我国特高压直流输电技术的现状及发展
特高压输变电技术的现状分析和发展趋势
特高压输变电技术的现状分析和发展趋势摘要:在社会经济不断发展的背景下,人们对电力能源的需求不断提升。
电力能源传输往往受传输距离的影响,出现很大的损耗,在节能减排成为社会普遍共识的情况下,电力传输过程中的能源损耗问题愈加突出,该问题在很大程度上影响了电力能源的长距离输送和能源资源的配置。
随着特高压输变电技术的不断成熟,长距离输电过程中的能源损耗问题可以被解决。
基于以上认识,文章从特高压输变电技术的应用意义出发,探究了特高压输变电技术的研究现状及发展,希望能够为特高压输变电技术的应用提供一定的思路。
关键词:特高压;输变电;电力传输1.特高压输变电技术的应用意义应用特高压输变电技术建立特高压网络,能够进一步提升电网的安全性、可靠性与经济性;应用特高压输变电技术可以彻底解决电网跨区弱连接导致的电力网络安全问题,为我国东部地区的生产建设提供强有力的电力网络支撑;应用特高压输变电技术可解决高负载区域电网短路电流超限问题,并减少走廊回路数量、节省土地资源。
计算和实际应用证明,±800kV的直流输电线路比±600kV的直流输电线路回数明显减少,可节约输电通道面积300km2。
在传输100000kW的电能,传输距离为800km时,使用500kV交流线路需8~10回,而使用特高压输电网络仅需2回,可缩短传输通道宽度0.3km,节省传输通道面积240km2,具有较明显的经济优势。
应用特高压输变电技术和特高压电网有助于构建跨区域的大规模网络,实现错峰、调峰、水火互惠、减少电网损耗;应用特高压输变电技术也能减少煤炭运输压力,推进煤炭的集约利用。
目前,我国能源分布存在一定的结构性矛盾,中西部地区的能源资源较丰富,东部沿海地区的能源消耗大,存在能源紧张问题。
应用特高压输变电技术有助于西电东输,可以使西部地区充分发挥自身的资源优势,同时降低中部和东部地区的能源压力,推动地区经济和社会的协调发展。
1.我国特高压输变电技术的研究现状我国开展特高压输变电技术的科研工作已有30余年。
浅谈对我国特高压交直流输电技术分析与研究
浅谈对我国特高压交直流输电技术分析与研究摘要:从世界范围看,特高压输电技术将长期发展。
根据中国电网的发展趋势,特高压电网将由1000kV级交流输电系统和±800kV级直流系统组成。
根据特高压交流和直流2种输电方式不同的技术经济特性,比较分析了两者的适用场合,并对特高压输电线路的防雷保护、可靠性、稳定性、电磁环境、绝缘子选型和交直流配合等技术问题,分别展开比较。
关键词:特高压交流;特高压直流;防雷;可靠性;稳定性;电磁环境;绝缘子;交直流配合一、特高压输电特高压是世界上最先进的输电技术。
交流输电电压一般分为高压、超高压和特高压。
国际上,高压(HV)通常指35-220kV电压。
超高压(EHV)通常指330kV及以上、1000kV以下的电压。
特高压(UHV)定义为1000kV及以上电压。
而对于直流输电而言,高压直流(HVDC)通常指的是±600kV及以下的直流输电电压,±800kV(±750kV)以上的电压称为特高压直流(UHVDC)。
二、我国特高压直流输电技术1、特高压直流输电现状:20 世纪 80 年代前苏联曾动工建设哈萨克斯坦—中俄罗斯的长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW;巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常; 1988到1994 年为了开发亚马逊河的水力资源,巴西电力研究中心和 ABB 组织了包括±800kV 特高压直流输电的研发工作,后因工程停止而终止了研究工作。
2、特高压直流输电技术的特点及适用范围:特高压直流输电工程由于输送容量大,电压等级进入特高压范畴,换流站和线路工程在电磁环境影响、绝缘配合、外绝缘特性、无功补偿配置、换流阀组、直流场接线以及总平面布置等方面均有其自身特点,技术难度大,也是可行性研究阶段的主要技术内容,需要结合工程的自然地理环境和两端电网情况进行深入的研究和论证,初步确定其主要技术原则和方案。
高压直流输电技术现状及发展前景
高压直流输电技术现状及发展前景一、本文概述随着全球能源需求的持续增长和电网互联的深化发展,高压直流输电技术(HVDC)已成为现代电力系统的重要组成部分。
本文旨在全面概述高压直流输电技术的现状,包括其基本原理、关键设备、应用领域以及面临的挑战,并展望其未来的发展前景。
我们将深入探讨HVDC 技术的最新进展,包括新型拓扑结构、控制策略、设备制造技术等方面的创新,并分析这些创新如何推动HVDC技术在全球范围内的广泛应用。
我们还将讨论HVDC技术在可再生能源接入、电网互联、城市电网建设等领域的应用潜力,以及面临的挑战和解决方案。
通过本文的阐述,我们期望为读者提供一个全面而深入的了解高压直流输电技术的现状和发展前景的视角,为相关领域的研究和实践提供参考和借鉴。
二、高压直流输电技术现状高压直流输电(HVDC)技术自20世纪50年代诞生以来,经过几十年的发展,已经成为现代电力系统的重要组成部分。
当前,HVDC技术正处在一个快速发展的阶段,其在全球范围内的应用越来越广泛,技术性能也日益成熟和先进。
在技术上,现代高压直流输电系统已经实现了高度的自动化和智能化。
通过采用先进的控制系统和保护装置,HVDC系统能够实现快速响应和精确控制,确保电力系统的稳定运行。
同时,随着电力电子技术的飞速发展,HVDC系统的换流技术也在不断升级,从最初的汞弧阀换流器发展到现在的晶闸管换流器,再到未来的可关断晶闸管换流器,这些技术的进步极大地提高了HVDC系统的效率和可靠性。
在应用上,高压直流输电技术已经广泛应用于长距离大功率输电、跨海输电、异步联网等多个领域。
特别是在可再生能源的开发和利用中,HVDC技术发挥着不可替代的作用。
例如,在风能、太阳能等可再生能源丰富的地区,通过建设HVDC系统将电能输送到需求侧,可以有效地解决可再生能源的接入和消纳问题,推动可再生能源的大规模开发和利用。
然而,尽管高压直流输电技术取得了显著的进步和广泛的应用,但仍面临着一些挑战和问题。
特高压交流输电技术发展现状
