高中会考数学考试
高中会考数学试题及答案
高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 函数y=x^2+2x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A3. 以下哪个选项是等比数列?A. 2, 4, 6, 8B. 1, 2, 4, 8C. 3, 6, 9, 12D. 5, 10, 15, 20答案:B4. 已知a=3,b=4,求a^2+b^2的值。
A. 25B. 29C. 37D. 415. 一个圆的半径为5,求该圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D7. 以下哪个选项是不等式x+2>3的解集?A. x>1B. x<1C. x>-1D. x<-1答案:A8. 一个等差数列的首项是2,公差是3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A9. 以下哪个选项是方程2x-3=7的解?B. x=3C. x=1D. x=-1答案:A10. 以下哪个选项是函数y=2sin(x)的图像?A. 正弦波形B. 余弦波形C. 正切波形D. 直线答案:A二、填空题(每题4分,共20分)11. 计算(3+4i)(2-i)的结果为______。
答案:8+5i12. 已知等差数列的第3项是7,第5项是11,求公差d。
答案:213. 计算极限lim(x→0) (sin(x)/x)的值为______。
答案:114. 已知函数f(x)=x^2-4x+3,求f(2)的值。
答案:-115. 计算定积分∫(0 to 1) x^2 dx的结果为______。
答案:1/3三、解答题(每题10分,共50分)16. 求函数y=x^3-3x^2+2x的导数。
答案:y'=3x^2-6x+217. 证明函数f(x)=x^2在(0, +∞)上是增函数。
2022年山东省及普通高中学业水平考试会考数学试题及答案
山东省12月一般高中学业水平考试数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共4页。
满分100分,考试限定用时90分钟。
答卷前,考生务必将自己旳姓名、考籍号、座号填写在试卷和答题卡规定旳位置。
考试结束后,将本试卷和答题卡一并交回。
第I 卷(共60分)注意事项:每题选出答案后,用2B 铅笔把答题卡上对应题目旳答案标号涂黑。
如需改动,用橡皮擦洁净后,再选涂其他答案标号。
不涂在答题卡上,只答在试卷上无效。
一、选择题(本大题共20个小题,每题3分,共60分. 在每题给出旳四个选项中,只有一项是符合题目规定旳) l. 已知集合{}1,2A =,{}2,3B =,则A B =A. {}2B. {}1,2C. {}2,3D. {}1,2,3 2. 图象过点(0,1)旳函数是A. 2xy = B. 2log y x = C. 12y x = D. 2y x =3. 下列函数为偶函数旳是A. sin y x =.B. cos y x =C. tan y x =D. sin 2y x = 4. 在空间中,下列结论对旳旳是A.三角形确定一种平面B.四边形确定一种平面C.一种点和一条直线确定一种平面D.两条直线确定一种平面5. 已知向量(1,2),(1,1)a b =-=,则a b = A. 3 B.2 C. 1 D. 06. 函数()sin cos f x x x =旳最大值是 A.14B.12C.3D. 1 7. 某学校用系统抽样旳措施,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一种号码,若抽到旳是3号,则从11~20中应抽取旳号码是 A. 14 B. 13 C. 12 D. 11 8. 圆心为(3,1),半径为5旳圆旳原则方程是A. 22(3)(1)5x y +++=B. 22(3)(1)25x y +++=C. 22(3)(1)5x y -+-=D. 22(3)(1)25x y -+-=49. 某校100名学生数学竞赛成绩旳频率分布直方图如图所示,成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则该次数学成绩在[50,60)内旳人数为 A. 20 B. 15 C. 10 D. 610. 在等比数列{}n a 中,232,4a a ==,则该数列旳前4项和为 A. 15 B. 12 C. 10 D. 6 11. 设,,a b c R ∈,且a b >,则下列不等式成立旳是A. 22a b >B. 22ac bc >C. a c b c +>+D. 11a b< 12. 已知向量(1,2),(2,)a b x =-=,若//a b ,则x 旳值是 A. 4- B. 1- C. 1 D. 4113. 甲、乙、丙3人站成一排,则甲恰好站在中间旳概率为 A.13 B. 12 C. 23 D. 1614. 已知函数()2sin()(0)f x x ωϕω=+>旳部分图象如图所示,则ω旳值为A. 1 2 C. 3 D.215 已知实数020.31log 3,(),log 22a b c ===,则,,a b c 旳大小关系为 A. b c a << B. b a c << C. c a b << D. c b a << 16. 如图,角α旳终边与单位圆交于点M ,M 旳纵坐标为45,则cos α=A.35B.35- C.45 D. 45- 17. 甲、乙两队举行足球比赛,甲队获胜旳概率为13,则乙队不输旳概率为 A.56B.34 C. 23D. 1318. 如图,四面体ABCD 旳棱DA ⊥平面ABC ,090ACB ∠=, 则四面体旳四个面中直角三角形旳个数是 A. 1 B.2 C. 3 D. 419.在ABC ∆中,角,,A B C 旳对边分别是,,a b c . 若222c a ab b =++,则C = A. 0150 B. 0120 C. 060 D. 030 20. 如图所示旳程序框图,运行对应旳程序,则输出a 旳值是 值为 A.12 B. 13 C. 14 D. 152第II 卷(共40分)注意事项:1. 第II 卷共8个小题,共40分。
普通高中数学会考试卷及答案
普通高中数学会考试卷及答案一、选择题下面每题有且仅有一个选项是正确的,请把你认为正确的选项的字母填入题前的括号中。
(每题4分,共40分)1. 在直角三角形ABC中,已知∠B=90°,BC=3,AC=4,则AB=()。
A. 5B. 8C. 12D. 252. 设集合A={1,2,3,4},集合B={2,4,6,8},则A∪B=()。
A. {2,4,6,8}B. {1,2,3,4,6,8}C. {1,3,5,7}D. {6,8}3. 若函数f(x)是偶函数,则在它的对称轴上肯定存在对称点,反之()。
A. 对称点可推出函数是偶函数,对称点不存在不一定是偶函数B. 对称点可推出函数是奇函数,对称点不存在不一定是偶函数C. 对称点不一定存在,不存在不一定是奇函数D. 对称点可推出函数是奇函数,对称点不存在不一定是奇函数4. 设函数f(x)=ax^2+bx+c在区间[-1,1]上是增减性相同的,则a、b、c的大小关系为()。
A. a≤0, b≤0, c≥0B. a≥0, b≤0, c≥0C. a≤0, b≥0, c≥0D. a≥0, b≥0, c≥05. 设事件A与事件B相互独立,且P(A)=0.6,P(B) =0.8,则P(AB)的值是()。
A. 0.12B. 0.2C. 0.24D. 0.486. 以双色球为例,双色球1-33个红色号码中取6个,1-16个蓝色号码中取1个,设购买一张双色球彩票的费用是2元,若要中得一等奖,则需要全中红色号码和蓝色号码,其概率为()。
A. 1/201B. 1/2922C. 1/3507D. 1/47567. 已知曲线y=x^2-2在点(1, -1)处的切线方程为y=2x-3,则曲线上与切线平行且纵坐标大于-1的点的横坐标为()。
A. -1B. 0C. 1D. 28. 某商品原价P为120元,商家为促销将商品的原价打9折出售。
再根据购买的数量给予一定优惠。
若购买数量在1-5件之间,仍然保持9折优惠,购买数量在6-10件之间,优惠力度加大,可以打8折。
湖北高一高中数学水平会考带答案解析
湖北高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.成等比数列,其中则()A.B.C.D.或2.已知集合,,则( )A.B.C.D.3.已知平行四边形的三个顶点的坐标分别为,,,则顶点的坐标为( )A.(2,2)B.(-2,2)C.(2,-2)D.(-2,-2)4.远望灯塔高七层,红光点点倍加增,只见顶层灯一盏,请问共有几盏灯?答曰:( )A.64B.128C.63D.1275.在中则的值为()A.B.C.D.6.给出下列命题,其中正确的是( )A.若,则;B.若,则;C.若,则;D.若,则.7.某市环保局为增加城市的綠地面积,提出两个投资方案:方案A为一次性投资100万元;方案B为第一年投资10 万元,以后每年都比前一年增加10万元。
则按照方案B经过多少年后,总投入不少于方案A的投入。
答曰:( )A.4B.5C.9D.108.锐角使同时成立,则的值为( )A.B.C.D.9.已知,则( )A.B.C.D.二、填空题1.函数在区间上单调递减( )A.B.(-C.D.2.设等差数列的前n项和为已知则3.若,则4.5.已知关于的不等式,对一切实数都成立,则的取值范围是6.在中分别为角所对的边,已知,且的面积为,则三、解答题1.(本题满分12 分)(1)计算,(2)已知,求sin的值。
