大学物理知识点(磁学与电磁感应)
大学物理知识点(磁学与电磁感应)
y
Idl B
B
dF
dF
I
Idl
x L 任意闭合平面载流导线在均匀磁场中所受的力为零 。 F3 P 注:载流线圈在均匀磁 F2 M 场中所受力矩不一定为 零 B I O F 1 M Npm B en N F4
在均匀磁场中
F BIL
o
P
**应用介质中安培环路定理解题方法**
I 0 Bo
2R
2 IR 0 pm B 0 3 3
2x
2πx
注意:在一定的x处,磁场强弱随载流环的半径变 化,故可用求极值的方法讨论轴线某一定点处磁 场随载流环半径变化的趋势。
无限长柱面电流的磁场
无限长柱体电流的磁场
L1
r
R
I
L2
r
B
0 I
2π R
o R
r
二、磁场的基本性质
1、 感生电动势
S定
B dS i s t
方向由楞次定律判断
o
B变
2、 感生电场
B Ei dl s t dS
感生电场是涡旋场,其电场线与磁感 应强度增大的方向成左手螺旋关系。
3、 感生电场与感生电动势的计算 感生电场 : 当变化的磁场的分布具有特殊对称性时: 1 dB Ei r (r R) 2 dt
五、磁场的能量
1、通电线圈的自感磁能 2、磁场的磁能
1 2 Wm LI 2
目前范畴内:
1 1 2 1 2 w m H B BH 2 2 2
W m V w m dV
电磁学基本物理图象
运动
电荷
激 发
电流
激 发
磁学知识点总结大学
磁学知识点总结大学1. 磁场的基本概念磁场是指周围空间中存在磁力的区域。
磁场具有方向和大小,通常用磁感应强度表示。
磁场由磁性物质产生,其作用范围称为磁场区域。
磁场的方向可以用磁力线表示,磁力线是磁场中任意点的切线方向。
在磁场中,物体会受到磁力的作用。
磁场通常由磁铁或电流产生,磁场的强弱取决于磁体的大小和形状,以及电流的大小和方向。
2. 磁场的性质磁场具有一些特殊的性质,主要包括磁场的方向性、磁场的非平衡性和磁场的相互作用性。
磁场的方向性指的是磁场具有方向性,即具有南北极之分,磁场线从磁北极指向磁南极。
磁场的非平衡性指的是磁场能够将磁性物质排列成不同的磁态,表现出磁性。
磁性物质在外磁场的作用下会受到磁化,形成磁矩,具有磁性。
磁场的相互作用性指的是磁场可以相互作用,并对相互作用的物体产生一定影响。
3. 电磁感应电磁感应是指磁场和电场相互作用产生电流的现象。
电磁感应根据磁场的变化形式可以分为恒定磁场中的电磁感应和变化磁场中的电磁感应。
恒定磁场中的电磁感应主要是指在磁场中运动的导体上会感应出感应电动势,从而产生感应电流。
变化磁场中的电磁感应是指当磁场的磁感应强度发生变化时,也会感应出感应电动势,从而产生感应电流。
4. 电磁感应现象的应用电磁感应现象在现实生活和工业生产中有着广泛的应用。
例如,变压器就是利用电磁感应现象实现电能的传输和功率的调整。
电磁感应现象还用于发电机的工作原理中,通过电磁感应产生电流,从而实现能量的转化。
电磁感应现象还广泛应用于感应炉、电磁制动器、电磁铁等工业设备中。
5. 磁性材料的特性磁性材料是指在外磁场的作用下,能够形成磁化和显示磁性的物质。
根据磁性材料的不同性质,可以将其分为铁磁材料、铁氧体材料和顺磁材料三类。
铁磁材料是指在外磁场的作用下,能够产生较强的磁化和显示出较强的磁性,例如铁、镍、钴等。
铁氧体材料是指在外磁场的作用下,可以产生磁化和显示出磁性,但磁性较弱,如铁氧体、铁氧氧石、铁氧氢石等。
大学物理电磁学
大学物理电磁学是物理学的一个重要分支,主要研究电磁现象的规律和本质。
电磁学在科学技术、工业生产和日常生活中都有着广泛的应用。
本文将从电磁学的基本概念、基本定律和电磁波的传播等方面对大学物理电磁学进行介绍。
一、基本概念1.电荷:电荷是物质的一种属性,分为正电荷和负电荷。
电荷间的相互作用规律是:同种电荷相互排斥,异种电荷相互吸引。
2.电场:电场是电荷及变化磁场周围空间里存在的一种特殊物质,它对放入其中的电荷有作用力。
电场的强度用电场强度E表示,单位是牛/库仑。
3.磁场:磁场是磁体周围空间里存在的一种特殊物质,它对放入其中的磁体有作用力。
磁场的强度用磁感应强度B表示,单位是特斯拉。
4.电磁波:电磁波是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量。
电磁波在真空传播速度与光速一样,速度为30万千米/秒。
二、基本定律1.库仑定律:库仑定律是描述电荷之间相互作用的定律,其内容为:真空中两点电荷间的作用力与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力在它们的连线上。
2.安培定律:安培定律是描述电流和电流激发磁场的定律,其内容为:电流I1通过一条无限长直导线时,在距离导线r处产生的磁场强度H1与I1成正比,与r成反比,即H1与I1r成反比。
磁场方向垂直于电流方向和通过点的平面。
3.法拉第电磁感应定律:法拉第电磁感应定律是描述磁场变化引起电场变化的定律,其内容为:穿过电路的磁通量发生变化时,产生感应电动势。
感应电动势的大小与磁通量变化率成正比,与电路的匝数成正比。
4.麦克斯韦方程组:麦克斯韦方程组是描述电磁场分布和电磁波传播的四个偏微分方程,包括库仑定律、法拉第电磁感应定律、安培定律和位移电流定律。
三、电磁波的传播1.电磁波的发射:电磁波的产生通常是通过振荡电路实现的。
当振荡电路中的电场和磁场相互垂直且同相振荡时,电磁波便会产生并向外传播。
磁场与电磁感应知识点总结
磁场与电磁感应知识点总结一、磁场1、磁场的基本性质磁场是一种存在于磁体、电流和运动电荷周围的特殊物质。
它对放入其中的磁体、电流和运动电荷有力的作用。
2、磁场的方向规定在磁场中某一点小磁针 N 极所受磁场力的方向为该点磁场的方向。
3、磁感线磁感线是为了形象地描述磁场而引入的假想曲线。
磁感线上某点的切线方向表示该点的磁场方向,磁感线的疏密程度表示磁场的强弱。
4、常见磁场的磁感线分布(1)条形磁铁:外部从 N 极到 S 极,内部从 S 极到 N 极,形成闭合曲线。
(2)蹄形磁铁:与条形磁铁类似。
(3)通电直导线:以导线为圆心的一系列同心圆,越靠近导线,磁感线越密集。
(4)通电螺线管:外部类似于条形磁铁,内部为匀强磁场。
