初等数论不定方程
初等数论第二章3
初等数论
Number Theory
第二章 不定方程
• 本章所讨论的不定方程,是指整系 本章所讨论的不定方程, 数代数方程,并且限定它的解是整 数代数方程, 数。本章只讨论几类比较简单的不 定方程。 定方程。
第三节 几类特殊的不定方程
不定方程是一个内容丰富的课题, 不定方程是一个内容丰富的课题 , 许多不 定方程的解法有其特殊性。 定方程的解法有其特殊性 。 本节要介绍几类 这样的方程,以及几个有普遍性的方法。 这样的方程,以及几个有普遍性的方法。
第三节 几类特殊的不定方程
由此及式(8)与式 得到 由此及式 与式(9)得到 与式
x + y = 24 2 x − xy + y 2 = 67
解这两个联立方程组, 解这两个联立方程组,得到所求的解是
x1 = 7 x2 = 9 . 或 y2 = 7 y1 = 9
第三节 几类特殊的不定方程
一、因数分析法
任何非零整数的因数个数是有限的, 因此, 任何非零整数的因数个数是有限的 , 因此 , 可以对不定方程的解在有限范围内用枚举法 确定。 确定。
第三节 几类特殊的不定方程
求方程x 的整数解。 例1 求方程 2y + 2x2 − 3y − 7 = 0的整数解。 的整数解 解 原方程即 (x2 − 3)(y + 2) = 1。 。 因此
第三节 几类特殊的不定方程
综合以上,注意到 式对于x, , 的 综合以上,注意到(11)式对于 ,y,z的 式对于 对称性,得到方程的 个正整数解 对称性,得到方程的12个正整数解 (x, y, z) = (2, 4, 20),(2, 5, 10),(2, 20, 4), 20), 10), 4), (2, 10, 5), (4, 2, 20),(5, 2, 10), , , , (20, 2, 4), (10, 2, 5), (20, 4, 2), , , , (10, 5, 2), (4, 20, 2), (5, 10, 2)。 , , 。
初等数论不定方程
充分性:用数学归纳法 (n=2)时已证
假设对n-1时条件是充分的,令
d2 (a1, a2 ), (d2 , a3,an ) d | c
则方程 d2t2 a3x3 an xn c 有解,设解为
t2, , x3, xn, 又a1x1 a2 x2 d2t2,有解,
设为x1, , x2, ,这样 x1, , x2, xn, 就是方程的解。
但是自然数无穷递降是不可能的,于是产
生了矛盾,∴ 2 无理数。
几个特殊的不定方程的初等解法
(5)几类特殊的不定方程
§1 二元一次不定方程
定义:形如 ax by c
其中 ( a 0,b 0)a,b,c为整数的方程称为二元 一次不定方程。
例:2X+3Y=5
5U+6V=21
定理: ax by c 有解的充要条件是
(a,b)|c
证:设方程有解 x0 , y0则有 ax0 by0 c
令 25 4 y1 33
x1有 33 x1
4 y1
25
故y1
6 8x1
1 x1 4
,令1 x1 4
y2令x1
4y2
1
令y2 t, x1 1 4t 故
y 8 107 t, x 3 37t,t Z
§2 多元一次不定方程
2.1定义:形如 a1x1 a2 x2 an xn c(n 2)
且
(
z
2
y
,
z
2
y
)
1
因为设
(
z
2
y
,
z
2
y
初等数论不定方程的解法
初等数论不定方程的解法初等数论是数论中的一部分,主要研究整数之间的性质和关系。
在初等数论中,不定方程是一个非常重要的研究对象。
不定方程是指一个方程中包含的未知数不确定,需要求解这些未知数的取值以满足方程。
本文将介绍不定方程的一般解法,并通过具体例子进行演示。
首先,我们来介绍一下一元一次不定方程的解法。
一元一次不定方程的一般形式为ax + by = c,其中a、b、c为已知整数,x、y为未知整数。
解决这个方程的关键是找到一组x、y的取值,使得方程成立。
我们可以通过以下步骤来解决一元一次不定方程:1.首先,我们要判断方程是否有解。
我们知道,当且仅当c是a和b的最大公约数的倍数时,方程才有整数解。
我们可以使用欧几里得算法来求出a和b的最大公约数gcd(a,b),然后判断c是否是gcd(a,b)的倍数。
2.如果方程有解,我们需要求出一个特解。
我们可以使用扩展欧几里得算法来求解特解。
扩展欧几里得算法可以找到一组整数x0和y0,使得ax0 + by0 = gcd(a,b)。
我们可以将c除以gcd(a,b)得到c',然后将特解x0和y0乘以c'得到一个特解x1 = x0 * c',y1 = y0 * c'。
3.一旦我们找到了一个特解,我们可以通过以下形式来构造方程的通解:x = x1 + k * (b / gcd(a, b))y = y1 - k * (a / gcd(a, b))其中k为整数。
这样,我们就可以通过改变k的值来得到方程的所有整数解。
接下来,我们来介绍一下二次不定方程的解法。
二次不定方程的一般形式为ax^2 + bxy + cy^2 + dx + ey + f = 0,其中a、b、c、d、e、f为已知整数,x、y为未知数。
对于二次不定方程,我们可以通过一些特殊的方法来求解。
下面介绍两种常用的方法:1.利用配方法。
如果二次不定方程中的系数是已知整数,且可以对方程进行配方法,那么我们可以通过配方法来求解方程。
初中数学竞赛专题复习 第三篇 初等数论 第21章 不定方程试题 新人教版-新人教版初中全册数学试题
