高中数学函数解题技巧方法总结(高考)

合集下载

高中函数题型方法全归纳

高中函数题型方法全归纳

高中函数题型方法全归纳高中函数题型方法全归纳函数是高中数学的重要分支之一,在高考数学中占有重要的地位。

函数的题型种类多样,每种题型都有其独特的解决方法。

本文将全面介绍高中函数的题型,并提供相应的解决方法。

一、函数的基本题型1.函数的定义域与值域问题定义域是指函数的输入范围,值域是指函数的输出范围。

对于函数的定义域和值域问题,我们需要明确以下几点:(1)函数的定义域必须包含输入值,值域必须包含输出值;(2)函数的定义域可以是任何实数,但值域必须是非负实数;(3)函数的定义域和值域之间的关系是:定义域决定了函数的输入范围,值域决定了函数的输出范围;(4)对于函数的复合函数,其定义域和值域必须满足复合函数的条件。

2.函数的定义域、值域和图像问题(1)函数的定义域和值域可以通过函数图像来确定;(2)函数图像必须满足函数的定义域和值域的限制条件;(3)通过函数图像,我们可以找到函数的对称轴、开口方向、最大值、最小值等特征。

3.函数的取值范围问题函数的取值范围是指函数在输入变量范围内的取值范围。

对于函数的取值范围问题,我们需要明确以下几点:(1)函数的输入变量必须大于等于零;(2)函数的取值范围可以是任何实数,但非负实数必须大于等于零;(3)函数的取值范围与定义域和值域有关。

4.函数的图像和性质问题(1)函数的图像必须满足函数的定义域和值域的限制条件;(2)通过函数图像,我们可以找到函数的对称轴、最大值、最小值等特征;(3)函数的性质可以通过函数图像和定义域、值域的关系来确定。

二、函数的应用函数在数学中有着广泛的应用,在解决实际问题中发挥着重要的作用。

下面我们将介绍一些常见的函数应用:1.函数在几何中的应用(1)函数在平面直角坐标系中的应用,如函数的取值范围、定义域、值域问题;(2)函数的图像和性质问题;(3)函数在图形上的变换和坐标系的变换。

2.函数在代数中的应用(1)函数在一元一次方程中的应用,如函数的定义域、值域问题;(2)函数的取值范围问题;(3)函数在一元二次方程中的应用。

高中数学函数解题技巧与方法

高中数学函数解题技巧与方法

高中数学函数解题技巧与方法
1、建立函数根底题型和根本问题解法库,知识构造和内容都理清记牢了,我们要进展实战了,和知识点一样,每个模块分出几种根本函数题型,和几个特殊问题的专题。

2、对一种函数题型,一定要看会例题或者听懂老师讲解之后,再按老师的解法做同类型的问题。

不要搞创新,或者守着自己偏颇的解题方法不放弃。

我不反对题海战术,但是你要把海选准,哪种题型不会再往相应的题海里钻,已经很纯熟的题型就少练一些。

也就是所谓的针对性,重点要突出。

并且在做的过程中要不断总结反思,否那么你就算游进太平洋也不会有进步。

对于一种题型没掌握,就反复练,一道不会五道,五道不会十道。

不要疑心自己智商不在线,只要运用老师给的解题方法,屡次练习一定会精通。

3、用老师的思维形式解题。

有同学会问我这样的问题:老师,这道题您是怎么想到这种解法的,为什么我想不到?作为老师也有同样的疑问,为什么一些简单的问题学生偏偏找不到解法。

所以我觉得有必要把我们老师的解题形式告诉大家,因为考试题是老师出的,掌握了老师解题的思维过程,会帮助
学生在考场上瞬间抓住命题人的意图和考点。

也不是很高深的技巧,只是一种思维形式。

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

高考数学解题训练方法与技巧汇集(共8篇)

高考数学解题训练方法与技巧汇集(共8篇)

高考数学解题训练方法与技巧聚集〔共8篇〕篇1:高考数学解题训练方法与技巧聚集数学解题训练方法与技巧第一,充分利用考前五分钟。

按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。

这五分钟是不准做题的,但是这五分钟可以看题。

发现很多考生拿到试卷之后,就从第一个题开场看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。

之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

学生拿着数学卷子,不要看选择,不要看填空,先看后边的六个大题。

这六个大题的难度分布一般是从易到难。

我们为了应付这样的一次考试,提早做了大量的习题,试卷上有些题目可能已经做过了,或者你一目了然,感觉很轻松,我建议先把这样的大题拿下来。

大题一般12分左右,这12分如囊中取物,你就有底气了,心情也好了。

特别是要看看最后那个大题,一看那个题目压根儿就不是自己力所能及的,就把它砍掉,只想着后边只有五个题,这样在做题的时候,就可以控制速度和质量。

假如倒数第二题也没有什么感觉,你就想,可能今年这个题出得比拟难,那么我如今的做法应该是把前边会做的题目踏踏实实做好,不要急于去做后边的题目,因为后边的题目不是正常人能做的题目。

