层次分析法的应用实例

合集下载

层次分析法的应用实例

层次分析法的应用实例

层次分析法的应用实例层次分析法(Analytic Hierarchy Process,简称AHP)是一种运用于多准则决策问题的定性和定量分析方法。

通过将决策问题分解为多个层次,从而使决策问题的结构更加清晰,更容易理解和处理。

下面将介绍几个AHP方法的应用实例。

1.项目选择在项目选择过程中,可能存在多个关键因素需要权衡。

通过应用AHP,可以将项目选择问题分解为几个层次,例如项目目标、资源投入、风险等等。

然后为每个层次的因素确定权重,从而帮助决策者更加客观地评估不同项目的优劣,并做出最佳选择。

2.供应商评估当公司需要选择供应商时,往往需要考虑多个方面的因素,例如价格、质量、交货时间等等。

通过使用AHP,可以将供应商评估问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,最终确定出最佳供应商。

3.市场调研在市场调研过程中,可能涉及到多个调研指标和因素。

通过应用AHP,可以将市场调研问题分解为几个层次,例如调研目标、调研方法、数据可靠性等等。

然后为每个层次的因素确定权重,从而辅助决策者选择最适合的市场调研方法和指标。

4.产品设计在产品设计过程中,需要考虑多个因素,例如功能、性能、成本等等。

通过使用AHP,可以将产品设计问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,从而帮助设计团队确定出最佳的产品设计方案。

5.企业战略规划在企业战略规划中,需要综合考虑多个战略选项的优劣。

通过应用AHP,可以将战略规划问题分解为不同的层次和因素,例如市场前景、竞争环境、技术能力等等。

然后为每个层次的因素确定权重,从而辅助决策者选择最佳的战略规划方案。

综上所述,层次分析法在多准则决策问题的应用非常广泛。

通过将决策问题分解为多个层次,然后根据不同层次的因素确定权重,能够帮助决策者更加客观地评估不同方案的优劣,并做出最佳选择。

这种方法在项目选择、供应商评估、市场调研、产品设计和企业战略规划等领域都有重要的应用。

层次分析法应用实例

层次分析法应用实例

层次分析法应用实例选择一个合适的餐馆一、 问题描述:古人云:民以食为天,在大学生活中,我们经常在假日跟几个好友一起去外 面吃饭,可是学校外面的餐馆各式各样,五花八门,选择一个好吃价格又合适的 餐馆也是十分令人困扰的。

(一) 目标选择一个合适的餐馆 (二) 准则选择餐馆的标准大体可以分成四个:地理位置、环境、味道、人均价格。

方案:美特家(海甸岛店)、印象三宝、滋味天下。

(在文中依次用A 、B 、C 表示)二、 解决步骤(一)层次结构图此结构图中分为三个层次:目标层、标准层和决策方案图 (二)设置标度人们定性区分事物的能力习惯用 5个属性来表示,即同样重要、稍微重要、较强 重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值, 这样就得到9个数值,即9个标度,为了便于将比较判断定量化,引入 1〜9比 率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而 2、4、6、8 表示上述两判断级之间的折中值。

目标层 标准层决策层(四)求各因素权重的过程下面我们用两两比较矩阵来求出A、B、C在地理位置的得分第一步,先求出两两比较矩阵每一列的第二步,把两两比较矩阵的每一元素除以其相应列的总和,所得商组成的新的矩阵称之为标准两两比总和:1.000第四步,我们将求出的餐馆A,B,C三个方案在地理位置,环境,味道,价格四个方面的得分(权重),即这四个方面的特征向量如表第五步,我们还必须取得每个标准在总目标满意的餐馆里相对重要的程度,即要取得每个标准相对的权重,即标准的特征向量。

