第三章 动量与角动量(答案)

合集下载

第一册第三章动量与角动量

第一册第三章动量与角动量

时 ∑ F ix = 0时 ,
m 1 v 1 x + m 2 v 2 x + L + m n v nx = 常 数
时 ∑ Fiy = 0时 ,
时 ∑ F iz = 0时 ,
m 1 v 1 y + m 2 v 2 y + L + m n v ny = 常 数
m 1 v 1 z + m 2 v 2 z + L + m n v nz = 常 数
M L
解:(1)链条在运动过程中,各部分的速度、 )链条在运动过程中,各部分的速度、 加速度都相同。 加速度都相同。
o
x
v F
研究对象:整条链条 研究对象: 建立坐标: 建立坐标:如图 M v v (= xg ) 受力分析: 受力分析: F 运动方程: 运动方程:
M L xg dv = M dt
2
L
一段时间内,质点所受的合外力的冲量 冲量等 在t1到t2一段时间内,质点所受的合外力的冲量等 动量的增量。 于在这段时间内质点动量的增量 于在这段时间内质点动量的增量。 几点说明: 几点说明: (1)冲量的方向: (1)冲量的方向: 冲量的方向 v v 的方向, 冲量 I 的方向一般不是某一瞬时力 Fi 的方向,而是所
例子:见书 例子:见书P137例3.3
12
方向, 例1. 力 F = 3 − 2t ,沿z方向,计算 =0至t =1s 方向 计算t 至 内,力对物体的冲量。 力对物体的冲量。
解: Fz = F = 3 − 2t
I z = ∫ Fz dt = ∫ (3 − 2t )dt = 2( N ⋅ s ) t
I y = ∫ Fy dt
t1
t2
I z = ∫ Fz dt

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I》作业-No.03 角动量与角动量守恒-A-参考答案

《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。

(B) 其动量一定守恒,角动量不一定为零。

(C) 其动量不一定守恒,角动量一定为零。

(D) 其动量不一定守恒,角动量不一定为零。

答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。

本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。

故(B)是正确答案。

[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。

[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。

大学物理第三章-部分课后习题答案

大学物理第三章-部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。

分析:用补偿法〔负质量法〕求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。

注意对同一轴而言。

解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。

分析:取微元,由转动惯量的定义求积分可得 解:〔1〕对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ 〔2〕对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰〔3〕对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 到达额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。

分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。

解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。

大学物理上学习指导作业参考答案(1)

大学物理上学习指导作业参考答案(1)

第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分 ()x x xd 62d 020⎰⎰+=v v v2分()2 213xx +=v 1分2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t tx tx x d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分 ()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -= 1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分 24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分 22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l l d d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴ t sv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船教师评语教师签字月 日第二章 运动与力课 后 作 业hMlμ1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμsin cos +=MgF 2分令 0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.m 1m 22、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)解:人受力如图(1) 图2分 a m g m N T 112=-+ 1分g M P ϖϖ=θF ϖN ϖ f ϖ底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?m 1m 22a ϖ解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分222a m g m T '=- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-= 1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得: T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r )得 d T =-( M ω2 / L ) r d r 4分 由于绳子的末端是自由端 T (L ) = 01分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 3分O第三章 动量与角动量课 后 作 业hAvϖ1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分设A 对煤粉的平均作用力为f ϖ,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f =∴ 14922=+=y x f f f N 2分f ϖ与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f ϖ相反.2分30°F2、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分 即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2) 解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分 设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ② 由①、②得 t =2 s , v x =500 m/s 2分 以2v ϖ表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv ϖϖ4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求:(1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v ρ方向为正方向) 2分负号表示冲量方向与0v ϖ方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a r ρρρωωsin cos +=(SI) 式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F ρ以及当质点从A 点运动到B 点的过程中F ρ的分力x F ρ和y F ρ分别作的功.解:(1)位矢 j t b i t a r ρρρωωsin cos += (SI) 可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x ρρρ+==j t mb i t ma ρρωωωωsin cos 22-- 2分由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.kL OB解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得222121)(kL kx x L F -=+- ② 2分由② 解出 kFL x 2-=使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰l a x P d =la l mg x x l mg l a 2)(d 22-=⎰ 2分x OxB L Bx由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分αh0v ϖ4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=2021v 2分ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分)ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分第五章刚体的转动课后作业1、一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和2m的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr.将由两个定滑轮以及质量为m和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示.2分2mg-T1=2ma1分T2-mg=ma1分T1 r-T r=β221mr1分T r-T2 r=β221mr1分a=rβ2分解上述5个联立方程得:T=11mg / 82分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R,质量为M / 4,均匀分布在其边缘上.绳子的A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为21M的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J=MR2 / 4 )解:受力分析如图所示.a设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分 ①、②、③、④四式联立解得 a =2g / 7 1分3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① 2分 T r =J β ② 2分 由运动学关系有: a = r β ③ 2分 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分Am 1 ,l1v ϖ2v ϖ俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v ϖ和2v ϖ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M l f 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 g m m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =. 相应体积为 2201c V xyz V v -== 3分观察者A测得立方体的质量 2201c m m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为a a x 221=,a a y 221= 面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中2)/(1c a a x x v -=' =0.6×a 221 a a a yy 221==' 在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm 23分aaO y x3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m 则 ∆t 1 = L /v =2.25×10-7 s 3分 (2) 宇航员测得飞船船身的长度为L 0,则 ∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分 那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 22分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分∴ )1111(22122220cc c m W v v ---==4.72×10-14 J =2.95×105 eV 2分教师评语 教师签字 月 日第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为 4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分A = 10 cm ,N/m 3.060=k有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得 x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分 即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分 2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1 因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25cos /==φx A cm 1分∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分(2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点 221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分3、一质量为m 的质点在力F = -π2x 的作用下沿x 轴运动.求其运动的周期.解:将F = -π2x 与F = -kx 比较,知质点作简谐振动,k = π2. 3分 又 m m k π==ω 4分 m T 22=π=ω3分4、一物体同时参与两个同方向的简谐振动: )212cos(04.01π+π=t x (SI), )2cos(03.02π+π=t x (SI)求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x 则 )cos(2122122212φφ-++=A A A A A ① 2分 以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 3分 又 22112211cos cos sin sin arctg φφφφφA A A A ++= ②≈127°≈2.22 rad 3分 ∴ )22.22cos(05.0+π=t x (SI) 2分5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F 解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0则 0202)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J ,41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.Fx m解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分 当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27cos(1.0φλ+π-π=x t y (SI) 2分 t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分 3/17π-=φ 1分 ∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y (SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)(m) -2、图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121cos(5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212cos(π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν)2cos(2π+ππ=t A νν 3分5、设入射波的表达式为 )(2cos 1Ttx A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分 (2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,…波节位置: π+π=π+π2121/2n x λ 2分λn x 21= , n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为 ])/(2cos[1φλν+-π=x t A y 2分 则反射波的表达式是 ])(2cos[2ππ++-+-=φλνxOP OP t A y 2分合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分第九章 温度和气体动理论课 后 作 业1、黄绿光的波长是5000οA (1οA =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000οA 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解: 223131v v ρ==nm p∴ 90.1/32==v p ρ kg/m 3 5分3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w vm/s 3分(2) ()k w T 3/2==300 K . 2分4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: R R iR i C P +=+=222, ∴ ()5122=⎪⎭⎫⎝⎛-=-=R C R R C i P P , 2分可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分 ==N E w K / 6.2×10-21 J 1分kwT 32== 300 K 3分教师评语 教师签字 月 日第十章 热力学第一定律课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).1 2 3 12 OV (10-3 m 3) p (105 Pa) A BC解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J .Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量.气体对外界所作的功. 气体吸收的热量.此过程的摩尔热容.解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分(2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分B A O V p 1p 2pV 1V 2(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中 0 1 2 3 123a b c V (L)p (atm)气体对外作的功;气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分(2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:p (×105 Pa)10-3 m 3)(1) 气体循环一次,在吸热过程中从外界共吸收的热量;(2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程,吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-= =800 J 4分(2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分(3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R ,T a T c = (p a V a p c V c )/R 2=(12×104)/R 2T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B→C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量) A BC DO Vp解: 121Q Q -=η Q 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ))/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= 4分 根据绝热过程方程得到:γγγγ----=D D AA T p T p 11, γγγγ----=C CB B T p T p 11 ∵ p A = p B , pC = pD , ∴ T A / T B = T D / T C 4分故 %251112=-=-=BC T T Q Q η 2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环的热机效率;(2) 第二个循环的高温热源的温度.解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T WQ -= 且 1212T T Q Q = ∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 4分 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1/Q W η29.4% 1分 (2) ='-='η121T T 425 K 2分。