第二,进入考试阶段先要审题。

审题一定要仔细,一定要慢。

数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。

你在误读的根底上来做的话,你可能感觉做得很轻松,但这个题一分不得。

所以审题一定要仔细,你一旦把题意弄明白了,这个题目也就会做了。

会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用多少时间。

第三,一定要培养自己一次就做对的习惯。

如今有些学生,好不容易遇到一个会做的题目,就快速地把会做的题目做错,争取时间去做不会做的题目。

殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生以为前边题目的分数不值钱,后边大题的分数才值钱,不知道这是什么心理。

高中函数解题技巧

高中函数解题技巧

高中函数解题技巧高中函数解题技巧引言在高中数学中,函数是一个重要的内容,解题时需要运用合适的技巧来解决各种函数问题。

本文将详细说明高中函数解题的各种技巧,帮助学生更好地应对考试。

技巧一:函数定义的掌握1.理解函数的定义:函数是一个映射关系,将自变量映射到因变量。

2.弄清楚定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。

3.利用定义域和值域求解问题:在解题过程中,需要根据函数的定义域和值域来确定自变量和因变量的取值范围,进而解决相关问题。

技巧二:函数的性质应用1.利用奇偶性判断函数的对称性:奇函数以原点对称,偶函数以y轴对称。

通过判断函数的奇偶性,可以简化一些计算和问题的分析。

2.利用导数判断函数的增减性:函数的导数代表其斜率,通过求导可以判断函数在某一区间内的增减情况,有助于解决最值和特殊点问题等。

3.利用周期性解决重复性问题:某些函数具有周期性特征,通过寻找周期性解决问题,可以简化计算和分析过程。

技巧三:函数图像的应用1.利用函数图像解读问题:观察函数的图像,可以帮助理解函数的性质和规律,进而解决相关问题。

2.利用函数图像求解交点和切点:通过观察函数图像的交点和切点,可以求解函数的零点、最大最小值和特殊点等问题。

技巧四:函数图像的变换1.利用平移变换函数图像:平移函数图像可以改变函数图像的位置,通过平移变换可以简化计算和分析过程。

2.利用伸缩变换函数图像:伸缩函数图像可以改变函数图像的尺寸,通过伸缩变换可以观察到函数的变化规律。

技巧五:函数组合和复合1.利用函数组合化简问题:将多个函数组合起来,可以简化计算和分析过程,有助于解决复杂的问题。

2.利用函数复合求解复合函数值:通过将自变量代入复合函数,可以求解复合函数的值,解决相关问题。

技巧六:方程和不等式的解法1.利用函数解方程:将方程转化为函数等式,通过解函数等式来求解方程,可以简化计算和分析过程。

2.利用函数解不等式:将不等式转化为函数不等式,通过解函数不等式来求解不等式,解决相关问题。

高中函数题型及解题方法

高中函数题型及解题方法

高中函数题型及解题方法高中数学中,函数是一个非常重要的概念,也是学生们比较头疼的一个知识点。

函数题型在高考中占据着相当大的比重,因此熟练掌握函数的相关知识和解题方法对于高中生来说至关重要。

下面我们就来系统地总结一下高中函数题型及解题方法。

一、基本函数题型。

1. 一次函数。

一次函数是高中阶段最基础的函数之一,其函数表达式为y=kx+b,其中k和b分别代表斜率和截距。

一次函数的图像是一条直线,因此在解题时需要掌握直线的性质和相关的解题技巧,如求斜率、求截距、求交点等。

2. 二次函数。

二次函数是高中阶段比较常见的函数之一,其函数表达式为y=ax^2+bx+c,其中a不等于0。

二次函数的图像是抛物线,因此在解题时需要掌握抛物线的性质和相关的解题技巧,如求顶点、求零点、求对称轴等。

3. 指数函数。

指数函数是以a(a大于0且不等于1)为底的幂函数,其函数表达式为y=a^x。

指数函数的图像是一条逐渐增长或逐渐减小的曲线,因此在解题时需要掌握指数函数的增减性、奇偶性和相关的解题技巧,如求定义域、值域、解不等式等。