我们就需要把这四个标准两两比较,得到两两比较矩阵如表通过这个两两比较矩阵,我们同样地可求出标准的特征向量如表即味道相对权重为0.421,地理位置的相对权重为0.198,环境的相对权重为0.081,人均价格的相对权重为0.279.三、两两比较矩阵的一致性检验第一步,由被检验的两两比较矩阵乘以其特征向量,所得的向量称之为赋权和向量,即广1 1/7 1/2( 6.103 '「0.30*7 1 3 X0.681 = 2.052 1/3 1 0.216 0.649第二步,每个赋权和向量的分量分别除以对应的特征向量的分量,即第i个赋权和向量的分量除以第i个特征向量的分量,如下:0.308/0.103=2.9902.05/0.681=3.0100.649/0.216=3.005第三步,计算出第二步结果中的平均值,记为入max入max =(2.99+3.010+3.005) - 3=3.002第四步,计算一致性指标CI:CI=(入max-n)/(n-1)=(3.002-3) - 2=0.001第五步,计算出一致性率CR:CR=CI/RI=0.001 - 0.58=0.002 三0.1一致性规定当CR^ 0.1时,认为两两比较矩阵的一致性可以接受,否则就认为两两比较矩阵一致性太差,必须重新进行两两比较判断。

AHP层次分析法--实例

AHP层次分析法--实例

AHP层次分析法--实例什么是AHP?AHP全称为Analytic Hierarchy Process,中文翻译为“层次分析法”,是由美国数学家托马斯·L·赛蒂在20世纪70年代初提出的一种用于复杂多目标决策的评估方法。

AHP方法的核心是利用层次结构模型,将复杂问题分解成若干个较小的组成部分,通过重点考虑各个部分在整体决策中的相对重要程度,最终得到全局最优的决策方案。

以购买一部新手机为例,假设我们需要选择一款符合自己需求的手机。

我们可以先将这个问题划分为几个要素,比如品牌、操作系统、屏幕大小、摄像头、价格等,针对这些要素,又可以进一步划分出更加详细的几个层次,如手机品牌可以再分为苹果、三星、华为、OPPO等。

下面我们来分别分析各个层次的重要程度。

1. 品牌对于品牌这个层次,我们可以考虑以下四个品牌:苹果、三星、华为和OPPO。

我们可以根据自己对这些品牌的认知程度以及市场占有率等因素来对它们进行排名,比如我认为苹果品牌最好,三星次之,华为再次之,而OPPO则是最不理想的选择,可以把它们排列成如下图表:| | 苹果 | 三星 | 华为 | OPPO || --- | ---- | ---- | ---- | ---- || 苹果 | 1 | 0.2 | 0.3 | 0.1 || 三星 | 5 | 1 | 0.5 | 0.3 || 华为 | 3.3 | 2 | 1 | 0.5 || OPPO | 10 | 3.3 | 2 | 1 |在这张表格中,左上至右下的主对角线上的数值都为1,因为一个品牌与自己之间的比较是没有意义的,其他位置上的数值则表示一个品牌相对于另一个品牌具有的重要程度比例,比如苹果对三星的重要程度是0.2,表示我们认为选择苹果手机是三星手机的五倍重要。

2. 操作系统对于操作系统这个层次,我们假设只考虑两个选择:iOS和Android,为了判断哪个更重要,我们可以考虑以下几个因素:易用性、系统稳定性、应用生态系统、开发者支持等。

层次分析法经典案例

层次分析法经典案例

层次分析法经典案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的多准则决策方法,被广泛应用于企业管理、工程项目评估、市场调研等领域。