第三章 动量与角动量

第三章 动量与角动量

在光滑桌面上运动,速度分别为
v1

10i ,
v2

3.0i
5.0
j
(SI制)碰撞后合为一体,求碰撞后的速度?
解:方法一,根据动量守恒定律
m1v1 m2v2 (m1 m2 )v
解得:
v
7i
25
j
7
方法二,利用动量守恒分量式:
(m1 m2 )vx m1v1x m2v2x vx 7m / s
例 题 12
12、一子弹在枪筒里前进时所受的合力大小为 F 400 4105 t
3
(SI),子弹从枪口射出时的速率为300m/s。假设子弹离
开枪口时合力刚好为零,则
(1)子弹走完枪筒全长所用的时间;
(2)子弹在枪筒中所受力的冲量; (3)子弹的质量 m ;
解:(1)根据题意,子弹离开枪口时合力为零,
f mg
f t(N)
30N L L L 0 t 4 30 ft 70 10tL 4 t 7
0
Ft ft f
t(s) 47
当 t 4s 时 Ftt mv4 mv0 v4 8m / s
(2)当 t 6s 时
6
4 Ftdt mv6 mv4 v6 v4 8m / s
人造卫星的角动量守恒。
A1 : L1 mv1(R l1)
l2
l1 m
A2 : L2 mv2 (R l2 )
A2
A1
mv1(R l1) mv2 (R l2 )
v2 6.30km/s
v2

v1
R l1 R l2
o
B

第3章动量角动量

第3章动量角动量
(3)动量守恒定律只适用于惯性系, 使用时所有速度必须相 对于同一惯性系。
(4)动量守恒定律是物理学中最普遍、最基本的定律之一。 在微观高速范围同样适用。
例3-3 如图,在光滑的水平面上,有一质量为M、长为l 的小车, 车上一端站有质量为m的人,起初m、M均静止,若人从车 的一端走到另一端,则人和车相对地面走过的距离为多少?
为ω,杆长均为l 。(2)如系统作加速转
动,系统的动量和角动量变化吗?
三、质点的角动量(动量矩)定理
Lrp

dL

d (r
p)
dr
p
r
dp
F
dt
dt
M
dL
dt
dt
dt
质点的角动量定理(微分形式)
质点所受合力对点O 的力矩, 等于质点对点O的角 动量的时间变化率。
M
dL
dt
改写
Mdt dL
t2 t1
F dt
p2
p1
(1)定理中的冲量指的是质点所受合力的冲量,或者质点所
受冲量的矢量和。
I
t2 t1
F合
dt
= =
t2 t1
(
F1+F2++Fn
)
d
t
t2 t1
F1dt
t2 t1
F2dt+

t2 t1
Fndt =
i 1
Ii
(2)冲量是过程量,动量是状态量,冲量的方向可用动量变化的
由动量定理 I p2 得 p1
(3) 2.7 m/s
(2)3s末质点的加速度
a(3) F (3) 1.5 m/s2 m
3.1.2 质点系的动量定理 动量守恒定律