4. 对数函数。

对数函数是指数函数的反函数,其函数表达式为y=loga(x)。

对数函数的图像是一条渐进于x轴的曲线,因此在解题时需要掌握对数函数的性质和相关的解题技巧,如求定义域、值域、解不等式等。

二、解题方法。

1. 分析题目。

在解函数题型的题目时,首先要仔细阅读题目,分析题目中所给的条件和要求,理清思路,确定解题的方法和步骤。

2. 列出方程。

根据题目所给的条件,可以列出相应的函数方程,如一次函数的斜率截距形式、二次函数的标准形式、指数函数的幂函数形式、对数函数的指数形式等。

3. 运用函数性质。

根据函数的性质和特点,运用相关的定理和公式,解决问题。

比如利用一次函数的斜率求交点坐标,利用二次函数的顶点求最值,利用指数函数的增减性解不等式,利用对数函数的性质求解方程等。

4. 综合运用。

有些函数题目可能需要综合运用多种函数的性质和解题方法,因此在解题时需要综合考虑,灵活运用各种方法,找到最优解。

高中数学根据导数求函数的最值问题解题技巧总结

高中数学根据导数求函数的最值问题解题技巧总结

高中数学根据导数求函数的最值问题解题技巧总结在高中数学中,根据导数求函数的最值是一个常见的考点。

这类问题要求我们通过求函数的导数,找到函数的极大值或极小值点,从而确定函数的最值。

下面我将总结一些解题技巧,帮助高中学生和他们的父母更好地应对这类问题。

一、寻找函数的极值点在解决根据导数求函数最值问题时,首先需要找到函数的极值点。

一般来说,函数的极值点就是函数的导数等于零的点,即函数的驻点。

我们可以通过以下步骤来找到函数的极值点:1. 求函数的导数。

根据问题给出的函数,我们可以先对其求导数。

例如,对于函数f(x),我们可以求得它的导函数f'(x)。

2. 解方程f'(x) = 0。

将求得的导函数f'(x)置零,解方程求得函数的驻点。

这些驻点就是函数的极值点。

需要注意的是,有时候函数的极值点可能还存在于函数的定义域的边界处,所以我们还需要将边界处的点也考虑进去。

二、判断极值点的性质找到函数的极值点后,我们需要进一步判断这些点的性质,即确定它们是极大值点还是极小值点。

这里有两种常见的方法:1. 使用导数的符号表。

我们可以通过绘制导数的符号表来判断极值点的性质。

具体做法是,在函数的定义域上选择几个代表性的点,代入导数f'(x)的值,然后根据导数的正负确定函数在这些点附近的增减性。

如果导数从正变负,那么这个点就是极大值点;如果导数从负变正,那么这个点就是极小值点。

2. 使用二阶导数。

二阶导数可以帮助我们更准确地判断极值点的性质。

具体做法是,求得函数的二阶导数f''(x),然后将极值点代入二阶导数。

如果二阶导数大于零,那么这个点就是极小值点;如果二阶导数小于零,那么这个点就是极大值点。

三、举一反三根据导数求函数的最值问题不仅仅局限于求解极值点,还可以应用到其他类型的函数中。

下面举一个例子来说明。

例题:求函数f(x) = x^3 - 3x^2 + 2x的最大值和最小值。

高中数学函数题型及解题技巧

高中数学函数题型及解题技巧

1、一元二次方程
解题技巧:
(1)将一元二次方程ax2+bx+c=0(a≠0)变成一元二次不等式ax2+bx+c≥0或ax2+bx+c≤0,计算其解的范围。

(2)转换成一元二次不等式后,用判别式Δ=b2-4ac 来确定方程的具体解法:
(a)Δ>0,则有两根;
(b)Δ=0,则有一根;
(c)Δ<0,则无解。

(3)根据Δ的值,计算一元二次方程的根:
(a)Δ>0,则根据公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a计算;
(b)Δ=0,则根据公式x=(-b)/2a计算;
(c)Δ<0,则无解。

2、函数图像
解题技巧:
(1)分析函数图像的奇偶性:函数y=f(x)的函数图像是一条不断变化的曲线,如果函数图像关于y轴对称,则称该函数为偶函数;如果函数图像关于原点对称,则称该函数为奇函数。

(2)分析函数图像的单调性:函数f(x)的函数图像表示函数y的取值随x的变化而变化的规律,如果函数图像在某个区间内是单调递增或者单调递减的,则称该函数在该区间内是单调的。

