专题9 四点共圆巧解中考题
九年级数学四点共圆例题讲解
![九年级数学四点共圆例题讲解](https://img.taocdn.com/s3/m/4ef326de58fb770bf68a55bd.png)
九年级数学四点共圆例题讲解知识点、重点、难点四点共圆是圆的基本内容,它广泛应用于解与圆有关的问题.与圆有关的问题变化多,解法灵活,综合性强,题型广泛,因而历来是数学竞赛的热点内容。
在解题中,如果图形中蕴含着某四点在同一个圆上,或根据需要作出辅助圆使四点共圆,利用圆的有关性质定理,则会使复杂问题变得简单,从而使问题得到解决。
因此,掌握四点共圆的方法很重要.判定四点共圆最基本的方法是圆的定义:如果A、B、C、D四个点到定点O的距离相等,即OA=OB=OC=OD,那么A、B、C、D四点共圆.由此,我们立即可以得出1。
如果两个直角三角形具有公共斜边,那么这两个直角三角形的四个顶点共圆。
将上述判定推广到一般情况,得:2。
如果四边形的对角互补,那么这个四边形的四个顶点共圆。
3.如果四边形的外角等于它的内对角,那么这个四边形的四个顶点共圆。
4。
如果两个三角形有公共底边,且在公共底边同侧又有相等的顶角,那么这两个三角形的四个顶点共圆。
运用这些判定四点共圆的方法,立即可以推出:正方形、矩形、等腰梯形的四个顶点共圆。
其实,在与圆有关的定理中,一些定理的逆定理也是成立的,它们为我们提供了另一些证明四点共圆的方法.这就是:1.相交弦定理的逆定理:若两线段AB和CD相交于E,且AE·EB=CE·ED,则A、B、C、D四点共圆。
2.割线定理的逆定理:若相交于点P的两线段PB、PD上各有一点A、C,且PA·PB =PC·PD,则A、B、C、D四点共圆。
3。
托勒密定理的逆定理:若四边形ABCD中,AB·CD+BC·DA=AC·BD,则ABCD是圆内接四边形。
另外,证多点共圆往往是以四点共圆为基础实现的一般可先证其中四点共圆,然后证其余各点均在这个圆上,或者证其中某些点个个共圆,然后判断这些圆实际是同一个圆。
例题精讲例1:如图,P为△ABC内一点,D、E、F分别在BC、CA、AB上。
中考压轴题专题训练:“四点共圆”典型问题50练(含解析)印刷版
![中考压轴题专题训练:“四点共圆”典型问题50练(含解析)印刷版](https://img.taocdn.com/s3/m/1bd070b1bb68a98271fefae2.png)
中考压轴题专题训练:“四点共圆”典型问题50练一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.34.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.25.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.66.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.58.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是梯形.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt △DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC =30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D 作DF⊥AE于F点,连接OF.则线段OF的长度为.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=,BM=.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为.三.解答题(共27小题)24.设梯形ABCD中,AB∥CD,E,F分别在腰AD和BC上,若A,B,F,E四点共圆,证明C,D,E,F也必四点共圆.25.已知四边形ABCD为菱形,点E、F、G、H分别为各边中点,判断E、F、G、H四点是否在同一个圆上,如果在同一圆上,找到圆心,并证明四点共圆;如果不在,说明理由.26.如图,在△ABC中,AB<AC,AD平分∠BAC,BM=CM,K为AM上一点,且∠BKC=180°﹣∠BAC.求证:∠BKD=∠CKD.27.如图,O为△ABC外心,D为BC上一点,BD中垂线交AB于F,CD中垂线交AC于E,求证:A、F、O、E四点共圆.28.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,AC=BC,O是△ABC 的外心,证明C,E,O,F四点共圆.29.如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.30.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点D,点E是AC的中点,连接OD.(1)求证:OD⊥DE;(2)求证:O、A、E、D四点共圆.(3)△ABC满足什么条件时,经过O、A、E、D的圆与BC相切?并说明理由.31.如图,在锐角三角形ABC中,AB=AC,∠ACB的平分线交AB于点D.过△ABC的外心O作直线OG⊥CD交AC于点E,交CD于点G,过点E作EF∥AB交CD于F.(1)求证:C,E,O,F四点共圆;(2)求证:A,O,F三点共线;(3)求证:EA=EF.32.在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:已知:△ABC是等边三角形,点D是△ABC内一点,连接CD,将线段CD绕C逆时针旋转60°得到线段CE,连接BE,DE,AD,并延长AD交BE于点F.当点D在如图所示的位置时:(1)观察填空:①与△ACD全等的三角形是;②∠AFB的度数为;(2)利用题干中的结论,证明:C,D,F,E四点共圆;(3)直接写出线段FD,FE,FC之间的数量关系.33.如图,四边形ABCD中,∠ACB=∠ADB=90°,自对角线AC、BD的交点N作NM⊥AB于点M,线段AC、MD交于点E,BD、MC交于点F,P是线段EF上的任意一点.证明:点P到线段CD的距离等于点P到线段MC、MD的距离之和.34.如图,在△ABC中,过A作BC的垂线,垂足为D,O为AD的中点,以AD为直径的⊙O分别与边AB、AC交于点E、F.试求证:(1)BC是⊙O的切线;(2)B、C、F、E四点共圆吗?说明理由.35.如图,圆O内接四边形ABCD的对边AD,BC延长线交于点P,对角线AC,BD交于点Q,设△PDB 的外接圆交直线PQ与P和另一个点K,求证:(1)OK⊥PQ(2)C,D,O,K四点共圆;(3)三条直线AB,OK,DC交于一点.36.如图,已知锐角三角形ABC,过点A作BC的垂线与以BC为直径的⊙O1分别交于点D,E.过点B 作CA的垂线与以CA为直径的⊙O2分别交于点F,G.求证:E,F,D,G四点共圆,并确定圆心的位置.37.已知△ABC中,∠A=60°,E、F分别为AB、AC延长线上的点,且BE=CF=BC,△ACE的外接圆与EF交于不同于E的点K,设BF与CE交于点T.(1)证明:A、B、T、C四点共圆;(2)证明:点K在∠BAC的角平分线上.38.已知半径为r的⊙O1与半径为R的⊙O2外离,直线DE经过O1切⊙O2于点E并交⊙O1于点A和点D,直线CF经过O2切⊙O1于点F并交⊙O2于点B和点C,连接AB、CD,(1)[以下ⅰ、ⅱ两小题任选一题](ⅰ)求四边形ABCD的面积(ⅱ)求证:A、B、E、F四点在同一个圆上(2)求证:AB∥DC.39.已知:AB是⊙O的直径,C为AB延长线上的一点,过点C作⊙O的割线,与⊙O交于D、E两点,OF是△BOD的外接圆O1的直径,连接CF并延长交⊙O1于点G.求证:O、A、E、G四点共圆.40.如图,四边形ABCD为⊙O的内接四边形,对边BC,AD交于点F,AB、DC交于点E,△ECF的外接圆与⊙O的另一交点为H,AH与EF交于点M,MC与⊙O交于点C.证明:(1)M为EF的中点;(2)A、G、E、F四点共圆.41.已知:AB∥DF,它们之间的距离等于AB;AC∥DE,它们之间的距离等于AC;CB∥EF,它们之间的距离等于BC,求证:A1、B1、C1、A2、B2、C2六点共圆.42.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.43.若以圆内接四边形ABCD的各边为弦作任意圆,求证:这些圆相交的四点共圆.44.如图,PQ为两圆的公共弦,M为PQ上一点,AB、CD分别是两圆的弦且它们相交于M,求证:A、C、B、D四点共圆.45.如图,⊙O1与⊙O2相交于P、Q两点,过P点作两圆的割线分别交于⊙O1与⊙O2于A、B,过A、B 分别作两圆的切线相交于T,求证:T、A、Q、B四点共圆.46.如图所示,两圆交于A、B两点,过B的直线交两圆于C、D,两圆外有一点P,连接PC,PD,分别交两圆于E,F.求证:P、E、A、F四点共圆.47.如图,⊙O是以等腰Rt△ABC的斜边AB为直径的圆,点P是BA的延长线上的一点,过点P作⊙O 的一条切线,切点为点Q,∠QPB的平分线交AC、BC于点E、F.(1)求证:P、A、E、Q四点共圆.(2)若AE=a,BF=b,求EF的长.48.如图,四边形ABCD内接于⊙O,P、Q、R分别是AB、BC、AD的中点,连接PQ与DA的延长线交于S,连接PR与CB延长线交于T,求证:S、T、Q、R四点共圆.49.如图,两圆T1、T2相交于A、B两点,过点B的一条直线分别交圆T1、T2于点C、D,过点B的另一条直线分别交圆T1、T2于点E、F,直线CF分别交圆T1、T2于点P、Q,设M、N分别是弧PB、弧QB的中点,求证:若CD=EF,则C、F、M、N四点共圆.50.如图,D是△ABC的BC边上的一点,O1、O2和O3分别为△ABC、△ADB和△ADC外接圆的圆心,求证:A、O2、O1、O3四点共圆.中考压轴题专题训练:“四点共圆”典型问题50练参考答案与试题解析一.选择题(共9小题)1.如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4,D是BC中点,∠CAD=∠CBE,则AE=()A.4B.3C.2D.【分析】如图,连接DE,由等腰直角三角形的性质可求∠C=∠BAC=45°,AC=AB=4,由∠CAD=∠CBE,可证点A,点B,点D,点E四点共圆,可得∠ABD=∠DEC=90°,由等腰直角三角形的性质可求DE=,即可求解.【解答】解:如图,连接DE,∵∠ABC=90°,AB=BC=4,∴∠C=∠BAC=45°,AC=AB=4,∵D是BC中点,∴CD=BC=2,∵∠CAD=∠CBE,∴点A,点B,点D,点E四点共圆,∴∠ABD=∠DEC=90°,∴∠C=∠EDC=45°,∴DE=CE=CD=,∴AE=AC﹣CE=3,故选:B.2.在圆内接四边形ABCD中,∠BAD、∠ADC的角平分线交于点E,过E作直线MN平行于BC,与AB、CD交于M、N,则总有MN=()A.BM+DN B.AM+CN C.BM+CN D.AM+DN【分析】在NM上截取NF=ND,连结DF,AF,由A,B,C,D四点共圆,得出∠MND+∠MAD=180°,由MN∥BC,得出∠AMN+∠ADN=180°,可得到A,D,N,M四点共圆,再由AE,DE分别平分∠BAD,∠CDA,A,F,E,D四点共圆,由∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND =∠EDN=∠ADE=∠AFM,可得出MA=MF,即得出MN=MF+NF=MA+ND.【解答】解:如图,在NM上截取NF=ND,连结DF,AF∴∠NFD=∠NDF,∵A,B,C,D四点共圆,∴∠ADC+∠B=180°,∵MN∥BC,∴∠AMN=∠B,∴∠AMN+∠ADN=180°,∴A,D,N,M四点共圆,∴∠MND+∠MAD=180°,∵AE,DE分别平分∠BAD,∠CDA,∴∠END+2∠DFN=∠END+2∠DAE=180°,∴∠DFN=∠DAE,∴A,F,E,D四点共圆,∴∠DEN=∠DAF,∠AFM=∠ADE,∴∠MAF=180°﹣∠DAF﹣∠MND=180°﹣∠DEN﹣∠MND=∠EDN=∠ADE=∠AFM,∴MA=MF,∴MN=MF+NF=MA+ND.故选:D.3.如图,已知(1)已知△ABC的两条中线BD、CE交于点M,A、D、M、E四点共圆,BC=8,则AM 的长为()A.2B.C.D.3【分析】延长AM交BC于F,连接ED,根据三角形中位线定理得出ED∥BC,即可求得∠DBC=∠MDE,根据四点共圆,可得∠MDE=∠BAF,由题意可得M是三角形的重心,则F是BC的中点,AM=2FM,证得△ABF∽△MBF,可得=,得出AF•FM=BF2=16,根据条件化成AM2=16,即可求得结论.【解答】解:延长AM交BC于F,连接ED,∵BD、CE是△ABC的两条中线,∴ED∥BC,∴∠DBC=∠MDE,∵A、D、M、E四点共圆,∴∠MDE=∠BAF,∵△ABC的两条中线BD、CE交于点M,∴BF=FC=BC=4,∴M为三角形的重心,∴AM=2FM,∵∠BAF=∠MBF,∠AFB=∠BFM,∴△ABF∽△MBF,∴=,∴AF•FM=BF2=16,(AM+AM)•AM=16,∴AM2=16,∴AM=.故选:C.4.如图,在△ABC中,∠B=75°,∠C=45°,BC=6﹣2,点P是BC上一动点,PE⊥AB于E,PD ⊥AC于D.无论P的位置如何变化,线段DE的最小值为()A.3﹣3B.C.4﹣6D.2【分析】下面介绍两种解法:解法一:当AP⊥BC时,线段DE的值最小,利用四点共圆的判定可得:A、E、P、D四点共圆,且直径为AP,得出∠AED=∠C=45°,有一公共角,根据两角对应相等两三角形相似得△AED∽△ACB,则,设AD=2x,表示出AE和AC的长,求出AE与AC的比,代入比例式中,可求出DE的值.解法二:先通过四点共圆同理得到:△EFD为顶角为120°的等腰三角形,所以当AP⊥BC时,线段DE的值最小,再作辅助线,求AP的长,从而得EF的长,由等腰三角形三线合一及勾股定理得DE的值.