第三章 动量和角动量

第三章 动量和角动量

mi
由n个质点组成的质点系: dpi Fi F外i F内i dt i i i i
质点系
F外i
F内i mi
合外力 F外 零 dp 质点系的动量定理 dpi d dp F外 pi 右边: (微分形式) dt dt dt dt i i p2 持续一段时间: F外dt dp p2 p1
弹性碰撞 碰撞
动量守恒,机械能守恒 动量守恒 动量守恒
非完全弹性碰撞
完全非弹性碰撞
3)若某一方向合外力为零, 则此方向动量守恒 .
F外x 0 , F外y 0 , F外z 0 ,
px mi vix C x pz mi viz C z p y mi viy C y
解:由质点的动量定理,
t1
t2 I Fdt p2 p1
F t mgt p2 p1
4m / s
F/N 30
0-4s: I
t=4s时: v
0
1 0-7s: I (4 7) 30 mg t p2 p1 2
t=7s时: v
x2 x1
x
解得:x1 3.33m, x2 1.67m
小结
动量定理及动量守恒定律 1. 动量定理
t2 对 质 点: I F dt P2 P1 t1 Fdt dP t2 对 质 点 系 I F外 dt P2 P1 t1 F外 dt dP
第三章 动量和角动量
力的累积效应
力对时间的累积冲量 力对空间的累积做功
动量 能量
3-1 质点的动量定理
1、冲量 动量定理 牛顿第二定律

第三章动量与角动量

第三章动量与角动量
上式表明,火箭发动机的推力与燃料燃烧速率 (dm / dt )及 喷 出 气 体 的 相 对 速 度 u 成 正 比 。 Mi v f v i u ln 练习:3.9 M f
z
3.4
质心
rC
C
一. 质心的定义
由下式决定的位置矢量 rc 所对
应的c,称为质点系的质心。
rC mi mi ri
动量(角动量)、动量(角动量)定理、 动量(角动量)守恒定律
本次课主要内容
1、第二章小结 2、冲量、动量 #3、动量定理、动量守恒 4、火箭飞行原理
3.1 冲量与动量定理
一、冲量和动量
1. 冲量: 力F对dt时间的积累 量,叫做在dt时间 内质点所受合外力 的冲量。
F
I

t
Fdt
O t0
K
R
t
v0 R vt R K vt v0t vt ( R K v0t ) v0 R vt v0 R ( R K v0t )
S

t 0
vt d t
t 0
v0 R R v0 K t 1
dt

v0 R v0 K R

t 0
R v0 K t
2. 动量
p mv
F dp dt Fdt dp
二. 用冲量表示的动量定理
1. 牛顿第二定律的普遍形式
2. 动量定理(质点)


t t0
Fdt

p p0
dp
I p p0
上式表明在dt时间内质点所受合外力的冲量等于在 同一时间内质点动量的增量。
矢量法

(完整版)大学物理学(课后答案)第3章

(完整版)大学物理学(课后答案)第3章

第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。

3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。

3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。

由于作匀速圆周运动,因此合外力不为零。

答案选C。

3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。

由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。

第03章(刚体力学)习题答案

第03章(刚体力学)习题答案

内力做功,机械能守恒,动量守恒的条件为合外力为零,转轴不属于系统,转轴与盘之间有
作用力,动量不守恒。
3-2 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑
O
固定轴 O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打
击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆
与小球这一系统的哪种物理量守恒? 答:在碰撞时,小球重力过转轴,杆的重力也过轴,外力矩为
思考题 3­2 图
零,所以角动量守恒。因碰撞时转轴与杆之间有作用力,所以动量不守恒。碰撞是非弹性的,
所以机械能也不守恒。
3-3 一圆盘绕过盘心且与盘面垂直的光滑固定轴 O 以角速度w按图示方向转动.若如图
所示的情况那样,将两个大小相等方向相反但不在同一条直线的力
F 沿盘面同时作用到圆盘上,则圆盘的角速度w 如何变化?
解:此过程角动量守恒
Jw0
=
1 3
Jw
Þ
w
=
3w0
3-10 一轴承光滑的定滑轮,质量为 M=2.00 kg,半径为 R=0.100 m,
一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为 m=5.00
kg 的物体,如图所示.已知定滑轮的转动惯量为 J= 1 MR 2 ,其初角速 2
w 0
R M
解:(1)设在任意时刻定滑轮的角速度为w,物体的速度大小为 v,则有 v=Rw.
则物体与定滑轮的总角动量为: L = Jw + mvR = Jw + mR2w
根据角动量定理,刚体系统所受的合外力矩等于系统角动量对时间的变化率:
M = dL ,该系统所受的合外力矩即物体的重力矩:M=mgR dt
所以: b

第3章 动量和角动量

第3章 动量和角动量
质心速度
drc dt
M mi vi
i

d rc
2
M mi ai
i
dt
2
质心加速度 M
质点系的总动量等于质点系内各质点的动量的矢量和:

P Mvc
19 P Mvc 故质点系的总动量等于质点系的总质量与质心速度的 乘积;其方向与质心速度方向相同。 将 P Mv 代入牛顿第二定律,得
解法一 :
Fx
5
用分量法

依据 F

t
'
t0 '
t t0

p2 p1 t t0
'
y
v2
mvx 2 mvx1 t
mv cos m v t
0

3
F

v1
x
0.14 40 cos 60 1 1.2 10
3


7.0 10 N
14
小 ,即所需加速过程太长。
2. vm ln
m0 m ,
m0 m 大,则v大,
这对燃料的携带来说不合适。
用多级火箭避免这一困难。
3.5 质心
质心---质点系的质量中心,它是质点系中一个特殊 的几何点。 一、质点系的质心
设质点系由 N 个质点组成:
15
相应的位矢为 r , r2 , ri , rN . 1
3
如考虑力在某段有限时间内的积累效果,则有:
I

t
'
Fdt
t0

p2
p1
dp p p2 p1

03第三章 动量与角动量作业答案

03第三章  动量与角动量作业答案

第三次作业(第三章动量与角动量)一、选择题[A]1.(基础训练2)一质量为m0的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图3-11(A) 保持静止.(B) 向右加速运动.(C) 向右匀速运动.(D) 向左加速运动.【提示】设m0相对于地面以V运动。