(3)分析函数图像的极值:对于一个函数f(x)的函数图像,如果函数图像在某个区间有极大值和极小值,则称该函数在该区间有极值。

高中数学中的函数与解析几何解题技巧分享

高中数学中的函数与解析几何解题技巧分享

高中数学中的函数与解析几何解题技巧分享函数与解析几何是高中数学的重要部分,它们在各种数学问题的解决中起着至关重要的作用。

本文将分享一些在函数与解析几何方面的解题技巧,希望能对高中数学学习者有所帮助。

一、函数解题技巧1. 理解函数的定义在解题过程中,首先要对函数的定义有清晰的理解。

函数是一种映射关系,它将自变量映射到对应的因变量。

函数解题时要准确地找到函数的定义域和值域,并理解函数在不同定义域上的变化规律。

2. 利用函数性质简化运算在解题过程中,可以根据函数的性质简化运算。

例如,利用奇偶性质可以简化函数的求值,利用周期性质可以简化函数的图像绘制,从而更便捷地解决问题。

3. 构建辅助函数有时,在解决复杂问题时,可以构建辅助函数来简化问题的分析与计算。

通过构建适当的辅助函数,可以将问题转化为更易解的形式,从而更高效地求解。

二、解析几何解题技巧1. 熟悉平面几何基本知识解析几何中的基本概念包括点、直线、平面等,学习者首先要熟悉这些基本知识,理解它们之间的关系和性质。

只有对基本概念有清晰的认识,才能更好地解决解析几何中的问题。

2. 等距变换的应用等距变换是解析几何中常用的技巧之一。

通过平移、旋转、对称等等等距变换,可以保持图形的形状和大小不变,从而简化问题的求解。

学习者需要善于利用等距变换来研究几何问题,提高问题的解决效率。

3. 坐标系的运用在解析几何中,坐标系是一个重要的工具。

通过建立适当的坐标系,可以将几何问题转化为代数问题,并运用代数知识来求解。

学习者要熟练掌握坐标系的建立方法,善于将几何问题转化为坐标系中的方程求解。

三、函数与解析几何综合运用1. 利用函数与解析几何相互关系解题函数与解析几何是密不可分的。

在解决数学问题时,学习者可以将函数与解析几何相互应用,通过解析几何的几何特性来研究函数,或者通过函数的性质来推导解析几何问题的解决方法。

例如,利用平面几何中直线的垂直、平行关系来研究函数的递增、递减性质,或者通过解析几何的方程求解方法来确定函数的解。

实用高考数学知识点总结经验分享

实用高考数学知识点总结经验分享

实用高考数学知识点总结经验分享作为高考必考科目之一,数学占据了高考总分的三分之一。

因此,在备战高考的过程中,掌握实用的数学知识点显得尤为重要。

本文就实用高考数学知识点进行总结,希望能对广大考生有所帮助。

一、一元二次方程和函数的应用一元二次方程和函数的应用广泛,不仅考查频率高,而且与实际生活密切相关。

掌握此类知识点,能够在考试中快速解题,提高分数。

1. 一元二次方程求解一元二次方程的解法有多种,如公式法、配方法、因式分解法等。

实际上,在高考中,选择合适的解法、勾画出解题思路也非常重要。

例如:(1)已知一元二次方程$ax^2+bx+c=0$,其中$a,b,c$ 都是实数,如果$a<0$,则该方程的解为$x=\frac{-b+\sqrt{b^2-4ac}}{2a},\frac{-b-\sqrt{b^2-4ac}}{2a}$。

(2)已知一元二次方程的两个根为$x_1$ 和$x_2$,则该方程的表达式为$x^2-(x_1+x_2)x+x_1x_2=0$。

(3)已知一元二次方程的两根为$x_1$ 和$x_2$,则该方程的基本式为$y=a(x-x_1)(x-x_2)$。

2. 函数的应用函数是数学中一个重要的概念,包括常见的二次函数、指数函数、对数函数等。

在应用中,函数可以用于求解最优值、拟合曲线等方面。

例如:(1)已知函数$y=2x^2-6x+5$,则该函数的最小值为$-\frac{1}{2}$。

(2)已知二次函数的开口方向和顶点坐标,则可以画出函数的图像并推断出函数的性质。

(3)已知指数函数$y=a^x$ 和经过两点$(1,2)$ 和$(3,8)$ 的直线,则可以求出$a$ 的值并确定函数的表达式。

二、平面向量的性质和应用平面向量的性质和应用是数学中一个重要的知识点,能够用于求解几何问题。

掌握平面向量的相关知识,能够帮助考生更好地理解和解决空间图形问题。

例如:1. 向量的运算向量的加法、减法、数量积和向量积等运算十分重要。

高考的数学答题技巧(推荐8篇)

高考的数学答题技巧(推荐8篇)

高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。

以下总结高考数学五大解题思想,帮助同学们更好地提分。

1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。

同学们在解题时可利用转化思想进展函数与方程间的互相转化。

2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。

它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。

不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。

5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。

求函数解析式的几种方法及题型

求函数解析式的几种方法及题型

求函数解析式的几种方法及题型【最新版3篇】篇1 目录一、引言二、求函数解析式的常用方法1.待定系数法2.交点式3.顶点式4.换元法5.归纳法三、求函数解析式的题型及应用1.已知三个点求解析式2.已知顶点求解析式3.已知交点求解析式4.抽象复杂函数问题四、结论篇1正文一、引言求函数解析式是高中数学中的常见问题,也是高考的常规题型之一。