【解答】解:解法一:当AP⊥BC时,线段DE的值最小,如图1,∵PE⊥AB,PD⊥AC,∴∠AEP=∠ADP=90°,∴∠AEP+∠ADP=180°,∴A、E、P、D四点共圆,且直径为AP,在Rt△PDC中,∠C=45°,∴△PDC是等腰直角三角形,∠APD=45°,∴△APD也是等腰直角三角形,∴∠PAD=45°,∴∠PED=∠PAD=45°,∴∠AED=45°,∴∠AED=∠C=45°,∵∠EAD=∠CAB,∴△AED∽△ACB,∴,设AD=2x,则PD=DC=2x,AP=2x,如图2,取AP的中点O,连接EO,则AO=OE=OP=x,∵∠EAP=∠BAC﹣∠PAD=60°﹣45°=15°,∴∠EOP=2∠EAO=30°,过E作EM⊥AP于M,则EM=x,cos30°=,∴OM=x•=x,∴AM=x+x=x,由勾股定理得:AE=,=,=(+1)x,∴=,∴ED=.则线段DE的最小值为;解法二:如图3,取AP的中点F,连接EF、DF,有EF=DF=AP,∠EFD=120°,∴△EFD为顶角为120°的等腰三角形,∴当AP⊥BC时,线段DE的值最小,如图4,作AB的中垂线,交AP于一点O,交AB于G,连接OB,设OA=OB=2x,∵∠BOP=2∠BAO=30°,∴BP=x,OP=x,∴AP=PC=(2+)x,∵BC=6﹣2,∴x+2x+x=6﹣2,x=4﹣2,∴AP=(2+)x=(2+)(4﹣2)=2,∴EF=FD=1,如图5,过F作FH⊥ED于H,∴EH=DH,∵∠FED=30°,∴FH=,∴EH=DH=,∴DE=;故选:B.5.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【解答】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选:D.6.如图,在四边形ABCD中,AC、BD为对角线,点M、E、N、F分别为AD、AB、BC、CD边的中点,下列说法:①当AC=BD时,M、E、N、F四点共圆.②当AC⊥BD时,M、E、N、F四点共圆.③当AC=BD且AC⊥BD时,M、E、N、F四点共圆.其中正确的是()A.①②B.①③C.②③D.①②③【分析】连接EM、MF、FN、NE,连接EF、MN,交于点O,利用三角形中位线定理可证到四边形ENFM 是平行四边形;然后根据条件判定四边形ENFM的形状,就可知道M、E、N、F四点是否共圆.【解答】解:连接EM、MF、FN、NE,连接EF、MN,交于点O,如图所示.∵点M、E、N、F分别为AD、AB、BC、CD边的中点,∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.∴四边形ENFM是平行四边形.①当AC=BD时,则有EM=EN,所以平行四边形ENFM是菱形.而菱形的四个顶点不一定共圆,故①不一定正确.②当AC⊥BD时,由EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.所以平行四边形ENFM是矩形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故②正确.③当AC=BD且AC⊥BD时,同理可得:四边形ENFM是正方形.则有OE=ON=OF=OM.所以M、E、N、F四点共圆,故③正确.故选:C.7.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN =a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A.2B.3C.4D.5【分析】①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∠NAD=∠BAM,∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,等量代换得到∠DAM=∠AND,故①正确;②根据正方形的性质得到PC∥EF,根据相似三角形的性质得到CP=b﹣;故②正确;③根据旋转的性质得到GN=ME,等量代换得到AB=ME=NG,根据全等三角形的判定定理得到△ABM ≌△NGF;故③正确;④由旋转的性质得到AM=AN,NF=MF,根据全等三角形的性质得到AM=NF,推出四边形AMFN=AM2是矩形,根据余角的想知道的∠NAM=90°,推出四边形AMFN是正方形,于是得到S四边形AMFN=a2+b2;故④正确;⑤根据正方形的性质得到∠AMP=90°,∠ADP=90°,得到∠ABP+∠ADP=180°,于是推出A,M,P,D四点共圆,故⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△EMF,∴,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴,∴CP=b﹣;故②正确;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF;故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,∴AM=NF,∴四边形AMFN是矩形,∵∠BAM=∠NAD,∴∠BAM+DAM=∠NAD+∠DAN=90°,∴∠NAM=90°,∴四边形AMFN是正方形,∵在Rt△ABM中,a2+b2=AM2,=AM2=a2+b2;故④正确;∴S四边形AMFN⑤∵四边形AMFN是正方形,∴∠AMP=90°,∵∠ADP=90°,∴∠AMP+∠ADP=180°,∴A,M,P,D四点共圆,故⑤正确.故选:D.8.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC【分析】本题要求选出错误的命题,只需找到一个命题,说明该命题是假命题即可.可采用反证法判断C是错误的,运用相交弦定理可得DA•DM=DP•DQ,DA•DM=DB•DC,可得DP•DQ=DB•DC,即=,从而可得△DBP∽△DQC,则有∠BPD=∠QCD.由AM平分∠BAC可得∠BAM=∠MAC,根据圆周角定理可得∠MBC=∠MAC,∠MCB=∠BAM,即可得到∠MBC=∠MCB,从而有∠BPD=∠MBC,与三角形外角的性质∠MBC=∠BPD+∠BDP矛盾,故假设不成立,即选择C错误.【解答】解:假设A、P、M、Q四点共圆,根据相交弦定理可得:DA•DM=DP•DQ,∵A、B、M、C四点共圆,∴根据相交弦定理可得:DA•DM=DB•DC,∴DP•DQ=DB•DC,即=,∵∠BDP=∠QDC,∴△DBP∽△DQC,∴∠BPD=∠QCD,∵AM平分∠BAC,∴∠BAM=∠MAC,∵∠MBC=∠MAC,∠MCB=∠BAM,∴∠MBC=∠MCB,∴∠BPD=∠MBC.与∠MBC=∠BPD+∠BDP矛盾,故假设不成立,因而命题C错误,故选:C.9.如图,一副直角三角板满足∠ACB=∠EDF=90°,AC=BC,AB=DF,∠EFD=30°,将三角板DEF 的直角顶点D放置于三角板ABC的斜边AB上,再将三角板DEF绕点D旋转,并使边DE与边AC交于点M,边DF与边BC于点N.当∠EDF在△ABC内绕顶点D旋转时有以下结论:①点C,M,D,N四点共圆;②连接CD,若AD=DB,则△ADM∽△CDN;③若AD=DB,则DN•CM=BN•DM;④若AD=DB,则CM+CN=AD;⑤若DB=2AD,AB=6,则2≤S△DMN≤4.其中正确结论的个数是()A.2B.3C.4D.5【分析】①正确,如图1中,只要证明∠MCN+∠MDN=180°.②正确,可以证明△ADM与△DCN全等.③正确,如图3中,只要证明△ADM≌△CDN,推出AM=CN,DM=DN,因为AC=BC,推出CM=BN,即可证明.④正确,如图4中,作DH⊥AC于H,DG⊥BC于G.只要证明四边形CHDG是正方形,△DHM≌△DGN,推出MH=NG,推出CM+CN=CH+MH+CG﹣NG=2CH,又因为AD=CD=CH,由此即可证明.⑤正确,如图5中,由△DHM∽△DGN,推出==,设DM=x,则DG=2x,推出S△DMN=•2x•x=x2,当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM ⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,由此即可判断.【解答】解:①正确.理由如下:如图1中,∵∠ACB=90°,∠EDF=90°,∴∠MCN+∠MDN=180°,∴点C,M,D,N四点共圆.②正确.理由如下:如图2中,连接CD.∵AC=BC.AD=DB.∴CD⊥AB,CD=AD=DB,∴∠ADC=∠MDN=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN.故②正确.③正确.理由如下:如图3中∵CA=CB,∠ACB=90°,AD=DB,∴CD=AD=DB,CD⊥AB,∠A=∠ACD=∠DCN=45°,∴∠ADC=∠EDF=90°,∴∠ADM=∠CDN,在△ADM和△CDN中,,∴△ADM≌△CDN,∴AM=CN,DM=DN,∵AC=BC,∴CM=BN,∴DN•CM=BN•DM④正确.理由如下:如图4中,作DH⊥AC于H,DG⊥BC于G.∵∠ACD=∠BCD=45°,∴DH=DG,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∵DH=DG,∴四边形CHDG是正方形,∴∠HDG=∠MDN=90°,CH=CG,∴∠MDH=∠GDN,在△DHM和△DGN中,,∴△DHM≌△DGN,∴MH=NG∴CM+CN=CH+MH+CG﹣NG=2CH,∵AD=CD=CH,∴CM+CN=AD.如图5中,作DH⊥AC于H,DG⊥BC于G.∵AB=6,BD=2AD,∴AD=2,BD=4,∴AH=DH=,DG=GB=2,∵∠DHC=∠HCG=∠CGD=90°,∴四边形CHDG是矩形,∴∠HDG=∠MDN,∴∠MDH=∠NDG,∵∠DHM=∠DGN=90°,∴△DHM∽△DGN,∴==,设DM=x,则DG=2x,=•2x•x=x2,∴S△DMN当DM⊥AC时,DM的值最小,此时DM=DH=,△DMN的面积最小值为2,当DM⊥AB时,DM的值最大,此时DM=AD=2,△DMN的面积的最大值为4,≤4.∴2≤S△DMN故选:D.二.填空题(共14小题)10.若一个圆经过梯形ABCD的四个顶点,则这个梯形是等腰梯形.【分析】由四点共圆和平行线的性质证出∠B=∠C,根据在同一底上的两角相等的梯形是等腰梯形就能求出答案.【解答】解:∵圆经过梯形ABCD的四个顶点,∴∠A+∠C=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠C,∴梯形ABCD是等腰梯形.故答案为:等腰.11.已知AB为圆O的一条弦(非直径),OC⊥AB于C,P为圆O上任意一点,直线PA与直线OC相交于点M,直线PB与直线OC相交于点N.以下说法正确的有①③.①O,M,B,P四点共圆;②A,M,B,N四点共圆;③A,O,P,N四点共圆.【分析】首先按照题意画出示意图,然后根据四点共圆的判定定理进行判断.①验证∠BPM=∠BOC 即可;②由图形可知明显错误;③推导∠AOP+∠ANP=180°即可.【解答】解:如图,∵OC⊥AB于C,∴∠BOC=∠AOC=∠AOB,NA=NB,∵∠BPM=∠AOB,∴∠BPM=∠BOC,∴O、M、B、P四点共圆,∴①正确.∵四边形AMBN为凹四边形.∴A、M、B、N不共圆,∴②错误.∵NA=NB,∴∠NAB=∠NBA,∵∠NAB+∠NBA+∠ANP=180°,∴∠ANP+2∠NBA=180°∵∠AOP=2∠NBA,∴∠AOP+∠ANP=180°,∴A、O、P、N四点共圆,∴③正确.故答案为:①③12.已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=90°.【分析】根据题意可知,点A、B、D、E共圆,点H是△ABC的垂心.过点A作⊙O的切线AF交BC 的延长线BC于点F.根据切线的性质可知△ABF是直角三角形、由平行线的判定与性质可知∠HCA=∠CAF;最后由图形可知∠BAF=∠FAC+∠CAB=90°,即∠BAC+∠HCA=90°.【解答】解:∵△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,∴点A、B、D、E在以AB为直径的⊙O上;过点A作⊙O的切线AF交BC的延长线BC于点F,则AF⊥AB.∵点H是三角形ABC的垂心,∴CH⊥AB,∴CH∥AF,∴∠HCA=∠CAF(两直线平行,内错角相等);又∵∠BAF=∠FAC+∠CAB=90°,∴∠BAC+∠HCA=90°.故答案是:90°.13.已知△ABC为等腰直角三角形,∠C为直角,延长CA至D,以AD为直径作圆,连BD与圆O交于点E,连CE,CE的延长线交圆O于另一点F,那么的值等于.【分析】连接AE,AF,DF,根据AD为直径,可证A、C、B、E四点共圆,则∠ACF=∠ABD,又∠AFC=∠ADB,可证△AFC∽△ADB,则=,而∠FAD=∠FED=∠BEC=∠BAC=45°,根据=求解.【解答】解:如图,连接AE,AF,DF,∵AD为直径,∴∠AED=∠AEB=∠ACB=90°,∴A、C、B、E四点共圆,∴∠ACF=∠ABD,又∵∠AFC=∠ADB,∴△AFC∽△ADB,∴=,∵∠FAD=∠FED=∠BEC=∠BAC=45°,在Rt△ADF中,===.故答案为:.14.已知二次函数y1=a1(x﹣1)2﹣2012,其图象顶点为M,且与x轴交于A(x1,0),B(x2,0)两点,又知二次函数y2=a2(x﹣1)2+1的顶点为N,若A,B,M,N四点共圆,则x1x2﹣x1﹣x2=﹣2013.【分析】不妨设A在B的左边,设MN与AB的交点为H,易证△AHM∽△NHA,从而可求出AH,进而得到x1,同理可求出x2,然后代入所求代数式就可解决问题.【解答】解:不妨设A在B的左边,设MN与AB的交点为H,由题可知:M(1,﹣2012),N(1,1),则MH=2012,NH=1.