依题意,m静止于斜面上,跟着m0一起运动。

根据水平方向动量守恒,得:m V mV+=所以0V=,斜面保持静止。

[C]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v.(B) 22)/()2(vv Rmgmπ+(C) v/Rmgπ(D) 0.【提示】22TGTI mgdt mg==⨯⎰,而vRTπ2=[C ]3.(自测提高1)质量为m的质点,以不变速率v沿图3-16正三角形ABC的水平光滑轨道运动。

质点越过A点的冲量的大小为(A) m v.(B) .(C) .(D) 2m v.【提示】根据动量定理2121ttI fdt mv mv==-⎰,如图。

得:21I mv mv∴=-=[ B] 4.(自测提高2)质量为20 g的子弹,以400 m/s的速率沿图3-17所示的方向射入一原来静止的质量为980 g的摆球中,摆线长度不可伸缩。

子弹射入后开始与摆球一起运动的速率为(A) 2 m/s.(B) 4 m/s.(C) 7 m/s .(D) 8 m/s.【提示】相对于摆线顶部所在点,系统的角动量守恒:2sin30()mv l M m lV︒=+其中m为子弹质量,M为摆球质量,l为摆线长度。

解得:V=4 m/s(解法二:系统水平方向动量守恒:2sin30()mv M m V︒=+)图3-11图3-17二、填空题1、(基础训练7)设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=18N s ⋅.【提示】2222(63)(33)18I Fdt t dt t t N s ==+=+=⋅⎰⎰2.(基础训练8)静水中停泊着两只质量皆为0m 的小船。

清华出版社《大学物理》专项练习及解析 03动量与角动量

清华出版社《大学物理》专项练习及解析  03动量与角动量

清华出版社专项练习动量与角动量一、选择题 1、(0063A15)质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) 2m v . (C) 3m v . (D) 2m v . [ ] 2、(0067B30)两辆小车A 、B ,可在光滑平直轨道上运动.第一次实验,B 静止,A 以0.5 m/s 的速率向右与B 碰撞,其结果A以 0.1 m/s 的速率弹回,B 以0.3 m/s 的速率向右运动;第二次实验,B 仍静止,A 装上1 kg 的物体后仍以0.5 m/s的速率与B 碰撞,结果A 静止,B 以0.5 m/s 的速率向右运动,如图.则A 和B 的质量分别为(A) m A =2 kg , m B =1 kg (B) m A =1 kg , m B =2 kg (C) m A =3 kg , m B =4 kg (D) m A =4 kg, m B =3 kg [ ]3、(0367A10)质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ ] 4、(0368A10) 质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ ] 5、(0384A20)质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ ]6、(0385B25)一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动.[ ] 7、(0386A20) A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为C(A) 21. (B) 2/2. (C) 2. (D) 2. [ ]8、(0629C45)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断.(C)两根线一起断. (D)两根线都不断. [ ] 9、(0632A10)质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) v m . (B) 0.(C) v m 2. (D) v m 2-. [ ] 10、(0633A20)机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ ] 11、(0659A15)一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ] 12、(0702B25)如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π. (D) 0.[ ]13、(0703A15)如图所示,砂子从h =0.8 m 高处下落到以3 m /s 向右运动的传送带上.取重力加速度g =10 m /s 2落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下.(B) 与水平夹角53°向上. (C) 与水平夹角37°向上. (D) 与水平夹角37°向下. [ ]14、(0706B30) 如图所示.一斜面固定在卡车上,一物块置于该斜面上.在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动.此时斜面上摩擦力对物块的冲量的方向(A) 是水平向前的. (B) 只可能沿斜面向上. (C) 只可能沿斜面向下.(D) 沿斜面向上或向下均有可能. [ ]15、(5260A20)动能为E K 的A 物体与静止的B 物体碰撞,设A 物体的质量为B 物体的二倍,m A =2m B .若碰撞为完全非弹性的,则碰撞后两物体总动能为(A) E K (B)K E 32. (C) K E 21. (D) K E 31. [ ] 16、(0405A20)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]17、(0406B30) 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA <E KB .(C) L A =L B ,E KA >E KB . (D) L A <L B ,E KA <E KB . [ ]18、(0407C45) 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ]19、(5636A15) 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]二、填空题:1、(0055A20) 质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2)2、(0056B40) 质量m =10 kg 的木箱放在地面上,在水平拉力F 的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示.若已知木箱与地面间的摩擦系数μ=0.2,那么在t = 4 s 时,木箱的速度大小为______________;在t =7 s 时,木箱的速度大小为______________.(g 取10 m/s 23、(0060A10) 一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为________________________,方向为____________________.4、(0061A10) y 21y有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg ,第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F =50 N 的水平力来拉绳子,则 5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.5、(0062B30) 两块并排的木块A 和B ,质量分别为m 1和m 2 ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为∆t 1 和∆t 2 ,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为_________________________________,木块B 的速度大小为______________________.6、(0066A20) 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为P A =P 0-bt ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则P B 1=______________________;(2) 开始时,若B 的动量为-P 0,则P B 2=_____________.7、(0068A15) 一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.8、(0184A15) 设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I =__________________.9、(0222A20) 一物体质量M =2 kg ,在合外力i t F )23(+= (SI)的作用下,从静止开始运动,式中i 为方向一定的单位矢量,则当t =1 s 时物体的速度1v =__________.10、(0371A20) 一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-= (SI)子弹从枪口射出时的速率为300 m/s .假设子弹离开枪口时合力刚好为零,则(1)子弹走完枪筒全长所用的时间t =____________,(2)子弹在枪筒中所受力的冲量I =________________,(3)子弹的质量m =__________________.11、(0372A15) 水流流过一个固定的涡轮叶片,如图所示.水流流过叶片曲面前后的速率都等于v ,每单位时间流向叶片的水的质量保持不变且等于Q ,则水作用于叶片的力大小为______________,方向为_________.12、(0374B40) 图示一圆锥摆,质量为m 的小球在水平面内以角速度ω匀速转动.在小球转动一周的过程中,(1) 小球动量增量的大小等于__________________.(2) 小球所受重力的冲量的大小等于________________.(3) 小球所受绳子拉力的冲量大小等于_______________. 13、(0387B25) 质量为1 kg 的球A 以5 m/s 的速率和另一静止的、质量也为1 kg 的球B 在光滑水平面上作弹性碰撞,碰撞后球B 以2.5 m/s 的速率,沿与A 原先运动的方向成60°v的方向运动,则球A 的速率为____________,方向为______________________.14、(0393B25) 两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101=v cm/s ,)0.50.3(2j i v += cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v =_________,v 与x 轴的夹角α=__________.15、(0630A10) 一质量m =10 g 的子弹,以速率v 0=500 m/s 沿水平方向射穿一物体.穿出时,子弹的速率为v =30 m/s ,仍是水平方向.则子弹在穿透过程中所受的冲量的大小为________,方向为_________.16、(0631A15) 一物体质量为10 kg ,受到方向不变的力F =30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于________________;若物体的初速度大小为10 m/s ,方向与力F 的方向相同,则在2s 末物体速度的大小等于___________________.17、(0707B25) 假设作用在一质量为10 kg 的物体上的力,在4秒内均匀地从零增加到50 N ,使物体沿力的方向由静止开始作直线运动.则物体最后的速率v =_______________.18、(0708B35) 一质量为1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数μ 0=0.20,滑动摩擦系数μ=0.16,现对物体施一水平拉力F =t +0.96(SI),则2秒末物体的速度大小v =______________.19、(0709A15) 质量为1500 kg 的一辆吉普车静止在一艘驳船上.驳船在缆绳拉力(方向不变)的作用下沿缆绳方向起动,在5秒内速率增加至5 m/s ,则该吉普车作用于驳船的水平方向的平均力大小为______________.20、(0710B30) 一吊车底板上放一质量为10 kg 的物体,若吊车底板加速上升,加速度大小为a =3+5t (SI),则2秒内吊车底板给物体的冲量大小I =___________;2秒内物体动量的增量大小P ∆=__________________.21、(0711A20) 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i 43+=0A v ,粒子B 的速度j i 72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为j i 47-=A v ,则此时粒子B 的速度B v =______________.22、(0715B30)有一质量为M (含炮弹)的炮车,在一倾角为θ 的光滑斜面上下滑,当它滑到某处速率为v 0时,从炮内射出一质量为m 的炮弹沿水平方向. 欲使炮车在发射炮弹后的瞬时停止下滑,则炮弹射出时对地的速率v =__________.23、(0717A10) 如图所示,质量为m 的子弹以水平速度0v 射入静止的木 块并陷入木块内,设子弹入射过程中木块M 不反弹,则墙壁 对木块的冲量=____________________.24、(0718A15) 一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20m·s -1的速率水平向北运动。