特高压交流输电技术发展现状1. 引言1.1 特高压交流输电技术发展现状概述特高压交流输电技术是一种高端技术,能够实现跨越长距离传输大量电力,是电力系统中的重要组成部分。
随着社会经济的发展和电力需求的增加,特高压交流输电技术在近年来得到了迅速发展。
特高压交流输电技术通过提高输电电压和线路容量,减少输电损耗和占地面积,提高了电网的稳定性和可靠性,为我国电力供应的安全性和稳定性提供了有力保障。
特高压交流输电技术在促进电力资源优化配置、提高电网运行效率、促进节能减排等方面也发挥着重要作用。
当前,特高压交流输电技术已经成为电力行业发展的重要方向,受到了广泛关注和重视。
未来,随着技术的不断创新和完善,特高压交流输电技术将会继续发展壮大,为国家电力事业的发展做出更大贡献。
2. 正文2.1 特高压交流输电技术的历史发展特高压交流输电技术是电力传输领域的重要技术之一,经过多年的发展和进步,已经取得了许多重要的成就。
特高压交流输电技术的历史可以追溯到上世纪初,最早出现在欧洲和美国。
最初,特高压交流输电技术主要用于解决长距离电力传输的问题,例如将发电厂产生的电能传输到远离城市的地区。
随着工业化和城市化的发展,特高压交流输电技术得到了进一步的推广和应用。
在特高压交流输电技术的发展过程中,出现了许多关键的技术突破和挑战。
随着传输距离的增加和输电线路的容量要求不断提高,研究人员不断寻求提高传输效率和减少能量损失的方法。
特高压交流输电技术还面临着环境保护和电网安全等方面的挑战,需要不断创新和改进技术。
特高压交流输电技术的发展历程充满了挑战和机遇。
通过不断的创新和努力,特高压交流输电技术已经取得了长足的进步,为电力传输领域的发展做出了重要贡献。
在未来,特高压交流输电技术将继续发展,为建设清洁、高效的电力系统提供技术支持。
2.2 特高压交流输电技术的主要应用领域1. 长距离输电:特高压交流输电技术能够实现长距离、大容量的电能输送,有效解决了远距离电力输送存在的能量损耗和输电效率低的问题。
我国直流输电现状
我国直流输电现状(1)早在50年代初,中国就已关注直流输电,当时政府派人去学习苏联的高压汞弧阀设计制造。
1978年上海投运一条31kV、150A、送电电缆长9km的直流输电试验线,累计运行2 300h。
(2)舟山直流输电工程于20世纪70年代后期开始进行调查研究与可行性分析。
1980年底由中国国家计委和国家科委正式批准建设。
1981年国家科委与浙江省电力工业局、西安电力机械制造公司(简称西电公司)签订了科研总合同。
1982年签订了新产品研制协议与供货合同,由西安电力机械制造公司、北京重型机械厂、红旗电缆厂和上海继电器厂承制。
1984年开始土建,1986年底完成设备安装,1987年进行调试,于同年12月投入试运行,1989年9月1日通过了国家鉴定,并正式投入运行。
该工程的输电距离为54.1km,其中架空线分三段,总长42.1km;海底电缆分二段,总长12km。
第一期工程的规模为:单极直流-100kV,500A,50MW,采用6脉动换流器。
留有扩建二期工程的位置。
最终规模为:双极直流±100kV,500A,100MW。
建设该工程的目的:除了实行大陆向舟山地区供电以外,同时通过工程建设还可促进中国高压直流输电技术的发展。
(3)为了把葛洲坝水电站丰水期多余电力送至上海,1984年10月国家批准建设葛洲坝至上海直流输电工程,于1989年投入运行。
规模为:±500kV、1.2kA、双极额实用文档定输送容量1 200MW,线路全长1 045.7km。
设备及技术主要从瑞士BBC公司引进,由中国安装调试。
(4)随着天生桥一、二级水电站的建设,天生桥送广东500kV交流输电线已有二条。
增加一条直流线路,可以利用附加控制功能进行直流调制,以抑制两个电力系统间的功率振荡,同时可以增加原有交流联网线路的输送容量。
天广500kV直流输电工程西起贵州安龙马窝,东至广州北郊,该线1998年4月16日开工,由西门子公司总承包,总投资39.8亿元。
简述高压直流输电技术现状发展前景
简述高压直流输电技术现状发展前景摘要:随着我国经济的快速发展,用电需求不断增加,为了满足国内直流输电工程的建设需要,紧跟直流输电设备制造水平的前沿技术,对直流输电技术发展的最新成果进行总结。
支出将电流自然换相技术与柔性直流技术相结合构成多端直流输电技术是未来直流输电技术的发展方向。
本文在我国直流输电发展的基础上,结合我国直流输电的现状和规划,对我国今后直流输电的发展趋势进行深入研究。
关键词:高压直流输电;直流输电;发展趋势一、高压直流输电优劣势分析1.劣势由于直流输电换流变电所多,结构比较复杂,造价高,元器件损耗严重,如晶闸管换流时消耗大量无功功率,直流输电特性造成接地技术问题,直流电流没有过零投切,给断路器灭弧带来的困难,所以应采取充分研究并采取预防措施。
2.优势由于直流输电架空线路需要两级导线正极和负极,线杆结构简单、造价低、损耗小,在直流电压下,线路电容不存在,没有电容电流,不易老化,不用考虑输电的稳定性,有助于远距离大容量送电,提高电力系统的质量和可靠性,有利于增容建设、节省投资效率。
二、直流输电主接线拓扑结构1. 特高压直流输电国家电网公司主导建设的特高压直流输电工程采用双 12 脉动阀组串联技术。
特高压直流拓扑最显著的特点为解决了为提高系统可用率而产生的换流器的在线投退问题。
对一个极而言,既可以采用单组 12 脉动换流阀运行,也可以采用 2 组12脉动换流阀串联运行,每个阀组都并联了旁路断路器和旁路隔离开关,允许一个阀组退出运行后另一个阀组继续运行。
该接线方案中,每极高低 12脉动换流器两端设计电压相同,其正送和反送率传输方向下运行方式有 40 余种,灵活的运行方式也大大提高了特高压直流输电系统的可靠性。
2. 多端直流多端直流即由多个换流站及其间连接的输电线路组成的高压直流系统,早在20 世纪 60 年代就有相关原理阐述。
目前投运的系统包括意大利—科西嘉—撒丁岛三端系统、魁北克—新型格兰系统等。
对我国高压直流输电的探讨
对我国高压直流输电的探讨近年来,随着经济的快速发展,工业化水平不断提高,我国的用电量越来越大,采用高压直流输电的方法能够有效减少在线路传输过程中的用电损耗,解决远距离、大容量、高电压输送电的问题。
本文主要研究了我国高压直流输电的发展现状,并分析了高压直流输电的特点以及发展前景。