第21章 不定方程§21.1 二元一次不定方程★求不定方程2x y -=的正整数解.解析 因为312-=,422-=,532-=,…,所以这个方程的正整数解有无数组,它们是2,,x n y n =+⎧⎨=⎩其中n 可以取一切正整数.★求11157x y +=的整数解.解析1 将方程变形得71511y x -=. 因为x 是整数,所以715y -应是11的倍数.由观察得02x =,01y =-是这个方程的一组整数解,所以方程的解为215,111,x t y t =-⎧⎨=-+⎩t 为整数. 解析2 先考察11151x y +=,通过观察易得()()1141531⨯-+⨯=,所以()()114715377⨯-⨯+⨯⨯=,可取028x =-,021y =.从而 2815,2111,x t y t =--⎧⎨=+⎩t 为整数. 评注 如果a 、b 是互质的整数,c 是整数,且方程ax by c +=①有一组整数解0x 、0y .则此方程的一切整数解可以表示为00,,x x bt y y at =-⎧⎨=+⎩其中0t =,±1,±2,±3,….★求方程62290x y +=的非负整数解.解析 因为(6,22)=2,所以方程两边同除以2得31145x y +=. ①由观察知,14x =,11y =-是方程3111x y +=②的一组整数解,从而方程①的一组整数解为()00454180,45145,x y =⨯=⎧⎪⎨=⨯-=-⎪⎩ 所以方程①的一切整数解为18011,453.x t y t =-⎧⎨=-+⎩因为要求的原方程的非负整数解,所以必有180110,4530.t t -⎧⎨-+⎩≥③≥④ 由于t 是整数,由③、④得15≤t ≤16,所以只有t =15,t =16两种可能.当t =15时,x =15,0y =;当t =16时,x =4,y = 3.所以原方程的非负整数解是15,0,x y =⎧⎨=⎩4,3.x y =⎧⎨=⎩ ★求方程719213x y +=的所有正整数解.解析 这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数 的方法使系数变小,最后再用观察法求解.用方程719213x y +=①的最小系数7除方程①的各项,并移项得213193530277y y x y --==-+.② 因为x 、y 是整数,故357y u -=也是整数,于是有573y u +=.再用5除此式的两边得 373255u u y u --==-+.③令325u v -= (整数),由此得 253u v +=.④由观察知1u =-,1v =是方程④的一组解.将1u =-代入③得2y =.2y =代入②得x =25.于 是方程①有一组解025x =,02y =,所以它的一切解为2519,27.x t y t =-⎧⎨=+⎩0,1,2,t =±±由于要求方程的正整数解,所以25190,270.t t ->⎧⎨+>⎩ 解不等式,得t 只能取0,1.因此得原方程的正整数解为25,2,x y =⎧⎨=⎩6,9.x y =⎧⎨=⎩★求方程3710725x y +=的整数解.解析 因为10723733=⨯+,371334=⨯+,33841=⨯+.为用37和107表示1,我们把上述辗转相除过程回代,得1=33-8×4=37-4-8×4=37-9×4=37-9×(37-33)=9×33-8×37=9×(107-2×37)-8×37=9×107-26×37=37×(-26)+107×9,由此可知126x =-,19y =是方程371071x y +=的一组整数解.于是()02526650x =⨯-=-,0259225y =⨯=是方程3710725x y +=的一组整数解.所以原方程的一切整数解为650107,22537,x t y t =--⎧⎨=+⎩t 是整数. ★求方程92451000x y z +-=的整数解.解析 设9243x y t +=,即38x y t +=,于是351000t z -=.原方程可化为38,351000.x y t t z +=⎧⎨-=⎩①②用前面的方法可以求得①的解为38,3,x t u y t u =-⎧⎨=-+⎩u 是整数. ②的解为20005,10003,t v z v =+⎧⎨=+⎩v 是整数. 消去t ,得6000815,200035,10003,x u v y u v z v =-+⎧⎪=-+-⎨⎪=+⎩,u v 是整数.★求方程23723x y z ++=的整数解.解析 设23x y t +=,则23,723.x y t t z +=⎧⎨+=⎩①② 对于①,0x t =-,0y t =是一组特解,从而①的整数解为3,2,x t u y t u =--⎧⎨=+⎩u 是整数. 又02t =,03z =是方程②的一组特解,于是②的整数解为3,27,z v t v =-⎧⎨=+⎩v 是整数. 所以,原方程的整数解为273,272,3.x v u y v u z v =---⎧⎪=++⎨⎪=-⎩u 、v 是整数.★求方程组57952,35736x y z x y z ++=⎧⎨++=⎩的正整数解. 解析 消去z ,得 210z y +=. ①.易知04x =,02y =是它的一组特解,从而①的整数解为4,22,x t y t =-⎧⎨=+⎩t 是整数. 代入原方程组,得所有整数解为4,22,2.x t y t z t =-⎧⎪=+⎨⎪=-⎩t 是整数.由0x >,0y >,0z >得12t -<<,所以t =0,1,故原方程组的正整数解为4,2,2;x y z =⎧⎪=⎨⎪=⎩3,4,1.x y z =⎧⎪=⎨⎪=⎩★求方程351306x y +=的正整数解的组数.解析 因为130651435233y y x y -+==-+,所以0x =437,01y =-是一组特解.于是方程的整数 解为4375,13.x t y t =-⎧⎨=-+⎩t 是整数. 由43750,130.t t ->⎧⎨-+>⎩ 得143735t <<. 所以t =1,2,…,87.故原不定方程有87组正整数解.★★某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法? 解析 设需x 枚7分,y 枚5分恰好支付142分,于是75142x y +=.①所以1427222855x x y x --==--. 由于7x ≤142,所以x ≤20,并且由上式知()5|21x -.因为(5,2)=1,所以5|1x -,从而 x =1,6,11,16.①的非负整数解为1,6,11,16,27;20;13; 6.x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩所以,共有4种不同的支付方式.评注 当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.★★今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只,用100个钱买100只鸡,问公 鸡、母鸡、小鸡各买了多少只?