本文将通过一个经典案例,介绍层次分析法的基本原理和应用过程。

一、案例背景某企业计划购买新设备,以提升生产效率和质量。

然而,在众多可选设备中,如何选择最适合企业发展的设备成为了业主面临的难题。

为了解决这一问题,业主决定应用层次分析法进行设备选择。

二、层次分析法基本原理层次分析法基于一个重要思想,即将复杂的决策问题拆解为具有层次结构的多个因素,并通过层次化的比较和综合分析,最终得出决策结果。

1. 构建层次结构首先,我们需要将决策问题划分为不同的层次,并构建层次结构。

在这个案例中,可以将设备选择问题划分为三个层次:目标层、准则层和备选方案层。

目标层代表企业的最终目标,即实现高效生产;准则层包括影响设备选择的各种准则,如设备价格、性能指标、售后服务等;备选方案层包括具体的设备选项。

2. 建立判断矩阵接下来,我们需要对不同层次的因素进行两两比较,建立判断矩阵。

通过专家主观判断,给出两个因素之间的相对重要性,采用1-9的尺度,其中1代表两者具有相同重要性,9代表一个因素相对于另一个因素极端重要。

比如,在准则层中,设备性能指标对设备价格的重要性为6。

3. 计算权重向量利用判断矩阵,我们可以计算出每个层次的权重向量。

通过对判断矩阵进行归一化处理,可获得各因素的权重。

权重向量表示了各因素对当前决策的贡献程度,可作为后续分析的依据。

例如,计算准则层中各因素的权重向量。

4. 一致性检验为了保证判断矩阵的合理性,我们需要进行一致性检验。

通过计算一致性指标和一致性比率,评估判断矩阵是否存在较大的一致性问题。

若一致性比率超过一定阈值,需要检查和修正判断矩阵。

5. 优先级排序最后,结合各层次的权重,我们可以进行优先级排序,得出对不同备选方案的排序结果。

根据排序结果,我们可以选择最合适的备选方案。

层次分析法应用实例

层次分析法应用实例

白鹤滩水电站施工项目安全风险分析姓名:黄浩学号:411105000505班级:造价四班白鹤滩水电站施工项目安全风险分析一、项目管理目标通过制定项目管理计划,进行风险辨识,风险分析,最后做出风险应对策略,将各种可能出现的安全风险进行控制,减少风险出现的概率,对无法控制的风险进行风险规避,风险转移,尽量将损失降到最低。