解决这类问题需要掌握一定的方法和技巧。

本文将介绍几种常用的求函数解析式的方法及题型,帮助同学们更好地理解和应用这些方法。

二、求函数解析式的常用方法1.待定系数法待定系数法是一种求未知数的方法。

将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。

然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式。

2.交点式交点式适用于已知抛物线与 x 轴的两个交点的情况。

通过已知的交点,我们可以得到两个方程,解这两个方程可以求得抛物线的解析式。

3.顶点式顶点式适用于已知抛物线的顶点的情况。

通过已知的顶点,我们可以得到一个方程,这个方程包含了抛物线的顶点坐标和抛物线的解析式中的待定系数。

解这个方程可以求得抛物线的解析式。

4.换元法换元法是一种通用的求函数解析式的方法,适用于各种复杂的函数问题。

通过换元,我们可以将复杂的函数问题转化为简单的函数问题,从而求得函数的解析式。

5.归纳法归纳法适用于具有一定规律的函数问题。

通过观察函数的规律,我们可以猜测函数的解析式,然后通过数学归纳法证明我们的猜测是正确的。

三、求函数解析式的题型及应用1.已知三个点求解析式已知函数上的三个点,我们可以通过待定系数法求解函数的解析式。

设定函数的形式为 y=ax^2+bx+c,然后将三个点的坐标代入方程,得到三个方程组成的线性方程组,解这个方程组可以求得函数的解析式。

2.已知顶点求解析式已知抛物线的顶点,我们可以通过顶点式求解抛物线的解析式。

高考数学必考题型及答题技巧

高考数学必考题型及答题技巧

高考数学必考题型及答题技巧高考数学必考题型及答题技巧高考数学必考题型是什么题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。

题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

题型三解三角函数问题、判断三角形形状、正余弦定理的应用。

题型四数列的通向公式的求法。

高考数学答题技巧有哪些1、函数或方程或不等式的题目,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;高考数学考试大纲①单项选择考试范围。

集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。

②多项选择考试范围。

解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。

③填空题考试范围。

解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。

④解答题考试范围。

三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。

高考数学不及格影响院校录取吗?高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。

高中数学函数解题技巧方法总结(高考)

高中数学函数解题技巧方法总结(高考)

高中数学函数知识点总结1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型?()()例:函数的定义域是y x x x =--432lg ()()()(答:,,,)022334函数定义域求法:● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。

● 正切函数x y tan = ⎪⎭⎫⎝⎛∈+≠∈Zππk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ●反三角函数的定义域函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1,1] ,值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

3. 如何求复合函数的定义域?[]的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。

[](答:,)a a -复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

例 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

分析:由函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。

高中数学函数题的解题技巧

高中数学函数题的解题技巧

高中数学函数题的解题技巧高中数学函数题的解题技巧高中数学中的函数是非常难的,很多同学在函数部分都会丢分,那么高中数学函数题型及解题技巧是什么?下面是为大家整理的关于高中数学函数题的解题技巧,希望对您有所帮助!高中数学函数解题思路方法一观察法1.观察函数中的特殊函数;2.利用这些特殊函数的有界性,结合不等式推导出函数的值域方法二分离常数法1.观察函数类型,型如;2.对函数变形成形式;3.求出函数在定义域范围内的值域,进而求函数的值域方法三配方法1.将二次函数配方成;2.根据二次函数的图像和性质即可求出函数的值域方法四反函数法1.求已知函数的反函数;2.求反函数的定义域;3.利用反函数的定义域是原函数的值域的关系即可求出原函数的值域方法五换元法1.第一步观察函数解析式的形式,函数变量较多且相互关联;2.另新元代换整体,得一新函数,求出新函数的值域即为原函数的值域数学函数题解题技巧1.函数值域常见求法和解题技巧函数的值域与最值是两个不同的概念,一般说来,求出了一个函数的最值,未必能确定该函数的值域,反之,一个函数的值域被确定,这个函数也未必有最大值或最小值.但是,在许多常见的函数中,函数的值域与最值的求法是相通的、类似的.关于求函数值域与最值的方法也是多种多样的,但是有许多方法是类似的,归纳起来常用的方法有:观察法、配方法、换元法、反函数法、判别式法、不等式法、利用函数的单调性、利用三角函数的有界性、数形结合法等,在选择方法时,要注意所给函数表达式的结构,不同的结构选择不同的解法。

2.函数奇偶性的判断方法及解题策略确定函数的奇偶性,一般先考查函数的定义域是否关于原点对称,然后判断与的关系,常用方法有:①利用奇偶性定义判断;②利用图象进行判断,若函数的图象关于原点对称则函数为奇函数,若函数的图象关于轴对称则函数为偶函数;③利用奇偶性的一些常见结论:奇奇奇,偶偶偶,奇奇偶,偶偶偶,偶奇奇,奇奇偶,偶偶偶,奇偶奇,偶奇奇;④对于偶函数可利用,这样可以避免对自变量的繁琐的分类讨论。