解析 设公鸡、母鸡、小鸡各买x 、y 、z 只,由题意列方程组153100,3100.x y z x y z ⎧++=⎪⎨⎪++=⎩①② ①化简得159300x y z ++=.③③-②得148200,x y +=即74100.x y +=解741x y +=得1,2.x y =-⎧⎨=⎩于是74100x y +=的一个特解为00100,200.x y =-⎧⎨=⎩所以74100x y +=的所有整 数解为1004,2007,x t y t =-+⎧⎨=-⎩t 是整数. 由题意知,0x <,y ,100z <,所以,01004100,02007100.t t <-+<⎧⎨<-<⎩解得2550,241428.77t t <<⎧⎪⎨<<⎪⎩ 故425287t <<. 由于t 是整数,故t 只能取26,27,28,而且x 、y 、z 还应满足100x y z ++=.所以即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.★★小明玩套圈游戏,套中小鸡一次得9分,套中小猴一次得5分,套中小狗一次得2分.小明共套10次,每次都套中了,每个小玩具都至少被套中一次.小明套lO 次共得61分,问:小鸡至少被套中几次?解析 设套中小鸡x 次,套中小猴y 次,套中小狗z 次,则根据题意得95261,10.x y z x y z ++=⎧⎨++=⎩①② 我们要求这个方程组的正整数解.消去z :从①中减去②×2得7341x y +=,于是4173x y -=.③ 由③可以看出417x <.从而x 的值只能是1,2,3,4,5.将③写成 21323x y x -=-+, 由于y 是整数,所以2x -必须是3的倍数.从而只有2、5两个值满足这一要求.但2x =时,9y =,1z =-不是正整数.在5x =时,2y =,3z =是本题的解.因此小鸡被套中5次.评注 本题问“小鸡至少被套中几次?”实际上却只有一个解,“至少”两字可以省去.★★今有浓度为5%、8%、9%的甲、乙、丙三种盐水分别为60克、60克、47克,现要配制成浓度为7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?解析 设甲、乙、丙盐水分别各取x 克、y 克、z 克,配成浓度为7%的盐水100克,依题意有 100,589700.x y z x y z ++=⎧⎨++=⎩其中060x ≤≤,0≤y ≤60,0≤z ≤47.解方程组可得2004,3100.y x z x =-⎧⎨=-⎩由0200460,0310047.x x -⎧⎨-⎩≤≤≤≤ 得3549x ≤≤.又35x =,60y =,5z =和49x =,4y =,47z =均满足题设,故甲种盐水最少可用35克,最 多可用49克.§21.2 勾股数★★★满足方程222x y z +=的一切基本勾股数x 、y 、z (y 为偶数),都可表示为以下形式:22x p q =-,2y pq =,22z p q =+,①其中p 、q 为正整数,(p ,q )=1,p q >,p 、q 一奇一偶.解析 设正整数p 、q 满足(p ,q )=1,p q >,p 、q 一奇一偶,则()()2222222x y p q pq +=-+ 42242224p p q q p q =-++()2222p q z =+=. 所以一切形如①的正整数x 、y 、z 都是方程222x y z +=的解.下面证明这样的x 、y 、z 是基本勾股 数.设(),,x y z d =,由于p 、q 一奇一偶,所以22p q -是奇数,由22|d x p q =-,于是d 是奇数.又由22|d p q +,得()()2222|d p q p q ++-,即2|2d p ,同理2|2d q .因为d 是奇数,所以2|d p ,2|d q ,于是()22|,d p q .由(),1p q =得()22,1p q =,所以1d =.这就证明了由①确定的x 、y 、z 是一组基本 勾股数.反过来,设x 、y 、z 是一组基本勾股数,且y 是偶数,x 和z 都是奇数,则2z x -和2z x +都是整数. 设,22z x z x d -+⎛⎫= ⎪⎝⎭,则存在正整数a 和b ,使 2z x da -=,2z x db +=,(),1a b =,于是()z d b a =+,()x d b a =-.由于(),1z x =,所以1d =,即,122z x z x -+⎛⎫= ⎪⎝⎭. 由222x y z +=得2222y z x z x +-⎛⎫=⋅ ⎪⎝⎭. 这就可推出上式中右面两个因式都是平方数.设22z x p +=,22z x q -=, 这里0p q >>.(,)1p q =,于是可得2222,2,x p q y pq z p q =-==+.由于z 是奇数,所以p 、q 一奇一偶.这就证明了方程222x y z +=的任意一组解x 、y 、z (y 为偶数) 都可由①表示.评注 如果正整数x 、y 、z 满足方程222x y z +=,那么就称x 、y 、z 是一组勾股数.边长为正整数的直角三角形就称为勾股三角形.在勾股数x 、y 、z 中,如果这三个数的最大公约数是1,那么这样的勾股数就称为基本勾股数.如果 (x ,y ,z )=1d >,那么设x dx =′,y dy =′,z dz =′,则有(x ′,y ′,z ′)=1,并且由222x y z +=得222222d x d y d z '+'=',两边除以2d ,得222x y z '+'='.所以我们只需研究基本勾股数.在基本勾股数x 、y 、z 中,x 和y 必定一奇一偶.这一点可以用反证法证明:假定x 和y 的奇偶性相同,那么有两种可能的情况:①x 和y 同奇,②x 和y 同偶.如果x 和y 同奇,由于奇数的平方是4的倍数加1,所以22x y +是4的倍数加2,于是2z 是偶数,z 也是偶数,而偶数的平方是4的倍数,这与4的倍数加2矛盾,所以x 和y 不能都是奇数.如果x 和y 都是偶数,那么z 也是偶数,这与x 、y 、z 是基本勾股数矛盾,所以x 和y 中一奇一偶.由此也可推出z 是奇数.