第3章 动角动量习题解答

第3章 动角动量习题解答

第3章 动量 角动量3-1一架飞机以300m/s 的速率水平飞行,与一只身长0.20m 、质量0.50kg 的飞鸟相撞,设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率很小,可以忽略不计。

试估计飞鸟对飞机的冲击力(碰撞时间可用飞鸟身长被飞机速率相除来估算)。

根据本题计算结果,谈谈高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰撞后会产生什么后果?解 飞鸟碰撞前速度可以忽略,碰撞过程中冲量的大小为:I m Ft υ==考虑到碰撞时间可估算为 lt υ=即得飞鸟对飞机的冲击力2250.5300 2.2510(N)0.2m F l υ⨯===⨯由此可见飞机所受冲击力是相当大的,足以导致机毁人亡,后果很严重。

3-2 水力采煤,是用高压水枪喷出的强力水柱冲击煤层。

如图,设水柱直径30mm D =,水速56m/s υ=,水柱垂直射在煤层表面上,冲击煤层后的速度为零,求水柱对煤的平均冲力。

解 △t 时间内射向煤层的水柱质量为21π4m V D x ρρ∆=∆=∆ 煤层对水柱的平均冲击力(如图以向右为正方向)为211x x x m m m F t t υυυ∆-∆∆==-∆∆211π4x xD t ρυ∆=-∆3322311.010π(3010)562.2210(N)4-=-⨯⨯⨯⨯⨯⨯=-⨯水柱对煤层的平均冲力为'32.2210N F F =-=⨯,方向向右。

习题3-2图3-3 质量10kg m =的物体沿x 轴无摩擦地运动,设0t =时,物体位于原点,速率为零。

如果物体在作用力()34N Ft =+的作用下运动了3秒,计算3秒末物体的速度和加速度各为多少?(题中F 作用线沿着x 轴方向)解 力F 在3秒内的冲量33d (34)d 27N s I F t t t ==+=⋅⎰⎰根据质点的动量定理 ()30m I υ-=得()3 2.7m/s Imυ== 加速度()()223153m/s 1.5m/s 10F a m === 3-4 质量为m 的物体,开始时静止,在时间间隔T t 20≤≤内,受力()2021t T F F T ⎡⎤-=-⎢⎥⎢⎥⎣⎦作用,试证明,在2t T =时物体的速率为043F Tm。