5、地磁场地球本身是一个大磁体,地磁的 N 极在地理的南极附近,地磁的 S 极在地理的北极附近。
但地理的南北极与地磁的南北极并不完全重合,存在磁偏角。
二、电流的磁场1、奥斯特实验奥斯特实验表明通电导线周围存在磁场,其磁场方向与电流方向有关。
2、安培定则(右手螺旋定则)(1)判断直线电流的磁场:用右手握住导线,让伸直的大拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向。
(2)判断环形电流的磁场:让右手弯曲的四指与环形电流的方向一致,伸直的大拇指所指的方向就是环形导线轴线上磁感线的方向。
(3)判断通电螺线管的磁场:用右手握住螺线管,让弯曲的四指所指的方向与电流的方向一致,大拇指所指的方向就是螺线管内部磁感线的方向,也就是螺线管的 N 极。
三、磁感应强度1、定义磁感应强度是描述磁场强弱和方向的物理量,在磁场中垂直于磁场方向的通电导线,所受的安培力 F 跟电流 I 和导线长度 L 的乘积 IL 的比值叫做磁感应强度。
2、定义式B = F /(IL)3、单位特斯拉(T)4、磁感应强度是矢量,其方向就是磁场的方向。
四、安培力1、定义通电导线在磁场中受到的力称为安培力。
2、大小当导线与磁场方向垂直时,F = BIL;当导线与磁场方向平行时,F = 0;当导线与磁场方向成夹角θ时,F =BILsinθ。
大学物理电磁学知识点总结
大学物理电磁学总结一、三大定律库仑定律:在真空中,两个静止的点电荷q1 和q2 之间的静电相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着两个点电荷的连线,同号电荷相斥,异号电荷相吸。
uuu r q q ur F21 = k 1 2 2 er rur u r 高斯定理:a) 静电场:Φ e = E d S = ∫s∑qiiε0(真空中)b) 稳恒磁场:Φ m =u u r r Bd S = 0 ∫s环路定理:a) 静电场的环路定理:b) 安培环路定理:二、对比总结电与磁∫Lur r L E dl = 0 ∫ ur r B dl = 0 ∑ I i (真空中)L电磁学静电场稳恒磁场稳恒磁场电场强度:E磁感应强度:B 定义:B =ur ur F 定义:E = (N/C) q0基本计算方法:1、点电荷电场强度:E =ur r u r dF (d F = Idl × B )(T) Idl sin θ方向:沿该点处静止小磁针的N 极指向。
基本计算方法:urq ur er 4πε 0 r 2 1r ur u Idl × e r 0 r 1、毕奥-萨伐尔定律:d B = 2 4π r2、连续分布的电流元的磁场强度:2、电场强度叠加原理:ur n ur 1 E = ∑ Ei = 4πε 0 i =1r qi uu eri ∑ r2 i =1 inr ur u r u r 0 Idl × er B = ∫dB = ∫ 4π r 23、安培环路定理(后面介绍)4、通过磁通量解得(后面介绍)3、连续分布电荷的电场强度:ur ρ dV ur E=∫ e v 4πε r 2 r 0 ur σ dS ur ur λ dl ur E=∫ er , E = ∫ e s 4πε r 2 l 4πε r 2 r 0 04、高斯定理(后面介绍)5、通过电势解得(后面介绍)几种常见的带电体的电场强度公式:几种常见的磁感应强度公式:1、无限长直载流导线外:B = 2、圆电流圆心处:B = 3、圆电流轴线上:B =ur 1、点电荷:E =q ur er 4πε 0 r 2 10 I2R0 I 2π r2、均匀带电圆环轴线上一点:ur E=r qx i 2 2 32 4πε 0 ( R + x )R 2 IN 2 ( x 2 + R 2 )3 21 0α 23、均匀带电无限大平面:E =σ 2ε 0(N 为线圈匝数)4、无限大均匀载流平面:B =4、均匀带电球壳:E = 0( r < R )(α 是流过单位宽度的电流)ur E=q ur er (r > R ) 4πε 0 r 25、无限长密绕直螺线管内部:B = 0 nI (n 是单位长度上的线圈匝数)6、一段载流圆弧线在圆心处:B = (是弧度角,以弧度为单位)7、圆盘圆心处:B =r ur qr (r < R) 5、均匀带电球体:E = 4πε 0 R 3 ur E= q 4πε 0 r ur er (r > R ) 20 I 4π R0σω R2(σ 是圆盘电荷面密度,ω 圆盘转动的角速度)6、无限长直导线:E =λ 2πε 0 x λ 0(r > R ) 2πε 0 r7、无限长直圆柱体:E =E=λr (r < R) 4πε 0 R 2电场强度通量:N·m2·c-1)(磁通量:wb)(sΦ e = ∫ d Φ e = ∫ E cos θ dS = ∫s sur u r E d S通量u u r r Φ m = ∫ d Φ m = ∫ Bd S = ∫ B cos θ dS s s s若为闭合曲面:Φ e =∫sur u r E d S若为闭合曲面:u u r r Φ m = Bd S = B cos θ dS ∫ ∫s s均匀电场通过闭合曲面的通量为零。
磁学电磁感应定律知识点总结
磁学电磁感应定律知识点总结磁学电磁感应定律是物理学中的基础概念之一,描述了磁场与电流产生的感应现象之间的关系。
这些定律深入解释了电磁现象的本质,对于我们理解电磁学和应用磁学有着重要的意义。
本文将对磁学电磁感应定律进行总结,并讨论它们的相关概念和应用。
一、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的基本定律之一,描述了磁通量变化对电流环路的感应电动势的影响。
它的数学表达式为:e = -dΦ/dt其中,e代表感应电动势,Φ代表磁通量,dt代表时间变化率。
根据法拉第电磁感应定律,当磁场的磁通量通过一个闭合电路发生变化时,将会在电路中产生感应电流。
二、楞次定律楞次定律是描述了感应电流对磁场的反作用。
根据楞次定律,感应电流所产生的磁场方向总是阻碍产生它的磁场,从而使磁场的总效果减弱。
楞次定律告诉我们,当磁通量发生变化时,感应电流所产生的磁场方向与原始磁场方向相反。