★设x 、y 、z 是勾股数,x 是质数,求证:21z -和()21x y ++都是完全平方数. 解析()()222x z y z y z y =-=+-.因为x 是质数,所以2x 只有1、x 、2x 三个正约数.由于0z y z y +>->,所以有2,1.z y x z y ⎧+=⎨-=⎩由此得221z x -=,()21222x y x y ++=++()222121x x x =+-+=+, 所以21z -和2(1)x y ++都是完全平方数.★求证:222n n +、21n +、2221n n ++(n 是正整数)是一组勾股数.解析 因为n 是正整数,2222122n n n n ++>+,222121n n n ++>+.由 ()()2222221n n n +++ ()22222441n n n n =++++ ()()222222221n n n n =++++ ()22221n n =++, 所以222n n +、21n +、2221n n ++是一组勾股数.★若勾股数组中,弦与股的差为1,则勾股数组的形式为21n +、222n n +、2221n n ++,其中n 为正整数.解析 设弦长为c ,股长为1c -,勾为x .因为(c ,1c -)=1,所以x 、1c -、c 为一组基本勾股数.又c 为奇数,1c -为偶数,则x 为奇数. 设21x n =+,则()()222211n c c ++-=,得2221c n n =++,2122c n n -=+. 所以,勾股数组具有形式21n +、222n n +、2221n n ++.★★求证:勾股三角形的直角边的长能取任何大于2的正整数. 解析 当n 是大于1的奇数时,212n -和212n +都是正整数,并且 222221122n n n ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.当n 是大于2的偶数时,214n -和214n +都是正整数,并且222221144n n n ⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭.由以上两式可以看出,勾股三角形的一直角边n 可取大于2的任何正整数. ★★求证:在勾股三角形中, (1)必有一条直角边的长是3的倍数; (2)必有一条直角边的长是4的倍数; (3)必有一条边的长是5的倍数.解析 设该勾股三角形的三边的长分别为a 、b 、c (c 是斜边),则222a b c +=.只要证明a 、b 、c 是基本勾股数时的情况.不失一般性,设b 为偶数,则 22a p q =-,2b pq =,22c p q =+,其中p 、q 满足上述定理中的条件.(1)若p 、q 中至少有一个是3的倍数,则b 是3的倍数;若p 、q 都不是3的倍数,设 31p k =±,31q l =±,则()()22223131a p q k l =-=±-±()22996k l k l =+±±是3的倍数.(2)由于p 、q 一奇一偶,所以2b pq =是4的倍数.(3)若a 、b 都不是5的倍数,则2a 的末位数是1或9;2b 的末位数字是4或6. 1+4=5,1+6=7,9+4=13,9+6=15,由于一个完全平方数的末位数不可能是7和3,所以 222c a b =+的末位数只可能是5.于是c 的末位数是5.评注 由此可推出,勾股三角形的面积必是6的倍数;三边之积必是60的倍数. ★★求基本勾股数组,其中一个数是16. 解析 设勾股数组x 、y 、z ,其中x =16. x =16=2×4×2=2×8×1,若4m =,2n =,有(,m n )-2≠1,从而只有8m =,1n =,(,)1m n =,且m 和n 为一奇一偶.于是22228163y m n =-=-=,22228165z m n =+=+=.从而,只有一组基本勾股数16、63、65.评注 若不要求基本勾股数,则x =16=2×4×2,设4m =,2n =,得 2212y m n =-=,2220z m n =+=.即16、12、20为一组勾股数.又22164322x ==⨯⨯,设232m =,22n =,得 2230y m n =-=,2234z m n =+=.即16、30、34为一组勾股数.★★设p 、m 、n 为一组勾股数,其中p 为奇质数,且n >p ,n >m .求证:21n -必为完全平方数. 解析 因为p 、m 、n 为一组勾股数,n p >,n m >,则有222n m p =+. ()()222m n p n p n p =-=+-,m n p >-.设()1m n r r p =-<≤,则有()()222222p n m n n r r n r =-=--=-.因为1r p <≤,p 为奇质数,则1r =(否则,若1r p <<,则|r 2p ,矛盾). 由1r =,得221p n =-,从而21n -是完全平方数.★★直角三角形的三边的长都是正整数,其中有一条直角边的长是35,它的周长的最大值和 最小值分别是多少?解析 设直角三角形的三边长分别是35,b ,c ,则 22235b c +=,即()()1225c b c b +-=.1225的大于35的正约数可作为c b +,其中最大的是1225,最小的是49,所以,直角三角形的周长的 最大值是 35+1225=1260, 最小值是35+49=84.★★设n 为大于2的正整数.证明:存在一个边长都是整数的直角三角形,它的一条直角边长 恰为n .解析 只需证明不定方程222x n z +=,有正整数解.利用()()2z x z x n -+=,结合z x -与z x +具有相同的奇偶性,故当n 为奇数时,由(z x -,z x +)=(1,2n ),可得不定方程的一组正整数解 (x ,z )=2211,22n n ⎛⎫-+ ⎪⎝⎭; 而当n 为偶数时,由条件,知n ≥4.利用 (z x -,z x +)=22,2n ⎛⎫⎪⎝⎭,可得不定方程的一组正整数解 (x ,z )=2244,44n n ⎛⎫-+ ⎪⎝⎭. 综上,可知命题成立。
初等数论不定方程
初等数论不定方程一、知识归纳:所谓不定方程,是指未知数的个数多于方程个数,且未知数受到某些(如要求是有理数、整数或正整数等等)的方程或方程组。