根据抛物线的对称性可得MN垂直平分AB,故MN为四边形AMBN外接圆的直径,根据圆周角定理可得∠NAM=∠NBM=90°,∴∠NAH+∠MAH=90°,∠HMA+∠MAH=90°,∴∠NAH=∠HMA.∵∠AHN=∠MHA=90°,∴△AHM∽△NHA,∴=,∴AH2=MH•NH=2012,∴AH==2,∴1﹣x1=2,∴x1=1﹣2.同理x2=1+2,∴x1x2﹣x1﹣x2=(1﹣2(1+2)﹣(1﹣2)﹣(1+2)=1﹣2012﹣1+2﹣1﹣2=﹣2013.故答案为﹣2013.15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠ABD=72°,则∠CAD的度数为18°.【分析】通过证明点A,点B,点C,点D四点共圆,可得∠ABD=∠ACD=72°,由直角三角形的性质可求解.【解答】解:∵∠ABC=∠ADC=90°,∴点A,点B,点C,点D四点共圆,∴∠ABD=∠ACD=72°,∴∠CAD=90°﹣∠ACD=18°,故答案为:18°.16.已知:AB=2,AC平分∠DAB,∠DAB+∠DCB=180°,∠DCB=120°,当∠ABD=∠CBF时,则AC=+1.【分析】先证明A、B、C、D四点共圆,由圆周角定理得出∠ABD=∠ACD,再由已知条件和圆内接四边形的性质得出∠ACD=∠ADC,由三角形内角和定理求出∠ACD=∠ADC=75°,得出∠ACB=45°,作BM⊥AC于M,则∠AMB=∠CMB=90°,由含30°角的直角三角形的性质和勾股定理得出BM=AB=1,AM=,得出△CBM是等腰直角三角形,因此CM=BM=1,即可得出AC的长.【解答】解:∵∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∠DAB=180°﹣∠DCB=60°,∴∠ABD=∠ACD,∵∠ABD=∠CBF,∴∠ACD=∠CBF,∵∠CBF=∠ADC,∴∠ACD=∠ADC,∵AC平分∠DAB,∴∠DAC=∠BAC=30°,∴∠ACD=∠ADC=75°,∴∠ACB=120°﹣75°=45°,作BM⊥AC于M,如图所示:则∠AMB=∠CMB=90°,∴BM=AB=1,△CBM是等腰直角三角形,∴AM=BM=,CM=BM=1,∴AC=AM+CM=+1;故答案为:+1.17.在四边形ABCD中,∠DAC=98°,∠DBC=82°,∠BCD=70°,BC=AD,则∠ACD=28°.【分析】以CD为对称轴作△CDE与△CBD对称,可得∠DEC=∠DBC=82°,CE=CB,然后由∠DAC=98°可得∠DEC+∠DAC=180°,得出A、D、E、C四点共圆,然后可得CE=AD,继而得出∠DCA=∠CDE=∠CDB,由∠BCD和∠DBC的度数可求出∠BCD的度数,即可求出∠ACD的度数.【解答】解:以CD为对称轴作△CDE与△CBD对称,则∠DEC=∠DBC,CE=CB,∵∠DAC=98°,∠DBC=82°,∴∠DEC=82°,∴∠DEC+∠DAC=180°,∴A、D、E、C四点共圆,∵BC=AD,CE=CB,∴CE=AD,∴∠DCA=∠CDE=∠CDB,∵∠BCD=70°,∠DBC=82°,∴∠BDC=180°﹣∠BCD﹣∠DBC=28°,∴∠ACD=∠BDC=28°.故答案为:28°.18.如图,在等腰△ABC中,∠ABC=90°,点D为BC的中点,点E在AC边上,以DE为腰作等腰Rt△DEF,连接CF,BF.若CE=1,△CDF的面积为7.5,则BF的长为.【分析】作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.易证∠DFE=∠ACB═45°,可得D、E、C、F四点共圆,从而可证到∠DEN=∠DFM,进而可得△DNE≌△DMF,则有DN =DM,NE=MF.易证四边形DNCM是正方形,设正方形DNCM的边长为x,根据△CDF的面积为7.5建立关于x的方程,求出x,从而可求出FC、KC、BK,然后根据勾股定理就可求出BF的长.【解答】证明:作DN⊥AC,DM⊥FC,FK⊥BC,垂足分别为N,M,K,如图所示.∵△ABC和△DEF都是等腰直角三角形,∴∠DFE=∠ACB=45°,∴D、E、C、F四点共圆,∴∠EDF+∠ECF=180°,∠DEC+∠DFC=180°,∠DCF=∠DEF=45°.∵∠DEN+∠DEC=180°,∴∠DEN=∠DFM.在△DNE和△DMF中,.∴△DNE≌△DMF,∴DN=DM,NE=MF.∵∠DNC=∠NCM=∠DMC=90°,∴四边形DNCM是矩形.∵DN=DM,∴矩形DNCM是正方形.设正方形DNCM的边长为x,则NC=MC=DM=DN=x,∴MF=NE=NC﹣EC=x﹣1,∴FC=MC+FM=x+(x﹣1)=2x﹣1.∵△CDF的面积为7.5,∴x(2x﹣1)=7.5.解得:x1=﹣2.5(舍去),x2=3.∴BD=DC==3,FC=5,∴KF=FC•sin45°=.同理:KC=,∴BK=BC﹣KC=6﹣=,∴BF==.故答案为:.19.如图,线段AB、CD相交于E,AE=AC,DE=DB,点M、F、G分别为线段AD、CE、EB的中点,如果∠MAE=25°,∠AMF=40°,那么∠MFG的度数为45°.【分析】如图,连接AF,DG,由等腰三角形的性质可得∠AFD=∠AGD=90°,可得点A,点F,点G,点D四点共圆,可得∠DFG=∠GAD=25°,由直角三角形的性质和等腰三角形的性质可求∠DFM =20°,即可求解.【解答】解:如图,连接AF,DG,∵AE=AC,DE=DB,点F,点G是CE,BE的中点,∴AF⊥CE,DG⊥BE,∴∠AFD=∠AGD=90°,∴点A,点F,点G,点D四点共圆,∴∠DFG=∠GAD=25°,∵∠AFD=90°,点M是AD中点,∴AM=FM=DM,∴∠DFM=∠FDM,且∠AMF=∠FDM+∠DFM=40°,∴∠DFM=20°,∴∠MFG=∠MFD+∠DFG=45°,故答案为45°.20.如图,点O为等边△ABC内一点,OA=2,OC=,连接BO并延长交AC于点D,且∠DOC=30°,过点B作BF⊥BD交CO延长线于点F,连接AF,过点D作DE⊥AF于点E,则DE=.【分析】过点C作CM⊥CF交BD延长线于点M,连接AM,由∠BMC=∠BAC=∠BFC=60°知A、F、B、C、M五点共圆,证∠AMB=60°、OM=OA=2得△AOM是等边三角形,由∠AOM=60°=∠OMC知MC∥AO,得===,从而有OD=OM=、DM=OM=,由A、F、B、M四点共圆证△ODG是等边三角形,得AG=OA﹣OG=OM﹣OD=DM=、EG=AG=,根据DE=DG+EG=OD+EG得出答案.【解答】解:过点C作CM⊥CF交BD延长线于点M,连接AM,∵∠DOC=30°,∴∠BMC=∠BAC=∠BFC=60°,∴A、F、B、C、M五点共圆,∴∠AMB=∠ACB=60°,∵OC=、∠COD=30°,∴OM==2=OA,∴△AOM是等边三角形,∴∠AOM=60°,∵∠AOM=60°=∠OMC,∴MC∥AO,∴===,∴OD=OM=,DM=OM=,∵A、F、B、M四点共圆,∴∠FAM=180°﹣∠FBM=90°,∴∠EAG=∠FAM﹣∠OAM=30°,∴∠OGD=∠AGE=60°,∴△ODG是等边三角形,∴AG=OA﹣OG=OM﹣OD=DM=,∴EG=AG=,∴DE=DG+EG=OD+EG=,故答案为:.21.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D作DF⊥AE于F点,连接OF.则线段OF的长度为﹣.【分析】作OG⊥DF于G,连接OG.易证A、O、F、D四点共圆,从而有∠OFG=∠DAO=45°,则有OG=FG.设GF=GO=x,则有DG=1+x,OF=x.然后先求出OD,再在Rt△OGD中运用勾股定理求出x,就可得到OF的长.【解答】解:作OG⊥DF于G,连接OG,如图所示.∵四边形ABCD是正方形,∴∠DAC=45°,∠AOD=90°.∵DF⊥AE,即∠AFD=90°,∴∠AOD=∠AFD.∴A、O、F、D四点共圆.∴∠OFG=∠DAO=45°.∵OG⊥DF,即∠OGF=90°,∴∠FOG=45°=∠OFG.∴OG=FG.∵∠AFD=90°,∠DAE=30°,AD=2,∴DF=1.设GF=GO=x,则有DG=DF+FG=1+x,OF==x.在Rt△AOD中,OD=AD•sin∠DAO=2×=.在Rt△OGD中,∵∠OGD=90°,∴OG2+DG2=OD2.∴x2+(1+x)2=()2.解得:x1=﹣+,x2=﹣﹣(舍去).所以OF=x=﹣.故答案为:﹣.22.如图,ABCD、CEFG是正方形,E在CD上,且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,则OH=AB,BM=AB.【分析】易得△BCE≌△DCG,得到∠1=∠2,B,C,H,D四点共圆,得出OH=BD=AB,由E关于BD的对称E′,得到△BEE′是等腰三角形,BM⊥E′E于M,由角平分线到角两边的距离相等得出BM=AB.【解答】解:如图,设EE′与BD交于点M′,∵AD=CD∴AE′=CE=EF,∵∠E′AM′=∠EFM′,∠AM′E′=∠FM′F,∴△AM′E′≌△FM′E(AAS),∴EM′=E′M′,∵ME′=ME∴M与M′重合,∵BC=DC,EC=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠1=∠2,∴B,C,H,D四点共圆,∴OH=BD=AB,∵E关于BD的对称E′,∵∠3=∠4,BE=BE′,∴△BEE′是等腰三角形,∴BM⊥E′E于M,∴BM=AB.故答案为:AB,AB.23.如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=a﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的序号为①③④⑤.【分析】①由正方形的性质得∠BAD=∠ADC=∠B=90°,由旋转的性质得∠NAD=∠BAM,∠AND =∠AMB,由余角的性质进而得∠DAM=∠AND,①正确;②由正方形的性质得PC∥EF,由相似三角形的性质得到CP=b﹣,②错误;③由旋转的性质得GN=ME,则AB=ME=NG,证出△ABM≌△NGF(SAS);③正确;=AM2=a2+b2;④正确;得到S四边形AMFN⑤由正方形的性质得∠AMP=90°,∠ADP=90°,得∠ABP+∠ADP=180°,推出A,M,P,D四点共圆,⑤正确.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=∠ADC=∠B=90°,∴∠BAM+∠DAM=90°,∵将△ABM绕点A旋转至△ADN,∴∠NAD=∠BAM,∠AND=∠AMB,∴∠DAM+∠NAD=∠NAD+∠AND=∠AND+∠NAD=90°,∴∠DAM=∠AND,故①正确;②∵四边形CEFG是正方形,∴PC∥EF,∴△MPC∽△MFE,∴=,∵大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),BM=b,∴EF=b,CM=a﹣b,ME=(a﹣b)+b=a,∴=,∴CP=b﹣;故②错误;③∵将△MEF绕点F旋转至△NGF,∴GN=ME,∵AB=a,ME=a,∴AB=ME=NG,在△ABM与△NGF中,,∴△ABM≌△NGF(SAS);故③正确;④∵将△ABM绕点A旋转至△ADN,∴AM=AN,∵将△MEF绕点F旋转至△NGF,∴NF=MF,∵△ABM≌△NGF,。
专题:四点共圆在中考数学及自主招生中的应用
![专题:四点共圆在中考数学及自主招生中的应用](https://img.taocdn.com/s3/m/c293a2cd162ded630b1c59eef8c75fbfc77d942b.png)
专题:四点共圆在中考数学及自主招生中的应用四点共圆的判定方法:方法一:若四个点到一个定点的距离相等,则这四个点共圆;方法二:若一个四边形的一组对角互补,则这个四边形的四个点共圆;方法三:若一个四边形的外角等于它相邻的内对角,则这个四边形的四个点共圆;方法四:若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆方法五:同斜边的直角三角形的顶点共圆C AD B C A D经典例题题型1、先证四点共圆后,然后求线段最值问题(关键是找到动点的轨迹)例1、如图1,OA=OB=4,∠OCA=135°(1)求证:AC⊥BC;(2)如图2,点P与点B关于x轴对称,试求PC的最小值。
题型2、先证四点共圆后,然后求角度、三角函数值、或线段的比值(若从一个点出发的三条线段之间的比值问题,特别注意三弦定理)例2、如图,抛物线y=ax2-4ax+b与x轴交于A、B两点,与y轴交于点C,抛物线的顶点为M,直线y=x-3经过M,B两点,交y轴于点D(1)求抛物线的解析式;(2)设P为x轴上一动点,过P作PC的垂线交直线BD于Q,连接CQ,求∠PQC的度数例3、(2013年哈尔滨)如图,矩形ABCD的对角线AC,BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为5,则sin∠BOE的值为例4、(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.例5、如图1,直线y=−21x+2交x 轴、y 轴于A 、B 两点,C 为直线AB 上第二象限内一点,且S △AOC =8,双曲线 y=xk (x <0)经过点C (1)求k 的值; (2) 如图2,Q 为双曲线上另一点,连接OQ ,过C 作CM ⊥OQ 于M ,CN ⊥y 轴于N ,连接MN 。
中考数学总复习《四点共圆问题》专题(含答案)
![中考数学总复习《四点共圆问题》专题(含答案)](https://img.taocdn.com/s3/m/cfda759650e79b89680203d8ce2f0066f53364ed.png)
如图,在 中, , 中, ,若 三点在同一直线 上. 连接 、 ,点 、 、 分别为 、 、 的中点.求证 .