第3章动量冲量角动量

第3章动量冲量角动量
2mv cos Fx 70.5 N t
x
mv1
O
mv2
( Fy mg )t mv2 y mv1 y mv sin mv sin 0 Fy mg 0.5N
F Fx 70.5 N F' F 方向与O x 轴正向相反.
y
例 一质量为m =1000kg的蒸汽锤从高度为h =1.5m的地方由静止 下落,锤与被加工的工件的碰撞时间为t =0.01s,且锤与工 件碰撞后的末速度为零。 求 蒸汽锤对工件的平均冲击力。
取很短一段时间t对质点系中的各质点应用动量定理对质点系中的各质点应用动量定理1f?11in11ifftp????????2f?1f?1m2min1f?in2f?2f?in1f?in2f?对质点11有对质点22有对质点11有对质点22有22in22ifftp????????22in22两式相加得1212in1in212iifffftpp????????????????121212iiifftpppiftp??????????????????????????所以有注意
动量定理的应用
动量定理分量式 例 一质量为0.05 kg、速率为10 m· s-1的刚球,以与钢板法线呈 45º 角的方向撞击在钢板上,并以 相同的速率和角度弹回来.设碰 撞时间为0.01s.求在此时间内钢 板所受到的平均冲力.
x

mv1O mv2y来自解由动量定理得:

Fx t mv2 x mv1x mv cos (mv cos ) 2mv cos
定义:恒力的冲量 定义:动量 所以有:
I F t
P mv
I = P2 P 1 P 动量定理
此动量定理可以推广到变力作用下依然成立。

第3章 动量角动量

第3章 动量角动量


• n个质点的系统 由于内力总是成对出现的,所以矢量和为零。
F dt d P i i i i
质点系动量定理微分形式
F 为系统所受的合外力 , P i i 为系统的总动量。 i i
Fi dt P2
注意:动量定理只适用于惯性系。
冲力
物体受到冲击,动量会明显改变。冲击过程持续一般时间 很短,因此冲击中物体受力——冲力具有作用时间短 、量 值大的特点,通常是变力。
平均冲力:
1 t t Fx Fx (t )dt t t
Fx(t)
Fx
t

冲量可表为 I x
Fx t
t
F为恒力时,可以得出I=F t F为变力时,为求平均值提供了一个有效方法:
2 2
2
力 F 12t i ( SI )作用在质量m=2kg的物体上, 例:
使之从静止开始运动,则物体在3秒末的速度 为 。
解:由动量定理分量式,有

t2
t1
Fdt P2 P 2 1 P
3
P2 12tdt 54 kg m/s, 方向沿x轴正向 0 p2 v2 27i m/s m
1 2 gt 2 1 即 10 5t 10 t 2 2 得:t 1s y v y 0t x vx 0t 5 3m
牛顿定律是瞬时的规律。
但在有些问题中, 如:碰撞(宏观)、 散射 (微观) … 我们往往只关心过程中力的效果 ——力对时间和空间的积累效应。 力在时间上的积累效应: 平动 转动 冲量 冲量矩 动量的改变 角动量的改变 改变能量
“神州”号飞船升空
火箭在无大气层的太空中飞行,是靠向后喷射燃料获得反 冲动力。由于无外力作用,动量守恒。 设M为火箭在 t 时刻的总质量,dt 时间喷出dm质量的燃料, 相对火箭以u的速度喷射。 v M dm t 时刻 M dm t+dt 时刻 v+dv x

05动量与角动量一解答

05动量与角动量一解答

m1υ1 + m2υ 2 = (m1 + m2 )υ
m1υ1 i + m2υ 2 j = (m1 + m2 )υ
m1υ1
θ x
m2υ2
υ = (m υ )2 + (m υ )2 (m + m ) = 10(m/s ) 1 1 2 2 1 2 θ = arctan(m2υ 2 m1υ1 ) = 53.13o
0 = M υ1 + mυ
υ1 = mυ M
mυ = (m + M )υ 2
υ 2 = m υ (M + m )
动量与角动量一 4.求半圆形均匀薄板的质心。 .求半圆形均匀薄板的质心。
第三章 动量守恒和能量守恒
由对称性知,质心分布在对称轴y轴上 轴上。 解: 由对称性知,质心分布在对称轴 轴上。xC = 0
(M 1 + M 2 )υ x = M 2υ ′x υ ′ = (M 1 + M 2 )υ x x
M2
s′ = υ ′ t = (M 1 + M 2 )υ x h (gM 2 ) x > s = υxh g
动量与角动量一
第三章 动量守恒和能量守恒
二、填空题
1.质量为m的小球自高为 0处沿水平方向以速率υ0抛 .质量为 的小球自高为 的小球自高为y 出,与地面碰撞后跳起的最大高度为 0/2,水平速率为 与地面碰撞后跳起的最大高度为y , 与地面碰撞后跳起的最大高度为 υ0/2,则碰撞过程中 地面对小球的竖直冲量的大小 ,则碰撞过程中(1) (1+ 2)m gy0 为________________________;(2) 地面对小球的水平 ; mυ0/2 冲量的大小为________________________. 冲量的大小为________________________.