不定方程也称为丢番图方程,是数论的重要分支学科,也是历史上最活跃的数学领域之一。
不定方程的内容十分丰富,与代数数论、几何数论、集合数论等等都有较为密切的联系。
不定方程的重要性在数学竞赛中也得到了充分的体现,每年世界各地的数学竞赛吉,不定方程都占有一席之地;另外它也是培养学生思维能力的好材料,数学竞赛中的不定方程问题,不仅要求学生对初等数论的一般理论、方法有一定的了解,而且更需要讲究思想、方法与技巧,创造性的解决问题。
在本节我们来看一看不定方程的基础性的题目。
1.不定方程问题的常见类型:(1)求不定方程的解;(2)判定不定方程是否有解;(3)判定不定方程的解的个数(有限个还是无限个)。
2.解不定方程问题常用的解法:(1)代数恒等变形:如因式分解、配方、换元等;(2)不等式估算法:利用不等式等方法,确定出方程中某些变量的范围,进而求解;(3)同余法:对等式两边取特殊的模(如奇偶分析),缩小变量的范围或性质,得出不定方程的整数解或判定其无解;(4)构造法:构造出符合要求的特解,或构造一个求解的递推式,证明方程有无穷多解;(5)无穷递推法。
以下给出几个关于特殊方程的求解定理:(一)二元一次不定方程(组)定义1.形如(不同时为零)的方程称为二元一次不定方程。
定理1.方程有解的充要是;定理2.若,且为的一个解,则方程的一切解都可以表示成为任意整数)。
定理3.元一次不定方程,()有解的充要条件是.方法与技巧:1.解二元一次不定方程通常先判定方程有无解。
若有解,可先求一个特解,从而写出通解。
当不定方程系数不大时,有时可以通过观察法求得其解,即引入变量,逐渐减小系数,直到容易得其特解为止;2.解元一次不定方程时,可先顺次求出,……,.若,则方程无解;若|,则方程有解,作方程组:求出最后一个方程的一切解,然后把的每一个值代入倒数第二个方程,求出它的一切解,这样下去即可得方程的一切解。
初等数论§2不定方程
(1)方程的一般解可以表示为 x x0 bt, y y0 at,t 0,1,2, 在a个单位长度内,y一定有整数解。 所以,一定存在某个 t Z ,使得
0 y y0 at a 1
对此t,代入原方程,得 x N b( y0 at)
N b(a 1)
(1)的解为
x
y
t
2v ,v Z.
v
(3)
(2)的解为
t z Biblioteka 1 3u 2u,
u Z. (4) x 1 3u 2v
把(4)代入(3),消去t,得
y
v
,u,v Z .
z 2 u
注:三元一次不定方程的整数解中含有2个参数.
再令u x 11z, 则方程可化为 7u 4z 1 又令 t 2u z, 则方程可化为 4t u 1 u 4t 1.
逐步往回代入,可得 z t 2u 2 7t;
x 23 81t; y 25 88t;t Z
2019/5/21
2019/5/21
16
2019/5/21
17
§2.2 多元一次不定方程 一、多元一次不定方程有解的判定
定理1 方程 a1 x1 a2 x2 an xn N , a1, ,an , N Z (1) 有整数解 (a1,a2 , ,an ) N . 证明:( ),记(a1,a2 , ,an ) d . 〔1〕有解 d a1 , ,d an d N .
2019/5/21
18
定理1 方程
a1 x1 a2 x2 an xn N , a1, ,an , N Z (1)
(完整word版)不定方程的解法与应用
摘要不定方程是初等数论的一个重要内容,在相关学科和实际生活中也有着广泛的应用.本文首先归纳了整数分离法、系数逐渐减小法和辗转相除法等几种常用的二元一次不定方程的解法;其次进一步讨论了求n元一次不定方程和二次不定方程整数解的方法;最后论述了不定方程在中学数学竞赛题、公务员行测试题和其他学科中的应用,并举例说明.关键词:不定方程;二元一次不定方程;数学竞赛;公务员试题AbstractThe integral solutions of indeterminate equation solving method is an important content of elementary number theory, has been widely used in related disciplines and in real life。
This paper summarizes the integer separation method, coefficient decreases and the Euclidean algorithm and several commonly used two element indefinite equation solution, secondly is further discussed。
For n linear indeterminate equation and the method of two time indefinite equation integer solution, and finally discusses the indeterminate equation applied in secondary school mathematics, civil servants for test and other subjects, and illustrated with examples。
高一联赛班春季班第13讲初等数论——不定方程