2.(本题满分12 分)已知数列为等比数列,且首项为,公比为,前项和为.(Ⅰ)试用,,表示前项和;(Ⅱ)证明(Ⅰ)中所写出的等比数列的前项和公式。
3.(本题满分12 分)如图,从气球上测得正前方的河流的两岸的俯角分别为,如果这时气球的高度米,求河流的宽度.4.(本题满分12 分)已知(Ⅰ)将化成的形式;(Ⅱ)求的最小正周期和最大值以及取得最大值时的的值;(Ⅲ)求的单调递增区间。
5.(本题满分13 分)据气象部门预报,在距离某码头南偏东方向600km处的热带风暴中心,正以每小时20km的速度向正北方向移动,距风暴中心450km以内的地区都将受到影响,从现在起多长时间后,该码头将受到热带风暴中心的影响,影响多长时间?(精确到0.1h)6.(本题满分14分)在等差数列中,已知。
普通高中学业水平考试数学试题(含答案)
第一卷(选择题 共45分)一.选择题(15'×3=45')1.已知角的终边经过点(3,4-),则tan x 等于( ) A.34 B.34- C.43D.43- 2.已知lg 2,lg3a b ==,则3lg 2等于( )A.a b -B.b a -C.b aD.a b 3.设集合{}(1,2)M =,则下列关系成立的是( )∈M ∈M C.(1,2)∈M D.(2,1)∈M4.直线30x y -+=的倾斜角是( ).450 C5.底面半径为2,高为4的圆柱,它的侧面积是( )π π π π6.若b<0<a(a,b ∈R),则下列不等式中正确的是( )<a 2 B.11b a> C.b a -<- D.a b a b ->+ 7.已知4,0,cos 25x x π⎛⎫∈-= ⎪⎝⎭,则tan x 等于( ) A.34 B.34- C.43D.43- 8.已知数列{}n a 的前n 项和12n n S n +=+,则3a 等于( ) A.120 B.124 C.128D.132 9.在ΔABC 中,sin sin cos cos 0A B A B -<则这个三角形一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形10.若函数1()(2)2f x x x =≠-,则()f x ( ) A.在(2,)-+∞内单调递增 B.在(2,)-+∞内单调递减 C.在(2,)+∞内单调递增 D.在(2,)+∞内单调递减11.在空间中,,,a b c 是两两不重合的三条直线,,,αβγ是两两不重合的三个平面,下列命题正确是( )A.若两直线,a b 分别与平面α平行,则//a b .B.若直线a 与平面β内的一条直线b 平行,则//a β.C.若直线a 与平面β内的两条直线b 、c 都垂直,则a ⊥β.D.若平面β内的一条直线a 垂直平面γ,则γ⊥β.12.不等式(1)(2)0x x ++<的解集是( )A.{}21x x -<<-B.{}21x x x <->-或C.{}12x x <<D.{}12x x x <>或13.正四棱柱ABCD-A 1B 1C 1D 1中,A 1 C 1与BD 所在直线所成角的大小是( ) .450 C14.某数学兴趣小组共有张云等10名实力相当的组员,现用简单随机抽样的方法从中抽取3人参加比赛,则张云被选中的概率是( )% % 如图所示的程序框图,如果输入三个实数a,b,c ,要求输出这三个数中最大的数,那么在空白处的判断框中,应该填入下面四个选项中的( )(注:框图中的赋值符号“=”也可以写成“←”或“:=”)A.c x >B.x c >C.c b >D.b c >第二卷(非选择题共55分)二.填空题(5'×4=20')16.已知0,0,1a b a b >>+=则ab 的最大值是____.17.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于____.18.已知函数2,(4)()(1),(4)x x f x f x x ⎧<=⎨-≥⎩,那么(5)f 的值为_____. 19.在[],ππ-内,函数sin()3y x π=-为增函数的区间是______. 20.设12,9,542a b a b ==⋅=-则a 和b 的夹角θ为____.三.解答题(共5小题,共35分)21.已知(2,1),(,2),a b λ==-⑴若a b ⊥求λ的值;⑵若//a b 求λ的值.22.(本题6分)已知一个圆的圆心坐标为(1,2)-,且过点(2,2)P -,求这个圆的标准方程.23.(本题7分)已知{}n a 是各项为正数的等比数列,且1231,6a a a =+=,求该数列前10项的和n S .24.(本题8分)已知函数31()cos ,2f x x x x R =-∈,求()f x 的最大值,并求使()f x 取得最大值时x 的集合. 25.(本题8分)已知函数()f x 满足()(),0,(2)1,xf x b cf x b f =+≠-=-且(1)(1)f x f x -=-+对两边都有意义的任意 x 都成立.⑴求()f x 的解析式及定义域;⑵写出()f x 的单调区间,并用定义证明在各单调区间上是增函数还是减函数参考答案一、二、16、41 17、31 18、8 19、 [6π-,65π] 20、43π 三、21、解:∵a ⊥b ,∴a •b=0,又∵a=(2,1),b =(λ,-2),∴a •b=2λ-2=0,∴λ=1 22、解:依题意可设所求圆的方程为(x+1)2+(y-2)2=r 2。
高中会考试题数学及答案
高中会考试题数学及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 + 4x + 3,则f(-1)的值为:A. 0B. 2C. 4D. 6答案:B2. 已知等差数列{a_n}的前三项分别为1, 4, 7,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 若直线y = 2x + 1与直线y = -x + 3相交,则交点的横坐标为:A. -1B. 0C. 1D. 2答案:C5. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:B6. 函数y = x^3 - 3x^2 + 4x - 2的导数是:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 9x + 4D. 3x^2 - 9x + 2答案:A7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A9. 一个数列的前四项为2, 5, 8, 11,若该数列是等差数列,则第五项为:A. 14B. 15C. 16D. 17答案:A10. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的前三项分别为2, 6, 18,则该数列的公比为______。
答案:32. 一个矩形的长为10cm,宽为5cm,那么它的对角线长度为______。
答案:5√5 cm3. 函数y = √x的反函数是______。
答案:y = x^24. 已知一个抛物线的顶点为(2, -3),且开口向上,则它的标准方程为______。
高中数学会考试卷
高中数学会考试卷一、选择题1. 若抛物线$y=ax^2+bx+c$的顶点为$(2,-1)$,则$a+b+c$等于()。
A. 1B. -1C. 0D. 22. 设函数$f(x)=\frac{2x-1}{3x+4}$,则$f(-\frac{4}{3})$等于()。
A. $\frac{5}{3}$B. $\frac{4}{3}$C. $\frac{3}{5}$D. $-\frac{3}{5}$3. 若直线$3x-4y=7$与$x+4y=2$互相垂直,则直线$3x-4y=k$的$k$值为()。
A. -16B. 16C. -8D. 84. 若$\sin\theta=\frac{24}{25}$,$\theta$终边在第一象限,则$\cos\theta$的值为()。
A. $\frac{7}{25}$B. $\frac{1}{25}$C. $\frac{7}{24}$D.$\frac{1}{24}$5. 已知矩阵$A=\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$,$B=\begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix}$,则$A+B$为()。
A. $\begin{bmatrix} 3 & -1 \\ 0 & 6 \end{bmatrix}$B.$\begin{bmatrix} 3 & -5 \\ 0 & 6 \end{bmatrix}$ C. $\begin{bmatrix} 3 & -1 \\ 2 & 6 \end{bmatrix}$ D. $\begin{bmatrix} 3 & 1 \\ 4 & 6\end{bmatrix}$二、填空题6. 若$f(x)=3x^2+5x-1$,则$f(-2)=$()。
7. 设$a_1=3$,$a_{n+1}=a_n+2$,若$a_{10}=$()。
高中数学会考试卷