高中数学 高考数学50条秒杀型公式与方法

高中数学  高考数学50条秒杀型公式与方法

高中数学| 高考数学50条秒杀型公式与方法1,适用条件:[直线过焦点],必有e c o sA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):①、若f(x)=-f(x+k),则T=2k;②、若f(x)=m/(x+k)(m不为0),则T=2k;③、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=s i n x y=si n派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:①,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;②、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;③、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4,函数奇偶性:①、对于属于R上的奇函数有f(0)=0;②、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项③,奇偶性作用不大,一般用于选择填空。

5,数列爆强定律:①,等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);②,等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;③,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;④,等比数列爆强公式:S(n+m)=S(m)+q²m S(n)可以迅速求q。

6,数列的终极利器,特征根方程。

首先介绍公式:对于a n+1=p an+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

(完整版)高中数学函数解题技巧.(最新整理)

(完整版)高中数学函数解题技巧.(最新整理)

因此,函数 f(x)在区间 (2 a 2 1 a ,2 a 2 1 a)内单调递减.
点评:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算
能力.
例2
已知 a 0,函数
f (x)
1 ax , x (0,) 。 设 x
0
x1
2 ,记曲线 a
y
f (x) 在点
M (x1, f (x1 )) 处的切线为 l 。
判断它们的差的符号即可。
证:依题意,切线方程中令 y=0,
x2
x1 (1
ax1 )
x1
x1 (2
ax1 ),其中0
x1
2 a
.

由0
x1
2 a , x2
x1 (2 ax1 ),有x2
0, 及x2
a( x1
1 a
)2
1 a
-3-
〈0 x2
1 a
,当且仅当x1
1 a
时,x
2
1 a
.
②当x1
1 a
时,ax1
1,因此,x2
x1 (2 ax1 )
x1,且由①,x2
1 a
所以x1
x2
1 a

点评:本小题主要考查利用导数求曲线切线的方法,考查不等式的基本性质,以及分析
和解决问题的能力。
例 3、 函数 y=1- 1 的图象是( ) x 1
解析一:该题考查对 f(x)= 1 图象以及对坐标平移公式的理解,将函数 y= 1 的图形变
分析:在已知方程 f x x 0 两根的情况下,根据函数与方程根的关系,可以写出函数
f x x 的表达式,从而得到函数 f (x) 的表达式.

高考数学复习考点题型解题技巧专题讲解05 函数解析式

高考数学复习考点题型解题技巧专题讲解05 函数解析式

高考数学复习考点题型解题技巧专题讲解第5讲函数解析式专项突破高考定位函数的表示有三种图像法、列表法、解析法,在高考中每年都会考察,解析式的考察一直是高考的重点,既有常规的求解析式求法融合在函数综合题中,也有新高考中的新形式,比如给图写式,给性质写式等,考察学生的多维的思维能力,对函数的整体把握。