第 13 讲初等数论不定方程13.1 不定方程不定方程是指求含有多个未知数的方程的整数解的问题. 这类问题,常常需要进行较高技巧的代数变形,同时亲密注意方程中隐含的各样数论性质,综合性很强,是数论命题中一个重要部分.本讲研究一些较为基础的不定方程,这些方程的求解过程中代数方法( 代数变形、因式分解或许不等式控制等 ) 所占比率较大,只用到较为浅易的数论知识.【例 1】求全部正整数n ,使得 n318n2115n391 为正立方数.【例 2】求方程的全部整解:y2 2 y x420x3104x240x2015 .【例 3】设 n 是一个三位数(100 n 999).求全部的n,使得n2的末三位数等于n .【例 4】求全部的三元整数组(x, y, z) ,使得 x3y3z3 3 xyz2015 .【例 5】设p是质数,整数x, y, z 知足0 x y z p . 若 x3 , y3 , z3除以p的余数相等,证明:x y z | x2y2z2 .【例 6】已知 34! 295 232 799 039 604 cd0 847 618 609 643 5ab 000 000 .求 abcd【例 7】求全部质数p ,使得p x y31建立,此中x, y 为正整数.【例 8】方程x y201500 有多少对整数解(x, y) ?【例 9】求出全部的奇质数p ,使得p |1p 1 2 p 1...2015 p 1 .实战操练【操练 1】设 P x46x311x23x 31 ,求使P为完整平方数的整数x 的值.【操练 2】求方程的全部整数解:(m2n)( m n2 ) (m n)3【操练 3】求全部的两位正整数a, b ,使得 100a b,201a b 均为四位数,且均是平方数【操练 4】求有多少个正整数对(m, n) ,使得 7m 3n102004,且 m | n .【操练 5】求全部这样的 2 的幂,将其(十进制表示中的)首位删去后,剩下的数还是一个 2 的幂.【操练 6】求方程y2 1 x x2x3x4的全部整数解.。
初等数论 期末复习 不定方程精选例题
第二章不定方程例题分析例1:利用整数分离系数法求得不定方程15x +10y +6z =61。
解:注意到z 的系数最小,把原方程化为z =)()(12361102261101561++-++--=+--y x y x y x 令t 1=z y x ∈++-)(12361,即-3x +2y -6t 1+1=0此时y 系数最小,)()(12131632111-++=-++=∴x t x t x y 令t 2=z x ∈-)(121,即122+=t x ,反推依次可解得y =x +3t 1+t 2=2t 2+1+3t 1+t 2=1+3t 1+3t 2z =-2x -2y +10+t 1=6-5t 1+10t 2∴原不定方程解为⎪⎩⎪⎨⎧--=++=+=21212105633121t t z t t y t x t 1t 2∈z.例2:证明2是无理数证:假设2是有理数,则存在自数数a,b 使得满足222y x =即222b a =,容易知道a 是偶数,设a =2a 1,代入得2122a b =,又得到b 为偶数,a b a <<1,设12b b =,则21212b a =,这里12a b <这样可以进一步求得a 2,b 2…且有a>b>a 1>b 1>a 2>b 2>…但是自然数无穷递降是不可能的,于是产生了矛盾,∴2为无理数。
例3:证明:整数勾股形的勾股中至少一个是3的倍数。
证:设N =3m ±1(m 为整数),∴N 2=9m 2±6m +1=3(3m 2±2m )+1即一个整数若不是3的倍数,则其平方为3k +1,或者说3k +2不可能是平方数,设x,y 为勾股整数,且x,y 都不是3的倍数,则x 2,y 2都是3k +1,但z 2=x 2+y 2=3k +2形,这是不可能,∴勾股数中至少有一个是3的倍数。
例4:求x 2+y 2=328的正整数解解:∵328为偶数,∴x,y 奇偶性相同,即x ±y 为偶数,设x+y =2u ,x -y =2v ,代入原方程即为u 2+v 2=164,同理令u +v =2u 1,u -v =2v 1有21121121212282v v u u v u v u =-=+=+,,,412222=+v u 22v u ,为一偶一奇,且0<u 2<6u 2=1,2,3,4,5代方程,有解(4,5)(5,4)∴原方程解x =18,y =2,或x =2,y =18。
初等数论第二章2
况不能发生。 况不能发生。
第二节 方程 x2 + y2 = z2
(ⅱ) 2 ⅱ
| a,2b. 此时 由式 及式(12), 有 及式 / , 此时, 由式(11)及式
x02 = 2ab,(a, 2b) = 1,a > b > 0. , , (13)
利用引理可知,存在正整数 , 利用引理可知,存在正整数u,v1,使得 x0=uv1, a=u2, 2b=v12, (u,v1)= 1, u>0, v1 > 0. 由2b = v12推出 2v12,2v1,v1 = 2v, , 因此,存在整数 , , 因此,存在整数u,v,使得 a =u2, b =2v2, (u, v)= 1,u> 0, v> 0. , (14)
x0 y0 z0 也是方程(10)的解 的解。 ( , , 也是方程 的解。 ) 2 d d d
因此, 的最小性, 因此,由z0的最小性,可知 d = (x0, y 0) = 1,(x02, y02) = d 2 = 1。 , 。 显然x 有不同的奇偶性.不妨设 不妨设2 显然 02与y02有不同的奇偶性 不妨设 x0,2 y/ . | 0
第二节 方程 x2 + y2 = z2
由定理2,存在正整数 , , 由定理 ,存在正整数a,b,使得 (a, b) = 1,a > b > 0, , , 其中a与b有不同的奇偶性,并且 其中 与 有不同的奇偶性, 有不同的奇偶性 x02 = 2ab,y02 = a2 − b2,z0 = a2 + b2. , 下面按照a与 的奇偶性 考察两种情况。 的奇偶性, 下面按照 与b的奇偶性,考察两种情况。 (12) (11)
与式(5)是矛盾的 式 (1),式 (4)与式 是矛盾的 , 因此 , 结论 ⅲ) , 与式 是矛盾的,因此,结论(ⅲ 成立。证毕。 成立。证毕。
初等数论第二章:不定方程
§2.2 解二元一次不定方程
• 对于二元一次不定方程(2.1)整数解的研 究,最理想的结果是能像一元二次方程那 样,找出表示方程(2.1)所有整数解的公式. • 这个公式是能够找到的,但它是建立在方 程(2.1)的一个整数解(即所谓的特解)的 基础上的.因些如何找到方程(2.1)的一个 整数解就成为求出它一切整数解的关键.
(2)解不等式组 x x0 bt 0 x x0 bt 0 或 y y0 at 0 y y0 at 0
(3)根据t的取值范围,求出t的相应整数值,得到 方程的非负整数(或正整数)解.