三、自感与互感自感指的是闭合电路中感应电流产生的自己磁场对其自身产生的感应电动势。
自感与互感是楞次定律的拓展应用。
在电路中,电流的变化会引起感应电势,同时也会引起电感的自感电势。
自感对于交流电路尤为重要,它可以使交流电的幅值得到调节。
互感是指两个或更多线圈之间由于磁场的相互耦合而产生的电感现象。
互感现象可以用于电力传输和电子设备的变压器设计。
四、法拉第电磁感应定律的应用法拉第电磁感应定律在实际应用中具有广泛的应用价值,其中最常见的就是发电机的原理。
发电机通过转动磁场和导体线圈之间的相对运动,来产生感应电动势,从而将机械能转化为电能。
另外,电感也是电子电路中非常重要的元件。
电感利用法拉第电磁感应定律的原理,通过导线线圈产生强磁场,并将电能转化为磁能。
这种磁能可以储存在电感中,并在需要时释放出来,从而实现电路的稳定工作。
总结:磁学电磁感应定律涉及了电磁学的核心概念,并具有重要的实际应用。
法拉第电磁感应定律和楞次定律描述了电流和磁场之间的相互作用,解释了磁场引起感应电流的现象。
大学物理电磁学知识点
大学物理电磁学知识点电磁学是物理学的一个基础分支,主要研究电荷在电磁场中的运动规律以及电磁场的生成和作用。
本文将介绍大学物理电磁学学科的主要知识点。
电场和电荷电荷是物质的一种基本属性,可以通过静电作用相互作用,分为正电荷和负电荷。
每个电荷都会产生一个电场,电场是描述电荷之间相互作用的物理场。
电场的强度取决于电荷的数量和位置。
电荷分布的不均匀会导致电场不均匀,从而产生电场线和等势面。
静电场和电势当电荷和电场都不随时间变化时,这种电场称为静电场。
静电场中,电荷间的相互作用力可以通过库仑定律来描述。
库仑定律表明,两个电荷之间的相互作用力正比于它们之间的距离平方,反比于它们的电荷量。
电场的电势能是一种能量形式,表示在电场中放置一个电荷时,电场由于空间位置的变化而发生的能量变化。
电场的电势可以通过积分来计算,计算公式如下:$$V=\\int_{P}^{A}-E\\cdot d \\vec{l}$$其中,V为电势,E为电场强度,$\\vec{l}$为路径微元,P为参考点,A为目标点。
感应电场和法拉第电磁感应定律感应电场是由于磁场变化而产生的电场。
当磁场的磁通量发生变化时,周围会产生感应电场,它的大小和方向与磁通量变化率成正比。
法拉第电磁感应定律描述了磁通量变化率和感应电动势之间的关系。
它表明,一个导体中的感应电动势正比于它的磁通量的变化率,即:$$\\varepsilon=-\\frac{d\\Phi}{dt}$$其中,$\\varepsilon$为感应电动势,$\\Phi$为磁通量。
磁场和洛伦兹力磁场也是一种物理场,它可以使运动中的电荷偏离原来的路径,产生磁力线。
磁场的大小和方向与电荷的运动状态有关。
洛伦兹力是运动电荷受到的磁场力。
洛伦兹力的大小可以通过以下公式计算:$$\\vec{F}=q(\\vec{E}+\\vec{v}\\times\\vec{B})$$其中,$\\vec{F}$为洛伦兹力,q为电荷量,$\\vec{E}$为电场强度,$\\vec{v}$为电荷的速度,$\\vec{B}$为磁场的磁感应强度。
大学物理电磁学电磁感应
二、 法拉第电磁感应定律
通过回路面积内的磁通量发生变化时,回路中产生 的感应电动势与磁通量对时间的变化率成正比。
1、数学表述
i
k
dΦm dt
在SI制中比例系数为1
i
dΦm dt
§12-1 电磁感应定律
对
N
匝线圈 i
N
dΦm dt
d (NΦm ) dt
令 Ψ NΦm 全磁通 磁通链数
洛仑兹力不提供能量, 他只起到了一个传递能量的 作用。
至此详谬得以解释
f0
v
v0 V f
§12-2 动生电动势
例1有力一线半运圆动形。金已属知导:线v在, B匀,强R磁. 场中作切割磁
求:动生电动势。
b
解:方法一
作辅助线 a b,形成闭合回路。
i i
0
a (v
b
半圆
B) dl
ab
2RBv
② 求电量
i dq 0 sin t
dt R
q
idt
0 sin tdt
0R
BS sin td (t) 2BS
0R
R
§12-2 动生电动势
求解动生电动势的步骤
1. 选择 dl 方向;
2. 确定 dl 所在处的 B 及 v 3. 确定 v × B 的方向; 4. 确定 dl 与 v × B 的夹角
B A
vC
§12-2 动生电动势
例3 一直导线CD在一无限长直电流磁场中作
切割磁力线运动。求:动生电动势。
解: 方法一
d (v B) dl
v
0I
sin
900 dl
I
cos1800
大学物理知识点总结汇总
引言概述:大学物理作为一门重要的理工科学科,涵盖了广泛的知识领域。
在大学物理学习过程中,我们需要掌握各种物理定律、概念和实验技巧。
本文将对大学物理中的一些重要知识点进行总结汇总,旨在帮助读者系统地理解这些知识点,提高物理学习效果。
正文内容:一、电磁学知识点1.库伦定律:阐述了两个电荷之间的静电力与它们之间的距离和电量大小的关系。
2.电场与电势:解释了电荷周围空间存在电场的概念,电势则是描述电场能量状态的重要物理量。
3.电流和电阻:分析了电流的定义和流动规律,以及电阻对电流流动的影响。
4.电磁感应:研究了磁场对导体中的电荷运动产生的电动势,并解释了发电机和变压器的工作原理。
5.电磁波:介绍了电磁波的产生和传播规律,以及电磁波的波长、频率和速度之间的关系。
二、光学知识点1.光的直线传播:讲解了光的传播方式和光的速度。
2.光的干涉和衍射:阐述了光的干涉和衍射现象的原理,并解释了双缝干涉、单缝衍射和菲涅尔衍射等常见现象。
3.几何光学:介绍了光的折射、反射和成像的规律,以及利用透镜和镜片进行光学成像的方法。
4.光的偏振:解释了光的偏振现象和偏振光的特性。
5.光的散射和吸收:探讨了光在物质中的散射和吸收过程,以及光的能量衰减规律。
三、热学知识点1.热力学基本概念:介绍了温度、热量和热平衡的概念。
2.理想气体定律:讨论了理想气体状态方程和气体的压强、体积和温度之间的关系。
3.热传导:解释了热的传导方式、热传导定律和热导率的概念。
4.热力学循环:分析了热力学循环中的能量转化和效率计算,以及常见的卡诺循环和斯特林循环。