在梯形ABCD中, , , , 分别在 , 上, .
求证: .
如图 和 中, ,求证点 , , , 四点在同一个圆上.
(1)当点 在 内时,延长 交 于 ,连结 ,则有
如图,在△ABC中,分别以AB,AC为直径在 ABC外作半圆 和半圆 ,其中 和 分别为两个半圆的圆心.F是边BC的中点,点D和点E分别为两个半圆圆弧的中点.过点A作半圆 的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA.
求证:PA是半圆 的切线.
如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点E,且DE=2EB,F为AC的中点.
求证:(1)∠FBD=30°;(2)AD=DC.
四点共圆问题答案解析
一、解答题
(1)∵ ,∴ ,
∴ ,∴ 四点共圆.
(2) 连结 ,设 相交于
由(1)可知 是圆的直径,
又∵ 是平行四边形,∴ 是 中点,
∴ 是圆心,∴ ,
∵ ,∴ .
取 的中点 ,连接 ,故
【解析】取斜边中点,利用斜边中线等于斜边长一半,然后利用证明方法一.
∵ 是 的切线,∴ ,
∴ ,
∵ ,
∴ ,
∴ 四点共圆,
∵ ,∴ .
连结ห้องสมุดไป่ตู้,
∵ ,
∴ ,
∴ ,
∵ ,
∴ 四点共圆, 四点共圆,
∴ 五点共圆,
∴ .
中考数学满分之路(二)—四点共圆
![中考数学满分之路(二)—四点共圆](https://img.taocdn.com/s3/m/03e0c7fd227916888586d71b.png)
中考数学满分之路(二) ——四点共圆一、使用定义解题圆的定义 平面上到一个定点的距离等于定长的点的集合叫做圆. 在题目中出现共端点的等线段时,可尝试作出圆辅助求解.例 (1)如图,四边形ABCD 中,DC ∥AB ,BC =1,AB =AC =AD =2,则BD 的长为______.(2)如图,在等腰△ABC中,AB AC =D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点F ,则AD AF ⋅的值为______.E1. 如图,抛物线2y ax bx c =++经过点(2,5)A -,与x 轴相交于(1,0)B -,(3,0)C 两点. (1)求抛物线的函数表达式;(2)点D 在抛物线的对称轴上,且位于x 轴的上方,将△BCD 沿直线BD 翻折得到△'BC D ,若点'C 恰好落在抛物线的对称轴上,求点'C 和点D 的坐标;(3)设点P 是抛物线上位于对称轴右侧的一点,点Q 在抛物线的对称轴上,当△CPQ 为等边三角形时,求直线BP 的函数表达式.2. 问题背景如图1,等腰△ABC 中,AB =AC ,∠BAC =120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD =12∠BAC =60°,于是2BC BDAB AB= 迁移应用(1)如图2,△ABC 和△ADE 都是等腰三角形,∠BAC =∠DAE =120°,D ,E ,C 三点在同一条直线上,连接BD .ⅰ)求证:△ADB ≌△AEC ;ⅱ)请直接写出线段AD ,BD ,CD 之间的等量关系式. 拓展延伸(2)如图3,在菱形ABCD 中,∠ABC =120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF .ⅰ)求证:△CEF 是等边三角形; ⅱ)若AE =5,CE =2,求BF 的长.图1图2图33. 如图,AB 是半圆⊙O 的直径,点C 为半圆⊙O 上的点,连接AC ,BC ,点E 是AC 的中点,点F 是射线OE 上一点.(1)如图1,连接F A ,FC ,若2AFC BAC ∠=∠,求证:F A ⊥AB ;(2)如图2,过点C 作CD ⊥AB 于点D ,点G 是线段CD 上一点(不与点C 重合),连接F A ,FG ,FG 与AC 相交于点P ,且AF FG =.①试猜想∠AFG 和∠B 的数量关系,并证明;②连接OG ,若OE BD =,90GOE ∠=,⊙O 的半径为2,求EP 的长.图1 图2二、圆内接四边形的性质与判定定理性质定理1 圆的内接四边形的对角互补.定理2 圆内接四边形的外角等于它的内角的对角.圆周角定理的推论同弧所对的圆周角相等.判定圆内接四边形判定定理1 如果一个四边形的对角互补,那么这个四边形的四个顶点共圆.推论如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆.圆内接四边形判定定理2 如果一个四边形一边与一对角线的夹角等于其对边与另一对角线的夹角,那么这个四边形的四个顶点共圆.上述定理在应用时的书写格式如下①∵A,B,C,D四点共圆,∴∠BAD+∠BCD=180°.②∵A,B,C,D四点共圆,∴∠DCE=∠BAD.③∵A,B,C,D四点共圆,∴∠ACB=∠ADB. ④∵∠BAD+∠BCD=180°,∴A,B,C,D四点共圆.⑤∵∠DCE=∠BAD,∴A,B,C,D四点共圆.⑥∵∠ACB=∠ADB,∴A,B,C,D四点共圆.EE4. 如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE AC ⊥交AB 于点E ,若4BC =,△AOE 的面积为6,则sin BOE ∠的值为______.5. 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =. (1)求证:AC AD CE =+;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作PQ DP ⊥,交直线BE 与点Q ;ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.DBP6. 如图,已知△ABC 是等边三角形,点D ,E 分别在边AC ,AB 上,且CD AE =,BD 与CE 相交于点P . (1)求证:△ACE ≌△CBD ;(2)如图2,将△CPD 沿直线CP 翻折得到对应的△CPM ,过C 作CG ∥AB ,交射线PM 于点G ,PG 与BC 相交于点F ,连接BG .ⅰ)试判断四边形ABGC 的形状,并说明理由;ⅱ)若四边形ABGC的面积为,1PF =,求CE 的长.图1图2三、与圆有关的比例线段相交弦定理 圆内的两条弦,被交点分成的两条线段长的积相等.割线定理 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等. 切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项.上述定理在应用时的书写格式如下 由相交弦定理, 得PA PB PC PD ⋅=⋅.由割线定理, 得PA PB PC PD ⋅=⋅.由切割线定理, 得2PA PB PC =⋅.7. 如图,已知AB 是⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BE 交⊙O 于F ,AF 交CE 于P . 求证:PE =PC .P8. 如图1,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =4,CD =16.(1)求⊙O 的半径r 的长度;10r =; (2)求tan ∠CMD ;(3)如图2,直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求H E H F ⋅的值.图1图29. 已知BC 为⊙O 的直径,AC 为⊙O 的切线,C 为切点,AD =BD .(1)如图1,求证:∠A =45°;(2)如图2,E 为⊙O 上一点,连接DE 交BC 于点F ,过点F 作BC 的垂线交BE 于点G ,求证:FG =FC ;(3)如图3,在(2)的条件下,若EG BDF 的面积为15(BF >BD ),求⊙O 的面积.图1BC图2CB图3BC10. (蝴蝶定理)如图,过⊙O的弦PQ的中点M引任意两条弦AB,CD,连接AD,BC分别交PQ于X,Y两点. 求证:MX=MY.证明:分别取AD ,CB 的中点E ,F , 连接OE ,OF ,OM ,OX ,OY ,ME ,MF , ∵∠A =∠C ,∠D =∠B ,∴△ADM ∽△CBM , ∴AM ADCM CB=,又AD =2AE ,CB =2CF , ∴22AD AE AE CB CF CF ==,∴AM AECM CF=,又∠A =∠C , ∴△AEM ∽△CFM ,∴∠AEM =∠CFM ,∵点M ,E ,F 分别是⊙O 的弦PQ ,AD ,CB 的中点, ∴OM ⊥PQ ,OE ⊥AD ,OF ⊥CB ,∴∠OEX +∠OMX =180°,∠OFY +∠OMY =180°, ∴O ,M ,X ,E 四点共圆,O ,M ,Y ,F 四点共圆, ∴∠MOX =∠AEM ,∠MOY =∠CFM ,又∠AEM =∠CFM , ∴∠MOX =∠MOY ,又OM =OM ,∠OMX =∠OMY =90°, ∴△OMX ≌△OMY ,∴MX =MY . 证法二证明:过点D 作DE ∥PQ 交⊙O 于另一点E ,连接MO 并延长交DE 于E , ①当PQ 为直径时,四边形ACBD 为矩形,易证MX =MY ; ②当PQ 不是直径时,由垂径定理推论,得OM ⊥PQ ,又DE ∥PQ , ∴MN ⊥DE ,又MN 过圆心O ,∴MN 垂直平分DE , ∴MD =ME ,∴∠MDE =∠MED ,又PQ ∥DE ,∴∠PMD =∠MDE ,∠QME =∠MED , ∴∠PMD =∠QME ,∠QME =∠MDE ,∵C ,D ,B ,E 四点共圆,∴∠MDE +∠CBE =180°, ∴∠QME +∠CBE =180°, ∴M ,E ,B ,Y 四点共圆,∴∠MEY =∠MBC ,又∠MBC =∠ADC ,∴∠ADC =∠MEY ,又MD =ME ,∠PMD =∠QME , ∴△MDX ≌△MEY ,∴MX =MY .证明:过X 作'XX AB ⊥于'X ,过X 作"XX CD ⊥于"X , 过Y 作'YY CD ⊥于'Y ,过Y 作"YY AB ⊥于"Y ,∵∠A =∠C ,∠D =∠B ,''90AX X CY Y ∠=∠=,""90CX X BY Y ∠=∠=, ∴△'AX X ∽△'CY Y ,△"DX X ∽△"BY Y , ∴''AX XX CY YY =,……①,""DX XX BY YY =,……②, ①×②,得'"'"AX DX XX XX CY BY YY YY ⋅=⋅, ∴'""'AX DX XX XX CY BY YY YY ⋅=⋅⋅,又由相交弦定理及平行线分线段成比例定理,得PX QX MX MXQY PY MY MY ⋅=⋅⋅, ∴22()()()()MP MX MP MX MX MP MY MP MY MY -⋅+=-⋅+,即222222MP MX MX MP MY MY -=-, 根据比例的基本性质,得22222222222222()1()MP MX MX MP MX MX MP MP MY MY MP MY MY MP --+====--+, ∴22MX MY =,∴MX =MY . 证法四证明:连接PA ,PD ,QC ,QB ,根据共圆定理,(共圆定理:同圆或等圆中的三角形面积比等于三边乘积之比) 得PAD QCB S PA PD AD PA PD ADS QB QC BC QB QC BC∆∆⋅⋅==⋅⋅⋅⋅, 又△PAM ∽△BQM ,△PDM ∽△CQM ,△ADM ∽△CBM , ∴22PAD AMDQCB CMBS PA PD AD AM MP AM AM S S QB QC BC MQ MC MC MC S ∆∆∆∆=⋅⋅=⋅⋅==, ∴QCB PAD AMD CMB S S S S ∆∆∆∆=,即PX QYMX MY=, ∴1MY QY MY QY MQ MX PX MX PX MP +====+, ∴MX =MY .B证明:连接AO 并延长交⊙O 于另一点E ,连接CO 并延长交⊙O 于另一点F ,连接BF ,DE 交于点G , 六边形CFBAED 内接于⊙O ,CF 交AE 于点O ,FB 交ED 于点G ,BA 交DC 于点M ,根据帕斯卡定理,得M ,O ,G 三点共线, 连接MG ,GX ,GY ,∵AE ,CF 为⊙O 的直径,∴∠ADE =90°,∠CBF =90°, ∵MP =MQ ,PQ 不是⊙O 的直径,(PQ 为直径时,易证) ∴OM ⊥PQ ,∴D ,G ,M ,X 四点共圆,B ,G ,M ,Y 四点共圆, ∴∠MGX =∠ADM ,∠MGY =∠CBM ,又∠ADM =∠CBM , ∴∠MGX =∠MGY ,又MG =MG ,∠GMX =∠GMY , ∴△GMX ≌△GMY , ∴MX =MY .帕斯卡定理 如果一个六边形内接于一条二次曲线(圆、椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.B中考不考系列(二)——2019IMO第2题在三角形ABC中,点A1在边BC上,点B1在边AC上. 点P和Q分别在线段AA1和BB1上,且满足PQ平行于AB. 在直线PB1上取点P1,使得点B1严格位于点P与点P1之间,并且∠PP1C=∠BAC. 类似地,在直线QA1上取点Q1,使得点A1严格位于点Q与点Q1之间,并且∠CQ1Q=∠CBA.证明:点P,Q,P1,Q1共圆.证明:延长1AA ,1BB 分别交△ABC 的外接圆于2A ,2B ,连接22A B , ∵PQ ∥AB ,∴22ABB PQB ∠=∠,又222ABB AA B ∠=∠, ∴222PQB AA B ∠=∠,∴22,,,P Q A B 四点共圆,连接2B C ,∵1PPC BAC ∠=∠,2BB C BAC ∠=∠, ∴12PPC BB C ∠=∠,∴121,,,P B B C 四点共圆,连接12PB ,∵11212B PB B CB ∠=∠,222AA B ACB ∠=∠, ∴2122B PP B A P ∠=∠,∴122,,,P A P B 四点共圆,连接2A C ,∵1CQ Q CBA ∠=∠,2CA A CBA ∠=∠, ∴12CQ Q CA A ∠=∠,∴121,,,Q A A C 四点共圆,连接12Q A ,∵11212AQ A ACA ∠=∠,222BB A BCA ∠=∠, ∴2122A QQ A B Q ∠=∠,∴122,,,Q B Q A 四点共圆, ∴2112,,,,,P Q A Q P B 六点共圆, ∴点11,,,P Q P Q 共圆.上述答案是从官方答案翻译而来.【附】官方答案.。
人教版数学九年级上册 四点共圆,解题妙不可言