高中数学会考试卷第一卷(选择题共60 分)一、选择题:本大题共14 小题:第( 1)—( 10)题每小题 4 分,第( 11) - ( 14)题每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={0, 1, 2,3, 4} ,B={0, 2,4, 8} ,那么 A∩ B 子集的个数是:()A、6个B、7个C、8 个D、9个(2)式子 4· 5的值为:()A、 4/5B、5/4C、 20 D 、1/20(3)已知 sin θ =3/5,sin2θ<0,则tg(θ /2)的值是:()A、-1/2 B 、1/2 C 、1/3 D 、3(4)若 log a (a 2 +1)<log a 2a<0,则 a 的取值范围是:()A、( 0,1) B 、 (1/2,1) C、(0,1/2) D、(1,+∞)(5)函数 f(x)= π/2+arcsin2x 的反函数是()A、 f -1 (x)=1/2sinx,x ∈ [0, π] B 、 f -1 (x)=-1/2sinx,x ∈ [0, π ]C 、 f -1 (x)=-1/2cosx,x ∈ [0, π ]D 、 f -1 (x)=1/2cosx,x ∈ [0, π](6)复数 z=(+ i) 4 (-7-7i) 的辐角主值是:()A、π/ 12 B 、 11π/12 C 、19π /12 D 、 23π /12(7)正数等比数列a1 ,a 2 ,a 8的公比 q≠ 1, 则有:()A、 a1+a8 >a4 +a5 B 、 a1 +a8<a4 +a5 C、 a1+a8=a4 +a5 D、 a1+a8与 a4+a5大小不确定2 2(8)已知 a、 b∈R,条件 P: a +b ≥ 2ab、条件 Q:,则条件P 是条件 Q 的()D 、既不充分也不必要条件(9)椭圆的左焦点F1,点 P 在椭圆上,如果线段PF1的中点 M在 Y 轴上,那么 P 点到右焦点F2的距离为:()A、 34/5B、 16/5C、 34/25D、16/25(10)已知直线l 1与平面α成π /6 角,直线l 2与 l 1成π /3 角,则 l 2与平面α所成角的范围是:()A、 [0 ,π /3]B、[π/3,π/2] C[π /6,π /2]、D、[0,π/2](11)已知,b为常数,则a 的取值范围是:()A、 |a|>1B、a∈R且a≠1C、-1<a≤1D、a=0或a=1(12)如图,液体从一球形漏斗漏入一圆柱形烧杯中,开始时漏斗盛满液体,经过 3 分钟漏完。
贵州普通高中会考题数学试卷
贵州普通高中会考题数学试卷注意事项:1. 本试卷分为选择题和非选择题两部分,本试卷共6页,43题,满分150分。
考题用时120分钟。
2. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考生号填写在答题卡上,将条形码横贴在答题卡“考生条码区”。
3. 选择题选出答案后,用2B 铅笔把答题卡上对应题目选项在答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。
所有题目不能答在试卷上。
4. 考生必须保持答题卡的整洁。
考题结束后,将试卷和答题卡一并交回。
参照公式:柱体体积公式:V=Sh,锥体体积公式:Sh V 31=球的表面积公式:24R S π=,球的体积公式:334R V π=选择题本题包括35小题,每小题3分,共计105分,每小题给出的四个先项中,只有一项....是符合题意的。
一.选择题(3*35=105)(1)已知集合=⋃==B A B 则},3{},2,1{A ( )A .{1}B . {2}C .{1,2}D .{1,2,3}(2)=30sin ( ) A. 21 B.22 C. 23 D. 1 (3)直线63+=x y 在y 轴上的截距为( )A. -6B.-3C. 3D. 6(4)函数xx f 1)(=的定义域是( ) A. R B.}0{≠x x C. }0{≥x x D. }0{≤x x(5)=4log 2( )A. 2B.3C. 5D. 6(6)直线2+=x y 的倾斜角为( )A. 30B. 45C. 60D.90(7)函数x y 2sin =的最小正周期是( )A. πB.3πC.4πD.5π (8)函数1)(-=x x f 的零点是( )A.-2B.1C. 2D. 3(9)下列各点中,在指数函数xy 2=图像上的是( )A. (0,0)B.(1,1)C. (1,0)D. (0,1)10.在等比数列===21,2,2}{a q a a n 则公比中,A. 2B. 3C. 4D. 511.圆9)3(:22=+-y x C 的圆心坐标为( )A. (1,0)B.(2,0)C. (3,0)D. (4,0)12.在等差数列===d a a a n ,则公差中,5,3}{21( )A. 1B. 2C. 3D. 413.若函数R 1)(为+=kx x f 上的增函数,则实数k 的值为( )A. ),(2-∞B. ),(∞+2-C. ),(0-∞D. ),(∞+0 14.下列函数为偶函数的是( )A. x x f 3log )(=B. 2)(x x f =C. 1)(+=x x fD. 3)(x x f =15.已知x b a x b a 则且,),1,(),2,1(⊥-===( )A. 1B. 2C. 3D. 416.若幂函数n x x f =)(的图像过点(2,8),则函数=)(x f ( )A. 4-)(x x f =B. 3-)(x x f =C. 4)(x x f =D. 3)(x x f =17.下列各平面图形绕直线l 旋转一周后,所得几何体为球的是( )18.已知α是第一象限角,且==ααcos ,53sin 则( ) A. 21 B. -21 C. 54 D. -5419.已知ABC ∆中,且====a b B A 则,1,30,60( ) A. 1 B. 2 C. 3 D.620.已知数列=+-=1212}{a n n S n a n n ,则项和为的前( ) A. 0 B. 4 C. 5 D. 621.不等式0)1)(2<-+x x (的解集是( )A. )(2,1-B.),(),(∞+⋃∞21--C.)(1,2-D.),(),(∞+⋃∞12-- 22.甲、乙两名同学五场篮球比赛得分情况的茎叶图如图所示,记甲、乙两名同学得分的众数分别为m,n,则m 与n 的关系是( )A. m=nB. m<nC. m>nD. 不确定23.从甲、乙、丙三人中选出2人参加演讲比赛,则甲、乙两人同时被选中的概率为( )A. 21B. 31C. 41D. 32 24.下列散点图中,两个变量x,y 成正相关关系的是( )25.已知y x xy y x +=>>则若,3,0,0的最小值为( )A. 3B. 32C. 4D. 626.下图是某校100名学生数学竞赛成绩的频率分布直方图,则 a 值为( )A. 0.025B. 0.03C. 0.035D. 0.327.某地区有高中生1000名,初中生6000人,小学生13000人,为了解该地区学生的近视情况,从中抽取一个容量为200的样本,用下列哪种方法最合适( )A. 系统抽样B. 抽签法C. 分层抽样D. 随机数法28.已知ABC ∆中,且ABC b A c ∆===则,2,30,4的面积为( ) A. 2 B. 22 C. 4 D.629.一个几何体的三视图如图所示,则该几何体的体积为( ) A. 27 B. 9 C. 227 D.29 30.经过点(3,0)且与直线52+-=x y 平行的的直线方程为( )A. 06-2=+x yB. 032=--y xC. 032=+-y xD. 072=-+y x31.已知y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥≥200y x y x ,则y x z 2+=的最大值为( )A. 0B. 2C. 3D. 432.正方体容器内有一个内切实心铁球,现匀速向容器内注水,直到注满为止,则水面高度h 随时间t 变化的大致图像是( )33.将函数)(62sinπ+=x y 的图像上所有点向左平移6π个单位,得到函数图像的解析式是( ) A. x y 2sin = B. x y 2cos = C. )(32sin π+=x y D. )(6-2sin πx y =34.若函数⎪⎩⎪⎨⎧->-+--≤=1,121,)21()(2x ax x x x f x ,在R 上是减函数,则实数a 的取值范围是( )A. (]2--,∞ B. (]1--,∞ C. []1-2-, D. [)∞+,2- 35.若过点)1,0(P 的直线4:22=+y x C l 与圆交与A,B 两点,且PB AP 2=,则直线k l 的斜率=( )A. 1±B. 15±C. 515±D. 553± 二.填空题(3*5=15)36.在长方体1111D C B A ABCD -中,直线1111D C B A AB 与平面的位置关系是 。
高中会考数学试题及答案
高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(无限循环)B. πC. √2D. 1/32. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个3. 已知等差数列的前三项和为6,第二项为2,求该数列的首项a1和公差d:A. a1 = 1, d = 1B. a1 = 0, d = 2C. a1 = 2, d = 0D. a1 = 3, d = -14. 集合A={1, 2, 3},集合B={2, 3, 4},求A∩B:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 已知三角形ABC的三边长分别为a=3, b=4, c=5,求其面积:B. 9C. 10D. 126. 根据题目所给的函数y=x^3-2x^2+x-2,求导数y':A. 3x^2-4x+1B. x^3-2x^2+1C. 3x^2-4x+2D. x^3-2x7. 已知sinθ=0.6,求cosθ的值(结果保留根号):A. √(1-0.36)B. -√(1-0.36)C. √(1-0.6^2)D. -√(1-0.6^2)8. 将下列二次方程x^2-4x+4=0进行因式分解:A. (x-2)(x-2)B. (x+2)(x-2)C. (x-1)(x-3)D. (x+1)(x+3)9. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,求圆心坐标:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)10. 根据题目所给的等比数列求和公式S_n = a1(1-q^n)/(1-q),当n=5,a1=2,q=2时,求S_5:B. 63C. 64D. 65二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 + bx + c,若f(1) = 2,则b + c =_______。