例2.6求不定方程3x+4y=23的非负整数解..
第二章
不定方程
不定方程是指未知数个数多于方程个数,且对解有
一定限制(比如要求解为正整数等)的方程。 是数论中 最古老的分支之一。古希腊的丢番图早在公元3世纪就 开始研究不定方程, 因此常称不定方程为丢番图方程。 中国是研究不定方程最早的国家,公元初的五家共 井问题就是一个不定方程组问题,公元5世纪的《 张丘
证:首先证明(2.3)是方程(2.1)的解.因为x0,y0 , a, b, t都是整数, 所以x0 bt , y0 at也是整数.把x x0 bt , y y0 at 代入(2.1)左边, 得到ax by a x0 bt b y0 at ax0 by0 c 从而x0 bt , y0 at是方程(2.1)的解.
x 4 y 1
可以直接解出。 再依次反推上去,就得到原方程的通解。 为了减少运算次数,在用带余除法时,总取绝对值最小 余数。 下面我们来讨论当二元一次不定方程(1)可解时, 它的非负解和正解问题。 由通解公式知这可归结为去确 定参数t的值,使x,y均为非负或正。
初等数论 第四章 不定方程
第四章 不定方程本章所讨论的不定方程,是指整系数代数方程,并且限定它的解是整数。
本章只讨论几类比较简单的不定方程。
第一节 一次不定方程设a 1, a 2, , a n 是非零整数,b 是整数,称关于未知数x 1, x 2, , x n 的方程a 1x 1 + a 2x 2 + + a n x n =b (1)是n 元一次不定方程。
若存在整数x 10, x 20, , x n 0满足方程(1),则称(x 10, x 20, , x n 0)是方程(1)的解,或说x 1 = x 10,x 2 = x 20, ,x n = x n 0是方程(1)的解。
定理1 方程(1)有解的充要条件是(a 1, a 2, , a n )∣b 。
(2)证明 记d = (a 1, a 2, , a n )。
若方程(1)有解,设为(x 1, x 2, , x n )。
则由d ∣a i (1 ≤ i ≤ n )及整除的性质容易知道式(2)成立。
必要性得证。
另一方面,由第一章第三节定理2,存在整数y 1, y 2, , y n 使得a 1y 1 + a 2y 2 + + a n y n = (a 1, a 2, , a n ) = d 。
因此,若式(2)成立,则)(,,,21n y db y d b y d b 就是方程(1)的解,充分性得证。
证毕。
定理2 设a ,b ,c 是整数,方程ax + by = c (3)若有解(x 0, y 0),则它的一切解具有⎩⎨⎧-=+=t a y y t b x x 1010, t ∈Z (4) 的形式,其中),(),(11b a b b b a a a ==,。
证明 容易验证,由式(4)确定的x 与y 满足方程(3)。
下面证明,方程(3)的解都可写成式(4)中的形式。
设(x , y )是方程(3)的解,则由ax 0 + by 0 = ax + by = c得到a (x - x 0) = -b (y - y 0),)(),()(),(00y y b a b x x b a a --=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不定方程
1、什么是不定方程?
顾名思义即方程的解不定.一般地有 定义:不定方程是指未知数的个数多于方程 的个数,或未知数受到某种限制(如整数 , 正整数等)的方程和方程组。
2、主要研究问题
a.不定方程有解的条件 b.有解的情况下,解的个数 c.有解的情况下,如何解
3、本章学习内容
(1)二元一次不定方程 (2)多元一次不定方程 (3)勾股数组 (4)费马大定理简介
a2 | w2 ,b2 | w2 , 又(u,v)=1,
(a2,b2 ) 1, (a,b) 1 ab | w,w abw1 u12v12 w12 , 若w12 1 则有质数 p, 有p2 | w12
但有u1, v1的定义及(u1, v1) 1,有 u1v1 不能被 p2 整除.
令
25 4 y1 33
x1有 33 x1
4 y1
25
故y1
6 8x1
1 x1 4
,令1 x1 4
y2令x1
4y2
1
令y2 t, x1 1 4t 故
y 8 107 t, x 3 37t,t Z
§2 多元一次不定方程
2.1定义:形如 a1x1 a2 x2 an xn c(n 2)
而有理点的坐标都是有理数,即为可约分数的形式,分数 的分子正好为x2+y2=z2的x和y分母为z,且正负都可,又可 交换即有
2ab a2 b2
,
a2 a2
b2 b2
及
a2 a2
b2 b2
,
2ab a2 b2
例1:勾股数的勾股中至少有一个是3的倍数。
故 w12 u1v1 1,u1 v1 w1 1
所以 u=a2,v=b2,w=ab 。a>0,b>0, (a ,b)=1
下面进行定理的证明.