二、工程概况白鹤滩水电站位于金沙江下游四川省宁南县和云南省巧家县境内,距巧家县城45km,是金沙江下游梯级中的第二级。

电站上接乌东德梯级,下邻溪洛渡梯级,距离溪洛渡水电站195km,控制流域面积43.03万km2,占金沙江流域面积的91.0%。

坝址多年平均流量4110 m3/s,多年平均年径流量1296亿m3。

白鹤滩水电站开发任务以发电为主,兼顾防洪,并有拦沙、发展库区通航和改善下游航运条件等综合利用效益,是西电东送骨干电源点之一。

水库正常蓄水位825m,总库容205.10亿m3,调节库容104.36亿m3,防洪库容58.38亿m3。

电站装机容量12600MW,保证出力4058MW,多年平均发电量559.5亿kWh。

电站对下游电站梯级补偿效益显著,电站建成后可使下游溪洛渡、向家坝、三峡、葛洲坝梯级电站保证出力增加1061MW,发电量增加17.1亿kWh。

白鹤滩坝址自上游三滩村至下游白鹤滩沟,全长约5km,金沙江自南向北渐转至北西向流经坝址,枯水期水面宽60~100m,水深6~15m不等,水流湍急,常年浑水。

两岸为单斜山,三滩村至大寨沟一带,高程700~900m以上山坡较缓,沿江一带为陡壁地形;大寨沟下游沿江两岸坡陡崖区由一系列北西向陡崖、缓坡平台构成,呈台阶状。

坝区主要为二叠系上统峨眉山组玄武岩,下伏二叠系下统灰岩,上覆三叠系下统飞仙关组砂页岩。

河床覆盖层由全新统含砂的漂石层组成,呈强~中透水性。

白鹤滩坝区为单斜构造,岩层产状N30~50°E、SE∠15~25°。

层间错动带是发育在坝区11个岩流层界面或靠近界面的构造错动带,在坝区分布广泛,总体来说是连续的,构成了坝区岩体结构的总体格架。

层次分析法分析(AHP)及实例教程

层次分析法分析(AHP)及实例教程
02
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。

层次分析法的应用实例汇总

层次分析法的应用实例汇总

第二节 层次分析法的应用实例设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。

此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。

例 过河的代价与效益分析。

(a) 过河效益层次结构(b) 过河代价层次结构图5-3 过河的效益与代价层次结构图过河的效益A 过河的效益 2B经济效益1B过河的效益3B隧 道2D桥 梁1D渡 船3D美化11C进出方便10C舒适9C自豪感8C交往沟通7C安全可靠6C建筑就业5C当地商业4C 岸间商业3C收入2C节省时间1C过河的代价A 社会代价2B 经济代价 1B环境代价3B隧 道 2D桥 梁1D 渡 船3D对生态的污染9C对水的污染8C汽车的排放物7C居民搬迁6C交往拥挤5C安全可靠4C冲击渡船业3C操作维护2C投入资金1C关于效益的各个判断矩阵如表5-9—表5-23所示。

表5-9表5-10表5-11表5-12表5-13表5-14表5-15表5-16表5-17表5-18表5-19表5-20表5-21表5-22表5-23这样我们得到方案关于效益的合成顺序为T )07.0 ,36.0 ,57.0()4(=益ω效益层次模型的整体一致性比例C.R.(4)<0.1(最后一个矩阵的一致性较差,但因C11的排序权重很低,故不影响最后结果)。

从效益看建靠桥梁方案为最佳。

表5-24表5-25表5-26表5-27表5-28表5-29表5-30表5-31代价分析的判断矩阵如表5-24—表5-36所示。

表5-32表5-33表5-34表5-35表5-36得到方案关于代价的合成排序为T )05.0 ,58.0 ,36.0()4(=代ω整体一致性比例C.R.(4)<0.1。

各方案的效益/代价如下:桥梁:效益/代价=1.58 隧道:效益/代价=0.62轮渡:效益/代价=1.28方案选择的准则应使效益代价比最大,因此应选择建设桥梁方案。

层次分析法实例范文

层次分析法实例范文

层次分析法实例范文下面我将以一个实例来说明层次分析法的应用。

假设你是一家公司的项目经理,需要在三个设计方案中选择一个最适合的方案。

你希望通过层次分析法来评估并选择最佳方案。

首先,你需要确定准则层。

准则层是评估和比较设计方案的标准。

在本实例中,准则层可以包括三个因素:成本、技术易用性和效果。

其次,你需要对每个准则进行两两比较。

你需要确定哪个准则对你更重要,换句话说,你需要对准则之间的重要性进行评估。

你可以使用一个1到9的尺度来进行评估,其中1表示相对重要性相同,9表示相对重要性非常不同。

在这个例子中,假设你认为成本对你更重要,因此可以给成本的评估为9,而技术易用性和效果的评估都为5接下来,你需要对每个准则的子准则进行两两比较。

对于成本来说,可能的子准则可以包括材料成本、人力成本和设备成本。

你需要评估这些子准则之间的重要性,同样使用1到9的尺度进行评估。

假设你认为人力成本对成本的影响最大,你可以给予人力成本的评估为9、材料成本和设备成本则分别给出评估5和3对于技术易用性和效果这两个准则,你需要进行类似的比较和评估。

比如,你可能认为技术易用性中的用户友好性对你最重要,效果中的创新性最重要。

完成这些比较和评估后,你需要计算总体权重。

通过层次分析法计算权重的方法是对准则之间的比较矩阵进行归一化处理,即计算每列的平均值,然后将每个条目除以其所在列的平均值。

最后,求每行的平均值得到每个准则的权重。

例如,对于成本准则,对应的比较矩阵为:1591/5131/91/31计算每列的平均值为:1/35/95/3然后将每个条目除以其所在列的平均值,得到:15/93/53/511/35/33/11最后,求每行的平均值得到每个准则的权重:0.48780.25920.2529重复这个过程,你可以得到技术易用性和效果的权重。