高中数学会考模拟试题(七)
1高中数学会考模拟试题(七)一. 选择题:1. 已知I 为全集,P 、Q 为非空集合,且≠⊂P Q ≠⊂I ,则下列结论不正确的是( )A. I C P Q I ⋃=B. Q Q P =⋃C. I C P Q φ⋂=D. I P C Q φ⋂= 2. 若31)180sin(=+︒α,则=+︒)270cos(α( ) A.31 B. 31- C. 322 D. 322- 3. 椭圆192522=+y x 上一点P 到两焦点的距离之积为m 。
则当m 取最大值时,点P 的坐标是( )A. )0,5(和)0,5(- B. )233,25(和)233,25(- C. )3,0(和)3,0(- D. )23,235(和)23,235(- 4. 函数x x x y 2sin 21cos sin 2-+⋅=的最小正周期是( )A. 2πB. πC. π2D. π45. 直线 与两条直线1=y ,07=--y x 分别交于P 、Q 两点。
线段PQ 的中点坐标为)1,1(-,那么直线 的斜率是( ) A.32 B. 23 C. 32- D. 23- 6. 为了得到函数x y 2sin 3=,R x ∈的图象,只需将函数)32sin(3π-=x y ,R x ∈的图象上所有的点( )A. 向左平行移动3π个单位长度 B. 向右平行移动3π个单位长度 C. 向左平行移动6π个单位长度D. 向右平行移动6π个单位长度7. 在正方体1111D C B A ABCD -中,面对角线11C A 与体对角线D B 1所成角等于( ) A. ︒30 B. ︒45 C. ︒60 D. ︒90 8. 如果b a >,则在①ba 11<,② 33b a >,③ )1lg()1lg(22+>+b a ,④ b a 22>中,正确的只有( ) A. ②和③ B. ①和③ C. ③和④ D. ②和④ 9. 如果)3,2(-=,)6,(-=x ,而且⊥,那么x 的值是( ) A. 4 B. 4- C. 9 D. 9-10. 在等差数列}{n a 中,32=a ,137=a ,则10S 等于( ) A. 19 B. 50 C. 100 D. 12011. 1>a ,且⎩⎨⎧≠>0xy yx 是y x a a log log >成立的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件12. 设函数2)()(x x e e x x f --=,x x x g +-=11lg )(,则( )A. )(x f 是奇函数,)(x g 是偶函数B. )(x f 是偶函数,)(x g 是奇函数C. )(x f 和)(x g 都是奇函数D. )(x f 和)(x g 都是偶函数13. 在ABC ∆中,已知3=b ,33=c ,︒=∠30B ,则a 等于( ) A. 3或9 B. 6或9 C. 3或6 D. 6 14. 若11)(-+=x x x f ,)()(1x f x g -=-,则)(x g ( ) A. 在R 上是增函数B. 在)1,(--∞上是增函数C. 在),1(∞+上是减函数D. 在)1,(--∞上是减函数15. 不等式22121log )2(log x x >+的解集是( )A. {1|-<x x 或2>x }B. {21|<<-x x }C. {12|-<<-x x }D. {12|-<<-x x 或2>x }216. 把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为( ) A. 12 B. 24 C. 36 D. 28 17. 若a 、b 是异面直线,则一定存在两个平行平面α、β,使( ) A. α⊂a ,β⊂bB. α⊥a ,β⊥bC. α//a ,β⊥bD. α⊂a ,β⊥b18. 已知函数)(x f ,R x ∈,且)2()2(x f x f +=-,当2>x 时,)(x f 是增函数,设)2.1(8.0f a =,)8.0(2.1f b =,)27(log 3f c =,则a 、b 的大小顺序是( )A. c b a <<B. b c a <<C. c a b <<D. a c b << 二. 填空题19. 已知b 是a 与c 的等比中项,且27=abc ,则=b 20. 计算︒⋅︒75cos 105sin 的值等于21. 由数字1,2,3,4可以组成没有重复数字比1999大的数共有 个 22 不等式0343>---x x 的解集是23. 半球内有一内接正方体,正方体的一个面在半球的底面圆上,若正方体的一边长为6,则半球的体积是24. 点P 是双曲线112422=-y x 上任意一点,则P 到二渐近线距离的乘积是 三. 解答题25.设222tan =θ,),2(ππθ∈求θθθθcos sin 1sin 2cos 22+--的值.26.解不等式222)21(2--+>x x x27.已知三棱锥BCD A -,平面⊥ABD 平面BCD ,AB=AD=1,AB ⊥AD ,DB=DC ,DB ⊥DC(1)求证:AB ⊥平面ADC ;(2)求二面角A (3)求三棱锥BCD A -的体积28.已知数列}{n a 中,n S 是它的前n 项和,并且n S (1)设n n n a a b 21-=+,求证}{n b 是等比数列 (2)设n nn a C 2=,求证}{n C 是等差数列 (3)求数列}{n a 的通项公式及前n 项和公式29.已知直线 :m y x =+和曲线C :)4(42+=x y )44(≤≤-x(1)直线 与曲线C 相交于两点,求m 的取值范围(2)设直线 与曲线C 相交于A 、B ,求AOB ∆面积的最大值。
安徽普通高中会考数学真题及答案
2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。
因此,答案为A。
2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。
3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。
高中数学会考试卷
高中数学会考试卷第一卷(选择题共60分)一、选择题:本大题共14小题:第(1)—(10)题每小题4分,第(11)-(14)题每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={0,1,2,3,4},B={0,2,4,8},那么A∩B子集的个数是:()A、6个B、7个C、8个D、9个(2)式子4·5的值为:()A、4/5????B、5/4??? C、20?? D、1/20(3)已知sinθ=3/5,sin2θ<0,则tg(θ/2)的值是:()A、-1/2B、1/2C、1/3D、3(4)若log a(a2+1)<log a2a<0,则a的取值范围是:()A、(0,1)B、(1/2,1)C、(0,1/2)D、(1,+∞)(5)函数f(x)=π/2+arcsin2x的反函数是()A、f-1(x)=1/2sinx,x∈[0,π]?B、f-1(x)=-1/2sinx,x∈[0,π]??? C、f-1(x)=-1/2cosx,x∈[0,π] D、f-1(x)=1/2cosx,x∈[0,π](6)复数z=(+i)4(-7-7i)的辐角主值是:()A、π/12B、11π/12C、19π/12D、23π/12(7)正数等比数列a1,a2,a8的公比q≠1,则有:()A、a1+a8>a4+a5B、a1+a8<a4+a5C、a1+a8=a4+a5D、a1+a8与a4+a5大小不确定(8)已知a、b∈R,条件P:a2+b2≥2ab、条件Q:,则条件P是条件Q的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件(9)椭圆的左焦点F1,点P在椭圆上,如果线段PF1的中点M在Y轴上,那么P点到右焦点F2的距离为:()A、34/5B、16/5C、34/25D、16/25(10)已知直线l1与平面α成π/6角,直线l2与l1成π/3角,则l2与平面α所成角的范围是:()A、[0,π/3]B、[π/3,π/2] C[π/6,π/2]、D、[0,π/2](11)已知,b为常数,则a的取值范围是:()A、|a|>1B、a∈R且a≠1C、-1<a≤1D、a=0或a=1(12)如图,液体从一球形漏斗漏入一圆柱形烧杯中,开始时漏斗盛满液体,经过3分钟漏完。
数学会考高中试题及答案