![人教版数学九年级上册 四点共圆,解题妙不可言](https://img.taocdn.com/s3/m/10eab390a8114431b80dd875.png)
人教版数学九年级上册 四点共圆,解题妙不可言四点共圆是一种重要的解题方法,熟练判断四点共圆,并灵活运用圆的相关性质,能有效进行解题.1.对角互补的四边形四点共圆证线段线段例1如图1,在四边形ABCD 中,∠A=∠BCD=90°,BC=CD=210,CE AD 于点E . 求证:AE=CE ; (2)若tanD=3,求AB 的长.(2018年北京石景山区模拟题)分析:根据∠A=∠BCD=90°,利用对角互补的四边形共圆,作出这个圆,从而把问题转化为圆的知识,在圆的背景下求解,可以帮助同学们更容易找到求解思路.解:如图1,因为∠A+∠BCD=180°,所以四边形ABCD 四点共圆,延长CE 交圆于点F ,连接AF ,因为∠A=∠AEC=90°,所以AB ∥CF ,所以BC=AF,因为BC=CD ,所以AF=CD ,因为∠EAF=∠ECD , ∠F=∠D , 所以△AEF ≌△CED ,所以AE=CE.(2)略点评:对角互补的四边形内接于圆,借助四点共圆,可以创造出更多解题所必需的条件,如夹在两平行弦之间的弦相等,为三角形的全等提供“S ”元素.2.对角互补的四边形四点共圆综合题例2 如图2,四边形ABCD 中,AC ,BD 是它的对角线,∠ADC=∠ABC=90°,∠BCD 是锐角.(1)若BD=BC ,求证:sin ∠BCD=ACBD ; (2)若AB=BC=4,AD+CD=6,求:AC BD 的值. (3)若BD=CD ,,AB=6,BC=8。
求:sin ∠BCD 的值.分析:根据∠ADC=∠ABC=90°,可以判定四边形ABCD 是满足四点共圆,且直径为AC ,作出直径为AC 的圆,就把普通的计算转化为圆的基本计算,充分利用圆的知识使得计算更加简便,提高计算的效率.解:(1)因为∠ADC=∠ABC=90°,所以四点A,B,C,D 都在直径为AC 的圆上,如图2,因为BD=BC ,所以∠BCD=∠BDC ,因为∠BAC=∠BDC ,所以∠BAC=∠BCD ,在直角三角形ABC 中, sin ∠BAC=AC BC ,所以sin ∠BCD=ACBD ; (2)如图3,因为AB=BC=4,所以AC=42,延长DC 到点E ,使得CE=AD ,连接BE ,根据四边形的外角等于内对角,所以∠BCE=∠BAD ,所以△BAD ≌△BCE ,所以BD=BE , ∠ABD=∠CBE ,因为∠ABC=90°,AD+CD=6,所以∠DBE=90°,DE=6,所以BD=32,所以AC BD =432423=. (3)如图4,因为BD=CD ,作直径DF ,交BC 于点E ,连接BF ,则BE ⊥DF ,∠DBF=90°,BE=EC=4, 因为AB=6,BC=8,所以AC=DF=10,易证△DEB ∽△BEF ,所以2BE =DE •EF,所以16=(10-EF )•EF,整理,得2EF -10EF+16=0,解得EF=2或EF=8((舍去), 当EF=2时,BF=25,所以sin ∠BCD=sin ∠F=BF BE =524=552.点评:把一般几何问题转化为四点共圆问题,充分利用圆周角定理,垂径定理,把问题顺利求解,且思路顺畅,是值得熟练掌握的好方法.3.圆定义共圆和同底同侧等角的三角形,四顶点共圆,探究综合题例3 如图5,△ABC 和△ADE 都是等边三角形,将△ADE 绕点A 旋转(保持点D 在△ABC 的内部),连接BD ,CE.(1)求证:BD=CE ;(2)当AB=4,AD=2, ∠DEC=60°时,求BD 的长;(3)设射线BD 和射线CE 相交于点Q ,连接QA ,直接写出旋转过程中,QD,QE,QA 之间的数量关系.分析:第一问:这是常规性的旋转问题,只要牢牢抓住旋转的全等性,借助三角形的全等结论就顺利得出.第二问:解决起来就需要多方面的思考:一是平行线的判定问题,二是三点共线问题,三是三点共圆问题,四是三角形的相似问题,五是一元二次方程的根的问题,都需要缜密思考,规范解答,和谐思考才能顺利得解.第三问:看似简单,但是要真正找到三者的数量关系,还需要动一番脑筋,特别是利用同底同侧对等角的三角形,则四点共圆,把问题转化成圆的相关知识解决,使得解题流畅,简洁,这里的分类思想也发挥着重要的作用.解:(1)如图5,由△ABC 和△ADE 都是等边三角形,所以AB=AC,AD=AE ,∠BAD+∠DAC=60°, ∠CAE+∠DAC=60°,所以∠BAD=∠CAE ,所以△BAD ≌△CAE ,所以BD=CE ;(2)根据(1)知道:∠BDA=∠CEA , 因为∠DEC=60°,所以∠CEA=∠BDA=120°,所以∠ADE+∠BDA=180°,所以B,D,E 三点共线,设点G 是AB 的中点,则AG=AD=AE=DE=2,所以点G,D,E 在以A 为圆心,半径为2的圆上,延长GA 交圆于点F ,连接DG,EF ,如图6, 易证△BGD ∽△BEF ,所以BFBD BE BG =,所以BG •BF =BD •BE,所以12=BD(BD+2), 整理,得2BD +2BD-12=0,解得BD=-1+13或BD=-1-13 ((舍去),所以BD 的长为13-1;(3)当点D 在三点B,D,E 共线时的左边时,如图7,QD,QE,QA 之间的数量关系是: QD=QA+QE.理由如下:根据(1)知道:∠ABD=∠ACE ,所以∠QBC+∠QCB=60°-∠ABD +60°+∠ACE=120°,所以∠BQC=60°,因为∠DAE=60°,所以∠BQC=∠DAE ,所以A,D,E,Q 四点共圆,延长AQ 到点F ,使得QF=QE,连接EF ,则∠FQE=∠ADE=60°,所以△QEF 是等边三角形, 所以∠DQE=∠AFE=60°,∠FAE=∠QDE,EF=QE ,所以△FAE ≌△QDE ,所以AF=QD , 所以QD=QA+QF=QA+QE.当点D 在三点B,D,E 共线时的右边时,如图8,QD,QE,QA 之间的数量关系是:QA=QD+QE.请同学们仿照上述证明,结合图形自己给出证明.点评:四点共圆是一种非常有效的解题方法,希望同学们能尽量熟练掌握,不仅能开阔自己的视野,提高解题的效率,更重要的是丰富自己的知识储备,不受知识的局限,让自己的数学解题游刃有余,提高自己数学解题能力.4.同底同侧等角的三角形,四顶点共圆,判定四边形的形状例4 如图9,已知△ABC和△ADE都是等边三角形,点D在边BC上,点E在边AD的右侧,连接CE.(1)求证:∠ACE=60°;(2)在边AB上取一点F,使BF=BD,联结DF、EF.求证:四边形CDFE是等腰梯形.分析:第一问:充分利用三角形的全等,结论就顺利得到.第二问:证明抓住两个关键点,一是证明DF=CE,二是证明CD∥EF,利用好等边三角形的性质,四点共圆的判定方法,可以巧妙破解.解:(1)由△ABC和△ADE都是等边三角形,所以AB=AC,AD=AE,∠BAD+∠DAC=60°, ∠CAE+∠DAC=60°,所以∠BAD=∠CAE,所以△BAD≌△CAE,所以∠ABD=∠ACE=60°;(2)由BF=BD,∠ABD=60°,所以△BFD是等边三角形,所以BD=DF=CE.因为∠ADE=∠ACE=60°,所以A,D,C,E四点共圆,因为∠AFD+∠AED=180°,所以点A,F,D,E四点共圆,所以点A,F,D,C,E五点共圆,所以∠AFE=∠ADE=60°,所以∠AFE=∠B,所以CD∥EF,所以四边形CDFE是等腰梯形.点评:此题也可以用其他方法求解,感兴趣的同学可以自我尝试一下.。
中考数学压轴题 《简单的四点共圆》
![中考数学压轴题 《简单的四点共圆》](https://img.taocdn.com/s3/m/ce33ccc7fc4ffe473268ab34.png)
《简单的四点共圆》解题方法如果同一平面内的四个点在同一个圆上,则称之为四个点共圆·一般简称为”四点共圆”.四点共圆常用的判定方法有:一.若四个点到一个定点的距离相等,则这四个点共圆.如图,若OA=OB=OC=OD,则A,B,C,D四点在以点O为圆心、OA为半径的圆上.D【答案】(1)略;(2)AB,CD相交成90°时,MN取最大值,最大值是2.【提示】(1)如图,连结OP,取其中点O',显然点M,N在以OP为直径的⊙O'上,连结NO'并延长,交⊙O'于点Q,连结QM,则∠QMN=90°,QN=OP=2,而∠MQN=180°-∠BOC=60°,所以可求得MN的长为定值.(2)由(1)知,四边形PMON内接于⊙O',且直径OP=2,而MN为⊙O'的一条弦,故MN为⊙O'的直径时,其长取最大值,最大值为2,此时∠MON=90°.二.若一个四边形的一组对角互补,则这个四边形的四个顶点共圆.如图,在四边形ABCD中,若∠A+∠C=180°(或∠B+∠D=180°)则A,B,C,D四点在同一个圆上.D【答案】(1)略;(2)AD DE;(3)AD=DE·tanα.【提示】(1)证A,D,B,E四点共圆,从而∠AED=∠ABD=45°,所以AD=DE.(2)同(1),可得A ,D ,B ,E 四点共圆,∠AED =∠ABD =30°,所以AD DE= tan30°,即AD =DE . 三.若一个四边形的外角等于它的内对角,则这个四边形的四个顶点共圆.如图,在四边形ABCD 中,∠CDE 为外角,若∠B =∠CDE ,则A ,B ,C ,D 四点在同一个圆上.【答案】略四.若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线段的两个端点共圆.如图,点A ,D 在线段BC 的同侧,若∠A =∠D ,则A ,B ,C ,D 四点在同一个圆上.D【答案】略诸多几何问题,若以四点共圆作桥梁,就能与圆内的等量关系有机地结合起来.利用四点共圆,可证线段相等、角相等、两线平行或垂直,还可以证线段成比例,求定值等.例题讲解例1 如图,在△ABC 中,过点A 作AD ⊥BC 与点D ,过点D 分别作AB ,AC 的垂线,垂足分别为E ,F .求证:B ,E ,F ,C 四点共圆.证明 因为DE ⊥AB ,DF ⊥AC ,所以∠AED +∠AFD =180°,即A ,E ,D ,F 四点共圆.A B C D EF AB C D E F G连结EF ,则∠AEF =∠ADF .因为AD ⊥BC ,DF ⊥AC ,所以∠FCD =∠ADF =∠AEF ,所以B ,E ,F ,C 四点共圆.例2 在锐角△ABC 中,AB =AC ,AD 为BC 边上的高,E 为AC 的中点.若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 与点N ,射线EN 与AB 相交于点P ,证明:∠APE =2∠MA D .证明 如图,连结DE .因为AD ⊥BC ,CN ⊥AM ,E 为AC 的中点,所以DE =AE =CE =NE ,从而A ,N ,D ,C 在以点E 为圆心、AC 为直径的圆上,所以∠DEN =2∠DAN .由题意可得D 为BC 的中点,所以ED ∥AB ,所以∠APE =∠DEP =2∠MA D .进阶训练1.已知⊙O 的半径为2,AB ,CD 是⊙O 的直径,P 是BC 上任意一点,过点P 分别作AB ,CD 的垂线,垂足分别为N ,M .(1)如图1,若直径AB 与CD 相交成120°角,当点P (不与B ,C 重合)从B 运动到C 的过程中,证明MN 的长为定值;(2)如图2,求当直径AB 与CD 相交成多少度角时,MN 的长取最大值,并写出其最大值.答案:(1)略(2)AB ,CD 相交成90°时,MN 取最大值,最大值为2.【提示】(1)如图,连接OP ,取其中点O ′,显然点M .,N 在以OP 为直径的⊙O ′上.连结NO ′并延长,交⊙O ′于点Q ,连结QM ,则∠QMN =90°,QN =OP =2.而∠MQN =180°-∠BOC =60°,所以可求得MN 的长为定值.A B C D E PN M AB C D EP N M AB C D O MN P图1 图2 A B C D P M N O(2)由(1)知,四边形PMON 内接于⊙O ′,且直径OP =2.而MN 为⊙O ′的一条弦,故MN 为⊙O ′的直径时,其长取最大值,最大值为2,此时∠QMN =90°.2.在Rt△ABC 中,∠BAC =90°,过点B 的直线MN ∥AC ,D 为BC 边上一点,连结AD ,作DE ⊥AD 交MN 于点E ,连结AE .(1)如图1,当∠ABC =45°时,求证:AD =DE ;(2)如图2,当∠ABC =30°时,线段AD 与DE 有何数量关系?请说明理由;(3)当∠ABC =α时,请直接写出线段AD 与DE 的数量关系(用含α的三角函数表示).答案:(略);(2)ADDE ;(3)AD =DE ·tan α. 【提示】(1)证A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =45°,所以AD =DE .(2)同(1)可得A ,D ,B ,E 四点共圆,从而∠AED =∠ABD =30°,所以AE DE=tan30°,即ADDE . AB C D O MN QO ′ P图1 图1 AB C DEFG 图2 AB C D E M N。
四点共圆例题及答案
![四点共圆例题及答案](https://img.taocdn.com/s3/m/3039ce7ef7ec4afe05a1df35.png)
四点共圆的应用知识点:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE=PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB ≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O 连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB =QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D 四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.。
【中考数学必备专题】中考模型解题系列之四点共圆模型(含答案)
![【中考数学必备专题】中考模型解题系列之四点共圆模型(含答案)](https://img.taocdn.com/s3/m/cd5120ef453610661fd9f430.png)
【中考数学必备专题】中考模型解题系列之四点
共圆模型
一、证明题(共2道,每道50分)
1.设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.