考点解析(1)换元法求解析式(2)方程组求解析式(3)利用对称性周期性求解析式(4)给图辨析解析式(5)开放试题中的解析式(6)目标量(式)的函数解析式化分项突破类型一、换元法求解析式例1-1.(2022·全国·高三专题练习)已知函数f(x2+1)=x4,则函数y=f(x)的解析式是()A.()()21,0f x x xf x x x=-≥=-≥B.()()21,1C.()()21,0f x x x=+≥=+≥D.()()21,1f x x x【答案】B【分析】利用凑配法求得()f x解析式.【详解】()()()2242211211f x x x x +==+-++,且211x +≥, 所以()()22211,1f x x x x x =-+=-≥.故选:B.练.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .()2f x x =B .()2f x x =C .(cos )f x x =D .()x f e x = 【答案】AD【解析】对于A.令()2(0),t t t x f ===≥符合函数定义;对于B,令()2(0),t x f t t ==≥,设()2,4t f t ==±,一个自变量对应两个函数值,不符合函数定义;对于C,设cos ,t x =当2,1t =则x 可以取包括3π±等无数多的值,不符合函数定义;对于D.令())ln (0,x t e t f t t >==,符合函数定义.故选AD练(2022秋•渝中区校级月考)对任意x ∈R,存在函数f (x )满足( )A .f (cos x )=sin2xB .f (sin2x )=sin xC .f (sin x )=sin2xD .f (sin x )=cos2x【分析】根据函数定义,每个自变量只能对应唯一一个函数值.对于A 、B 、C 可采用取特殊值来排除,对于D 选项可利用换元法来求函数的解析式即可判断.【解答】解:对于A ,取x ,则cos x ;sin2x =1,∴f ()=1;若取x,则cos x;sin2x=﹣1,∴f()=﹣1;则f()=1又f()=﹣1,与函数的定义,“每个自变量x只能对应唯一一个函数值y”矛盾,故A错误;同理,对于B,取2x,则sin2x;sin x,∴f();若取2x,则sin2x;sin x,∴f(),故B错误;同理,对于C,取x,则sin x;sin2x,∴f();若取x,则sin x;sin2x,∴f(),故C错误;对于D,令sin x=t,cos2x=1﹣2sin2x=1﹣2t2,∴f(t)=1﹣2t2,满足函数定义.故选:D.类型二、方程组求解析式例2-1(2021·湖南·高三月考)已知函数()f x满足22()()326f x f x x x+-=++,则()A.()f x的最小值为2 B.x R∃∈,22432()x xf x++>C.()f x的最大值为2 D.x R∀∈,22452()x xf x++>【答案】D 【分析】先求得()f x ,然后结合二次函数的性质确定正确选项.【详解】因为22()()326f x f x x x +-=++(i ),所以用x -代换x 得22()()326f x f x x x -+=-+(ii ).(i )×2-(ii )得23()366f x x x =++,即22()22(1)1f x x x x =++=++,从而()f x 只有最小值,没有最大值,且最小值为1.()2222222221243243122()222222x x x x x x f x x x x x x x ++-++++===-<++++++, ()2222222221245245122()222222x x x x x x f x x x x x x x +++++++===+>++++++. 故选:D.练.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲()y f x =在点()()1,1f 处的切线方程是()A .21y x =-B .y x =C .32y x =-D .23y x =-+【答案】A【分析】先根据2()2(2)88f x f x x x =--+-求出函数()f x 的解析式,然后对函数()f x 进行求导,进而可得到()y f x =在点(1,(1))f 处的切线方程的斜率,最后根据点斜式可求切线方程.【详解】2()2(2)88f x f x x x =--+-,2(2)2()(2)8(2)8f x f x x x ∴-=--+--.2(2)2()441688f x f x x x x ∴-=-+-+--.将(2)f x -代入2()2(2)88f x f x x x =--+-,得22()4()28888f x f x x x x x =--+-+-,2()f x x ∴=,()2f x x '=,()y f x ∴=在(1,(1))f 处的切线斜率为2y '=,∴函数()y f x =在(1,(1))f 处的切线方程为12(1)y x -=-,即21y x =-.故选:A.练.(2021·河南·高三月考(文))已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359x f x g x x x +=-++,则()()13f g -+=______. 【答案】223 【分析】先用列方程组法求出()f x 和()g x 的解析式,代入即可求解.【详解】因为()()224359x f x g x x x +=-++……① 所以()()224359x f x g x x x -+-=+++ 因为()f x 为偶函数,()g x 为奇函数,所以()()224359x f x g x x x -=+++……② ①②联立解得:()235f x x =+,()249x g x x =-+, 所以()()()22431331532392f g ⨯-+=-+-=+. 故答案为:223.练。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学函数知识点总结1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 2. 求函数的定义域有哪些常见类型?()()例:函数的定义域是y x x x =--432lg ()()()(答:,,,)022334Y Y函数定义域求法:● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。

● 正切函数x y tan = ⎪⎭⎫⎝⎛∈+≠∈Z ππk k x R x ,2,且● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ●反三角函数的定义域函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的定义域是 R ,值域是.,函数y =arcctgx 的定义域是 R ,值域是 (0, π) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

3. 如何求复合函数的定义域?[]的定,则函数,,的定义域是如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。

[](答:,)a a -复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[])(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

例 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

分析:由函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21可知:221≤≤x ;所以)(log 2x f y =中有2log 212≤≤x 。

解:依题意知:2log 212≤≤x 解之,得 42≤≤x ∴ )(log 2x f 的定义域为{}42|≤≤x x4、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。

例 求函数y=x1的值域2、配方法配方法是求二次函数值域最基本的方法之一。

例、求函数y=2x -2x+5,x ∈[-1,2]的值域。

3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂.112..22222222ba y 型:直接用不等式性质k+xbxb. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx n x mx nd. y 型x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例 求函数y=6543++x x 值域。

5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。

我们所说的单调性,最常用的就是三角函数的单调性。

例 求函数y=11+-x x e e ,2sin 11sin y θθ-=+,2sin 11cos y θθ-=+的值域。

222110112sin 11|sin |||1,1sin 22sin 12sin 1(1cos )1cos 2sin cos 14sin()1,sin()41sin()114即又由知解不等式,求出,就是要求的答案x x x e y y e y e y y y y y y yy x y x y y x yy θθθθθθθθθθθθ-+=⇒=>-+-+=⇒=≤+--=⇒-=++-=+++=++=+++≤≤+6、函数单调性法通常和导数结合,是最近高考考的较多的一个内容 例求函数y=+-25x log31-x (2≤x ≤10)的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。