最后,你可以将每个设计方案在每个准则上进行评估。

同样使用1到9的尺度进行评估,并对每个准则乘以其对应的权重得到总体分数。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

AHP层次分析实例

AHP层次分析实例

AHP层次分析实例AHP(Analytic Hierarchy Process,层次分析法)是一种用于多准则决策的定量分析方法,可以帮助我们在复杂的决策环境中做出合理的决策。

以下是一个关于选择旅游目的地的AHP层次分析实例。

假设一个人打算选择一个旅游目的地,他关注的几个方面包括:景点的吸引力、交通便利性、费用、旅游设施、餐饮等。

下面是他对这些准则的评分及每个准则之间的相对重要性的比较。

首先,他先对每个准则进行打分,最高分为9分,最低分为1分。

他认为景点的吸引力是最重要的,给予了8分;交通便利性给予了7分;费用给予了6分;旅游设施给予了5分;餐饮给予了4分。

接下来,他需要对每个准则之间进行比较,以确定它们之间的相对重要性。

他用1-9的量表进行比较,其中1表示两个准则之间具有相同的相对重要性,9表示一个准则显著地比另一个准则更重要。

他认为景点的吸引力比交通便利性更重要,他给予了2,即景点的吸引力是交通便利性的2倍重要;景点的吸引力比费用更重要,他给予了6,即景点的吸引力是费用的6倍重要;景点的吸引力比旅游设施更重要,他给予了4,即景点的吸引力是旅游设施的4倍重要;景点的吸引力比餐饮更重要,他给予了8,即景点的吸引力是餐饮的8倍重要。

接下来,他需要计算每个准则的权重,以确定各个准则对决策结果的影响程度。

这里采用AHP的判断矩阵计算方法,将上述打分和比较的结果输入到计算模型中进行计算。

最终得到每个准则的权重,分别是:景点的吸引力0.51,交通便利性0.25,费用0.14,旅游设施0.07,餐饮0.02最后,他将各个准则的权重和对应目的地的打分相乘,得到每个目的地的得分。

他列出了几个他感兴趣的目的地,并对每个目的地进行打分,最高分为9分,最低分为1分。

目的地,景点的吸引力,交通便利性,费用,旅游设施,餐饮----------,-------------,------------,--------,----------,--------目的地A,8,6,7,5,4目的地B,7,8,5,6,3目的地C,6,7,4,5,4目的地D,9,5,6,7,5通过计算,他得到了每个目的地的得分。