答案:证明:过点P作EP∥AD,且EP=AD.连接AE,EB
∴四边形AEPD是平行四边形
∴∠ABP=∠ADP=∠AEP,
可得:A、E、B、P共圆.
∴∠PAB=∠BEP
又∵EP∥BC,且EP=BC
∴四边形EBCP是平行四边形
∴∠BEP=∠PCB
∴∠PAB=∠PCB.
解题思路:根据已知作出过P点平行于AD的直线,并选一点E,使AE∥DP,通过倒角得出A、E、B、P四点共圆,即可得出答案.
试题难度:三颗星知识点:平行四边形的判定与性质
2.如图,O是Rt△ABC斜边AB的中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO 上任意一点,过B作BE⊥AF于E,连接DE交BC于G.求证:∠CAF=∠CDE.
答案:(1)证明:连接OD,
∵△ABC是Rt三角形,BE⊥AF
∴∠BEA=∠ACB=90°,
∴A,B,E,C,四点共圆,且AB是此圆直径,
又∵CH⊥AB,CH=DH,
∴OC=OD
∴D在此圆上,
∴A,B,C,D,E五点共圆,
∴∠CAF=∠CDE.
解题思路:先连接OD,根据已知条件得出∠BEA=∠ACB=90°,得出A,B,E,C,四点共圆且AB是此圆直径,再根据CH⊥AB,CH=DH,确定出D也在此圆上,从而得出A,B,C,D,E五点共圆,即可证出∠CAF=∠CDE
试题难度:三颗星知识点:确定圆的条件。
中考四点共圆问题专项训练
![中考四点共圆问题专项训练](https://img.taocdn.com/s3/m/286a8fa1dbef5ef7ba0d4a7302768e9951e76e9d.png)
四点共圆问题专项训练1.(2021秋•渝北区期末)如图,圆内接四边形ABCD的外角∠ABE为80°,则∠ADC度数为()A.80°B.40°C.100°D.160°【答案】A【解答】解:∵四边形ABCD为圆内接四边形,∴∠ADC+∠ABC=180°,∵∠ABE+∠ABC=180°,∴∠ADC=∠ABE=80°,故选:A.2.(2021秋•滨湖区期中)如图,AB=AD=6,∠A=60°,点C在∠DAB内部且∠C=120°,则CB+CD的最大值()A.4B.8C.10D.6【答案】A【解答】解:如图,连接AC,BD,在AC上取点M使DM=DC,∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A,B,C,D,四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ACD=60°,∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠ACD=60°,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC(SAS),∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长为AD+AB+CD+BC=AD+AB+AC,且AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,则CB+CD最大,此时C点在的中点处,∴∠CAB=30°,∴AC的最大值=AB×cos30°=4,∴CB+CD最大值为AC=4,故选:A.3.(2022•靖江市二模)如图,AB⊥BC,AB=5,点E、F分别是线段AB、射线BC上的动点,以EF为斜边向上作等腰Rt△DEF,∠D=90°,连接AD,则AD的最小值为.【答案】【解答】解:连接BD并延长,如图,∵AB⊥BC,∴∠ABC=90°,∠EDF=90°,∴∠ABC+∠EDF=180°,∴B,E,D,F四点共圆,∵△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°,∴∠DBF=∠DEF=45°,∴∠DBF=∠DBE=45°,∴点D的轨迹为∠ABC的平分线上,∵垂线段最短,∴当AD⊥BD时,AD取最小值,∴AD的最小值为AB=,故答案为:.4.如图,△ABC和△BCD均为直角三角形,∠BAC=∠BDC=90°,AB=2,连接AD.若∠ADB=30°,则AC的长为.【答案】【解答】解:∵∠BAC=∠BDC=90°,∴A,B,C,D四点共圆,∵∠ADB=30°,AB=2,∴∠ACB=∠ADB=30°,∴BC=2AB=4,∴AC=.故答案为:.5.如图,在四边形ABCD中,BD=6,∠BAD=∠BCD=90°,则四边形ABCD 面积的最大值为.【答案】18【解答】解:∵∠BAD=∠BCD=90°,∴A,C两点在以BD为直径的圆上,∴当AB=AD,CB=CD时,四边形ABCD面积最大,∵BD=6,∴AB=AD=CB=CD=3,∴四边形BCD的面积为3××=18.故答案为:18.6.如图,在△ABC和△ACD中,∠ABC=∠ADC=45°,AC=6,则AD的最大值为.【答案】6【解答】解:∵∠ABC=∠ADC=45°,∴A,C,D,B四点共圆,如图,作⊙O经过A,C,D,B四点,当AD(D′)为直径时,AD有最大值,∵∠ADC=45°,∴∠AOC=90°,∵OA=OC,∴△AOC是等腰直角三角形,∵AC=6,∴AO=6×=3,∴AD′=2AO=6,即AD的最大值为6.故答案为:6.7.如图,△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,点E,F分别为AB,AC边上的点,且∠EDF=90°,连接EF,则∠DEF的度数为.【答案】45°【解答】解:如图,连接AD,∵△ABC中,AB=AC,∠BAC=90°,点D是BC的中点,∴∠ADC=90°,AD=CD,∠BAD=∠C=45°,而∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴DE=DF,而∠EDF=90°,∴∠DEF=∠DFE=45°.故答案为:45°.8.(2022秋•萧山区月考)如图,以C为公共顶点的Rt△ABC和Rt△CED中,∠ACB=∠CDE=90°,∠A=∠DCE=30°,且点D在线段AB上,则∠ABE =30°,若AC=10,CD=9,则BE=.【答案】【解答】解:∵∠ACB=∠CDE=90°,∠A=∠DCE=30°,∴∠DBC=∠DEC=60°,∴B、C、D、E四点共圆,∴∠DBE=∠DCE=30°,∴∠ABE=30°,设BC=x,则AB=2x,在Rt△ABC中,由勾股定理得AB2=AC2+BC2,∵AC=10,∴(2x)2=102+x2,解得:x=,∴BC=,设DE=a,则CE=2a,在Rt△CED中,由勾股定理得CE2=DE2+CD2,∵CD=9,∴(2a)2=a2+92,解得:a=,∴DE=,CE=,∵∠ABC=60°,∠ABE=30°,∴∠CBE=∠ABC+∠ABE=90°,在Rt△CBE中,由勾股定理得=.9.(2021秋•宽城区期末)【问题原型】如图①,在⊙O中,弦BC所对的圆心角∠BOC=90°,点A在优弧BC上运动(点A不与点B、C重合),连结AB、AC.(1)在点A运动过程中,∠A的度数是否发生变化?请通过计算说明理由.(2)若BC=2,求弦AC的最大值.【问题拓展】如图②,在△ABC中,BC=4,∠A=60°.若M、N分别是AB、BC的中点,则线段MN的最大值为.【解答】解:【问题原型】(1)∠A的度数不发生变化,理由如下:∵,∠BOC=90°,∴;(2)当AC为⊙O的直径时,AC最大,在Rt△BOC中,∠BOC=90°,根据勾股定理,得OB2+OC2=BC2,∵OB=OC,∴,∴,即AC的最大值为;【问题拓展】如图,画△ABC的外接圆⊙O,连接OB,OC,ON,则ON⊥BC,∠BON=60°,BN=BC=2,∴OB=,∵M、N分别是AB、BC的中点,∴MN是△ABC的中位线,∴MN=AC,∴AC为直径时,AC最大,此时AC=2OB=,∴MN最大值为,故答案为:.10.(2022秋•仪征市期中)【问题提出】苏科版九年级(上册)教材在探究圆内接四边形对角的数量关系时提出了两个问题:帮助他完善问题1的证明:∵BD是⊙O的直径,∴,∴∠A+∠C=180°,∵四边形内角和等于360°,∴.(2)请回答问题2,并说明理由;【深入探究】如图(3),⊙O的内接四边形ABCD恰有一个内切圆⊙I,切点分别是点E、F、G、H,连接GH,EF.(3)直接写出四边形ABCD边满足的数量关系;(4)探究EF、GH满足的位置关系;(5)如图(4),若∠C=90°,BC=3,CD=2,请直接写出图中阴影部分的面积.【解答】解:【问题提出】(1)∵BD是⊙O的直径,∴∠A=∠C=90°,∴∠A+∠C=180°,∵四边形内角和等于360°,∴∠ABC+∠ADC=180°;故答案为:∠A=∠C=90°,∠ABC+∠ADC=180°;(2)成立,理由如下:连接AC、BD,∵∠DAC=∠CBD,∠ACD=∠ABD,∴∠DAC+∠ACD=∠DBC+∠ABD=∠ABC,∵∠DAC+∠ACD+∠ADC=180°,∴∠ABC+∠ADC=180°;同理,∠BAD+∠BCD=180°;【深入探究】(3)AD+BC=AB+CD,理由如下:连接AI、BI、CI、DI,∵圆I是四边形ABCD的内切圆,∴AG=AE,DE=DH,CH=CF,BF=BG,∴AD+BC=AE+ED+BF+CF=AG+DH+BG+CH=AB+CD,即AD+BC=AB+CD,故答案为:AD+BC=AB+CD;(4)EF⊥GH,理由如下:连接EH、IH、IG、IF、GF,∵四边形ABCD是圆O的内接四边形,∴∠B+∠D=180°,∵BG⊥IG,IF⊥BF,∴∠BGI=∠IFB=90°,∴∠B+∠GIF=180°,∴∠GIF=∠D,∵GI=IF,∴∠GFI=90°﹣∠GIF,∵ED=DH,∴∠DEH=90°﹣∠D,∴∠GFI=∠DEH,∵=,∴∠GFE=∠GHE,∴∠GHE=∠GFI+∠IFE,∵IF=IE,∴∠IFE=∠IEF,∴∠FEH+∠EHG=∠FEH+∠IEF+∠DEH=∠EID=90°,∴EF⊥GH;(5)连接BD,∵∠C=90°,∴∠A=90°,∵ABCD是圆O的内接圆,∴BD是圆O的直径,连接IF、IH,∵I是四边形ABCD的内切圆圆心,∴∠ADI=∠IDH,∠ABI=∠FBI,∵IH⊥CD,IF⊥BC,∴∠BIF=90°﹣∠IBF,∠DIH=90°﹣∠IDH,∴∠BIF+∠DIH=180°﹣(∠IBF+∠IDH)=180°﹣(∠ADC+∠ABC),∵∠ABC+∠ADC=180°,∴∠BIF+∠DIH=90°,∵IF⊥FC,IH⊥CD,∠C=90°,IH=IF,∴四边形IHCF是正方形,∴∠HIF=90°,∴I点在BD上,∵BC=3,CD=2,=3×2=6,∴S四边形ABCD∵∠DIH+∠IDH=90°,∠IBF+∠IDH=90°,∴∠DIH=∠IBF,∵∠IHD=∠IFB=90°,∴△DHI∽△IFB,∴=,即=,解得IH=,∴S⊙I=π,∴阴影部分的面积=6﹣π.10.(2022•遵义)综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:;依据2:.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC 的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD 的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【解答】(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:∵∠1=∠2,∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,∵∠3=45°,∴∠4=45°,故答案为:45°;(3)①证明:∵AB=AC,∴∠ABC=∠ACB,∵点E与点C关于AD的对称,∴AE=AC,DE=DC,∴∠AEC=∠ACE,∠DEC=∠DCE,∴∠AED=∠ACB,∴∠AED=∠ABC,∴A,D,B,E四点共圆;②解:AD•AF的值不会发生变化,理由如下:如图4,连接CF,∵点E与点C关于AD的对称,∴FE=FC,∴∠FEC=∠FCE,∴∠FED=∠FCD,∵A,D,B,E四点共圆,∴∠FED=∠BAF,∴∠BAF=∠FCD,∴A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABC,∵∠BAD=∠F AB,∴△ABD∽△AFB,∴=,∴AD•AF=AB2=8.11.如图,在△ABC中,以AB为直径作⊙O交AC于点D,交BC于点E,CE =BE,过点E作EF⊥AC于点F,FE的延长线交AB的延长线于点G,连接DE.(1)求证:FG是⊙O的切线;(2)求证:EG2=AG•BG;(3)若BG=1,EG=,求sin∠CDE的值.【解答】(1)证明:连接OE,∵CE=BE,OA=BO,∴OE是△ABC的中位线,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∵E点在圆O上,∴FG是⊙O的切线;(2)证明:∵OE⊥GF,∴∠OEG=90°,∴OG2=OE2+EG2,∵EG2=OG2﹣OE2=(OG+OE)(OG﹣OE),∵EO=BO=OA,∴EG2=(OG+OA)(OG﹣OB)=AG•BG;(3)解:连接AE,过E点作EM⊥AB交于点M,∵EG2=AG•BG,BG=1,EG=,∴AG=2,∴AB=1,∵AB是直径,∴∠AEB=90°,∵∠OEG=90°,∴∠AEO=∠BEB,∵AO=OE,∴∠EAO=∠OEA,∴∠BEG=∠EAO,∴△AEG∽△EBG,∴==,设EB=x,则AE=x,在Rt△ABE中,1=x2+2x2,解得x=,∴BE=,AE=,∵AE•BE=AB•EM,∴EM=,∵A、B、E、D四点共圆,∴∠CDE=∠ABE,∴sin∠CDE=sin∠EBM===.。
四点共圆专题(圆内接四边形)
![四点共圆专题(圆内接四边形)](https://img.taocdn.com/s3/m/fa5028f04bfe04a1b0717fd5360cba1aa8118c68.png)
四点共圆专题(圆内接四边形)展开全文2018中考数学1.四点共圆概概念:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