数学会考高中试题及答案一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 4x + 3 \),下列说法正确的是:A. 函数的图像是开口向上的抛物线B. 函数的图像是开口向下的抛物线C. 函数的图像与x轴有两个交点D. 函数的图像与x轴没有交点答案:A2. 圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A3. 已知等差数列的前三项依次为1,3,5,则该数列的第五项为:A. 7B. 9C. 11D. 13答案:B4. 函数\( y = \log_2(x) \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案:A5. 集合\( A = \{1, 2, 3\} \)和集合\( B = \{2, 3, 4\} \)的交集为:A. \( \{1\} \)B. \( \{2, 3\} \)C. \( \{2, 4\} \)D. \( \{3, 4\} \)答案:B6. 直线\( y = 2x + 1 \)与直线\( y = -x + 4 \)的交点坐标为:A. (1, 3)B. (-1, 3)C. (1, -1)D. (-1, -1)答案:A7. 已知\( \sin \alpha = \frac{1}{2} \),\( \alpha \)是第二象限角,则\( \cos \alpha \)的值为:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( -\frac{\sqrt{3}}{2} \)答案:D8. 函数\( f(x) = x^3 - 3x^2 + 3x - 1 \)的单调递增区间为:A. \( (-\infty, 1) \)B. \( (1, +\infty) \)C. \( (-\infty, 2) \)D. \( (2, +\infty) \)答案:B9. 向量\( \vec{a} = (1, 2) \)和向量\( \vec{b} = (2, 1) \)的夹角为:A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{3} \)C. \( \frac{\pi}{2} \)D. \( \frac{2\pi}{3} \)答案:A10. 已知等比数列的前三项依次为2,4,8,则该数列的公比为:A. 2B. 4C. 1D. 0.5答案:A二、填空题(每题4分,共20分)1. 已知\( \tan \theta = 3 \),\( \theta \)是第一象限角,则\( \sin \theta \)的值为______。
高中数学会考试题及答案
高中数学会考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆答案:B2. 函数f(x) = 3x^2 - 5x + 2的顶点坐标是?A. (1, -2)B. (-1, 2)C. (2, -1)D. (-2, 1)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 4}答案:B4. 已知方程x^2 + 6x + 9 = 0的根是?A. x = 0B. x = 3C. x = -3D. x = ±3答案:D二、填空题(每题5分,共20分)5. 函数y = 2x + 3的斜率是______。
答案:26. 一个等差数列的前三项是2, 5, 8,那么它的公差是______。
答案:37. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,那么它的半径是______。
答案:38. 已知向量a = (3, -4),向量b = (-2, 5),则向量a与向量b的点积是______。
答案:-29三、解答题(每题10分,共20分)9. 解方程:2x^2 - 5x + 2 = 0。
答案:x = 1/2 或 x = 210. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,求证:三角形ABC是直角三角形。
答案:根据勾股定理,如果三角形的三边长满足a^2 + b^2 = c^2,则该三角形为直角三角形。
已知a^2 + b^2 = c^2,所以三角形ABC是直角三角形。
四、证明题(每题10分,共20分)11. 证明:如果一个角的正弦值等于1/2,那么这个角是30°或150°。
答案:设这个角为α,根据正弦函数的性质,当α = 30°时,sin(30°) = 1/2;当α = 150°时,sin(150°) = 1/2。
【高中会考】2020年6月-高中数学会考标准试卷(含答案)
第 1 页 共 9 页2020 年 6 月 高中数学会考标准试卷满分 100 分,考试时间 120 分钟) 2020.6考 生 须 知 1. 考生要认真填写学校、班级、姓名、考试编号。
2. 本试卷共 6 页,分两部分。
第一部分选择题, 大题,共 7 个小题。
20 个小题;第二部分非选择题,包括两道3.试题所有答案必须填涂或书写在答题卡上,在试卷上做答无效。
4. 考试结束后,考生应将试卷答题卡放在桌面上, 待监考老师收回。
参考公式: 圆锥的侧面积公式 S 圆锥侧Rl ,其中 R 是圆锥的底面半径, l 是圆锥的母线长.圆锥的体积公式V圆锥 1 S h , 其中 S是圆锥的底面面积, h 是圆锥的高.3第Ⅰ卷 (机读卷 60 分)一、选择题: (共 20个小题,每小题 3分,共 60 分)在每个小题给出的四个备选答案中,只有一个是符 合题目要求的,请把所选答案前的字母按规定要求涂抹在“机读答题卡”第 1—20 题的相应位置上。
1. 已知全集 U={1,2,3,4,5}, 且 A={2,3,4},B={1,2}, 则 A ∩(? U B )等于( )A.{2}B.{5}C.{3,4}D.{2,3,4,5} 2. 在等差数列 {a n } 中,a 1=2,a 3 +a 5 =10,则 a 7=(7. 下列四个命题中正确命题的个数为( )22① 若 a>|b|, 则 a >b ; ②若 a>b,c>d, 则 a-c>b-d;cc③若 a>b,c>d, 则 ac>bd; ④若 a>b>0, 则 > .abA.3B.2C.1D.0A.5B.8C.10D.143. 在区间(0, +∞ )上不是增函数的函数是( )A.y=2x +1B.y=3x 2+1C.y=D.y=2x +x +14 25 4.sin · cos ·tan 5 的值是( )36 4A.- 3B. 3C.- 34445.在△ ABC 中,若 sin AcosB ,则∠B的值为(ab6. 设{a n }是公比为正数的等比数列,若 a 1=1,a 5=16,则数列 {a n } 前 7 项的和为(A .63B .64C . 127D . 128 A.30°B.45 °C.60°D.90°4第 2 页 共 9 页9.已知y=f(x) 是定义在R 上的奇函数,当x>0 时,f(x)=x-2 ,那么不等式 f(x)<0.5 的解集是( )A.{x|0 ≤x<2.5} C.{x| - 1.5<x<0 ,或 x>2.5}B.{x| -1.5<x ≤0} D.{x|x< - 1.5 或 0≤ x<2.5} 10. 下列关于互不相同的直线 ,m , A.C. n 和平面α,β,γ的命题,其中为真命题的是( )B. D. 111. 函数 f(x)=x + (x<0) 的值域为( )A .(- ∞,0)B .(- ∞,-2]C .[2 ,+∞)D .(- ∞,+∞)12. 甲乙两名学生六次数学测验成绩 (百分制) 如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ② 甲同学的平均分比乙同学高; ③ 甲同学的平均分比乙同学低;④ 甲同学成绩的方差小于乙同学成绩的方差. 面说法正确的是 ( ) A.③④B.①②④C.②④D.①③13.化简 1[ 1 (2a 8b )(4a 2b)] 的结果是 ()32A. 2a bB. 2b aC. b aD. a b14. 已知 sin α- cos5 α =- ,则 sin 2α的值等于( )477 9 9 A. B .- C .-D. 16 16 16161,球心 O 到平面α的距离为 2,则此球的体积为(C .4 6πD .6 3πy 1 16. 若变量 x ,y 满足约束条件x y0 ,则 z =x - 2y 的最大值为(xy2 08.设函数 ,则 f[f[-2]]A.5B.4的值为(C.3D.215. 平面α截球 O 的球面所得圆的半径为A. 6π B .4 3πA.4B.3C.2D.1第3 页共9 页第 4 页 共 9 页17. 若直线 3x +4y +k=0 与圆 x 2+y 2-6x +5=0 相切,则 k 的值等于( )B 、10 或 -1C 、-1 或-19D 、-1 或 1918. 已知 a=(3,4),b=(2,-1) 且 (a+xb) ⊥ (a-b), 则 x 等于( )A.23B.11.5C.D.19. 函数 f(x)=Acos( ωx +φ )(A>0 ,ω >0,-π <φ<0)的部分图象如图所示,为了得到B .向左平移 1π2个单位长度C .向右平移 π6 个单位长度D .向右平移 1π2个单位长度20.某公司一种型号的产品近期销售情况如下表:根据上表可得到回归直线方程y ^=0.75x +a ^,据此估计,该公司 7 月份这种型号产品的销售额约为( )A .19. 5万元B . 19. 25 万元C . 19. 15 万元D . 19. 05 万元第Ⅱ卷 (非机读卷 共 40 分)、填空题: (本大题共 4 小题,每小题 3 分,共 12 分.把答案填在题中横线上)21. 某棉纺厂为了解一批棉花的质量 ,从中随机抽测了 100 根棉花纤维的长度 (棉花纤维的长度是棉花质量的 重要指标). 所得数据均在区间 [5,40] 中,其频率分布直方图如图所示 ,则在抽测的 100根中,有 _________ 根棉花纤维的长度小于 20mm.22. 