定理的证明: x=2ab,y=a2-b2,z2=a2+b2,
a>b>0 , (a ,b)=1,a ,b一奇一偶。显然是方程x2+y2=z2的解, 满足x>0,y>0,z>0,2∣x ,且设(x,y)=d,则有
的不定方程多元一次不定方程。
2.2 定理 a1x1 a2 x2 an xn c(n 2)有解
的充要条件是 (a1, a2 , an ) | c
证:必要性,若不定方程有解 x1, , x2, xn, ,
则有
a1
x
' 1
a2
x
' 2
an x'n
c
由 (a1, a2 , an ) | ai , 有(a1, a2 , an ) | c 。
x2+y2=z2 方程解的分析
(1)若x,y,z是方程解,则dx,dy,dz也是 方程解
(2)由(1)只要考虑(x,y,z)=1的解即 可,而实际上只 要(x,y)=1即可,假设(x, y)=d,则d|x,d|y,则有d|z
(3)由(2)可设(x,y)=1,则x,y为 一奇一偶。
若x,y都为奇数,则z为偶数,则方程左边 为4K+2,右边为4K,矛盾。所以x,y为一 奇一偶。
但是自然数无穷递降是不可能的,于是产
生了矛盾,∴ 2 无理数。
几个特殊的不定方程的初等解法
证:设N=3m 1,(m为整数),则
N 2 9m2 6m 1 3(3m2 2m) 1 =3k+1
设x2 y2 z2中,若x,y都不是3的倍数,
x2 , y 2 都是3K+1,则其和为3k+2。不可能
是平方数,所以 x2 y2 z2 是 不可能的。
§4 费尔马大定理和无穷递降法
充分性:用数学归纳法 (n=2)时已证
假设对n-1时条件是充分的,令
d2 (a1, a2 ), (d2 , a3, an ) d | c
则方程 d2t2 a3x3 an xn c 有解,设解为
t2, , x3,
x,
n 又a1x1 a2 x2
d2t2,有解,
设为x1, , x2, ,这样 x1, , x2, xn, 就是方程的解。
注:从证明过程也提供了方程的解法。
设 (a1, a2 ) d2 , (d2 , a3 ) d3, (dn1, an ) dn
则 a1x1 a2x2 an xn c(n 2) 等价于方程组
a1x1 a2 x2 d2t2 , d2t2 a3x3 d3t3, d t n1 n1 an xn c
先解最后一个方程的解,得 tn1, xn 然后把其代入倒数第二个方程求得一 切解,如此向上重复进行,求 得所有 方程的解。
例1:求不定方程 25x 13y 7z 4的整数解.
解 因为(25,13)=1,(1,7)=1|4,所以方程有解 我们将它分为两个二元一次不定方程来求解
25x+13y=t, t+7z=4. 先求t+7z=4的解为t=4-7u,z=u。 因为25*(-1)+13*2= 1,所以25x+13y=1的特解为
(1)观察法:当a,b的绝对值较小时可直接观
察不定方程的一组特解 x0 , y0,然后用
x x0 b1t
y
y0
a1t
得到其所有解。
2、公式法:当a,b的绝对值较小时,可用公
式 P0 1, P1 q1, Pk qk Pk1 Pk2
Q0 0,Q1 1,,Qk qkQk1 Pk2 得到特解
且
(
z
2
y
,
z
2
y
)
1
因为设
(
z
2
y
,
z 2
y
)
d
则有d|z,d|y,因而有d|x,所以d=1
于是由引理令
z y 2
a2,
zy 2
b2,
x 2
ab, a0,b0, (a,b)
1
于是有x=2ab,y=a2-b2,z2=a2+b2,a>0,b>0,(a,b)=1
由y>0,知a>b>0 , 又y单,所以a ,b一奇一偶。
(同余方程中再讲)
注:方法(1)(3)(4)用得较多,(2)不太实用.
例1:求解不定方程 9x 21y 144
解:因为(9,21)=3,3|144所以有解;
化简得
考虑
,
有解 3x 7 y 48
3x 7y 1
所以原x方程2的, y特解1 为
,
所以方程的解为
x 96, y 48
推论:单位圆上的有理点可写成
2ab a2 b2
,
a2 a2
b2 b2
及
a2 a2
b2 b2
,
2ab a2 b2
证:由 x2 y 2 z 2 两边同除 z 2
有
(
x z
)2
(
y z
)
2
1 ,令X
x z
,Y
y z
所以有 X 2 Y 2 1 即为单位圆的方程
因为(a,b)|a, (a,b)|b ,因而 (a,b)|c
反之,设(a,b)|c,则 c (a, b)c1由最大公因数
的性质存在s,t 使得as+bt=(a,b)
令 x0 sc1, y0 tc1 即为方程的解
3、二元一次不定方程有解的情况下解的结构
定理:设 x0 , y0是方程的一组解,则不定方
(5)几类特殊的不定方程
§1 二元一次不定方程
定义:形如 ax by c
其中 ( a 0,b 0)a,b,c为整数的方程称为二元 一次不定方程。
例:2X+3Y=5
5U+6V=21
定理: ax by c 有解的充要条件是
(a,b)|c
证:设方程有解 x0 , y0则有 ax0 by0 c
然x后0 用(公1)n式1Q写n , y出0 一(切1)n解Pn。 qi为a,b作辗转相
除时不完全商(见书)
3、整数分离法:当a,b中系数不同时,用绝对 值较小的系数后的变量表示另一个变量,通 过变量替换得到一个新的不定方程。如此反 复,直到一个参数的系数为1.从而得到不定方 程的解。
4、化为同余方程 ax c(mod| b |)
a>b>0 , (a ,b)=1,a ,b一奇一偶。 为了证明定理的结论,先给出下面引理。
引理:设 u>0,v>0,(u ,v) =1,则不定 方程 uv=w2 的解为
u=a2,v=b2,w=ab
其中a>0,b>0,(a ,b)=1。
证:设u,v,w是方程的解,令
u a2u1, v b2v1, a,b0,u1, v1 不含平方数,
1、费尔马大定理:不定方程 xn+yn=zn , n≥3无正整数解。 由于一个大于2的整数n,当n是偶数时,必 为4的倍数或为某个奇质数的偶数倍,当n是 奇数时,必是一个奇质数p的倍数。因此, 实际上只需证明 x4 y4 z4 和 x p y p 对 x4 y4 z4 可用无穷递降法证明,而
∴ 2 无理数。
例2:证明 2 是无理数
证:假设 2 是有理数,则存在自然数a,b使
得满足 x2 2 y2,即 a2 2b容2 易知道a是偶数,