标签:高压直流;输电;应用1 前言由于我国的技术水平相对落后,导致我国电力系统的发展相对滞后,我国能源分布与电力资源使用很不均衡,电力输送的特点为大容量、长距离输电,为了减少电量损耗,我国目前主要研究高压直流输电技术和特高压直流输电技术。
随着我国高压直流输电技术日趋成熟,高压直流输电技术在电力系统中得到了广泛的应用,标志着我国高压直流输电时代的来临。
2 高压直流输电技术的发展现状我国关于高压直流输电技术的研究起步较晚,发展也相对滞后,由于技术不成熟,至今也没有在电力输送系统中得到广泛的应用。
我国目前采用的输电发展为全国联网、南北互供、西电东输的趋势,近年来,我国高压直流输电技术取得了显著进步,随着高压直流输电技术日趋成熟,我国将逐渐兴建一批远距离、大容量、超高压的直流输电工程,采用高压直流输电新技术,能够减少输电损耗,提高输电效率,进一步完善我国电网建设,提高电网运行的稳定性和可靠性。
我国电力输送的现状为长距离、大容量输电,所以采用直流非同步联网的方式能够有效的维护电网的稳定,解决多网互联的环流问题以及非协议功率传输问题,实现对短路电流的限制。
直流联网可以快速安全的调节直流系统,通过快速的故障支援有效的减少输送电事故损失。
但是高压直流输电也存在着自身的缺陷,高压直流输电换流装置的价格比较昂贵,购置或更换的成本高;高压直流输电两端换流站消耗的无功功率多,需要进行无功补偿,高压直流输电中换流器容易产生谐波影响,造成发电机和电容器过热,也对换流器和通信系统产生影响;不能通过变压器改变电压等级等等。
也就是说,我国高压直流输电技术发展还不十分成熟,尽管高压直流输电优势明显,但仍有很多问题亟待解决。
特高压交直流输电系统技术经济分析
特高压交直流输电系统技术经济分析摘要:发展特高压交直流输电是缓解我国电力供应紧张状况的有效途径,也是改善电网结构,促进全国联网的需要。
随着高压输电的不断发展,满足了企业生产以及人们生活上的用电需求。
特高压输电技术很好地解决了我国远距离输电的问题,同时也进一步提高了输电的稳定性、安全性和经济性。
关键词:特高压直流输电系统;技术;经济;分析一、特高压输电1.范围分析发展特高压输电就是促进水电、火电、核电的开发,优化电力的分布,节省电力开支、降低用电成本,实现电力上的科学发展。
2.现状分析特高压输电最早起步于国外的一些发达国家,美国等一些发达国家都对特高压输电有一定的研究,并取得了很好的效果,所以关于特高压技术一直都是世界较为关注的课题。
我国作为一个电力大国,也相当重视对特高压输电技术的研究与发展。
国家和地方政府加强了对特高压技术的研究,国家的政策和先进的技术促进了特高压技术产业的发展。
(1)国内特高压输电技术发展现状我国对特高压应用技术的研究始于20世纪80年代,在过去的几十年里,科研机构在特高压领域做了大量的工作和研究,现在,特高压工程、技术被广泛地应用于我们的现实生活中。
我国相继开展了更高一级的电压远距距离输电方式和电压等问题的研究。
(2)国外特高压输电技术的发展现状从60年代中期开始国外一些国家就先后对特高压输电展开了一系列的研究和建设。
1985年苏联就已经建成了输电线路和变电站;之后的一些国家也在相继地进行建设和研究,从而得到了显著的成果。
国外的相关研究和实践经验也为我国特高压技术的发展提供了丰富的理论知识。
3.发展趋势我国正在成为工业大国,目前,工业制造业是国民经济的重要支柱,工业的发展所带来的好处是显而易见的,但我们也能看到工业上大量的用电,尤其是在重工业生产方面,所以我国重工业的聚集地对用电的需求远远大于电量的输出。
我国的用电量在逐年增加,这也使得电力资源严重的匮乏。
对于我国经济的发展,特高压输电为我国的经济发展、平稳运行提供了有力支撑,对我国能源安全意义深远。
特高压直流输电技术现状及在我国的应用前景
近年来,特高压直流输电技术取得了丰硕的研究成果。在理论成果方面,研 究者们针对特高压直流输电系统的运行特性、稳定性分析、优化控制等方面进行 了深入探讨,提出了一系列新的理论和方法。在应用实践方面,特高压直流输电 技术已经在国内外多条电力工程中得到了广泛应用,如中国的三峡工程、巴西的 美丽山二期工程等,取得了良好的运行效果和社会效益。
特高压直流输电技术现状及在我国 的应用前景
目录
01 一、特高压直流输电 技术现状
02
二、特高压直流输电 技术特点
03
三、特高压直流输电 技术应用前景
04 四、特高压直流输电 技术在我国的应用
05 五、结论
06 参考内容
随着全球能源结构的调整和电力市场的不断发展,特高压直流输电技术成为 了电力行业的重要研究方向。特高压直流输电具有输电距离远、容量大、损耗低 等特点,对于实现能源资源的优化配置和能源供应的安全性、可靠性具有重要意 义。本次演示将介绍特高压直流输电技术的现状及在我国的应用前景。
二、特高压直流输电技术特点
特高压直流输电技术具有以下特点:
1、输电距离远:特高压直流输电的电压等级较高,一般为1000kV及以上, 使得电能能够远距离传输,大大扩展了电力系统的覆盖范围。
2、容量大:特高压直流输电工程的输送容量较大,一般在1000万至2000万 千瓦之间,甚至更高,使得大规模能源资源的优化配置成为可能。
1、能源传输:特高压直流输电技术的远距离输送特点使得不同地区的能源 资源能够得到优化配置。例如,可将中西部地区的丰富能源通过特高压直流输电 线路输送到东部地区,满足东部地区经济社会发展的紧急救援:在自然灾害或其他紧急情况下,特高压直流输电技术可以迅 速恢复受灾地区的电力供应。例如,通过特高压直流输电线路向受灾地区输送电 力资源,保障灾区人民的基本生活需求和应急救援工作的正常进行。
特高压直流输电技术现状及在我国的应用前景
特高压直流输电技术现状及在我国的应用前景一、本文概述随着全球能源互联网的构建和我国能源结构的转型,特高压直流输电技术作为一种高效、远距离的电力传输方式,在我国能源战略中扮演着越来越重要的角色。
本文旨在全面概述特高压直流输电技术的现状,包括其技术原理、发展历程、主要优势及存在的问题,并深入分析该技术在我国的应用前景。
我们将探讨特高压直流输电在解决能源分布不均、优化能源结构、提高能源利用效率以及推动新能源发展等方面的应用潜力,以期为我国能源互联网的建设和可持续发展提供有益的参考。