2.四点共圆性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。
3.四点共圆判定:(1)若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆;(2)把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
中考应用:习题:(1)四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,求∠BAD和∠BCD的度数。
(2)如图,四边形ABCD内接于⊙O,点P在CD的延长线上,且PA∥DB,求证:PD·BC=AB·AD(3)如图,已知半圆的直径AB=6cm,CD是半圆上长为2cm 的弦,当弦CD在半圆上滑动时,AC和BD延长线的夹角是否为定值?如果不是,说明理由;如果是,求出这个定角的正弦值。
(4)如图3,AB是半圆O的直径,C,D是半圆弧上的两点,∠D=115°,则∠CAB的度数为()(5)如图4,圆内接四边形ABCD的两组对边的延长线分别交于点E,F,若∠A=55°,∠E=30°,则∠F的度数为()(6)如图8,已知四边形ABCD内接于半径为4的⊙O,且∠C=2∠A,则BD=________.(7)如图11,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,求∠OAD+∠OCD的度数.(8)如图12,四边形ABCD内接于⊙O,AC⊥BD于点P,OE⊥AB于点E,F为BC延长线上一点.求证:(1)∠DCF=∠DAB;(2)OE=1/2CD。
中考专题_四点共圆在中考应用_D_1
![中考专题_四点共圆在中考应用_D_1](https://img.taocdn.com/s3/m/56397ba5f12d2af90342e676.png)
中考专题-四点共圆在中考应用-D-11.如图坐标系中:OA=OB,∠ACB=90°,求∠OCB.2.四边形ABCD中(1)对角线AC和BD交于点O,若∠ABD=∠ACD,求证∠CBD=∠CAD.(2)∠ABD=∠ACD,求证:∠ABC+∠ADC=180°(3)∠ABC+∠ADC=180°,求证:∠ABD=∠ACD3.如图,CD、AE为△ABC的高,∠B=45,AC=4,求DE的长。
4.如图,等腰△ABC中,AB=AC,点D为BC的中点,连接AD,点E为AD的中点,作DG⊥BE于点G,点F为AC的中点,连接FG,FD,求证:GF=DF.5.(2014•奉贤区二模)已知:如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.(1)求证:△ABE∽△ACD;(2)求证:BC•AD=DE•AC.6.(2014•崇明县二模)如图,ABCD中,∠DBC=45°,高线DE、BF交于点H,BF、AD的延长线交于点G;联结AH.(1)求证:BH=AB;(2)求证:AH•BG=AG•BD.7.如图,在矩形ABCD中,AB=AC,AB=6,AD=8,P,E分别是线段AC,BC上的点,四边形PEFD为矩形,若AP=2,求CF的长。
8.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C做CF⊥BE,垂直为F,连接OF,求OF的长9.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB与点E,点M为BD的中点,CM的延长线交AB与点F(1)求证:CM=EM(2)若∠BAC=50°,求∠EMF的度数(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM10.(2017•青浦区一模)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.(四点共圆型)11.(2017•浦东新区一模)如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.12.(2016•黄浦区二模)如图,在R t△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.13.(青浦)(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:在Rt △ABC 中,∠ACB=90°,AC=1,D 是AB 的中点.以CD 为直径的⊙Q 分别交BC 、BA 于点F 、E ,点E 位于点D 下方,联结EF 交CD 于点G .(1)如图11,如果BC=2,求DE 的长;(B+)(2)如图12,设BC=x ,=GD y GQ,求y 关于x 的函数关系式及其定义域;(C+)(3)如图13,联结CE ,如果CG=CE ,求BC 的长.(D )图11图12图1314.(2019•余姚市一模)如图1,在矩形ABCD中,点E以lcm/s的速度从点A向点D运动,运动时间为t(s),连结BE,过点E作EF⊥BE,交CD于F,以EF为直径作⊙O.(1)求证:∠1=∠2;(2)如图2,连结BF,交⊙O于点G,并连结EG.已知AB=4,AD=6.①用含t的代数式表示DF的长②连结DG,若△EGD是以EG为腰的等腰三角形,求t的值;(3)连结OC,当tan∠BFC=3时,恰有OC∥EG,请直接写出tan∠ABE的值.15.(2015•崇明县一模)已知在△ABC中,AB=AC=5,BC=6,O为边AB上一动点(不与A、B重合),以O为圆心OB为半径的圆交BC于点D,设OB=x,DC=y.(1)如图1,求y关于x的函数关系式及定义域;(2)当⊙O与线段AC有且只有一个交点时,求x的取值范围;(3)如图2,若⊙O与边AC交于点E(有两个交点时取靠近C的交点),联结DE,当△DEC与△ABC相似时,求x的值.16.(2018•浦东新区一模)如图,已知在△ABC中,∠ACB=90°,BC=2,AC=4,点D在射线BC上,以点D为圆心,BD为半径画弧交边AB于点E,过点E 作EF⊥AB交边AC于点F,射线ED交射线AC于点G.(1)求证:△EFG∽△AEG;(2)设FG=x,△EFG的面积为y,求y关于x的函数解析式并写出定义域;(3)联结DF,当△EFD是等腰三角形时,请直接写出FG的长度.。
初中几何模型精选题专训:四点共圆...
![初中几何模型精选题专训:四点共圆...](https://img.taocdn.com/s3/m/d6a75003cdbff121dd36a32d7375a417866fc178.png)
初中几何模型精选题专训:四点共圆...
初中几何模型精选题专训:四点共圆模型(17道经典题word文档)
初中课本不讲的知识点,但考试经常出现四点共圆。
先补充一下它的性质。
若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
四点共圆有三个性质:
1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;
2)圆内接四边形的对角互补;
3)圆内接四边形的外角等于内对角。
内容太多,需打印版和答案在评论区留言。
#初中数学##几何##中考##九年级#。
“四点共圆”在解题中的妙用
![“四点共圆”在解题中的妙用](https://img.taocdn.com/s3/m/3b5ce4c34693daef5ff73d23.png)
“四点共圆”在解题中的妙用众所周知,在同一个圆中,相等(相同)的弧(弦)所对的圆周角相等;相等(相同)的弧(弦)所对的圆心角相等;四个顶点在同一个圆的四边形(圆内接四边形)对角互补,任一内角的外角等于其内角的对角,。
巧妙运用这一知识点可轻松解决一些角度的等量代换及比例问题。
通常我们判定平面上的四个点是否在同一个圆上所用的模型有以下几种:(1)两个直角三角形的斜边为同一个;(2)同一个线段所对的角相等(图中的角度为随意给出,表示两个角相等);(3)四边形对角互补(图中的角度为随意给出,表示对角互补)。
【例1】在△ABC中,BD⊥AC于点D,CE⊥AB于点E,连接ED。
求证:△ABC∽△ADE。
【解析】∵BD⊥AC,CE⊥AB,∴B、C、D、E四点共圆,∴∠AED=∠ACB,∠ADE=∠ABC,故△ABC∽△ADE。
【例2】如图,已知△PAB中,PA=PB,∠APB=2∠ACB,PD=3,PB=4,求AD·DC 的值。
【解析】因为∠APB=2∠ACB,故作∠APB的角平分线可获得与∠ACB相等的角,从而利用四点共圆和角平分线定理可解此题。
如图,作∠APB的角平分线PM,交AD于点M,则∠MPD=∠ACB,故B、C、P、M四点共圆。
∴MD·DC=PD·DB=3·(4-3)=3;∵PM平分∠APD,根据角平分线定理:AP∶PD=AM∶MD=4∶3,“四点共圆”在解题中的妙用(二)【例3】如图,已知△ABC内接于⊙O,AB=AC,点P、Q分别为CA、AB延长线上的点,且AP=BQ。
求证:O、A、P、Q四点共圆。
【解析】如图,连接OA、OB、OP、OQ。
(只要证明∠P=∠Q就行了)∵AB=AC,∴∠BAO=∠CAO=∠ABO,∴∠QBO=∠PAO,在△QBO和△PAO中:∵∠QBO=∠PAO,OB=OA,BQ=AP∴△QBO≌△PAO∴∠P=∠Q,即O、A、P、Q四点共圆。
专题9 四点共圆巧解中考题28页文档
![专题9 四点共圆巧解中考题28页文档](https://img.taocdn.com/s3/m/781e99faf12d2af90342e6d1.png)
专题—英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
中考每日一题001:四点共圆
![中考每日一题001:四点共圆](https://img.taocdn.com/s3/m/0862118ec67da26925c52cc58bd63186bceb9286.png)
中考每日一题001:四点共圆
最后一天,也要发表篇文章,作为今年的结束,明年的开始。
去年年初开始说每天要写一篇文章分享,坚持了半年,到最后还是因为暑假繁忙而停止。
其实也不是很忙,就是懒,懒得动笔去写,去弄。
今年争取比去年要好一些。
第一问,四点共圆或者相似可以求解。
四点共圆判断-对角互补,或是等边对等角。
第二问,看起来就是相似,不过既然是难题,估计不会一下就搞定,一定要两次相似可以达到目标。
题目难度还是有的,但并不是很大,也不是我们常规中考的题目要求,可以作为尖子生训练使用。
中考_四点共圆__综合题_归类
![中考_四点共圆__综合题_归类](https://img.taocdn.com/s3/m/07fba03367ec102de2bd89ab.png)
1.已知:△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.连接AD、BC,点M、N、P分别为OA、OD、BC的中点.(1)如图1,若A、O、C三点在同一直线上,且∠ABO=60°,则△PMN的形状是等边三角形,此时=1;(2)如图2,若A、O、C三点在同一直线上,且∠ABO=2α,证明△PMN∽△BAO,并计算的值(用含α的式子表示);(3)在图2中,固定△AOB,将△COD绕点O旋转,直接写出PM的最大值.考点:相似三角形的判定与性质;等边三角形的判定;确定圆的条件。
专题:综合题。
分析:(1)由于AB=OB,CD=OC,∠ABO=∠DCO,且∠ABO=60°,则△AOB和△COD都为等边三角形,又A、O、C三点在同一直线上,则△PMN为等边三角形,AD=BC.(2)连接BM、CN,由于△ABO与△MPN都为等腰三角形,且证得∠MPN=∠ABO,则△PMN∽△BAO,的值可在Rt△BMA中求得.(3)结合图形,直接可写出△COD绕点O旋转后PM的最大值.解答:解:(1)连接BM,CN,∵△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=60°,∴△AOB与△COD是等边三角形,又∵点M、N、P分别为OA、OD、BC的中点,∴BM⊥AC,CN⊥BD,∠MBO=∠ABO=∠NCO=∠OCD=30°,∴PM=PN=BC,∴∠PBM=∠PMB,∠PCN=∠PNC,∵∠BAO=∠DCO=60°,∴AB∥CD,∴∠ABC+∠DCB=180°,∴∠MBP+∠BCN=180°﹣∠ABM﹣∠DCN=120°,∴∠BPM+∠NPC=360°﹣2(∠MBP+∠BCN)=120°,∴∠MPN=60°,∴△PMN是等边三角形,∴PM=PN=MN,∵AD=2MN,BC=2PM,∴=1.(2)证明:连接BM、CN.由题意,得BM⊥OA,CN⊥OD,∠AOB=∠COD=90°﹣α.∵A、O、C三点在同一直线上,∴B、O、D三点在同一直线上.∴∠BMC=∠CNB=90°.∵P为BC中点,∴在Rt△BMC中,.在Rt△BNC中,,∴PM=PN.∴B、C、N、M四点都在以P为圆心,为半径的圆上.∴∠MPN=2∠MBN.又∵,∴∠MPN=∠ABO.∴△PMN∽△BAO.∴.由题意,,又.∴.∴.在Rt△BMA中,.∵AO=2AM,∴.∴.(3).当CO∥AB时,即四边形ABCO是梯形时,PM有最大值.PM=(AB+CO)÷2=(2+3)÷2=.点评:本题考查了相似三角形的判定与性质及等边三角形的确定条件,综合性强,较为复杂.3.已知:如图,正方形ABCD中,AC,BD为对角线,将∠BAC绕顶点A逆时针旋转α°(0<α<45),旋转后角的两边分别交BD于点P、点Q,交BC,CD于点E、点F,连接EF,EQ.(1)在∠BAC的旋转过程中,∠AEQ的大小是否改变?若不变写出它的度数;若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);(2)探究△APQ与△AEF的面积的数量关系,写出结论并加以证明.考点:旋转的性质;正方形的性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵∠DBE=∠DBE,∴△BOF∽△BED. ∴BBOE=ODFE=130 5. ∵DE=4,∴OF=56 5.