5.热力学第一和第二定律:阐述了热力学第一定律(能量守恒定律)和第二定律(熵增原理)的概念和应用。
四、相对论知识点1.狭义相对论:介绍了狭义相对论的基本原理,包括光速不变原理和等效质量增加原理。
2.斜坐标系和洛伦兹变换:解释了相对论中的平时距离、时间间隔和洛伦兹变换的概念。
3.相对论动能和动量:分析了相对论速度和质量增加对动能和动量的影响。
大学物理电磁学基础知识点汇总
大学物理电磁学基础知识点汇总一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为库仑常量,$q_1$和$q_2$为两个点电荷的电荷量,$r$为它们之间的距离。
2、电场强度电场强度是描述电场力的性质的物理量,定义为单位正电荷在电场中所受到的力。
其表达式为:$E =\frac{F}{q}$。
对于点电荷产生的电场,其电场强度的表达式为:$E = k\frac{q}{r^2}$,方向沿径向向外(正电荷)或向内(负电荷)。
3、电场线电场线是用来形象地描述电场的一种工具。
电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。
静电场的电场线不闭合,始于正电荷或无穷远,终于负电荷或无穷远。
4、电通量电通量是通过某一面积的电场线条数。
对于匀强电场,通过平面的电通量为:$\Phi = ES\cos\theta$,其中$E$为电场强度,$S$为平面面积,$\theta$为电场强度与平面法线的夹角。
5、高斯定理高斯定理表明,通过闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\epsilon_0$。
即:$\oint_S E\cdot dS =\frac{1}{\epsilon_0}\sum q$。
高斯定理是求解具有对称性电场分布的重要工具。
二、电势1、电势电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中某点移动到参考点(通常取无穷远处)时电场力所做的功。
某点的电势等于该点到参考点的电势差。
点电荷产生的电场中某点的电势为:$V = k\frac{q}{r}$。
2、等势面等势面是电势相等的点构成的面。
等势面与电场线垂直,沿电场线方向电势降低。
3、电势差电场中两点之间的电势之差称为电势差,也称为电压。
其表达式为:$U_{AB} = V_A V_B$。
磁学知识点总结
磁学知识点总结磁学是物理学中的一个重要分支,研究磁场及其与物质相互作用的规律。
在我们的生活中,磁学的应用非常广泛,从电子产品到医学设备都离不开磁学的支持。
本文将对磁学的基本概念、磁场、磁性材料和磁感应等知识点进行总结。
一、磁学基本概念1. 磁场:磁场是一个具有磁性的物体周围的一种物理现象,磁场可以通过磁力线来表示。
磁力线从物体的北极出发,经过外部空间,最终回到物体的南极。
2. 磁极:所有磁体都有两个磁极,分别为北极和南极。
相同磁极之间互相排斥,不同磁极之间互相吸引。
3. 磁力:磁力是指物体受到磁场作用产生的力。
磁力的大小取决于物体的磁性和磁场的强度。
二、磁场1. 磁感线:磁感线是用来表示磁场分布情况的直观方式。
磁感线在磁体内部呈现闭合环形,而在磁体外部则呈现从北极到南极的形状。
2. 磁通量:磁通量是描述磁场通过某个平面的情况的物理量。
它的大小与磁场的强度以及通过某个平面的磁力线的数量有关。
3. 高斯定律:高斯定律指出,一个闭合曲面的磁通量等于该曲面所包围的磁性物体的磁极数。
三、磁性材料1. 铁磁性材料:铁磁性材料是指在磁场作用下会产生明显磁化现象的物质,如铁、镍和钴等。
铁磁性材料在磁场中可以形成强磁性区域,使得磁体具有磁性。
2. 抗磁性材料:抗磁性材料是指在磁场作用下不会产生磁化现象的物质,如铜和铝等。
抗磁性材料在磁场中没有形成强磁性区域,不具备磁性。
3. 软磁性材料:软磁性材料具有良好的磁导率和低的矫顽力,适用于电感器、变压器等电磁设备。
4. 硬磁性材料:硬磁性材料具有较高的矫顽力和矫顽强度,适用于制造永磁体。
四、磁感应1. 磁感应强度:磁感应强度是磁场对单位面积的磁通量的分布。
磁感应强度的单位是特斯拉(T)。
2. 磁场强度:磁场强度是指单位长度上的磁感应强度变化率,其方向与磁感线的方向相同。
磁场强度的单位是安培/米(A/m)。
3. 洛伦兹力:洛伦兹力是指带电粒子在磁场中受到的力。
洛伦兹力的大小与粒子的电荷、速度以及磁场的强度和方向都有关。
大学物理第二部分电磁场与电磁学之第11章 电磁感应
vB
v
11-2 动生电动势和感生电动势
方法二 作辅助线,形成闭合回路CDEF
m B dS
S
ab
a
i
0 Ix a b ln 2 a d m
dt
0 I xdr 2r
I
方向
DC
v
X
C
D
0 I a b dx ( ln ) 2 a dt 0 Iv a b ln 2 a
11-2 动生电动势和感生电动势
动生电动势的公式 非静电力 Fm e( v B ) Fm vB 定义 E k 为非静电场强 E k e 由电动势定义 i Ek dl
运动导线ab产生的动生电动势为
i
a Ek dl ( v B ) dl
L
11-2 动生电动势和感生电动势
平动
计 算 动 生 电 动 势 分 类 均匀磁场 转动 非均匀磁场
方 法
i
i
b
d m dt
a
(v B) dl
11-2 动生电动势和感生电动势
均匀磁场
例 已知: v , B , , L 求: 解: d ( v B ) dl
a
f
感应电流
产生
阻碍
导线运动
v
感应电流
b
产生 阻碍
磁通量变化
11-1 电磁感应的基本定律
判断感应电流的方向:
1、判明穿过闭合回路内原磁场 的方向; 2、根据原磁通量的变化 , 按照楞次定律的要求确定感 应电流的磁场的方向; 3、按右手法则由感应电流磁场的 方向来确定感应电流的方向。
大学物理电磁学知识点
大学物理电磁学知识点磁感应强度(magneticfluxdensity),描述磁场强弱和方向的物理量,是矢量,常用符号B表示,国际通用单位为特斯拉(符号为T)。
磁感应强度也被称为磁通量密度或磁通密度。
在物理学中磁场的强弱使用磁感应强度来表示,磁感应强度越大表示磁感应越强;磁感应强度越小,表示磁感应越弱。