换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。

例 求函数y=x+1-x 的值域。

8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

例:已知点P (x.y )在圆x 2+y 2=1上,2,(2),2(,20, (1)的取值范围 (2)y-2的取值范围解:(1)令则是一条过(-2,0)的直线. d 为圆心到直线的距离,R 为半径)(2)令y-2即也是直线d d yx x yk y k x x R d x b y x b R +==+-≤=--=≤例求函数y=)2(2-x +)8(2+x 的值域。

解:原函数可化简得:y=∣x-2∣+∣x+8∣上式可以看成数轴上点P (x )到定点A (2),B (-8)间的距离之和。

由上图可知:当点P 在线段AB 上时, y=∣x-2∣+∣x+8∣=∣AB ∣=10当点P 在线段AB 的延长线或反向延长线上时, y=∣x-2∣+∣x+8∣>∣AB ∣=10 故所求函数的值域为:[10,+∞) 例求函数y=1362+-x x+542++x x的值域解:原函数可变形为:y=)20()3(22--+x +)10()2(22+++x上式可看成x 轴上的点P (x ,0)到两定点A (3,2),B (-2,-1)的距离之和,由图可知当点P 为线段与x 轴的交点时, y m in =∣AB ∣=)12()23(22+++=43,故所求函数的值域为[43,+∞)。

注:求两距离之和时,要将函数 9 、不等式法利用基本不等式a+b ≥2ab ,a+b+c ≥3abc 3(a ,b ,c ∈R +),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

例:33()13()32x (3-2x)(0<x<1.5)x x+3-2x =x x (3-2x) (应用公式abc 时,应注意使3者之和变成常数)a b c +⋅⋅≤=++≤ 10.倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例 求函数y=32++x x 的值域 332(0)11113333222x =x x (应用公式a+b+c 时,注意使者的乘积变成常数)x xx x x xabc +>++≥⨯⨯=≥320112022012时,时,=0yxxyyx yy=++≠==≥⇒<≤+=∴≤≤多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

5. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?切记:做题,特别是做大题时,一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂()如:,求f x e x f xx+=+1().令,则t x t=+≥10∴x t=-21∴f t e tt()=+--2121()∴f x e x xx()=+-≥-212106. 反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)()()如:求函数的反函数f xx xx x()=+≥-<⎧⎨⎪⎩⎪102()()(答:)f xx xx x-=->--<⎧⎨⎪⎩⎪111()在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。

请看这个例题:(2004.全国理)函数)1(11≥+-=xxy的反函数是( B )A.y=x2-2x+2(x<1) B.y=x2-2x+2(x≥1)C.y=x2-2x (x<1) D.y=x2-2x (x≥1)当然,心情好的同学,可以自己慢慢的计算,我想,一番心血之后,如果不出现计算问题的话,答案还是可以做出来的。

可惜,这个不合我胃口,因为我一向懒散惯了,不习惯计算。

下面请看一下我的思路:原函数定义域为 x〉=1,那反函数值域也为y>=1. 排除选项C,D.现在看值域。

原函数至于为y>=1,则反函数定义域为x>=1, 答案为B.我题目已经做完了, 好像没有动笔(除非你拿来写*书)。

思路能不能明白呢? 7. 反函数的性质有哪些? 反函数性质: 1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x 对应原函数中的y ) 2、 反函数的值域是原函数的定义域(可扩展为反函数中的y 对应原函数中的x ) 3、 反函数的图像和原函数关于直线=x 对称(难怪点(x,y )和点(y ,x )关于直线y=x 对称 ①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈⇔=-()b a [][]∴====---f f a f b a f f b f a b 111()()()(),由反函数的性质,可以快速的解出很多比较麻烦的题目,如(04. 上海春季高考)已知函数)24(log )(3+=xx f ,则方程4)(1=-x f 的解=x __________. 8 . 如何用定义证明函数的单调性? (取值、作差、判正负) 判断函数单调性的方法有三种: (1)定义法:根据定义,设任意得x 1,x 2,找出f(x 1),f(x 2)之间的大小关系可以变形为求1212()()f x f x x x --的正负号或者12()()f x f x 与1的关系(2)参照图象:①若函数f(x)的图象关于点(a ,b)对称,函数f(x)在关于点(a ,0)的对称区间具有相同的单调性; (特例:奇函数)②若函数f(x)的图象关于直线x =a 对称,则函数f(x)在关于点(a ,0)的对称区间里具有相反的单调性。

(特例:偶函数) (3)利用单调函数的性质:①函数f(x)与f(x)+c(c 是常数)是同向变化的②函数f(x)与cf(x)(c 是常数),当c >0时,它们是同向变化的;当c <0时,它们是反向变化的。

相关文档
最新文档