∴BF=59 10.
课堂精讲
方法二:如图,∵∠BOC=∠BFC=90°,
∴B,C,F,O 四点共圆.
∴∠1=∠2=45°.
∵∠2=∠3=45°,∴∠1=∠3=45°.
∵∠DBE=∠FBO,∴△BOF∽△BED.
课堂精讲
方法二:我们观察这个图形可以发现点 B,C,F,O 这四点是共圆的,故∠1=∠2=45°(圆中同弧所对圆周 角相等),所以∠1=∠3=45°,加上公共角∠DBE,就能 得到△BOF∽△BED,这样的方法是利用几何图形中的变换 得到所要的结论,少了许多计算.这道题的方法还有很多, 还可以过点 O 向 BE 作垂线,垂足为 M,然后利用勾股定理 求解.
课堂精讲
例2 如图,正方形ABCD的边长为6,点O是对 角线AC,BD的交点,点E在CD上,且DE=2CE,过点 C作CF⊥BE,垂足为F,连接OF,求OF的长.
课堂精讲
【分析】方法一:∵正方形 ABCD 的边长为 6,点 O 是 对角线 AC,BD 的交点.∴△AOB,△AOD,△BOC,△COD 为 等腰直角三角形,且 AO=BO=CO=DO=3 2.∵DE=2CE, ∴CE=2,DE=4.∴BE=2 10(在 Rt△BCE 中用勾股定理求 得).然后利用△BCF∽△BEC,求得 BF.利用BBFD=BBEO,易证 △BOF∽△BED,根据比例求解 OF 即可.
答案图
课后精练
8.如图,⊙O 的半径 r=25,四边形 ABCD 内接于⊙O,AC ⊥BD 于点 H,P 为 CA 延长线上的一点,且∠PDA=∠ABD.
(1)试判断 PD 与⊙O 的位置关系,并说明理由; (2)若 tan∠ADB=34,PA=4 33-3AH,求 BD 的长; (3)在(2)的条件下,求四边形 ABCD 的面积.
第3题图 A.20° B.25° C.30° D.35°
课后精练
4.如图,以 Rt△ABC 的斜边 BC 为一边在△ABC 的同 侧作正方形 BCEF,设正方形的中心为点 O,连接 AO,如果
AB=4,AO=6 2,那么 AC 的长等于___1_6___.
第 4 题图
课后精练
5.已知△ABC 为等腰直角三角形,∠C 为直 角,延长 CA 至点 D,以 AD 为直径作圆,连接 BD 与⊙O 交于点 E,连接 CE,CE 的延长线交⊙O 于
方法提炼
3.四点共圆的判定 (1)用“角”判定: ①一组对角互补的四边形的四个顶点在同一个圆上; ②一个外角等于它的内对角的四边形的四个顶点在同一个圆上; ③如果两个三角形有一条公共边,且位于公共边同侧的两个角 相等,则这两个三角形的四个顶点在同一个圆上. (2)“等线段”判定: 四顶点到同一点的距离相等,若OA=OB=OC=OD,则A,B,C, D四点共圆. (3)用“比例线段”判定: 若线段AB,CD(或其延长线)交于点P,且PA·PC=PB·PD,则A, B,C,D四点共圆.
考点解读
四点共圆在圆内接四边形综合问题的求解中占据 了重要地位,都是在大题中结合题目的几何背景进行 综合考查,重在考查学生对知识的应用能力.考查的 基本类型有:利用四点共圆证相似,利用四点共圆求 最值,这些问题大都利用转化思想,将几何问题转化 为四点共圆问题,使题目能简单求解.
方法提炼
1.四点共圆 如果同一平面内的四个点在同一个圆上,则称这四 个点共圆,一般简称为“四点共圆”. 2.四点共圆的性质 (1)共圆的四个点所连成同侧共底的两个三角形的 顶角相等. (2)圆内接四边形的对角互补. (3)圆内接四边形的一个外角等于它的内对角.
又∵∠DAN=∠BAM,∠BCM=∠DCN, ∴∠BAM=∠MBC,∠ABM=∠BCM. ∴△BAM∽△CBM.
∴BCMM=ABMM,即 BM2=AM·CM.①
又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB, ∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM, ∴△DAM∽△CDM.
的度数等于( A )
A.55°
第 1 题图 B.60° C.65°
D.70°
课后精练 2.(2018·邵阳)如图,四边形ABCD为⊙O的内接 四边形,∠BCD=120°,则∠BOD的大小是( B )
第2题图 A.80° B.120° C.100° D.90°
课后精练
3.(2019·天水)如图,四边形ABCD是菱形,⊙O经过点A, C,D,与BC相交于点E,连接AC,AE.若∠D=80°,则∠EAC的 度数为( C )
4 3-3 ∵PA= 3 AH,
∴PA=(4 3-3)k.∴PH=4 3k.
DH 3 ∴在 Rt△PDH 中,tan∠P=PH= 3 . ∴∠P=30°,∠PDH=60°. ∵PD⊥DO, ∴∠BDE=90°-∠PDH=30°. 连接 BE,则∠DBE=90°,DE=2r=50, ∴BD=DE·cos 30°=25 3.
课后精练
(3)由(2)知,BH=25 3-4k,
4 ∴HC=3(25 3-4k). 又∵PD2=PA·PC, ∴(8k)2=(4 3-3)k×[4 3k+43(25 3-4k)].
解得 k=4 3-3, ∴AC=3k+43(25 3-4k)=24 3+7.
1
1
175 3
∴S 四边形 ABCD=2BD·AC=2×25 3×(24 3+7)=900+ 2 .
∴BBOE=ODFE=130 5.
答案图
∵DE=4,∴OF=56 5.
【方法归纳】求线段长常用的方法就是两种:利用相似中的
比例线段求线段长或者利用直角三角形中的勾股定理求线段长.
课后精练
1.(2019·镇江)如图,四边形 ABCD 是半圆的内接 四边形,AB 是直径,D︵C=C︵B.若∠C=110°,则∠ABC
单击此处编辑母版标题样式
加分网
第 8 题图
课后精练
解:(1)PD与⊙O相切. 理由:如图,连接DO并延长交圆于点E, 连接AE,∵DE是直径, ∴∠DAE=90°. ∴∠AED+∠ADE=90°. ∵∠PDA=∠ABD=∠AED, ∴∠PDA+∠ADE=90°,即PD⊥DO. ∴PD与⊙O相切于点D.
答案图
课后精练
3 (2)∵tan∠ADB=4, ∴可设 AH=3k,则 DH=4k.
【答案】C
答案图
课堂精讲
【方法归纳】若已知圆上四点ห้องสมุดไป่ตู้常常使用四点 共圆的性质,找角之间的转化关系.本题考查了圆 周角定理:在同圆或等圆中,同弧或等弧所对的圆 周角相等,都等于这条弧所对的圆心角的一半.推 论:半圆(或直径)所对的圆周角是直角,90°的圆 周角所对的弦是直径,用“四点共圆”的思想进行 角的数量代换,有助于我们更好地解题.
课后精练
7.如图,已知圆内接四边形 ABCD 的对角线 AC,BD 交于 点 N,点 M 在对角线 BD 上,且满足∠BAM=∠DAN,∠BCM=∠DCN.
求证:(1) M 为 BD 的中点; (2) ACNN=ACMM.
第 7 题图
课后精练
证明:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC, ∠DCN=∠DBA.
BD 另一点 F,那么CF的值等于______.
第 5 题图
课后精练 6.如图,AB为圆的直径,AD,BC为圆的两条弦, 且BD与AC相交于点E.求证:AC·AE+BD·BE=AB2.
第6题图
课后精练
证明:过点E作EF⊥AB于点F. ∵∠EFB=90°,∠C=90°, ∴∠EFB+∠C=180°. ∴B,C,E,F四点共圆. ∴AE·AC=AF·AB.① ∵∠EFA=90°,∠D=90°, ∴∠EFA+∠D=180°. ∴A,D,E,F四点共圆. ∴BE·BD=BF·AB.② ①+②,得 AE·AC+BE·BD=AF·AB+BF·AB. ∵AF+BF=AB,∴AE·AC+BE·BD=AB2.
课堂精讲
【解】方法一:∵CF⊥BE, ∴∠BCF=∠EBC=90°. ∵∠EBC+∠BEC=90°, ∴∠BEC=∠BCF.
9 ∴BBFD=56
120=130
5,BBOE=23 120=130
5.
∴BBFD=BBOE.
∵∠BCE=∠BFC=90°, BC BF
∴△BCF∽△BEC.∴BE=BC. ∵BC=6,CE=2, ∴BE= BC2+CE2=2 10.
则DCMM=ADMM,即 DM2=AM·CM.②
由式①②,得 BM=DM, 即 M 为 BD 的中点.
课后精练
(2)如图,延长 AM 交圆于点 P,连接 CP. ∴∠BCP=∠PAB=∠DAC=∠DBC. ∴PC∥BD,∴ACNN=APMM.③ 又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB, ∴∠ABC=∠MCP. 又∠ABC=∠APC, 则∠APC=∠MCP. 有 MP=CM.④ 由式③④,得ACNN=ACMM.
课堂精讲
例 1 (2019·潍坊)如图,四边形 ABCD 内接于⊙O,AB
为直径,AD=CD,过点 D 作 DE⊥AB 于点 E,连接 AC 交 DE 于
点 F.若 sin∠CAB=35,DF=5,则 BC 的长为(
)
A.8
B.10 C.12 D.16
课堂精讲
【分析】连接BD,如图,先利用圆周角定理证明 ∠ADE=∠DAC得到FD=FA=5,再根据正弦的定义计算 出EF=3,则AE=4,DE=8,接着证明△ADE∽△DBE, 利用相似比得到BE=16,所以AB=20,然后在Rt△ABC 中利用正弦定义计算出BC的长.