磁感应强度的定义公式磁感应强度公式B=F/(IL)磁感应强度是由什么决定的磁感应强度的大小并不是由F、I、L来决定的,而是由磁极产生体本身的属性。
如果是一块磁铁,那么B的大小之和这块磁铁的大小和磁性强弱有关。
如果是电磁铁,那么B与I、匝数及有无铁芯有关。
物理网很多文章都建议同学们采用类比的方法来理解各个物理量。
我们用电阻R来做个对比。
R的计算公式是R=U/I;可一个导体的电阻R大小并不是由U或者I来决定的。
而是由其导体自身属性决定的,包括电阻率、长度、横截面积。
同样,磁感应强度B也不是由F、I、L来决定的,而是由磁极产生体本身的属性。
如果同学们有时间,可以把静电场中电容的两个公式来对比着复习、巩固下。
B为矢量,方向与磁场方向相同,并不是在该处电流的受力方向,运算时遵循矢量运算法则(左手定则)。
描述磁感应强度的磁感线在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。
磁感线是闭合曲线。
规定小磁针的北极所指的方向为磁感线的方向。
磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S极到N极。
磁感线都有哪些性质呢⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。
⒉磁感线是闭合曲线;磁铁的磁感线,外部从N指向S,内部从S指向N;⒊磁感线的疏密表示磁感应强度的强弱,磁感线上特定点的切线方向表示该点的磁场方向。
⒋任何两条磁感线都不会相交,也不能相切。
磁感线(不是磁场线)的性质与电场线的性质对比来记忆。
磁感应强度B的所有计算式磁感应强度B=F/IL磁感应强度B=F/qv磁感应强度B=ξ/Lv磁感应强度B=Φ/S磁感应强度B=E/v其中,F:洛伦兹力或者安培力q:电荷量v:速度ξ:感应电动势E:电场强度Φ:磁通量S:正对面积磁通量磁通量是闭合线圈中磁感应强度B的累积。
磁学知识点总结电磁感应定律和电磁感应现象
磁学知识点总结电磁感应定律和电磁感应现象电磁感应定律是电磁学中的重要理论基础,描述了电磁感应现象的规律。
本文将对电磁感应定律和电磁感应现象进行总结。
1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律。
当磁场的磁感应强度发生变化时,在磁场中的闭合回路内会产生感应电动势和感应电流。
法拉第电磁感应定律可以用一个简洁的数学公式表示:ε = -dΦ/dt其中,ε表示感应电动势,dΦ/dt表示磁通量的变化率。
该定律说明,当磁通量变化时,感应电动势的大小与磁通量变化率成正比。
2. 楞次定律楞次定律是法拉第电磁感应定律的推论,描述了感应电流的方向。
楞次定律表明,感应电流的方向总是使得产生它的磁场的磁通量发生变化的趋势减弱。
根据楞次定律,当磁通量增加时,感应电流的方向会使磁场的磁感应强度减小;当磁通量减少时,感应电流的方向会使磁场的磁感应强度增加。
楞次定律保证了能量守恒的原则。
3. 电磁感应现象电磁感应现象是电动势和电流产生的实际过程。
根据电磁感应定律,只有当磁通量发生变化时才会产生感应电动势。
常见的电磁感应现象包括:(1) 电磁感应发电机:在电磁感应发电机中,通过转动的磁场使得线圈中的磁通量发生变化,从而产生感应电动势,驱动电流产生。
(2) 电磁感应涡流:当导体在磁场中运动或磁场发生变化时,会产生感应电动势,从而使电流在导体内部形成环状的涡流。
(3) 电磁感应感应加热:利用电磁感应现象可以进行感应加热,即将交变磁场通过导体产生涡流,利用涡流的阻碍作用产生热量。
(4) 变压器:变压器是利用电磁感应原理工作的电气设备,通过磁场感应导体中的电动势,将电能从一个线圈传输到另一个线圈。
4. 应用领域电磁感应定律和电磁感应现象在许多领域有着广泛的应用,例如:(1) 发电和能量转换:发电机和变压器是电能转换和传输的重要装置,利用电磁感应原理将机械能转化为电能。
(2) 感应加热:利用电磁感应产生的涡流可以用于感应加热,广泛应用于工业加热、熔炼和医学领域。
大学物理电磁学知识点
大学物理电磁学知识点静电场中的知识点:静电场是指电荷分布不变的电场。
其中, XXX是指单位正电荷所受到的力, 其公式为E=F/q。
场强叠加原理指在同一点上受到多个电荷的作用时, 场强等于各个电荷场强的矢量和。
点电荷的场强公式为E=q/(4πεr^2)。
用叠加法求电荷系的电场强度的公式为E=∑Ei, 其中Ei是每个电荷的场强。
高斯定理是指电场线密度与电荷量成正比, 与距离成反比。
公式为E=∫dq/4πεr^2.电势是指单位电荷所具有的势能, 其公式为V=∫E·dl。
对于有限大小的带电体, 取无穷远处为零势点。
电势差的公式为Vb-a=∫E·dl, 电势叠加原理是指电势可以标量叠加。
点电荷的电势公式为V=q/(4πεr), 而电荷连续分布的带电体的电势可以通过电荷密度积分得到。
电荷q在外电场中的电势能的公式为V=q/(4πεr)。
移动电荷时电场力的功公式为w=q(Va-Vb)。
场强与电势的关系为E=-∇V。
导体的静电平衡条件包括内部电场为零和表面法向电场为零。
静电平衡导体上的电荷分布是指电荷只能分布在导体的表面上。
电容的定义为C=q/V, 其中平行板电的电容公式为C=εS/d。
电的并联的公式为C=∑Ci, 而串联的公式为1/C=∑1/Ci。
电的能量公式为We=CV^2/2, 电场能量密度公式为εE^2/2.电动势的定义是指单位电荷通过电源时所获得的能量。
静电场中的电介质知识点包括电介质中的高斯定理、介质中的静电场和电位移矢量。
真空中的稳恒磁场知识点包括毕奥-萨伐定律和磁场叠加原理。
毕奥-萨伐定律是指电流元产生的磁场与电流元、场点的位置和方向有关。
磁场叠加原理是指在同一点上受到多个电流元的作用时, 磁场等于各个电流元磁场的矢量和。
在若干个电流(或电流元)产生的磁场中, 某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和, 即mathbf{B}=\sum \mathbf{B}_i$$以下是要记住的几种典型电流的磁场分布:1)有限长细直线电流mathbf{B}=\frac{\mu I(\cos \theta_1-\cos \theta_2)}{4\pi a}$$其中, $a$为场点到载流直线的垂直距离, $\theta_1$、$\theta_2$为电流入、出端电流元矢量与它们到场点的矢径间的夹角。