句子层次分析法的经典例子

句子层次分析法的经典例子

句子层次分析法的经典例子句子层次分析法(Sentence Hierarchy Analysis)是一种文本分析方法,用于确定句子中不同元素之间的层次关系。

这种分析方法可以帮助人们理解句子的结构和语义,并进一步了解文本的内容和意义。

下面将介绍一个经典例子来说明句子层次分析法的应用。

假设有以下一段文字:"小明喜欢吃水果,尤其是苹果。

他最喜欢的是红色的苹果,因为他认为红色的苹果最甜。

"首先,我们需要将整段文字分解为单独的句子:1. 小明喜欢吃水果。

2. 尤其是苹果。

3. 他最喜欢的是红色的苹果。

4. 因为他认为红色的苹果最甜。

然后,我们可以按照层次关系对这些句子进行分析。

首先,我们可以确定第一句是主要句子,因为它包含了整个段落的主题和核心信息。

其他句子则是对主句进行支持和补充的。

1. 小明喜欢吃水果。

- 这是主句,表达了主题和核心信息。

2. 尤其是苹果。

- 这是一个对主句的补充信息,说明小明对水果的偏好。

3. 他最喜欢的是红色的苹果。

- 这是对前一句的进一步细化和支持,解释了小明对苹果的偏好。

4. 因为他认为红色的苹果最甜。

- 这是对第三句的原因解释,说明了小明为什么喜欢红色的苹果。

通过这个例子,我们可以看到句子层次分析法帮助我们理清了句子之间的层次关系,从而更好地理解整个段落的内容和意义。

这种分析方法可以应用于各种文本,包括新闻报道、科技文章、小说和散文等。

除了层次关系之外,句子层次分析法还可以揭示句子之间的逻辑关系和语义关系。

例如,在上面的例子中,第四句中的“因为”一词表明了原因和结果之间的因果关系。

这种分析有助于我们更深入地了解文本中的信息和观点。

在实际应用中,句子层次分析法可以用于学术研究、语言教学和自然语言处理等领域。

它可以帮助研究者分析文章结构、探索篇章连贯性,帮助教师教授学生如何进行有效的写作和阅读,帮助计算机程序理解和处理自然语言文本。

总之,句子层次分析法是一种有用的文本分析方法,通过揭示句子之间的层次关系和语义关系,帮助我们更好地理解和分析文本内容。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法的应用实例

层次分析法的应用实例

第二节 层次分析法的应用实例设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。

此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。

例 过河的代价与效益分析。

(a) 过河效益层次结构(b) 过河代价层次结构图5-3 过河的效益与代价层次结构图过河的效益A 过河的效益 2B经济效益1B过河的效益3B隧 道2D桥 梁1D渡 船3D美化11C进出方便10C舒适9C自豪感8C交往沟通7C安全可靠6C建筑就业5C当地商业4C 岸间商业3C收入2C节省时间1C过河的代价A 社会代价2B 经济代价 1B环境代价3B隧 道 2D桥 梁1D 渡 船3D对生态的污染9C对水的污染8C汽车的排放物7C居民搬迁6C交往拥挤5C安全可靠4C冲击渡船业3C操作维护2C投入资金1C关于效益的各个判断矩阵如表5-9—表5-23所示。

表5-9表5-10表5-11表5-12表5-13表5-14表5-15表5-16表5-17表5-18表5-19表5-20表5-21表5-22表5-23这样我们得到方案关于效益的合成顺序为T )07.0 ,36.0 ,57.0()4(=益ω效益层次模型的整体一致性比例C.R.(4)<0.1(最后一个矩阵的一致性较差,但因C11的排序权重很低,故不影响最后结果)。

从效益看建靠桥梁方案为最佳。

表5-24表5-25表5-26表5-27表5-28表5-29表5-30表5-31代价分析的判断矩阵如表5-24—表5-36所示。

表5-32表5-33表5-34表5-35表5-36得到方案关于代价的合成排序为T )05.0 ,58.0 ,36.0()4(=代ω整体一致性比例C.R.(4)<0.1。

各方案的效益/代价如下:桥梁:效益/代价=1.58 隧道:效益/代价=0.62轮渡:效益/代价=1.28方案选择的准则应使效益代价比最大,因此应选择建设桥梁方案。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高".为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层.很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D。