函数 y log a (x 3) 3(a 0且 a 1)恒过定点 23.从 2,3,8,9中任取两个不同的数字,分别记为A 、1或-19g(x)=Asin ωx 的图A .向左平移 π6 个单位长度第 5 页 共 9 页a ,b ,则 log a b 为整数的概率是 _____ .24. 经过点( -4,3), 且斜率为-3 的直线方程为 _ .三、解答题:(本大题共 3 小题,共 28分.解答应写出文字说明,证明过程或演算步骤) 25. 如图,在直三棱柱 ABC-A 1B 1C 1中,D,E 分别为 AB,BC 的中点,点 F 在侧棱 B 1B 上,且 B 1D ⊥A 1F,A1C 1⊥A 1B 1.求证: (1) 直线 DE ∥平面 A 1C 1F; (2) 平面 B 1DE ⊥平面 A 1C 1F.26. 在△ ABC 中, 内角 A ,B ,C 所对的边分别为 a,b,c, 已知 .(1)求角 B 的大小; (2)若 , 求△ ABC 的周长的取值范围.第 6 页 共 9 页S nn (n ∈N *) 均在函数 y=3x-2 的图象上.(1) 求数列{a n } 的通项公式;3(2) 设 b n = ,求数列{b n }的前 n 项和 T n .a n a n +127.设数列{a n }的前 n 项和为 S n ,点n ,≤-2第 7 页 共 9 页参考答案1. 解析:选 C.? U B={3,4,5} ,∴A ∩(? U B)={3,4} .2. 答案为: B ; 解析:设出等差数列的公差求解或利用等差数列的性质求解. 方法一:设等差数列的公差为 d ,则 a 3+a 5=2a 1+ 6d=4+ 6d=10,所以 d=1,a 7=a 1+ 6d=2+ 6=8.方法二:由等差数列的性质可得 a 1+a 7=a 3+a 5=10,又 a 1=2,所以 a 7=8. 3. C. 4. A5. 答案为:B6. 答案为: C ;解析:设数列 {a n } 的公比为 q(q >0) ,则有 a 5=a 1q 4=16, 所以 q=2,数列的前 7 项和为 S 7=a1(1-q) =1-2=127.1-q1-27. 答案为: C ; 解析:易知①正确 ; ②错误, 如 3>2,-1>-3, 而 3-(-1)=4<2-(-3)=5;1 1c c③错误,如 3>1,-2>-3, 而 3×(-2)<1 ×(-3); ④若 a>b>0,则 < ,当 c>0时, < , a b a b故④错误. ∴正确的命题只有 1 个. 8. A. 9. D10. 答案:D 解题思路:12.答案为: A ;11.答案为: B ;解析: f(x)=-1-x· =-2 ,当且仅当 -x=1 1 ,即 x=-1 时,等号成立. -x第 8 页 共 9 页解析:13. B14. 答案为: C.5 2 25 解析:由 sin α-cos α=- ,(sin α- cos α)=1-2sin αcos α=1-sin 2α= ,4 169所以 sin 2α =- 9 .1617. A ;18. 答案为: C ; 19. 答案为:B ;故将函数 y=f(x) 的图象向左平移 π 个单位长度可得到 g(x) 的图象. 1220. 答案为:D1解析:由表可知 x = ×(2 +3+4+5+6)=4,51y = ×(15.1+16.3+17+17.2+18.4)=16.8,则样本中心点 (4 ,16.8)在线性回归直线上,故 516.8=0.75×4+a ^,得a ^=13. 8.故当 x=7 时,y ^=0.75×7+13. 8=19. 05.故选 D .21. 答案为:30 ; 解析:由题意知 ,棉花纤维的长度小于 20mm 的频率为 (0.01+0.01+0.04)×5=0.3, 故抽测的 100 根中, 棉花纤维的长度小于 20mm 的有 0.3×100=30(根). 22. 答案为: (4,3)15.答案为: B ;解析:设球的半径R ,由球的截面性质得R= 2 +1= 3,所以球的体积 4V= πR 316. 答案为: B ; 解析:如图,画出约束条件表示的可行域,当目标函数 的交点 A(1,-1) 时,取到最大值 3,故选 B. z=x - 2y 经过 x + y=0 与 x - y - 2=0解析:由题图知 A=2,T =π 23∴ω =2, ∴ f(x)=2cos(2x+φ), π3,2代入得 cos23 +φ =1,∵-π <φ<0,∴- π 2π 2π< +φ< 3 3 32π 3φ =0,∴φ =- 2π2x -2π x -π 3 =2sin 2 12 .2 ∴ f(x)=2cos123.答案为:;6 解析:所有的基本事件有(2 ,3),(2 ,8),(2 ,9),(3 ,2),(3 ,8),(3 ,9),(8 ,2),(8 ,3),(8,9),(9,2),(9,3),(9,8),共 12个,记“ log a b 为整数”为事件 A, 21 则事件 A包含的基本事件有(2,8),(3,9),共 2 个,∴ P(A)= = .12 624.答案为: 3x+y+9=025.证明: (1) 在直三棱柱 ABC-A1B1C1中,A1C1∥AC. 在△ABC中,因为 D,E 分别为 AB,BC的中点,所以 DE∥AC,于是 DE∥A1C1. 又因为 DE? 平面 A1C1F,A1C1? 平面 A1C1F, 所以直线 DE∥平面 A1C1F.(2) 在直三棱柱 ABC-A1B1C1 中,A 1A⊥平面 A1B1C1. 因为 A1C1? 平面 A1B1C1, 所以 A1A⊥A1C1.又因为 A1C1⊥A1B1,A 1A? 平面 ABB1A1,A1B1? 平面 ABB1A1,A 1A∩A1B1=A1, 所以 A1C1⊥平面ABB1A1. 因为 B1D? 平面 ABB1A1, 所以 A1C1⊥B1D.又因为 B1D⊥A1F,A 1C1? 平面 A1C1F,A1F? 平面 A1C1F,A 1C1∩A1F=A1, 所以 B1D⊥平面 A1C1F. 因为直线 B1D? 平面 B1DE,所以平面 B1DE⊥平面 A1C1F.26.解:第9 页共9 页27.解:S n(1) 依题意,得S =3n-2,即 S n=3n2-2n. n当 n≥2时,a n=S n-S n-1 =(3n 2-2n)-2 [3(n-1) 2-2(n-1)]=6n-5 ;当 n=1 时,a1=1 也适合.即 a n =6n-5.第10 页共9。
高中数学会考试题及答案
高中数学会考试题及答案第一部分:选择题1. 下列哪个不是一次函数?A. f(x) = 2x + 3B. f(x) = 5x^2 - 3C. f(x) = 4x - 1D. f(x) = x/2 + 12. 已知直角三角形ABC,∠A = 90°,AB = 5 cm,AC = 12 cm,求BC的长度。
A. 10 cmB. 11 cmC. 13 cmD. 15 cm3. 解方程2x + 5 = 17的解为:A. x = 6B. x = 7C. x = 8D. x = 94. 已知函数f(x) = 3x - 2,求f(a + b)的值。
A. 4a + b - 2B. 2a + 3b - 2C. 3a + 3b - 2D. 3a + 3b + 25. 若三角形的三边分别为a, b, c,且满足c^2 = a^2 + b^2,这个三角形是:A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形第二部分:填空题6. 一个几何中心名为 ____________。
7. 一条直线和一个平面相交,交点个数为 ____________。
8. 未知数的指数为负数,表示 ____________。
9. 若两个角的和等于180°,则这两个角称为 ____________。
10. 在一个等边三角形中,每个内角大小为 ____________。
第三部分:解答题11. 用二分法求方程x^2 - 4x + 3 = 0在区间[1, 3]上的一个根的精确值。
12. 已知函数f(x) = 3x^2 - 12x + 9,求f(x)的最小值。
13. 若平面内通过点A(-2, 3)和点B(4, 1)的直线与x轴交于点C,求直线AC的斜率和方程。
答案:1. B2. C3. A4. B5. C6. 几何中心7. 一个8. 负数9. 互补角10. 60°11. 使用二分法可得根的精确值为2。
12. f(x)的最小值为 0。
吉林省2021年高中会考[数学]考试真题与答案解析