大学物理专业电磁学知识点1.1-1.2
静电场一:静电的基本现象和基本规律两种电荷:正电荷,负电荷电荷的性质:同种电荷相互吸引,异种电荷相互排斥。
中和:正负电荷互相完全抵消的状态。
(1.)电荷守恒定律:电荷既不能被制造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,也就是说在任何物理过程中,电荷的代数和是守恒的。
元电荷:一个质子或一个电子所带电荷量的绝对值。
1910602.1e -⨯=(2.)库仑定律:在真空中两个静止的点电荷21q q ,之间的互相作用力的大小,和21q q ,的乘积成正比,和它们之间的距离r 的平方成反比,作用力的方向沿着它们的连线。
12212211222112e rq q k e r q q k ==F F (K 为比例系数)在MKSA 单位制中,将K 写成041k πε=,0ε:真空介电常量,)(22120m /108085∙⨯=-N C ε即: 229/1099.8k C m N ∙⨯=MKSA 单位制中长度(L )、质量(M )时间(T )电流强度(I )为基本量二:电场、电场强度(1.)电场强度定义:某处电场强度矢量定义为这样一个矢量,其大小等于单位电荷在该处所受电场力的大小,其方向与正电荷在该处所受电场力的方向一致。
电场的基本性质:对于处在其中的任何其他电荷都有作用力,称为电场力。
(2.)场强的表达式:电场强度 0q F E = 单位N/C 或V/M 例1: 点电荷q 所产生的电场中各点的电场强度e r q 4120 πε=E (3.)电场强度叠加原理:点电荷组所产生的电场在某点的场强等于各点电荷单独存在时所产生的的电场在该点场强的矢量叠加。
k 21E E E E +⋅⋅⋅++=(4.)连续性电荷分布:r q20e r 4dq ⎰=πεE 离散型电荷分布:rn k 1n 2n 0n e r 4q ∑==πεE 例2: 电偶极子在P 和P ’处的场强解:方向:水平向右 方向:沿X 轴负方向 p 点处P ’点处(5.)电荷的连续分布:1.电荷体密度:vq lim 0v e ∆=∑→∆ρ 2.电荷面密度:sq lim 0s e ∆∆=→∆σ 3.电荷线密度:Lq lim 0L e ∆∆=→∆η 例3: 均匀带电细棒中垂面上的场强分布,棒长2L ,总带电荷量为q 。
大学物理电磁学知识点
大学物理电磁学知识点物理电磁学是物理学的一门重要分支,研究电磁力及其相互作用的现象和规律。
以下是大学物理电磁学的一些主要知识点:1.电场和电荷:电场是由电荷产生的,通过电场中的电荷之间的相互作用来描述电荷之间的力。
电荷分为正电荷和负电荷,同性电荷相斥,异性电荷相吸。
2.高斯定理:高斯定理是电场的一个重要性质,它描述了电场通量通过任何闭合曲面的总和与该曲面内的电荷量之间的关系。
即电场通量等于包围在闭合曲面内的电荷的总和的1/ε0倍(ε0为真空介电常数)。
3.电势:电势是描述电场中电荷的位置所具有的属性,用来描述电荷在电场中的状态和能量。
电势的单位是伏特。
电势差是指电势的差异,表示两点之间移动单位正电荷所需的能量。
4.电场强度:电场强度描述了电场中的力的大小和方向,在电荷附近的任意一点,电场强度的方向是从正电荷向负电荷方向,大小与距离平方成反比。
5.电荷的分布:电荷在不同情况下的分布形式不同,可以是点电荷、线电荷、面电荷或体电荷。
6.静电场:静电场是指电荷分布不随时间变化的电场,可以通过库仑定律来描述。
库仑定律描述了两个点电荷之间的电场强度和电势能之间的关系。
7.电介质:电介质是一种介质,具有不良导电性,可以极大地改变电场的分布,如绝缘体和电容器中的介质。
8.安培定律:安培定律描述了通过一个闭合回路的电流与围绕该回路的磁场之间的关系。
根据安培定律,磁场的强度与电流成正比,与回路周长成反比。
9.磁感应强度:磁感应强度是描述磁场的一种性质,它表示单位面积内磁场通过的磁感线数量。
磁感应强度的单位是特斯拉。
10.法拉第电磁感应定律:法拉第电磁感应定律描述了磁场变化时感生电动势的大小和方向。
当磁感线与回路交替或相对运动时,感生电动势将产生。
11.楞次定律:楞次定律描述了电流和磁场之间的相互作用,它表明感生电动势的方向总是使产生感生电动势的磁场的变化减弱。
12.麦克斯韦方程组:麦克斯韦方程组是描述电磁场的四个基本方程,包括高斯定律、法拉第电磁感应定律、安培定律和法拉第定律。
大物电磁学知识点总结
大物电磁学知识点总结一、静电场电荷:自然界只存在两种电荷,即正电荷和负电荷。
它们分别由丝绸摩擦过的玻璃棒和毛皮摩擦过的硬橡胶棒所带。
电荷的多少称为电量,其单位是库仑(C)。
库仑定律:在真空中,两个静止的点电荷之间的相互作用力与这两个点电荷所带电荷量的乘积成正比,与它们之间距离的平方成反比。
同号电荷相斥,异号电荷相吸。
电场强度:描述电场中某点电场强弱的物理量,其方向为正电荷在该点所受电场力的方向。
二、稳恒电流电流:电荷的定向移动形成电流。
电流的定义、单位、电流密度矢量以及电流场是理解电流的基础。
欧姆定律:描述电路中电压、电流和电阻之间关系的定律。
其有两种表述方式,即积分型和微分型。
电阻:阻碍电流流动的物理量。
电阻的计算、电阻定律、电阻率以及电阻温度系数等是电阻相关的重要知识点。
三、磁场磁感应强度:描述磁场中某点磁场强弱的物理量,其方向为该点小磁针静止时N极所指的方向。
磁场对运动电荷的作用:包括洛伦兹力和霍尔效应等。
四、电磁感应法拉第电磁感应定律:描述磁通量变化时产生感应电动势的定律。
楞次定律:描述感应电流的方向的定律,其阻碍的表现包括产生一个反变化的磁场、导致物体运动或导致围成闭合电路的边框发生形变。
五、交流电与电磁波交流电:随时间周期性变化的电流或电压。
其幅值、频率和相位是描述交流电的重要参数。
电磁波:由电场和磁场相互激发产生的波动现象。
电磁波的传播、发射和接收是电磁学的重要应用。