代表不同层次,同一层次从左到右用1、2、3、4。

.。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法原理及应用举例

层次分析法原理及应用举例

层次分析法原理及应用举例
层次分析法原理:
层次分析法(AHP)是一种数量化决策方法,它可以将复杂的决策问题分解成几个子问题,并给出一个满意的结果。

它由三部分组成:分析人员、层次结构和度量。

层次分析法的目标是为了找出在多个选项中最优的一种,做出最佳决策。

它通过评估、对比、排序和得分来实现。

层次分析法应用举例:
层次分析法可以用来帮助决策者做出正确的决定,考虑到多个因素。

以下是一个简单的例子:
假设一家公司想要扩大其市场影响力,需要在新的市场上投资。

根据层次分析法,该公司可以制定几个主要决策因素,例如:投资风险、投资回报、国际市场风险等。

然后,该公司可以根据不同的决策因素给出不同的评分,以便找出最佳的投资目标。

例如,公司可以给出一个5级评分系统,1分表示“最低”,5分表示“最高”,然后根据这些评分,对每个投资目标进行排序,以找出最佳投资目标。

层次分析法实例-PPT

层次分析法实例-PPT
• 主‖
谓动宾 |
动宾 定 中


定 )中
状〕中
动|宾 动|宾
量短
定) 联+合
层次分析法实例
9
层次分析法实例
10
层次分析法实例
11


中 动| 宾
定 )中 动| 宾 定)中
层次分析法实例
12
层次分析法实例
13
Bye Bye
层次分析法实例
14
定 )中 定 ) 中
定 )中
定)中
动| 宾 定) 中 联+合



定) 中
状〕 中
定) 中
动| 宾
定)中
联+合
层次分析法实例
主‖ 谓 兼语
动|宾
主‖谓
状〕中
6
漫的前沿阵地上 连长马上返回军部开会 历史的书我只看过一本 大伙儿批评了他一顿
(从大到小的层次分析法)
中〈
补 介词短语
方位短语 定) 中 主‖谓 定 )中
的层次分析原则 来的各个成分都必须有意义。例如: 昨天没有去√
层次分析法实例
昨天没有去 (前一部分没有意义) ※
写来的信
(虚词,如连词、结构助词 语气词要独立出来)
1
2
层次分析法实例
有意义,但
语法上不能搭配)
/蛋※ 咬死了猎人的狗”中,后一种切分就不能成立。
层次分析法实例
3
层次分析法实例
4
质文化生活水平 应该珍惜自己的青春年华 发明针灸的国家 把你的打算向人们讲清楚
主‖

状〕 中
连 ┊谓
动|宾
主 定) 中
‖谓

层次分析法应用案例(全)PPT课件

层次分析法应用案例(全)PPT课件
i 即 B 层第 个因素对 B2 : a1b21 a2b22 amb2m
总目标的权值为:

m
a jbij
j 1
Bn : a1bn1 a2bn2 ambnm
A
A1, A2 ,, Am
B层的层次
B
a1, a2 ,, am
总排序
m
B1
b11 b12 b1m
a jb1 j b1
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层










准则层
可供选择的笔
方案层
6
例2 层次结构模型 选择 旅游地
景费居饮旅 色用住食途
苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
RI
的不一致程度在容许范围之内,可用其归一化特征向量
作为权向量,否则要重新构造成对比较矩阵,对 A 加
以调整。
一致性检验:利用一致性指标和一致性比率<0.1
及随机一致性指标的数值表,对 A 进行检验的过程。
17
4 层次总排序及其一致性检验
确定某层所有因素对于总目标相对重要性的排序权值过程, 称为层次总排序
w w1, w2,, wn
(为什么?)这样确定权向量的方法称为特征根法.
定理: n 阶互反阵 A 的最大特征根 n ,当且仅 当 n 时, A为一致阵。
14
由于 连续的依赖于aij,则 比 n 大的越多, A的不

层次分析法的应用实例

层次分析法的应用实例

层次分析法的应用实例
层次分析法的应用实例包括以下几个方面:
1. 选址问题:层次分析法可以用于研究选址问题,比如在新建厂房时,如何选取合适的地点。

通过层次分析法可以确定各个因素的权重,以及不同地点在这些因素上的得分,综合得出最优选址方案。

2. 决策问题:层次分析法可以用于决策问题,比如在公司的战略规划中,如何确定不同方案的优先级。

通过层次分析法可以确定不同决策因素的权重和得分,最终得出最优的决策方案。

3. 资源分配问题:层次分析法可以用于资源分配问题,比如在项目管理中,如何分配不同的任务和资源。

通过层次分析法可以确定不同任务和资源的重要性和权重,以确定最优的资源分配方案。

4. 市场研究问题:层次分析法可以用于市场研究问题,比如在产品开发中,如何确定不同市场因素的重要性和优先级。

通过层次分析法可以确定市场因素的权重和得分,以确定最优的市场策略。

5. 效果评价问题:层次分析法可以用于效果评价问题,比如在某个项目结束后,如何评估项目的效果和质量。

通过层次分析法可以确定不同项目因素的权重和得分,以评估项目的整体效果和质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 层次分析法的应用实例
层次分析法在解决定量与定性复杂问题时,由于方法的简单性、直观性,同时在解决各种领域的实际问题时又显示其有效性和可行性,因而深受广大工程技术人员和应用数学工作者的欢迎而被广泛采用。