二、特高压直流输电技术的现状特高压直流输电技术是目前全球范围内最为先进的输电技术之一,其在全球范围内的研究和应用日益广泛。
在我国,特高压直流输电技术的发展更是取得了举世瞩目的成就。
目前,我国已经建成了多条特高压直流输电线路,包括±800千伏、±1100千伏等多个电压等级,总输电容量和输电距离均处于世界领先地位。
技术成熟度高:经过多年的研究和实践,特高压直流输电技术已经形成了完整的技术体系和成熟的技术路线,为我国电力工业的发展提供了强大的技术支持。
设备国产化率高:我国在特高压直流输电设备的研发和生产方面已经取得了重要突破,国产化率不断提升,有效降低了建设和运维成本,提高了电网的安全性和稳定性。
运行经验丰富:我国特高压直流输电线路已经稳定运行多年,积累了丰富的运行经验。
通过对运行过程中出现的各种问题和故障进行及时的分析和处理,不断完善和优化输电系统的运行策略,确保了电网的安全稳定运行。
应用范围广泛:特高压直流输电技术的应用范围涵盖了远距离大容量输电、跨区电网互联、新能源接入等多个领域,为我国能源结构的优化和电力市场的开放提供了有力支撑。
特高压直流输电技术在我国已经取得了显著的进展和成果,为我国电力工业的发展注入了强大的动力。
未来,随着新能源的快速发展和电力市场的逐步开放,特高压直流输电技术将在我国发挥更加重要的作用。
高压直流输电的发展现状及趋势
高压直流输电的发展现状及趋势
高压直流输电(High Voltage Direct Current Transmission, HVDC)是一种将电能以直流形式传输的技术,相对于传统的
交流输电,具有较低的电能损耗和较远的传输距离等优势。
近年来,高压直流输电技术在发展和应用方面取得了显著进展。
在发展方面,高压直流输电技术的可靠性和效率得到了不断提升。
通过改进电子器件、提高直流转换效率以及优化系统控制技术等手段,高压直流输电系统的能耗和故障率得到了降低。
目前,高压直流输电技术已经广泛应用于大型跨国跨区域的电力传输项目,如我国的长江三峡-上海±800千伏特高压直流输
电工程。
另外,高压直流输电技术还在与其他新兴技术的融合中不断发展。
例如,将高压直流输电技术与可再生能源(如风能、太阳能)相结合,可以实现远程大规模可再生能源的传输和利用。
同时,高压直流输电技术还可以与电能存储技术(如蓄电池、超级电容器)相结合,构建灵活的电力系统,提高能源利用效率。
未来,高压直流输电技术将继续发展并趋向成熟。
一方面,随着可再生能源的快速发展和普及,对于长距离大容量电力传输的需求将不断增加,高压直流输电将成为主要的电力传输方式。
另一方面,随着电动汽车、数据中心等领域对电力质量和电能传输稳定性要求的提高,高压直流输电技术将得到更广泛的应用。
高压直流输电技术在发展中不断突破和成熟,在跨区域大容量电力传输、可再生能源利用等方面具有潜力和广阔的应用前景。
随着技术的不断创新和完善,高压直流输电技术将在未来发展中发挥更大的作用。
高压直流输电设计技术与未来发展趋势
高压直流输电设计技术与未来发展趋势【摘要】中国电网已经进入了一个交直流互补的时代.由于直流输电技术的发展日新月异及其在跨区域大电网发展中所体现出来的优越特性,使直流输电技术在中国获得了很大的发展空间.本文简要介绍了直流输电工程的发展历史及实际应用,交直流输电各自的优缺电,直流设备的制造技术及技术发展等,叙述了直流输电技术发展,了解其与换流技术的发展有密切关系,元器件开发很重要。
【关键词】直流输电;高压;换流器;HVDC一、国内外技术现状及发展趋势高压直流(HVDC)技术,自50年代兴起后,已经历了40多年的发展,成为一项日趋成熟的技术。
至2002年,世界上已成功投运的HVDC工程已达82项,预计至2010年,世界还将有约20项HVDC工程投入运行。
80年代,随着可控硅技术以及世界电网技术发展,HVDC技术得到一个阶跃性的发展。
其一,由于联网的要求,背靠背工程有14项,约占新建工程的一半;其二,建成了目前世界上最长的直流线路。
1700KM的扎伊尔英加—沙巴工程以及电压等级最高(士600KV)、输送容量最大(3150MW)的巴西伊太普工程。
90年代,世界第一个复杂的三端HVDC工程(魁北克—新英格兰工程)完成,并建成了世界上最长的海缆(250km)HVDC工程(瑞典—德国的BALTIC 工程)。
随着电网技术和电力电子技术的发展,HVDC技术将会继续深化其可控性强的特点,同时克服其对电网带来的一些不利因素(如谐波)及换流站造价较高的弱点,加强其在电网发展中的作用,直流控制系统回路图见图1。
二、我国未来直流输电技术开发的总体目标和重点任务根据葛上和天广HVDC工程及三峡工程、西电东送工程以及全国联网工程的需要,发展我国的HVDC技术;重点开发远距离高压直流输电和背靠背HVDC 技术,借鉴国内外的经验,确保三峡HVDC工程的成功建设和运行;实施HVDC 主设备国产化工程。
2007年12月,国家发展改革委核准西北与华中联网灵宝背靠背扩建输变电工程,本工程新增换流容量75万千瓦,新建500千伏线路38.6公里,330千伏线路238.6公里。
特高压输电技术研究和应用综述
特高压输电技术研究和应用综述一、本文概述随着全球能源结构的转变和电力需求的日益增长,特高压输电技术已成为满足大规模、远距离电力输送需求的重要手段。
本文旨在全面综述特高压输电技术的研究现状、应用进展以及未来发展趋势,以期为相关领域的研究人员和工程实践提供有益的参考。
文章首先介绍了特高压输电技术的基本概念、发展历程和主要特点,阐述了其在提高电网输电能力、优化能源配置、促进可再生能源发展等方面的重要作用。
接着,文章重点回顾了特高压输电技术在国内外的研究历程,包括关键设备研发、输电线路设计、系统运行控制等方面的主要成果和突破。
在应用方面,文章分析了特高压输电技术在国内外电网建设中的实际应用案例,探讨了其在提升电网安全稳定性、促进清洁能源消纳、推动区域经济发展等方面的积极作用。
同时,文章也指出了特高压输电技术应用过程中存在的技术挑战和问题,如电磁环境影响、设备可靠性、系统运行经济性等。
展望未来,文章展望了特高压输电技术的发展趋势和研究方向,包括新型输电材料、智能化运维、环境保护等方面的技术创新和应用前景。
文章总结了特高压输电技术在全球能源互联网建设中的重要地位和作用,强调了加强国际合作、推动技术创新和产业升级的必要性和紧迫性。