第三章 角动量角动量守恒定律

第三章 角动量角动量守恒定律

第三章 角动量、角动量守恒定律3—1 质量为m 的质点,当它处在r =-2i +4j +6k 的位置时的速度v =5i +4j +6k ,试求其对原点的角动量。

[解] 质点对原点的角动量为 v r p r L ×=×=m)2842(645642k j kj i −=−=m3—2 一质量为m =2200kg 的汽车v =60h km 的速率沿一平直公路行驶。

求汽车对公路一侧距公路为d =50m 的一点的角动量是多大?对公路上任一点的角动量又是多大?[解] 根据角动量的定义式v r L m ×=(1) ()kgm 1083.150360*********sin 263×=×××===mvd rmv L θ(2) 对公路上任一点r ∥v ,所以 L =03—3 某人造地球卫星的质量为m =l802kg ,在离地面2100km 的高空沿圆形轨道运行。

试求卫星对地心的角动量(地球半径61040.6×=地R m)。

[解] 设卫星的速度为v ,地球的质量为M ,则()h R v m h R Mm G +=+地地22(1) 又 g R MG=地(2) 联立两式得 地地R hR gv +=卫星对地的角动量 ()()地地地⋅+=⋅+=h R g m v h R m L()6661040.61010.21040.68.91802×××+××= ()m kg 1005.1214⋅×=3—4 若将月球轨道视为圆周,其转动周期为27.3d ,求月球对地球中心的角动量及面积速度(221035.7×=月m kg ,轨道半径R =81084.3×m)。

[解] 设月球的速度为v ,月球对地球中心的角动量为L,则 T R v /2π=TRm Rv m L π2月月== 3600243.2714.32)1084.3(1035.72822×××××××=)/s m kg (1089.2234⋅×= 月球的面积速度为)/s m (1096.1/2112×==T R v π面3—5 氢原子中的电子以角速度s rad 1013.46×=ω在半径10103.5−×=r m 的圆形轨道上绕质子转动。

03动量与角动量习题解答

03动量与角动量习题解答

第三章 动量与动量守恒定律习题一 选择题1. 一辆洒水车正在马路上工作,要使车匀速直线行驶,则车受到的合外力:( )A. 必为零;B. 必不为零,合力方向与行进方向相同;C. 必不为零,合力方向与行进方向相反;D. 必不为零,合力方向是任意的。

解:答案是C 。

简要提示:根据动量定理,合力F 的冲量F d t = d p = d (m v )= m d v + v d m = v d m 。

因d m <0,所以F 的方向与车行进速度v 的方向相反。

2. 两大小和质量均相同的小球,一为弹性球,另一为非弹性球,它们从同一高度落下与地面碰撞时,则有: ( )A. 地面给予两球的冲量相同;B. 地面给予弹性球的冲量较大;C. 地面给予非弹性球的冲量较大;A. 无法确定反冲量谁大谁小。

解:答案是B 。

简要提示:)(12v v -=m I3. 质量为m 的铁锤竖直向下打在桩上而静止,设打击时间为∆t ,打击前锤的速率为v ,则打击时铁锤受到的合外力大小应为:( )A .mg t m +∆v B .mg C .mg t m -∆v D .tm ∆v 解:答案是D 。

简要提示:v m t F =∆⋅4. 将一长木板安上轮子放在光滑平面上,两质量不同的人从板的两端以相同速率相向行走,则板的运动状况是: ( ) 选择题4图A. 静止不动;B. 朝质量大的人行走的方向移动;C. 朝质量小的人行走的方向移动;D. 无法确定。

解:答案是B 。

简要提示:取m 1的运动方向为正方向,由动量守恒:02211='+-v v v M m m ,得:M m m /)(21v v --='如果m 1> m 2,则v ′< 0。

5. 一只猴子用绳子拉着一个和它质量相同的石头,在一水平的无摩擦的地面上运动,开始时猴子和石头都保持静止,然后猴子以相对绳子的速度u 拉绳,则石头的速率为: ( )A. uB. u /2C. u /4D. 0解:答案是B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题[ A ]1.(基础训练2)一质量为m 0的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图3-11(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动.【提示】设m 0相对于地面以V 运动。

依题意,m 静止于斜面上,跟着m 0一起运动。

根据水平方向动量守恒,得:00m V mV +=所以0V =,斜面保持静止。

[ C ]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R ,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B)22)/()2(v v R mg m π+(C) v /Rmg π (D) 0.【提示】22T G T I mgdt mg ==⨯⎰, 而 vR T π2=[ B ]3. (自测提高2)质量为20 g 的子弹,以400 m/s 的速率沿图3-15射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . 【提示】相对于摆线顶部所在点,系统的角动量守恒: 2sin 30()mv l M m lV ︒=+;其中m 为子弹质量,M 为摆球质量,l 为摆线长度。

(或者:系统水平方向动量守恒。

)[ D ]4.(自测提高4)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力。

现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断. (C)两根线一起断. (D)两根线都不断.【提示】①下面的细线能承受的拉力大于所施加的最大力,所以下面的细线不断。

②因为是“突然向下拉一下”,作用时间极短,上面的细线并没有因此而进一步形变,因此,拉力不变,细线也不断。

二、填空题1.(基础训练8)静水中停泊着两只质量皆为0m 的小船.第一只船在左边,其上站一图3-11图3-15质量为m 的人,该人以水平向右速度v从第一只船上跳到其右边的第二只船上,然后又以同样的速率v 水平向左地跳回到第一只船上.此后 (1) 第一只船运动的速度为v1=02m v m m -+。

(2) 第二只船运动的速度为v2=02m v m 。

(水的阻力不计,所有速度都相对地面而言)【提示】以地面为参考系,水平方向动量守恒。

第一跳:人与第一只船:010mv m v '+= , 人与第二只船:02()mv m m v '=+ 第二跳:人与第一只船:0101()mv m v m m v '-+=+ 人与第二只船:0202()m m v mv m v '+=-+ 2.(基础训练11)将一质量为m 的小球,系于轻绳的一端,绳的另一端穿过光滑水平桌面上的小孔用手拉住。

先使小球以角速度ω1在桌面上做半径为r 1的圆周运动,然后缓慢将绳下拉,使半径缩小为r 2,在此过程中小球的动能增量是222111221 1 2r mr r ω⎛⎫- ⎪⎝⎭.【提示】因为拉力相对于小孔O 的力矩为零,所以小球对O 点的角动量守恒:1122mv r mv r =,111v r ω=,222v r ω=,得21212r r ωω⎛⎫= ⎪⎝⎭222222222121212211112211111(1)22222k k k r E E E mv mv m r m r m r r ωωω∆=-=-=-=-3.(自测提高6) 质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,如图3-19所示。