下面我们举例说明它的实用性。

设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。

此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。

例 过河的代价与效益分析。

(a) 过河效益层次结构
(b) 过河代价层次结构
图5-3 过河的效益与代价层次结构图
过河的效益
A 过河的效益 2B
经济效益
1B
过河的效益
3B
隧 道
2D
桥 梁
1D
渡 船
3D
美化
11
C
进出方便
10
C
舒适
9
C
自豪感
8
C
交往沟通
7C
安全可靠
6
C
建筑就业
5
C
当地商业4C 岸间商业3C
收入2C
节省时间1
C
过河的代价
A 社会代价
2B 经济代价 1B
环境代价
3B
隧 道 2D 桥 梁
1D
渡 船
3D
对生态的污染
9
C
对水的污染
8
C
汽车的排放物
7
C
居民搬迁
6
C
交往拥挤
5C
安全可靠
4
C
冲击渡船业
3
C
操作维护
2
C
投入资金
1
C
在过河效益层次结构中,对影响渡河的经济因素来说桥梁或隧道具有明显的优越性。

一种是节省时间带来的效益,另一种是由于交通量的增加,可使运货增加,这就增加了地方政府的财政收入。

交通的发达又将引起岸间商业的繁荣,从而有助于本地商业的发展;同时建筑施工任务又创造了大量的就业机会。

以上这些效益一般都可以进行数量计算,其判断矩阵可以由货币效益直接比较而得。

但社会效益和环境效益则难以用货币表示,此时就用两两比较的方法进行。

从整体看,桥梁和隧道比轮渡更安全,更有助于旅行和交往,也可增加市民的自豪感。

从环境效益看,桥梁和隧道可以给人们更大的舒适性、方便性,但渡船更具有美感。

由此得到关于效益的各个判断矩阵如表5-9—表5-23所示。

表5-9
表5-10
表5-11
表5-12
表5-13
表5-14
表5-15
表5-16

5-17
表5-18

5-19
表5-20
表5-21
表5-22
表5-23
这样我们得到方案关于效益的合成顺序为
T )07.0 ,36.0 ,57.0()4(=益ω
效益层次模型的整体一致性比例C.R.(4)<0.1(最后一个矩阵的一致性较差,但因C 11的排序权重很低,故不影响最后结果)。

从效益看建靠桥梁方案为最佳。


5-24
表5-25

5-26

5-27
表5-28
表5-29
表5-30
表5-31
与效果分析类似,在代价分析的经济代价中,包括资金耗费、运行及维护耗费以及由于取消渡船带来的经济后果。

社会代价表示社会整体付出的代价,其中人民生活方式的改变被认为十分重要;另外不同的过河方式将带来的交通拥挤程度不一。

不同的过河方式导致居民迁移多少不一,对社会产生一定的影响。

环境代价与环境效益相反,它表示各种过河方案导致对环境所造成的损害。

代价分析的判断矩阵如表5-24—表5-36所示。

表5-32

5-33
表5-34

5-35
表5-36
得到方案关于代价的合成排序为
T )05.0 ,58.0 ,36.0()4(=代ω
整体一致性比例C.R.(4)<0.1。

各方案的效益/代价如下:
桥梁:效益/代价=1.58 隧道:效益/代价=0.62 轮渡:效益/代价=1.28
方案选择的准则应使效益代价比最大,因此应选择建设桥梁方案。

相关文档
最新文档