通过本文的综述,旨在为特高压输电技术的研究和应用提供全面的视角和深入的分析,为相关领域的发展提供有益的参考和借鉴。
二、特高压输电技术的研究进展随着全球能源需求的不断增长和电力系统的日益复杂化,特高压输电技术已成为当前电力领域研究的热点之一。
特高压输电技术以其输电容量大、输电距离远、损耗小等显著优势,为解决能源分布不均、提高电网运行效率提供了有效的技术途径。
近年来,特高压输电技术的研究取得了显著的进展,不仅在理论层面进行了深入探索,而且在工程实践方面也取得了重要突破。
在理论研究方面,特高压输电技术的稳定性、安全性、经济性等问题得到了广泛关注。
研究者们通过建立数学模型和仿真分析,对特高压输电系统的电气特性、电磁环境、控制保护等方面进行了深入研究。
我国特高压输电技术的现状与前景
我国特高压输电技术的现状与前景作者:刘蒙蒙(陕西理工学院物理与电气工程学院物理学专业2011级2班,陕西汉中723000)指导教师:陈德胜[摘要]高压输电技术是指在输电过程中提高输电电压,减小输电电流,从而减少输电过程中电能损耗的技术。
输电电压越高,电能损耗减少的越多,目前输电电压等级最高的是特高压输电。
本文阐述了特高压输电技术的原理,分析了特高压输电的主要方式和分类,研究了我国特高压输电的现状,探讨了我国特高压输电技术的发展前景。
[关键词]特高压输电;现状;前景;高压电网;智能电网引言随着电力系统的不断发展,为了适应大容量远距离输电的需要,如意大利、美国、日本、俄罗斯、中国等国家都在致力于特高压输电技术的研究。
所谓特高压是指交流1000kV、直流±800kV及以上的电压等级。
特高压输电具有非常明显的经济性和可靠性,为当今世界输电技术的发展指明了方向。
我国已经进入了大电网、大机组、高电压、高自动化的发展时期。
随着经济的快速发展,电力需求也在快速增长,特高压输电逐渐进入到我国电力的建设当中。
特高压输电能同时满足电能大容量、远距离、高效率、低损耗、低成本输送的基本要求,而且能有效解决目前500kV超高压电网存在的输电能力低、安全稳定性差、经济效益欠佳等方面的问题,所以,建设特高压电网已经成为我国电力发展的必然趋势。
1特高压输电技术及其原理1.1特高压输电概述特高压是世界上最先进的输电技术。
交流输电电压一般分为高压、超高压和特高压。
国际上,高压(HV)通常指35—220kV电压;超高压(EHV)通常指330kV及以上、1000kV以下的电压;特高压(UHV)定义为1000kV及以上电压。
而对于直流输电而言,高压直流(HVDC)通常是指±600kV 及以下的直流输电电压,±800kV(±750kV)以上的电压则称为特高压直流(UHVDC)。
表1所示为交、直流输电电压分类表。
我国特高压交直流输电工程发展现状和成就
我国特高压交直流输电工程发展现状和成就下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!我国特高压交直流输电工程发展现状和成就一、引言我国特高压交直流输电工程是国家重点发展的战略性工程之一,其建设与发展旨在提高能源传输效率、降低能源损耗、促进能源资源优化配置,推动我国能源结构转型升级。
高压直流输电技术的研究现状
高压直流输电技术的研究现状在当今全球能源格局和电力需求不断变化的背景下,高压直流输电技术作为一种高效、可靠的电力传输方式,正经历着快速的发展和广泛的应用。
高压直流输电技术能够实现远距离、大容量的电力输送,对于优化能源资源配置、促进区域经济协调发展具有重要意义。
高压直流输电技术的基本原理是通过换流器将交流电转换为直流电进行传输,在接收端再通过换流器将直流电转换为交流电。
与传统的交流输电技术相比,高压直流输电具有许多显著的优势。
首先,在远距离输电方面,高压直流输电的线路损耗相对较低。
由于直流电没有电感和电容的影响,电流在导线中的分布更加均匀,从而减少了能量的损失。
这使得高压直流输电在跨越数千公里的输电距离时,仍然能够保持较高的输电效率。
其次,高压直流输电能够实现不同频率交流电网的互联。
在一些地区,由于历史原因或特殊需求,存在着不同频率的交流电网。
通过高压直流输电技术,可以将这些电网有效地连接起来,实现电力的互补和优化调配。
再者,高压直流输电对于提高电网的稳定性和可靠性也发挥着重要作用。
在交流电网中,故障容易迅速传播和扩散,而直流输电系统可以通过控制策略快速隔离故障,减少对整个电网的影响。
在高压直流输电技术的发展过程中,换流器技术的不断进步是关键之一。
早期的汞弧阀换流器由于存在诸多缺点,已经被淘汰。
目前,主流的换流器技术包括基于晶闸管的相控换流器(LCC)和基于全控型电力电子器件的电压源换流器(VSC)。
LCC 技术相对成熟,具有大容量、高效率的特点,但存在换相失败的风险,且对无功功率的需求较大。
VSC 技术则具有能够独立控制有功和无功功率、不存在换相失败问题、能够向无源网络供电等优点。
然而,VSC 技术在容量和成本方面目前还存在一定的局限性。
为了提高高压直流输电系统的性能,直流输电线路的设计和绝缘技术也在不断改进。
新型的架空输电线路和电缆技术能够降低线路的电阻和电晕损耗,提高输电容量和可靠性。
同时,对于直流线路的绝缘配合和防雷保护等方面的研究也在不断深入,以确保输电线路在复杂环境下的安全稳定运行。
高压直流输电技术的现状与发展
高压直流输电技术的现状与发展近年来,随着社会的不断发展,电气化水平越来越高,能源的需求量也不断增加。
而高压直流输电技术在能源传输领域中扮演着至关重要的角色。
本文将探讨高压直流输电技术的现状与发展,以期为大家带来更全面的了解。
一、高压直流输电技术的现状高压直流输电技术是指利用变流器将交流电转换为直流电,通过特殊的高压直流输电线路进行输电的技术。
相比较于传统的交流输电技术,它具有传输距离远、电能损失小、线路占地面积小等优点。
因此,在碳减排和能源保障等方面具有重要而广阔的应用前景。
目前,世界上已经有多个国家和地区采用了高压直流输电技术。
欧洲、北美、亚洲及澳大利亚等地区都拥有大型的高压直流输电工程。
比如,韩国的“KSGC”工程、英国的“Nemo Link”工程、中国的“西电东送”工程以及巴西的“北环亚地区国际直流输电工程”等。