(1)地面对小球的竖直冲量的大小为( ; (2) 地面对小球的水平冲量的大小为012mv . 【提示】小球在与地面碰撞前后,动量发生了改变,根据动量定理:21I mv mv =-,此式在竖直方向和水平方向的分量式分别为:21((1y y y I mv mv =-==+02100122x x x v I mv mv m mv mv =-=-=-故它们的大小分别为:(1y I =+ 012x I m v =4.(自测提高7)一物体质量M =2 kg ,在合外力i t F)23(+= (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v=() 2 / i m s .y 21y 图3-17【提示】00v =,11(32)4 ()I Fdt t dt i i N s ==+=⋅⎰⎰根据动量定理:101I Mv Mv Mv =-=, 得:()12 /Iv i m s M==5.(自测提高8)两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101=v cm/s ,)0.50.3(2j i+=v cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v =__6.14cm/s__,v与x 轴的夹角α= 35.5 ︒.【提示】系统的动量守恒:112212()m v m v m m v +=+,解得:()3525 /77v i j cm s =+,大小为:()6.14 /v cm s ==;方向:2535.535arctg α︒⎛⎫== ⎪⎝⎭6(自测提高9)如图3-20所示,质量为m 的小球,自距离斜面高度为h 处自由下落到倾角为30°的光滑固定斜面上。

设碰撞是完全弹性的,则小球对斜面的冲量的大小为,方向为垂直斜面向下 。

【提示】小球碰撞前后的速度如图所示。

因为是完全弹性碰撞,所以212v v v ===根据动量定理,碰撞过程中斜面对小球的冲量为 21I mv mv =-,其大小为cos30(cos30)I mv mv ︒︒=--= 小球对斜面的冲量 I I '=-,因此,小球对斜面的冲量方向垂直斜面向下。

三、计算题1.(基础训练14)一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2)思路:炮弹爆炸前后,系统水平方向和竖直方向的动量守恒→两块弹片的初速度→距离。

解:(1)取水平方向为x 轴,竖直方向为y 轴,且向上为正方向。

在最高点爆炸时,系统的动量守恒。

设爆炸前的速度为x v v i =;爆炸后,第一块落在其正下方的地面上,设其速度为11y v v j =,第二块的速度为222x y v v i v j =+;x v 可根据S 1和h 求得。

设炮弹从发射到最高点经历的时间为t ,则有S 1 = v x t h=221gt 联立上述两式,得t =2 s , v x =500 m/s..........①v 1y 可根据第一块的落地时间1t s '=和h 求得h1v v 图3-202t g t h '+'=211v可解得v 1=14.7 m/s ,方向竖直向下。

所以v 1y =-14.7 m/s.......... ②根据水平方向和竖直方向动量守恒,x v v 0, v v v 0x y y m m m m m =++==21y 2111222得 x v 2v x=2=1000 m/s..........③ v - v y =21y =14.7 m/s..........④设第二块从爆炸到落地需要t 2的时间,根据斜抛的公式x 2= S 1 + v 2x t 2 ..........⑤ y 2=h +v 2y t 2-22gt 21..........⑥ 落地时y 2 =0,由式⑥可得 t 2 =4 s , t 2=-1 s (舍去), 将t 2=4s 代入式⑤,可求得 x 2=5000 m .2.(基础训练15)质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图3-15所示。

若小球与桌面作用的时间为∆t ,求小球对桌面的平均冲力。

解:由动量定理210()tN mg dt mv mv ∆+=-⎰N 为桌面对小球的作用力,mg 为小球所受重力。

即 []()cos (cos )2cos N mg t mv mv j mv j ααα-∆=--=, ∴ 2cos 2cos mv mv N mg j j t t αα⎛⎫=+≈⎪∆∆⎝⎭故小球对桌面的平均冲力为2cos 'mg N N j tα=-=-∆。

3.(自测提高12)如图3-23示,有两个长方形的物体A 和B 紧靠着静止放在光滑的水平桌面上,已知m A =2 kg ,m B =3 kg .现有一质量m =100 g 的子弹以速率v 0=800 m/s 水平射入长方体A ,经t = 0.01 s ,又射入长方体B ,最后停留在长方体B 内未射出。

设子弹射入A 时所受的摩擦力为F= 3×103N ,求:(1) 子弹在射入A 的过程中,B 受到A 的作用力的大小. (2) 当子弹留在B 中时,A 和B 的速度大小.解:0.0100.01t s ∆=-=;设子弹出A 入B 时,A 、B 共同速度大小为v ; 对A 、B 用动量定理:()0A B F t m m v ∆=+- ,得: v =6m/s 。

(1)设子弹在射入A 的过程中,B 受到A 的作用力的大小为f ;对B 用动量定理:图3-23 图3-150B f t m v ∆=-,得:3618000.01B m v f N t ⨯===∆。

(2)当子弹射入B 时,A 作匀速直线运动,所以A 的速度大小=子弹出A 入B 时A 、B 的共同速度大小,即 6/A v v m s ==。

取A 、B 和子弹组成的系统为研究对象,系统所受合外力为零,故系统的动量守恒。

设子弹留在B 中时,子弹和B 的共同速度大小为v B0()A A B B mv m v m m v =++,00.1800-26()0.1+3A AB B mv m v v m m -⨯⨯==+=22m/s 。

4.(自测提高14)一质量为m 的匀质链条,长为L ,手持其上端,使下端离桌面的高度为h 。

现使链条自静止释放落于桌面,试计算链条落到桌面上的长度为l 时,桌面对链条的作用力。

解:取x 轴向下为正。

设t 时刻,落在桌面上的部分链条长为l ,质量为l m ,则有l m m l l Lλ== (mL λ=为链条的质量线密度)此时在空中的链条的速度大小为:v =在dt 时间内,有dm vdt λ=链条元落在桌面上。

相关文档
最新文档