这些只是电磁学的一部分知识点,实际上电磁学的内容非常丰富和深入。
在学习电磁学时,需要注重理解和应用这些知识点,并结合实验和实际问题进行学习和思考。
大学物理电磁学知识点
真 空 中 的 静 电 场知识点:1. 场强 (1) 电场强度的定义0q F E = (2) 场强叠加原理 ∑=iE E (矢量叠加) (3) 点电荷的场强公式rr qE ˆ420πε= (4) 用叠加法求电荷系的电场强度⎰=r r dq E ˆ420πε2. 高斯定理 真空中 ∑⎰=⋅内q S d E S 01ε电介质中∑⎰=⋅自由内,01q S d D SεEE D r εεε0== 3. 电势 (1) 电势的定义 ⎰⋅=零势点p p l d E V对有限大小的带电体,取无穷远处为零势点,则 ⎰∞⋅=p p l d E V(2) 电势差 ⎰⋅=-b a b a l d E V V (3) 电势叠加原理 ∑=iV V (标量叠加)(4) 点电荷的电势 r q V 04πε= (取无穷远处为零势点)电荷连续分布的带电体的电势⎰=r dq V 04πε (取无穷远处为零势点) 4. 电荷q 在外电场中的电势能a a qV w = 5. 移动电荷时电场力的功 )(b a ab V V q A -=6. 场强与电势的关系V E -∇= 静 电 场 中 的 导 体 知识点:1.导体的静电平衡条件(1) 0=内E(2) 导体表面表面⊥E2. 静电平衡导体上的电荷分布导体内部处处静电荷为零.电荷只能分布在导体的表面上.0εσ=表面E3. 电容定义U qC = 平行板电容器的电容d S C r εε0=电容器的并联 ∑=i C C (各电容器上电压相等)电容器的串联∑=i C C 11 (各电容器上电量相等) 4. 电容器的能量 222121CV C Q W e ==电场能量密度221E W e ε= 5、电动势的定义⎰⋅=L k i l d E ε 式中k E 为非静电性电场.电动势是标量,其流向由低电势指向高电势。
静 电 场 中 的 电 介 质知识点:1. 电介质中的高斯定理2. 介质中的静电场3. 电位移矢量真 空 中 的 稳 恒 磁 场知识点:1. 毕奥-萨伐定律电流元l Id产生的磁场 20ˆ4r r l Id B d ⨯⋅= πμ式中, l Id 表示稳恒电流的一个电流元(线元),r 表示从电流元到场点的距离, rˆ表示从电流元指向场点的单位矢量..2. 磁场叠加原理在若干个电流(或电流元)产生的磁场中,某点的磁感应强度等于每个电流(或电流元)单独存在时在该点所产生的磁感强度的矢量和. 即 ∑=i B B3. 要记住的几种典型电流的磁场分布(1)有限长细直线电流 )cos (cos 4210θθπμ-=a I B式中,a 为场点到载流直线的垂直距离, 1θ、2θ为电流入、出端电流元矢量与它们到场点的矢径间的夹角.a) 无限长细直线电流 r I B πμ20=b) 通电流的圆环 2/32220)(2R x I R B +⋅=μ 圆环中心 04I B rad R μθθπ=⋅单位为:弧度()(4) 通电流的无限长均匀密绕螺线管内nI B 0μ= 4. 安培环路定律真空中 ∑⎰=⋅内I l d B L 0μ 磁介质中 ∑⎰=⋅内0I l d H L H H B r μμμ0==当电流I 的方向与回路l 的方向符合右手螺旋关系时, I 为正,否则为负.5. 磁力(1) 洛仑兹力 B v q F ⨯=质量为m 、带电为q 的粒子以速度v 沿垂直于均匀磁场B 方向进入磁场,粒子作圆周运动,其半径为qB mvR =周期为qB m T π2=(2) 安培力 B l Id F ⨯=⎰(3) 载流线圈的磁矩 n N I S p m ˆ=载流线圈受到的磁力矩 Bp M m ⨯=(4) 霍尔效应 霍尔电压 b IB ne V ⋅=1电 磁 感 应 电 磁 场知识点:1. 楞次定律:感应电流产生的通过回路的磁通量总是反抗引起感应电流的磁通量的改变.2. 法拉第电磁感应定律 dtd i ψ-=ε Φ=ψN 3. 动生电动势: 导体在稳恒磁场中运动时产生的感应电动势.l d B v b a ab ⋅⨯=⎰)(ε 或 ⎰⋅⨯=l d B v )(ε4. 感应电场与感生电动势: 由于磁场随时间变化而引起的电场成为感应电场. 它产生电动势为感生电动势. ⎰Φ-=⋅=dt d l d E i 感ε局限在无限长圆柱形空间内, 沿轴线方向的均运磁场随时间均匀变化时, 圆柱内外的感应电场分别为)(2R r dt dB r E ≤-=感)(22R r dt dB r R E ≥-=感5. 自感和互感自感系数 IL ψ= 自感电动势 dt dI LL -=ε 自感磁能 221LI W m =互感系数 212121I I M ψ=ψ= 互感电动势 dtdI M 121-=ε 6. 磁场的能量密度BH B w m 2122==μ 7. 位移电流 此假说的中心思想是: 变化着的电场也能激发磁场.通过某曲面的位移电流强度d I 等于该曲面电位移通量的时间变化率. 即⎰⋅∂∂=Φ=S D d S d t D dt d I位移电流密度t D j D ∂∂=8. 麦克斯韦方程组的积分形式⎰∑⎰==⋅V S dV q S d D ρS d t B dt d l d E S m L ⋅∂∂-=Φ-=⋅⎰⎰ 0=⋅⎰S S d BS d tD S d j l d H S S L ⋅∂∂+⋅=⋅⎰⎰⎰ 第七章气体动理论主要内容一.理想气体状态方程:112212PV PV PV C T T T =→=; m PV RT M'=; P nkT = 8.31J R k mol = ;231.3810J k k -=⨯;2316.02210A N mol -=⨯;A R N k =二. 理想气体压强公式23kt p n ε= 212kt mv ε=分子平均平动动能 三. 理想气体温度公式 21322kt mv kT ε==四.能均分原理1. 自由度:确定一个物体在空间位置所需要的独立坐标数目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法Ⅲ 利用环路定理求特殊对称分布载流体的磁场
LB dl 0 I内
二、磁场对运动电荷或载流导线的力或力矩
1、洛伦兹力 在均匀磁场中