众所周知,电力输送距离越远,损耗也就越大。
因此,通过高压直流输电技术,可以解决远距离输电时的问题,在能源传输领域中具有不可替代的作用。
二、高压直流输电技术的发展趋势高压直流输电技术目前面临的挑战包括电压水平的提高、设备效率的提升、输电距离的增加以及设备占地面积的压缩等方面。
因此,近年来,高压直流输电技术的发展趋势主要集中在以下几个方面:1. 提高电压水平电压水平的提高可以在保持输电容量不变的前提下,降低输电线路的损耗。
近年来,不断有新的材料和技术的应用,使高压直流输电的电压水平不断提高。
在全球范围内,已经有1100kV、1200kV级别的高压直流输电线路运行,未来将有更高压级的线路投入使用,打破电压水平的瓶颈。
2. 提高设备效率不断提高高压直流输电变流器的转换效率是发展的必然趋势。
目前,高压直流输电变流器效率已经超过了98%,而且还有望进一步提高。
效率的提高可以更好地降低设备运行成本,使高压直流输电技术更加具有可持续的发展前景。
3. 增加输电距离高压直流输电技术面临的最大困难之一是输电距离的限制。
高压直流输电技术现状及发展前景
高压直流输电技术现状及发展前景摘要:目前。
电力部门对高压直流输电技术的应用原理和要点等进行全方位的探讨,从高压直流类型输电技术的特点入手,根据高压直流输电技术的实际需要,制定更加科学的高压直流类型输电技术方案。
由于高压直流输电技术具有很多的特点,需要输电部门全面了解高压直流输电技术。
发挥出技术的真正价值。
本文针对就高压直流类型输电技术的应用现状以及前景进行了分析。
关键词:高压线路;直流输电技术;发展前景高压直流输电技术属于电力输电过程中非常重要的内容,会直接影响到电力输送的稳定性。
很多科研团队已经开始重视高压直流输电技术测研究。
因为高压直流输电技术在实际应用的过程中,可能会受到一些不良因素的影响,操控人员需要制定更加科学的控制方案,避免不良因素影响到高压直流输电技术应用。
为了满足个地区对电能的需求,实现电力能源的均衡分配,目前已开展了西电东送等工程,这些工程在提升了电能利用率、促进了电能发展的同时,也对高压直流类型输电技术有了更高的要求。
一、高压直流输电技术的特点1、容量较大高压直流输电技术具有容量大的特点,这一特点能够有效的回避功角稳定问题对电力输送造成的影响,是一种电力传输较高的技术手段。
由于一些电力传输系统在运转的过程中,会受到静态稳定状态的应用而出现输送容量降低的情况,而将高压直流输电技术合理的应用其中,就能在一定程度上保障电力输送容量的稳定性与质量。
另外,高压直流输电技术不会受到远距离因素的影响而出现不稳定等情况。
2.耗材量少耗材量较低也是高压直流输电技术的特点,需要相关操作人员对其进行全面的认知与了解。
传统的输电线路需要通过很多的交流线路以及导线支持才能进行正常的电力输送,虽然电力传输效果也非常明显,但是线路布局与材料消耗方面却存在很多的弊端。
应用高压直流输电技术就能够有效的提高线路材料的利用价值,对线路合理布局与规划还能够起到一定的推进作用,高压直流输电技术在输电过程中,其输送量是交流输电线路的两倍,从而为用户提供着优质的电力资源。
我国特高压直流输电技术的现状
我国特高压直流输电技术的现状1 引言特高压输电技术是指在 500kV 以及 750kV 交流和±500kV 直流之上采用更高一级电压等级的输电技术,包括交流特高压输电技术和直流特高压输电技术两部分。
我国地域辽阔,发电能源和用电负荷的分布又极不均衡。
华东、华南沿后,用电水平和需求低,而能源资源丰富。
以水力资源为例,全国水电技术可开发容量约540GW,其中22%分布在四川,20%在西藏,19%在云南。
这一客观现实决定了我国电力跨区域大规模流动的必然性。
同时,随着经济的发展,土地资源越发匮乏和宝贵,电网发展与建设受到走廊资源、站址资源的制约越发明显。
±800kV特高压直流不仅输送容量大、损耗小、送电距离远,而且可以节约宝贵的输电走廊资源,提高输电通道走廊的利用率。
特别是对于受端电网,换流站站址、接地极与接地线线路走廊的选择非常困难,±800kV特高压直流输电方案不仅降低了工程实施的难度,而且更重要的是符合国家可持续发展战略要求。
因此特高压直流输电技术是我国电力跨区域大规模输送的必然选择。
“十一五”云南至广东±800kV特高压直流输电工程已于2006年12月开工建设,“十一五”至“十三五”期间规划建设的特高压直流输电工程还有7-9个。
目前,特高压直流输电技术在全世界都还没有成熟的应用经验,在可行性研究阶段不仅需要对电磁环境影响、绝缘配合和外绝缘特性等关键技术进行研究,而且还需要结合特高压的特点对输电方案拟定、换流站站址及接地极极址选择、线路路径选择以及系统方案比较等主要技术原则进行充分论证,才能为项目业主和政府主管部门提供可靠的决策依据。
2 特高压直流输电现状20 世纪 80 年代前苏联曾动工建设哈萨克斯坦—中俄罗斯的长距离直流输电工程,输送距离为2400km,电压等级为±750kV,输电容量为 6GW;巴西和巴拉圭两国共同开发的伊泰普工程采用了±600kV 直流和 765kV 交流的超高压输电技术,第一期工程已于 1984 年完成,1990 年竣工,运行正常;19881994 年为了开发亚马逊河的水力资源,巴西电力研究中心和 ABB 组织了包括±800kV 特高压直流输电的研发工作,后因工程停止而终止了研究工作。
交流输电与直流输电的现状及发展趋势
高压交流输电和直流输电 现状与发展趋势
汇报人:
目录 /CONTENTS
01 高压交流输电的现状 02 高压交流输电的发展趋势 03 高压直流输电的现状 04 高压直流输电的发展趋势 05 高压交流输电与直流输电的对比总结
交直之争
高压交流输电
从发电站发出的电能,一般 都要通过输电线路送到各个用电 地方。根据输送电能距离的远近, 采用不同的高电压。从我国的电 力情况来看,送电距离在200~ 300公里时采用220千伏的电压 输电;在100公里左右时采用110 千伏;50公里左右采用35千伏或 者66千伏;在15公里~20公里 时采用10千伏、12千伏。
半波输电(HWACT)是指输电的电气距离接近一个工频半波,即3000公里的 超远距离的交流输电。其基本原理是:当交流线路长度等于半波长时,输送 功率极限可以达到无穷大,半波输电正是根据这一特性而确定的输电方式。 自21 世纪以来,中国、巴西、俄罗斯等国发现半波输电对于大规模的能源开 发具有很强的吸引力,半波输电技术成为电力行业科研领域的热点。
