学过程中,仍需注意引导学生主动思考和探索,提高学生的学习兴趣和参与度。
六、案例分析:实际问题中的最大值和最小值(10分钟)1. 引入实际问题,如成本最小化、收益最大化等。
2. 展示如何将实际问题转化为函数的最大值和最小值问题。
3. 引导学生运用所学的图像法和导数法解决实际问题。
七、练习与讨论:小组合作求解复杂函数的最大值和最小值(15分钟)1. 分配练习题,要求学生以小组合作的形式进行求解。
北师大版选修1《函数的极值》教案及教学反思
北师大版选修1《函数的极值》教案及教学反思一、教学目标知识目标1.了解函数的极值和最值的概念;2.掌握求解函数的极值的方法;3.能够应用函数的极值和最值解决实际问题。
能力目标1.培养学生的数学思维能力和创新意识;2.提高学生的逻辑思维能力和数学语言描述能力;3.培养学生的动手实践能力和解决问题的能力。
二、教学内容教材内容本节课的教材内容来自于北师大版选修1《数学》中的第四章《函数与导数》的第二节《函数的极值》。
知识点1.极值的概念;2.极值存在的充分条件;3.求解函数的极值的方法;4.最值的概念及其求解方法。
三、教学过程1. 导入环节(5分钟)教师可以通过以下问题引导学生思考:•什么是函数的最值?•如何求解函数的最值?2. 概念解释(10分钟)1.极大值:在数集S中,若存在一个数M,使得对于 $\\forall x\\in S$,有 $f(x)\\leq f(M)$,则称M 为数集S的一个极大值,也称为函数f(x)的极大值。
2.极小值:在数集S中,若存在一个数m,使得对于 $\\forall x\\in S$,有 $f(x)\\geq f(m)$,则称m 为数集S的一个极小值,也称为函数f(x)的极小值。
3. 求解极值的方法(25分钟)为了让学生更好地理解极值和最值的概念,教师可以以图像的方式展示求解过程,同时着重讲解下列求解方法。
•辨别有无极值–有界闭区间极值存在的条件–无界区间必无最大值和最小值•单调性分析•求导法–极值的必要条件–极值的充分条件4. 练习与实践(30分钟)教师可以编写一些练习题或者提供一些实际问题让学生进行求解,例如:1.若F(x)=x3−3x,求其极值;2.求函数y=x3−3x2在[−2,3]区间内的最大值和最小值;3.在 $[0,+\\infty)$ 上,求函数 $\\displaystyley=x-e^{-x}$ 的最小值。
5. 总结回顾(5分钟)教师可以引导学生回顾本节课所学的内容并思考下列问题:1.极值存在的条件是什么?2.求解极值的方法有哪些?3.如何应用函数的极值和最值解决实际问题?四、教学反思函数的极值是函数与导数的一个重要应用。
二次函数线段最值问题教学反思
二次函数线段最值问题教学反思
作为一名教师,我在二次函数线段最值问题上进行了教学反思。
我认为本节课的教学重点是让学生理解二次函数线段最值问题的基本概念和解决方法,并通过实际问题加深学生对函数应用的理解。
首先,我通过图片和实例向学生展示了二次函数的概念和图像,让学生对二次函数有了初步的认识。
接着,我通过问题引导学生理解二次函数线段最值问题的基本概念,如如何确定函数的对称轴和开口方向,如何求解最值等。
其次,我通过实际问题引导学生掌握二次函数线段最值问题的解决方法,如通过构造函数求解最值,或利用函数的性质和图像来解决最值问题。
同时,我鼓励学生多进行思考和尝试,让学生通过解决问题来理解函数的应用和意义。
最后,我通过对课堂中学生的反应和表现进行观察和反思,发现学生对于二次函数线段最值问题的掌握程度较好,能够运用所学知识来解决实际问题。
同时,我也发现学生在解决二次函数线段最值问题时存在一定的困惑和困难,如如何确定函数的对称轴和开口方向等。
因此,我在今后的教学中,将更加注重对学生的指导和引导,帮助学生更好地理解和掌握所学知识。
总的来说,我认为二次函数线段最值问题的教学内容和方法都比较简单和易懂,但需要教师对学生的引导和指导。
通过本次教学反思,我将更加注重对学生的指导和引导,提高教学质量,让学生更好地理解和掌握所学知识。
函数与方程的教学反思7篇
函数与方程的教学反思7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、培训计划、调查报告、述职报告、合同协议、演讲致辞、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, training plans, survey reports, job reports, contract agreements, speeches, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!函数与方程的教学反思7篇如果没有教学反思的加持,我们是无法在教学中更好地展示个人能力的,只有将教学反思写好,我们才能找出教学过程中存在的问题,以下是本店铺精心为您推荐的函数与方程的教学反思7篇,供大家参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数最值的应用教学反思
丰林中学任志库
本节课是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
二次函数应用的教学后,比我预想的效果要好一些,出现了几个点引人深思:
1.??? 精心设计问题,引发学生思考建立数模
在《二次函数的应用》的教学过程中,复习旧知后,主要安排了一道例1,以此题为契机,培养学生的分析问题、解决问题的能力。
本节课重点放在分析问题,将实际问题转化为数学问题,建立数学模型解决问题。
设计小问题,铺设小台阶,引导学生探究,突破教学难点,带领学生寻找解决的方法。
学生根据老师提出的问题,小组讨论,同学间互相交流与补充,在教师的引领下,发现本题就是转化为求二次函数的最大值问题,逐步将难点突破,帮助学生建立数模解决问题。
2.数学来源于生活并运用于生活
例题2有较强的现实感,例题的选择增加数学教学的现实性,使学生体验数学知识与日常生活的密切联系,从而培养学生喜爱数学,学好数学的情感。
3、不足之处
在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。
教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。