fm qv B
v B 匀速圆周运动
R m
qB
T 2R 2m qB
v与B不垂直 带电粒子作螺旋运动
R
m
2、霍尔电势
IB UH KH b
1)判断半导体的类型
( B) l Bl sin
+
-
(
B) dl
B
方法二:应用法拉第电磁感应定律 dm
dt
1、构造一假想闭合回路,求回路中的磁通量;
2、由法拉第电磁感应定律求动生电动势;
3、由楞次定律判断方向。
三、感生电动势
1、 感生电动势
i
B
s t dS
方向由楞次定律判断
2、 感生电场
S定
o
B变
Ei dl
sBt dS
感生电场是涡旋场,其电场线与磁感 应
强度增大的方向成左手螺旋关系。
3、 感生电场与感生电动势的计算
感生电场 :
Ei dl
B dS dm
s t
dt
1 dB
Ei 2
r dt
Ei
dB dt
R2 2r
当变化的磁场 的分布具有特 (r 殊R对) 称性时:
1、无限长电流:
B 0 I 2
a
2、半无限长电流(1):B 0
I
4
a
l 2
I
d
l
l o
1 a
dB
Px
I P
a
圆电流的磁场:
B 2
0 IR2
x2 R2
3/ 2
1、载流圆环环心处 x = 0;
B 0I
o 2R
2、x >> R
B 0 IR2 0 pm
2x
3
Байду номын сангаас
2πx3
注意:在一定的x处,磁场强弱随载流环的半径变 化,故可用求极值的方法讨论轴线某一定点处磁 场
(r R)
R o
B
感生电动势:
i
dm
dt
感生电场与静电场的区别
场源
静电场 E
由静止电荷激发
感生电场E感
由变化的磁场激发
电 电力线为非闭合曲线 力 线 形 状 静电场为无旋场
电力线为闭合曲线
E感
dB 0 dt
感生电场为有旋场
电 场 的 性
为保守场作功与路径无关
E dl 0
为非保守场作功 与路径
B
B
B
OH
O
H
O
H
软磁材料
变压器、电机、 电磁铁的铁芯,高 频线圈的磁芯材料
硬磁材料 矩磁铁氧体材料
作永久磁铁, 永磁喇叭等。
作计算机中 的记忆元件
稳恒磁场典型问题及示例
稳恒磁场考题大致可分为以下几种 类型
(1) 磁感应强度的计算; (2) 磁场对截流导体的力和力矩的计算; (3) 磁场力的功的计算; (4) 洛伦兹力的计算; (5) 磁场强度和磁化强度的计算。
0
由 jm M 由 Im
求 M;
求 jm; 求 Im;
jm L 或由 Im
1)Ic
求 Im;
一、法拉第电磁感应定律
1、 感应电动势
i N
dm
dt
方向由楞次定律判断
2、 感应电流
I感
i
R
1 R
dm
dt
3、 感应电量
q
t2 t1
I
感
dt
m
R
二、动生电动势
方法一:从电源电动势 的定义出发
特别地:
3、对载流导线的磁 力
fqmv
B
dF Idl
B
F dF Idl B
在均匀磁场中
F Il B Ir起末
4、对载流线圈的磁力 矩
B
M NISen B
注意霍耳电势的产生机理及其应用
一、磁介质的磁化
1、磁介质的分类:
弱磁性物质
抗磁质 顺磁质
铁磁质
通常不是常数
具有显著的增强原磁场的性质——强磁性物质
KH
1 ne
1 nq
B
+ + F+m
+
I
+
- -d -
UH
-
P 型半导体
Fm B
-
--
I
- -
+++
UH
d
+
N 型半导体
2)磁场或其他非电量的检测与传感
IB UH KH b
BU b H KH I
3、安培力
y
B
dF
F
dF
I
在均匀磁场Id中l BF BIL o
Idl P
L
x
任意闭合平面载流导线在均匀磁场中所受的力为零。
i
有关
E d感l
dt
dm
质
静电场为 感生电场为无源场
有源场
E感 dS 0
四、 自感与互感
1、自感电动势 2、自感系数
L
dI
dL
L
LI
t
只决定于线圈的几 何 尺寸、匝数、介 质。
3、互感电动势 dI211 M dt
12
M
dI2 dt
4、互感系数
M
21
只与两线圈的大小 、 形状、磁介质和 相 对位置有关。
随载流环半径变化的趋势。
无限长柱面电流的磁场
L
1
r
IR
Lr 2
0 I B
2π R
oR r
无限长柱体电流的磁场
二、磁场的基本性质
1、磁场的高斯定理与安培环路定 理
S B dS 0
磁场为涡旋场
2、磁场的安培环路定 理
L H dl I
磁场为无源场
三、磁场对电流或运动电荷的作用
1、对运动电荷的洛伦兹 力 2、对电流元的磁 力
一、磁感应强度的计算
对于运动点电荷: B 0 q
r4 r
0
注意矢量 叉 积的运 算
对于连续带电体:
方法Ⅰ 用毕—萨定律
2
B dB 0 Idl r0
Q 4π
r
2
方法Ⅱ 典型带电载流体的磁场 磁场叠加原理
熟记长直电流、圆电流、长直螺线管、螺绕环、无限大面电 流、无限长柱面/体电流的磁场分布。
注:载流线圈在均匀磁 场 中所受力矩不一定为 零
M Npm B
F
P
M3
F
F I O 2 B
1 N F4 en
**应用介质中安培环路定理解题方法**
1.场对称性分析;
2.选取环路;
H dl
L
Ic
3.求环路 内传 导电流的代数
4和.由 IcH; dl
求 H;
Ic
求 B;
由由BB 0MrHH
五、磁场的能量
1、通电线圈的自感磁能 2、磁场的磁
Wm
1 LI 2
2
能 目前范畴
内:
wm
1 H
2
2
1
2
B2
1 BH 2
Wm V wmdV
电磁学基本物理图象
运动
D
电荷
电流
t
激
激
发
变化
发
B
电场
注意 :
抗磁性是一切磁介质固有的特性,它不仅存在 于抗磁介质中,也存在于顺磁介质中;
2、磁介质中的磁场:
•H、B、M之间的关
系
• D、E、P 之间的关系
M mH
r (1 m )
H B M
0
B 0r H
LH dlH Ic
3、铁磁质 1 概:念:磁畴、剩磁、矫顽力、居里点;
2 分类与应用:
一、电流(运动电荷)激发磁场
1、运动电荷的磁 场
2、电流元的磁 场
B
0
4r
q
r
0
2
dB(r )
0 Idl r 0 4 r 2
3、稳恒电流的磁场
牢记下列几种典型稳恒电流的磁场
长直电流、圆电流、长直螺线管、螺绕环、 无 限大面电流、无限长柱面/体电流。
长直电流的磁场:
B
0 I cos 4a
1 cos 2