④促进电力均衡发展,在煤炭或水利能源 丰富的地区建设大型发电厂,再利用特高压输电 技术将电力资源配送到用电负荷大的地区,就能 够降低能源运输成本 。
缺点
①国内拥有特高压输电技术的电气制造商 家大多是从国外引进技术和设备,而我国本土的 设备和技术还不成熟,有待整体性提高。
②国际电气技术的高速发展与更新换代, 特高压输电技术的诸多相关技术也需要实时更新, 变压器、避雷器等相关技术产品的研究和应用需 要加强。
பைடு நூலகம்
超导输电技术
Superconducting transmission technology
超导输电技术是利用高密度载流能力的超导 材料发展起来的新型输电技术,超导输电电 缆主要由超导材料、绝缘材料和维持超导状 态的低温容器构成。超导材料的载流能力可 达到 100~1000A/mm2(约是普通铜或铝的载 流能力的 50~500倍),且其传输损耗几乎为 零。超导输电技术的优势可归纳为:1)容量 大;2)损耗低;3)体积小;4)重量轻;5) 增加系统灵活性。由于上述优越性,超导输 电技术可为未来电网提供一种全新的低损耗、 大容量、远距离电力传输方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我国特高压直流输电技术的现状及发展(华北电力大学,北京市)【摘要】直流输电是目前世界上电力大国解决高电压、大容量、远距离送电和电网互联的一个重要手段。
本文主要介绍了特高压直流输电技术的特点,特高压直流输电技术所要解决的问题,特高压直流输电技术的在我国发展的必要性以及发展前景。
【关键词】特高压直流输电,特点,问题,必要性,发展前景0.引言特高压电网是指由特高压骨干网架、超高压、高压输电网、配电网及高压直流输电系统共同构成的分层、分区,结构清晰的大电网。
其中,国家电网特高压骨干网架是指由1000kV级交流输电网和±600kV级以上直流输电系统构成的电网。
特高压直流输电技术起源于20 世纪60 年代,瑞典Chalmers 大学1966 年开始研究±750kV 导线。
1966 年后前苏联、巴西等国家也先后开展了特高压直流输电研究工作,20 世纪80 年代曾一度形成了特高压输电技术的研究热潮。
国际电气与电子工程师协会(IEEE)和国际大电网会议(Cigre)均在80 年代末得出结论:根据已有技术和运行经验,±800kV 是合适的直流输电电压等级,2002 年Cigre又重申了这一观点。
随着国民经济的增长,中国用电需求不断增加,中国的自然条件以及能源和负荷中心的分布特点使得超远距离、超大容量的电力传输成为必然,为减少输电线路的损耗和节约宝贵的土地资源,需要一种经济高效的输电方式。
特高压直流输电技术恰好迎合了这一要求。
1.特高压直流输电的技术特点1.1特高压直流输电系统特高压直流输电的系统组成形式与超高压直流输电相同,但单桥个数、输送容量、电气一次设备的容量及绝缘水平等相差很大。
换流站主接线的典型方式为每极2组12脉动换流单元串联,也可用每极2组12脉动换流单元并联。
特高压直流输电采用对称双极结构,即每12脉动换流器的额定电压均为400kV,这样的接线方式使运行灵活性可靠性大为提高。
特高压直流输电的运行方式有:双极运行方式、双极混合电压运行方式、单击运行方式和单极半压运行方式等。
换流阀采用二重阀,空气绝缘,水冷却;控制角为整流器触发角15°;逆变器熄弧角17°。
换流变压器形式为单相双绕组,油浸式;短路阻抗16%-18%;有载调压开关共29档,每档1.25%。
换流站平面布置为高、低压阀厅及其换流变压器采用面对面布置方式,高压阀厅布置在两侧,低压阀厅布置在中间。
1.2 特高压直流输电技术的主要特点(1)特高压直流输电系统中间不落点,可点对点、大功率、远距离直接将电力送往负荷中心。
在送受关系明确的情况下,采用特高压直流输电,实现交直流并联输电或非同步联网,电网结构比较松散、清晰。
(2)特高压直流输电可以减少或避免大量过网潮流,按照送受两端运行方式变化而改变潮流。
特高压直流输电系统的潮流方向和大小均能方便地进行控制。
(3)特高压直流输电的电压高、输送容量大、线路走廊窄,适合大功率、远距离输电。
(4)在交直流并联输电的情况下,利用直流有功功率调制,可以有效抑制与其并列的交流线路的功率振荡,包括区域性低频振荡,明显提高交流的暂态、动态稳定性能。
(5)大功率直流输电,当发生直流系统闭锁时,两端交流系统将承受大的功率冲击。
1.3 与超高压直流输电比较和±600千伏级及600千伏以下超高压直流相比,特高压直流输电的主要技术和经济优势可归纳为以下六个方面:(1)输送容量大。
采用4000安培晶闸管阀,±800千伏直流特高压输电能力可达到640万千瓦,是±500千伏、300万千瓦高压直流方式的2.1倍,是±600千伏级、380万千瓦高压直流方式的1.7倍,能够充分发挥规模输电优势。
(2)送电距离长。
采用±800千伏直流输电技术使得超远距离的送电成为可能,经济输电距离可以达到2500公里甚至更远,为西南大水电基地开发提供了输电保障。
(3)线路损耗低。
在导线总截面、输送容量均相同的情况下,±800千伏直流线路的电阻损耗是±500千伏直流线路的39%,是±600千伏级直流线路的60%,提高输电效率,节省运行费用。
(4)工程投资省。
根据有关设计部门的计算,对于超长距离、超大容量输电需求,±800千伏直流输电方案的单位输送容量综合造价约为±500千伏直流输电方案的72%,节省工程投资效益显著。
(5)走廊利用率高。
±800千伏、640万千瓦直流输电方案的线路走廊为76米,单位走廊宽度输送容量为8.4万千瓦/米,是±500千伏、300万千瓦方案和±620千伏、380万千瓦方案的1.3倍左右,提高输电走廊利用效率,节省宝贵的土地资源;由于单回线路输送容量大,显著节省山谷、江河跨越点的有限资源。
(6)运行方式灵活。
国家电网公司特高压直流输电拟采用400+400千伏双十二脉动换流器串联的接线方案,运行方式灵活,系统可靠性大大提高。
任何一个换流阀模块发生故障,系统仍能够保证75%额定功率的送出。