吉林省2021年高中会考[数学]考试真题与答案解析一、单选题1.已知集合,,则( )A .B .C .D .答案:C2.函数的定义域是( )A .B .C .D .答案:D3.函数则()A .0B .-2C .2D .6答案:A4.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( ).A .B .C .D .答案:D 5.的值为()A .BCD答案:A6.已知直线过点,且与直线平行,则直线的方程为( )A .B .C .D .答案:D7.已知向量,若,则实数的值为( )A .-2B .2C .-1D .1答案:B{}1,0,1,2A =-{}2,1,2B =-A B = {}1{}2{}1,2{}2,0,1,2-5()log (1)f x x =-(,1)(1,)-∞⋃+∞[0,1)[1,)+∞(1,)+∞()1,13,1x x f x x x +≤⎧=⎨-+>⎩()()4f f =13141516sin cos44ππ12l (0,7)42y x =-+l 47y x =--47y x =-47y x =+47y x =-+(1,2)a = (,1)b x =- a b ⊥x8.已知函数的图象是连续不断的,且有如下对应值表:12345147在下列区间中,函数必有零点的区间为( ).A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案:B9.已知直线和圆,则直线和圆的位置关系为()A .相交B .相切C .相离D .不能确定答案:A10.下列函数中,在区间上为增函数的是( ).A .B .C .D .答案:B11.下列命题正确的是( )A .一条直线与一个平面平行,它就和这个平面内的任意一条直线平行B .平行于同一个平面的两条直线平行C.与两个相交平面的交线平行的直线,必平行于这两个平面D .平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行答案:D12.已知一组数据如图所示,则这组数据的中位数是()A .27.5B .28.5C .27D .28答案:A()f x x()f x 4-2-()f x :1l y x =+22:1C x y +=l C (0,)+∞1()3xy =3log y x=1y x=cos y x=13.若,则的最小值是( )A .B .C .D .答案:C14.偶函数在区间上单调递减,则函数在区间上( )A .单调递增,且有最小值B .单调递增,且有最大值C .单调递减,且有最小值D .单调递减,且有最大值答案:A15.已知函数的图象为,为了得到函数的图象,只要把上所有的点()A .横坐标伸长到原来的3倍,纵坐标不变B .横坐标缩短到原来的1/3,纵坐标不变C .纵坐标伸长到原来的3倍,横坐标不变D .纵坐标缩短到原来的1/3,横坐标不变答案:A二、填空题16.函数的最小正周期为________.答案:17.在学校组织的一次知识竞赛中,某班学生考试成绩的频率分布直方图如图所示,若低于60分的有12人,则该班学生人数是____________答案:18.已知扇形的圆心角为,弧长为,则该扇形的面积为 _________答案:(2,0)x ∈-(2)x x +2-32-1-12-()f x []2,1--()f x []1,2(1)f (1)f (2)f (2)f sin()4πy x =-C 1sin()34πy x =-C 13cos 26y x π⎛⎫=- ⎪⎝⎭4π406π23π4π3三、双空题19..已知等差数列中,,,则公差________,________.答案:2,9四、解答题20.在中,角,,所对的边分别为,,,且.(1)求角的大小;(2)若,求角的大小.答案:(1);(2).21.如图,在正方体中,、分别为、的中点.(1)求证:;(2)求证:平面.答案:(1)证明见解析;(2)证明见解析.22.已知数列满足,且.(1)求及.(2)设,求数列的前项和.答案:(1)2,;(2).{}n a 11a =35a =d =5a =ABC V A B C a b c 222b c a bc +=+A a =1b =B 3A π=6B π=1111ABCD A B C D -E F 1DD 1CC 1AC BD ⊥//AE 1BFD {}n a 13()n n a a n N *+=∈26a =1a n a 2n n b a =-{}n b n n S 123n n a -=⨯321nn S n =--23.已知圆,直线.(1)当为何值时,直线与圆相切.(2)当直线与圆相交于、两点,且时,求直线的方程.答案:(1);(2)或.24.已知函数满足:① ;② .(1)求,的值;(2)若对任意的实数,都有成立,求实数的取值范围.答案:(1),;(2).22:8120C x y y +-+=:20l ax y a ++=a C C A B AB =34a =-20x y -+=7140x y -+=()()2*2N f x ax x c a c =++∈、()15f =()6211f <<a c 13,22x ⎡⎤∈⎢⎥⎣⎦()21f x mx -≤m 1a =2c =94m ≥。
往年上海普通高中会考数学考试真题
往年上海普通高中会考数学考试真题(考试时间:90分钟,满分120分)一、填空题()31236''⨯=1、 函数()2log 2y x =+的定义域是2、 方程28x=的解是3、 抛物线28y x =的准线方程是4、 函数2sin y x =的最小正周期是5、已知向量()()1,,9,6,a k b k ==-若a b ,则实数k =6、函数4sin 3cos y x x =+的最大值是7、复数23i +的模是8、在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若05,8,60a c B ===,则b =9、在如图所示的正方体1111ABCD A B C D -中,异面直线11,A B B C 所成角的大小为A 1B 1C 1D 1ABCD10、从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为 (结果用数值表示)11、若等差数列的前6项和为23,前9项和为57,则该数列的前n 项和n S =_________12、36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为()()()()()22222222133223232232312213391++++⨯+⨯++⨯+⨯=++++=,参照上述方法,可求得2000的所有正约数之和为二、选择题()31236''⨯=13、展开式为ad bc -的行列式是 ( )A 、a b d c; B 、a cb d; C 、a db c; D 、b a d c14、设()1f x -为函数()f x =,下列结论正确的是 ( )A 、()122f -=; B 、()124f -=; C 、()142f -=; D 、()144f -=15、直线2310x y -+=的一个方向向量是 ( ) A 、()2,3-; B 、()2,3; C 、()3,2-; D 、()3,216、函数()12f x x -=的大致图像是 ( )17、如果0a b <<,那么下列不等式成立的是 ( )A 、11a b <; B 、2ab b <; C 、2ab a -<-; D 、11a b-<-18、若复数12,z z 满足12z z =,则12,z z 在复平面上对应的点12,Z Z ( ) A 、关于x 轴对称; B 、关于y 轴对称; C 、关于原点对称; D 、关于直线y x =对称 19、()101x +的二项展开式中的一项是 ( ) A 、45x ; B 、290x ; C 、3120x ; D 、4252x20、既是偶函数又在区间()0,π上单调递减的函数是 ( ) A 、sin y x =; B 、cos y x =; C 、sin 2y x =; D 、cos 2y x =21、若两个球的表面积之比为1:4,则这两个球的体积之比为 ( ) A 、1:2; B 、1:4; C 、1:8; D 、1:1622、设全集U R =,下列集合运算结果为R 的是 ( ) A 、UZN ; B 、UNN ; C 、()UU∅; D 、{}0U23、已知,,a b c R ∈,“240b ac -<”是“函数()2f x ax bx c =++的图像恒在x 轴上方”的 ( )A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、非充分非必要条件24、已知,A B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N ,若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A 、圆;B 、椭圆;C 、抛物线;D 、双典线三、解答题()72813248''''⨯++⨯=25、如图,在正三棱柱111ABC A B C -中,16AA =,异面直线11,BC AA 所成角的大小为6π,求该三棱柱的体26、如图,某校有一块形如直角三角形ABC 的空地,其中B ∠为直角,40,50AB m BC m ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中会考数学考试————————————————————————————————作者:————————————————————————————————日期:22011级高中数学毕业会考试题命题: 二高高二数学组 2012.11.10一、选择题(共20个小题,每小题3分,共60分)每题只有一个符合题目要求,请把所选答案涂在“机读答题卡”相应位置上1.已知集合{}{}13,25A x x B x x A B =-≤<=<≤=U ,则( ) A. ( 2, 3 ) B. [-1,5] C. (-1,5) D. (-1,5] 2.sin3π4cos 6π5tan ⎪⎭⎫⎝⎛3π4-=( ).A .-433 B .433C .-43D .43 3.奇函数)(x f 在区间[]a b --,上单调递减,且)0(0)(b a x f <<>,那么)(x f 在区间[]b a ,上( )A .单调递减B .单调递增C .先增后减D .先减后增4.盛有水的圆柱形容器的内壁底面半径为5,两个直径为5的玻璃小球都浸没于水中,若取出这两个小球,则水面将下降的高度为( )A 、53 B 、3 C 、2 D 、 435.已知关于某设备的使用年限x 与所支出的维修费用y(元)有如下表统计资料:若y 对x 呈线性相关关系,则回归直线方程$y bx a =+表示的直线一定过定点( )A (3,4)B (4,6)C (4,5)D (5,7) 6.在等比数列{}n a 中,若32a =,则12345a a a a a = ( ) (A )8(B )16(C )32(D )427.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差8.已知点()0,0O 与点()0,2A 分别在直线y x m =+的两侧,那么m 的取值范围是 ( )(A )20m -<< (B )02m << (C )0m <或2m > (D )0m >或2m <-9.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是 ( )(A )(,0)12π-(B )(,0)6π-(C )(,0)6π(D )(,0)3π10.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是( )使用年限x 23456维修费用y2.23.8 5.5 6.5 7A 'GFEDCBA11.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A. π4 B .1-π4 C.π8 D .1-π812.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )13.有四个幂函数:①()1f x x -=; ②()2f x x -=; ③()3f x x =; ④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的两个性质:(1)定义域是{x | x ∈R ,且x ≠0};(2)值域是{y | y ∈R ,且y ≠0}.如果这个同学给出的两个性质都是正确的,那么他研究的函数是 ( )(A )① (B )② (C )③ (D )④14.如图,正ABC ∆的中线AF 与中位线DE 相交于G ,已知ED A '∆是AED ∆绕DE 旋转过程中的一个图形, 下列四个命题正确的个数为( ) ①动点'A 在平面ABC 上的射影在线段AF 上;②恒有平面BCED GF A 平面⊥';③三棱锥FED A -‘的体积有最大值;④异面直线E A ’与BD 不可能垂直.A 3B 1C 2D 415.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ).A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈R B .y =sin ⎪⎭⎫ ⎝⎛6π + 2x ,x ∈R C .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R D .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R16.有5件产品.其中有3件一级品和2件二级品.从中任取两件,则以0.7为概率的是( )yx O 1yx O 1y x O 1 (A (B (C (DyxO 1 开S =0 kS = k = k 结输出是否k =1 A 图1B C DA 至多有1件一级品B .恰有l 件一级品C .至少有1件一级品D .都不是一级品 17.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于 ( ) (A )2 (B )3 (C )2 (D )1 18.如果执行右面的程序框图,那么输出的S 等于( )(A )45 (B )55 (C )90 (D )110 19.已知直线420mx y +-=与250x y n -+=互相垂直,垂足为()1,p p ,则m n p -+的值是( )A .24B .20C . 0D .-420.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是 ( )(A )113a << (B )1a > (C )13a < (D )1a = 二、填空题(共4道小题,每小题3分,共12分)21.某校有高级教师26人,中级教师104人,其他教师若干.为了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师 人.22.直线b x y +=与曲线21y x -=有两个交点,则b 的取值 范围是 ; 23.已知2==b a ,()()22-=-•+b a b a ,则a 与b 的夹角为 24.16.下列说法中正确的有_______①刻画一组数据集中趋势的统计量有极差、方差、标准差等;刻画一组数据离散程度统计量有平均数、中位数、众数等。
②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大,③有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响。
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型。
2011级高中数学毕业会考答题页(2012.12)班级 学籍号 姓名 成绩一、选择题:(每小题3分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 答案 二、填空题:(每小题3分,共12分)21. 22. 23. 24. . 三、解答题(共3道小题,共28分)25.( 8分) 如图所示,在四棱锥P —ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD=90°,PA ⊥底面ABCD ,且PA=AD=AB=2BC ,M 、N 分别为PC 、PB 的中点. (1)求证:PB ⊥DM ;(2)求BD 与平面ADMN 所成的角.26.( 10分)在△ABC 中,设A 、B 、C 的对边分别为a 、b 、c ,向量m =(cosA,sinA),n =(2-sinA,cosA),若|m +n |=2. (1)求角A 的大小; (2)若b=42,且c=2a ,求△ABC 的面积.27.( 10分)已知等差数列}{n a 的前n 项和为S n ,且262-+=n n S n (*N n ∈),(1)求数列}{n a 的通项公式a n ; (2)设na ab n n n +=+11,求数列{b n }的前n 项和T n2011级高中数学毕业会考答案 2012.11.10一、选择题:(共20个小题,每小题3分,共60分) BABAC |CDBAA |BDAAB |CACBA二、填空题:(4个小题,每题3分,共12分)21. 182 22. ]1,2(--;23. 。
60 24. _ ③三、解答题(共3道小题,共28分)25.(8分)在△ABC 中,设A 、B 、C 的对边分别为a 、b 、c ,向量m =(cosA,sinA),n =(2-sinA,cosA),若|m +n |=2.(1)求角A 的大小; (2)若b=42,且c=2a ,求△ABC 的面积.解 (1)m +n =(2+cosA-sinA,cosA+sinA), |m +n |2=(2+cosA-sinA)2+(cosA+sinA)2=2+22(cosA-sinA)+(cosA-sinA)2+(cosA+sinA)2=2+22(cosA-sinA)+2=4-4sin (A-4π)∵|m +n |=2,∴4-4sin (A-4π)=4,sin (A-4π)=0. 又∵0<A <π,∴-4π<A-4π<43π,∴A-4π=0,∴A=4π.(2)由余弦定理,a 2=b 2+c 2-2bccosA,又b=42,c=2a,A=4π,得a 2=32+2a 2-2×42×2a ·22,即a 2-82a+32=0,解得a=42,∴c=8.∴S △ABC =21b ·csinA=21×42×8×sin 4π=16.S △ABC =21×(42)2=16.26.(10分) (1)证明 ∵N 是PB 的中点,PA=PB ,∴AN ⊥PB.∵∠BAD=90°,∴AD ⊥AB.∵PA ⊥平面ABCD ,∴PA ⊥AD.∵PA ∩AB=A ,∴AD ⊥平面PAB ,∴AD ⊥PB. 又∵AD ∩AN=A ,∴PB ⊥平面ADMN. ∵DM ⊂平面ADMN ,∴PB ⊥DM.(2)解 连接DN ,∵PB ⊥平面ADMN ,∴∠BDN 是BD 与平面ADMN 所成的角,在Rt △BDN 中,sin ∠BDN=BD BN =ABAB2221⋅=21, ∴∠BDN=30°,即BD 与平面ADMN 所成的角为30°.27.( 10分)已知等差数列}{n a 的前n 项和为S n ,且262-+=n n S n (*N n ∈),(1)求数列}{n a 的通项公式a n ; (2)设na ab n n n +=+11,求数列{b n }的前n 项和T n解:(Ⅰ)由题意,当n=1时,a 1=S 1=-2 当2≥n 时,有.26)1()1(26221n n n n n S S a n n n =--+---+=-=- ∴⎩⎨⎧≥=-=)2( )1(2n n n a n (1)分(Ⅱ)当n=1时,31122111211-=+⨯-=+=a a b 当2≥n 时, )2(121)1(1121+=+=++=+==n n n n n n n na ab n n n)211(21+-=n n ∴数列{b n }的前n 项和T n =b 1+b 2+…+b n =)2111111614151314121(2131+-++--++-+-+-+-n n n n Λ=1111111111()()32231212212n n n n -++--=-+++++。