1.4 与特高压交流输电比较与特高压交流输电相比,±800kV特高压直流输电的特点是:(1)线路中间无落点,直接将大量电力送至负荷中心。
(2)在交/直流并联输电方式时,可利用直流输电的快速可控性来有效抑制区域性低频振荡,提高断面动稳定极限。
(3)解决受端交流电网短路电流过大的问题。
2.特高压直流输电所要解决的问题近期,国家电网公司进行了广泛的技术交流,并开展了关键技术的调研工作。
交流和调研结果表明:虽然特高压直流输电技术在技术上已没有不可逾越的障碍,但仍存在一些需要研究和解决的技术、标准等问题。
主要的问题有:(1)直流场过电压及绝缘水平的确定。
特高压直流输电最根本的问题是过电压及与之相适应的绝缘问题。
特高压过电压包括雷电过电压、工频过电压和操作过电压。
特高压直流输电过电压的现象及原理虽与超高压直流输电类似,但空气绝缘特性却有很大的差异。
由于特高压直流输电的过电压的高低对其绝缘系统的设计和绝缘水平起着决定性作用,因此对特高压直流的过电压必须采取技术措施予以限制,尤其应把操作过电压限制在尽可能低的水平。
(2)主接线问题。
特高压直流输电容量巨大,因而需要研究论证接线方式。
尽管特高压直流输电工程最优设计采用单换流器,但由于输电容量太大,受换流变压器等大型设备运输条件的限制,每极往往需要采用多个换流器。
前苏联的特高压直流设计采用的是双换流器并联。
(3)键元件的参数确定。
晶闸管元件是直流输电的关键部件。
目前世界上比较成熟的技术是5英寸晶闸管。
通过开发可以研制出满足容量为600万千瓦以上的特高压直流输电要求的更大直径的晶闸管元件。
对于640万千瓦的特高压直流输电工程晶闸管元件参数则需要重点研究。
(4)特高压直流输电建设的环境问题。
要发展特高压直流输电,必须解决好其产生的噪声、电磁污染对环境的影响问题。
换流站的设计和设备制造必须满足国家的环保要求。
(5)工程建设的标准。
到目前为止,尚无±800kV直流输电工程的建设和运行经验,也没有可以直接套用的标准,只有通过工程建设和运行,逐步建立起一套科学而且实用的特高压直流输电标准体系,完成一批工程建设急需的特高压直流输电标准。
3, 特高压直流输电在我国发展的必要性3.1 我国能源开发、分配、传输的形势我国是全球第一大煤炭消费国和第二大石油、电力消费国煤炭占全国能源生产和消费资源的比重高达2/3左右.但开发和利用的总体效率还比较低同时.我国生产力发展水平的地区差异很大.一次能源分布严重不均衡能源需求主要集中在东部和中部经济较发达地区.约占需求总量的3/4左右:用于发电的煤炭和水力资源.则主要分布在西部和北部地区这种能源分布与消费的不平衡状况.决定了能源资源必须在全国范围内优化配置.以大煤炭基地、大水电基地为依托.实现煤电就地转换和水电大规模开发.并通过建设特高压电网.实现跨地区、跨流域水火互济.将清洁的电能从西部和北部大规模输送到中东部地区我国用于发电的一次能源、水电约占20%.煤电约占70%.核电和其它可再生新能源在总能源中的比例不到10%我国能源和负荷的地理分布很不均衡要解决2l世纪上半叶的能源供应问题.必须在大力开发西南、西北水电和“三西”煤电的同时建设全国能源传输通道.实现长距离大容量的“电东送和北电南送”。
西南、西北水电东送可需要50~60GW 的输出能力:“三西”煤电的开发有许多制约因素.其规模大小难于准确预测.南送电力可能在30—100GW 的范围总之.我国能源的资源与需求呈逆向分布.客观上需要实现能源的大范围转移。
晋陕蒙宁新大型煤电基地和西南水电富集地区大型水电基地需向能源匮乏的中东部地区远距离、大容量、低损耗输电,优化配置电力输送方式是电力工业发展的必然趋势。
3.2 特高压能解决当前电网问题我国电网存在诸多问题.主要表现在:第一.近年来.我国经济发达地区燃煤电厂发展比较快,而山东、河北、河南等地区的电煤供应日渐短缺。
电煤的供应更多地依靠山西、内蒙古、陕西等北部地区的煤炭基地。
在北电南送能力不足的条件下。
使得北煤南运的数量和运程大大增加。
最终导致近年来我国中部、东部和南部大部分地区电煤因运输“瓶颈”的限制而供应不足。
出现严重缺电的局面;第二.现有500千伏电网输送能力不能满足大范围电力资源优化配置和电力市场的需求;第三.电力负荷密集地区电网短路电流控制困难。
华东、华北电网已经出现有一部分500千伏母线的短路电流水平将超过断路器最大遮断电流能力。
还有就是长链型电网结构动态稳定问题突出。
在东北、华北、华中电网500千伏交流联网结构比较薄弱的情况下.存在低频震荡问题;第四.受端电网存在多直流集中落点和电压稳定问题。
到2020年。
如果西电东送华东电网全部采用直流输电方式。
落点华东电网的直流接流站将超过l0个。
受端电网在严重短路故障的情况下。
电力系统因电压低落发生连锁反应的风险较大;第五.实现“大容量、远距离从发电中心向负荷中心输送电能;强互联.更有效地利用整个电网内各种可以利用的发电资源。
提高互联的各个电网的可靠性和稳定性;减少超高压输电的距离和网损,使整个电力系统能继续扩大覆盖范围。
并更经济、更可靠运行”。
成为国家电网的重要目标而能够担当此任的非特高压莫属。
我国国家电网特高压骨干网架由1 000千伏级交流输电网和±800千伏级直流系统构成国家电网特高压骨干网架的建设符合“规划科学、结构合理、技术先进、安全可靠、运行灵活、标准统一、经济高效”的目标要求。
国家特高压电网网架可为实现跨大区跨流域水火电互济、全国范围内能源资源优化配置提供充分支持。
以满足我国国民经济发展的需求;满足大容量、远距离、高效率、低损耗地实现“西电东送、南北互供”的要求,满足我国电力市场交易灵活的要求;促进电力市场的发展,具有坚强的网络功能;具有电网的可扩展性,可灵活地适应远景能源流的变化;有效解决目前500千伏电网存在的因电力密度过大引起的短路电流过大、输电能力过低和安全稳定性差等系统安全问题4.特高压直流输电在我国的发展前景2020 年前后西部水电的大部分电力通过直流特高压通道向华中和华东地区输送,其中金沙江一期溪洛渡和向家坝水电站、二期乌东德和白鹤滩水电站向华东、华中地区送电,锦屏水电站向华东地区送电,宁夏和关中煤电基地向华东地区送电、呼伦贝尔盟的煤电基地向京津地区送电大约需要9 条输电容量为6GW 的±800kV 级特高压直流输电线路。