2020届高考文科数学大二轮复习冲刺创新专题题型2解答题规范踩点多得分第2讲三角函数练习2
2020届高考文科数学大二轮复习冲刺创新专题题型2解答题规范踩点多得分第3讲数列练习2
2n+2 = n+2 -2.
采用错位相减法求和,要注意相减后和式的结构,把项数数清.采用裂项相消法求和,消项时要注
意相消的规律,可将数列的前几项和表示出来,归纳出规律.
常用的裂项相消变换有:
( ) 1
11 1
-
(1)分式裂项:nn+p=p n n+p ;
1
1
(2)根式裂项: n+ n+p=p( n+p- n);
明确;二是利用等差、等比数列的性质,但在应用性质时要注意性质的前提条件,有时需要进行适当变 形.
(2019·北京高考)设{an}是等差数列,a1=-10,且 a2+10,a3+8,a4+6 成等比数列. (1)求{an}的通项公式; (2)记{an}的前 n 项和为 Sn,求 Sn 的最小值. 解 (1)设{an}的公差为 d. 因为 a1=-10, 所以 a2=-10+d,a3=-10+2d,a4=-10+3d. 因为 a2+10,a3+8,a4+6 成等比数列, 所以(a3+8)2=(a2+10)(a4+6). 所以(-2+2d)2=d(-4+3d). 解得 d=2. 所以 an=a1+(n-1)d=2n-12. (2)由(1)知,an=2n-12. 则当 n≥7 时,an>0;当 n≤6 时,an≤0. 所以 Sn 的最小值为 S5=S6=-30. 热点 2 数列的通项与求和
所以,{an}的通项公式为 an=3n,{bn}的通项公式为 bn=3n.
(2)a1c1+a2c2+…+a2nc2n=(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2nbn)
[ ] nn-1
n × 3+
×6
=
2
+(6×31+12×32+18×33+…+6n×3n)
2020届高考数学(文科)金榜冲刺卷(二)(解析版)word版
2020年高考金榜冲刺卷(二)数学(文)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}24x A x =≤,集合(){}lg 1B x y x ==-,则A B I 等于( ) A .[]1,2 B .()1,2 C .[)1,2 D .(]1,22.已知复数1i 12iz -=+,则z 的虚部是( ) A .35 B .3i 5 C .3i 5- D .35-3.在ABC V 中,)(1,1,AB BC =-=u u u r u u u r ,则sin B 等于( )A B C .23 D .124.已知等比数列的公比为正数,且,则公比=q ( )}{n a 25932a a a =A .B .C .D .2 【答案】C【解析】2239652a a a a ==,226252a q a ==,因为0>q ,所以2=q ,故选C. 5.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形,一块中三角形和两块全等的大三角形),一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,若向正方形内随机抛掷2000粒绿豆(大小忽略不计),则落在图中阴影部分内绿豆粒数大约为( )A .750B .500C .375D .250【答案】C 【解析】因为BIC GOH ∆≅∆,故阴影部分的面积与梯形EFOH 的面积相等,331444EFOH DOF BDFA S S S ∆∆==⨯ ,所以落在阴影部分的概率 33,20003751616EFOH BDFA S P S ∆∆==⨯= ,故选C. 6.若,,a b c 满足223,log 5,32a c b ===,则( )A .b a c >>B .b c a >>C .a b c >>D .c b a >> 7.为计算11111123499100S =-+-++-…,设计了下面的程序框图,则在空白框中应填入( ) 21222A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( )A .,5()4k k π⎛⎫-∈ ⎪⎝⎭ZB .,5()48k k ππ⎛⎫+-∈ ⎪⎝⎭Z C .,4()5k k π⎛⎫-∈ ⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 9.过双曲线2222:1(0,0)x y C a b a b -=>>的右焦点F 作双曲线C 的一条弦AB ,且FA FB +u u u v u u u v =0,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( )A B C .2 D 10.在棱长为1的正方体1111ABCD A B C D -中,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则PE PF +的最小值为( )A B C D .211.已知定义在R 上的函数()f x 满足()()11f x f x +=-且在[)1,+∞上是增函数,不等式()()21f ax f x +≤-对任意1,12x ⎡⎤∈⎢⎥⎣⎦恒成立,则实数a 的取值范围是( ) A .[]3,1-- B .[]2,0- C .[]5,1-- D .[]2,1- 12.若函数()1(2)ln x f x a x e x x=-++在(0,2)上存在两个极值点,则a 的取值范围是( ) A .21(,)4e -∞- B .1(,)e -∞- C .2111(,)(,)4e e e -∞---U D .211(,)(1,)4e e --⋃+∞ 二、填空题:本题共4小题,每小题5分,共20分.13.已知等差数列{}n a 中,4610a a +=,若前5项的和55S =,则其公差为___________.14.已知圆锥的表面积是23m ,且它的侧面展开图是一个半圆,则这个圆锥的侧面积是__________平方米.15.某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共30个,生产一个遥控小车模型需10分钟,生产一个遥控飞机模型需12分钟,生产一个遥控火车模型需8分钟,已知总生产时间不超过320分钟,若生产一个遥控小车模型可获利160元,生产一个遥控飞机模型可获利180元,生产一个遥控火车模型可获利120元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元.16.过抛物线C :24x y =的准线上任意一点P 作抛物线的切线PA ,PB ,切点分别为A ,B ,则A 点到准线的距离与B 点到准线的距离之和的最小值是_________.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知A B C ,,是ABC ∆的内角,a b c ,,分别是角A B C ,,的对边.若222cos sin sin sin cos B A A B C --=,(1)求角C 的大小;(2)若6A π=,ABC ∆,M 为BC 的中点,求AM .18.(12分)微信是现代生活中进行信息交流的重要工具.据统计,某公司200 名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40 岁)和中年(年龄不小于40 岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中23都是青年人. (1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成22⨯ 列联表:(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人均是青年人的概率.附:22()()()()()n ad bc k a b c d a c b d -=++++.19.(12分)如图,等腰梯形ABCD 中,//AB CD ,1AD AB BC ===,2CD =,E 为CD 中点,以AE 为折痕把ADE ∆折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:AE PB ⊥;(2)当四棱锥体积最大时,求点C 到平面PAB 的距离.20.(12分)过椭圆22221(0)x y a b a b +=>>的左顶点A 作斜率为2的直线,与椭圆的另一个交点为B ,与y 轴的交点为C ,已知613AB BC =u u u r u u u r . (1)求椭圆的离心率;(2)设动直线y kx m =+与椭圆有且只有一个公共点P ,且与直线4x =相交于点Q ,若x 轴上存在一定点(1,0)M ,使得PM QM ⊥,求椭圆的方程.21.(12分)已知函数. (1)若曲线在处切线与坐标轴围成的三角形面积为,求实数的值; (2)若,求证:. (二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.【极坐标与参数方程】(10分)在平面直角坐标系xOy 中,已知曲线1C的参数方程为5()x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.P ABCE -()23xf x xe ax =++()y f x =0x =92a 12a =-()ln 4f x x ≥+(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l 的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值. 23.【选修4-5:不等式选讲】(10分)已知函数()21f x x a x =-+-,()a R ∈.(1)当1a =时,求()2f x ≤的解集;(2)若()21f x x ≤+的解集包含集合1,12⎡⎤⎢⎥⎣⎦,求实数a 的取值范围. 2020年高考金榜冲刺卷(二)数学(文)(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:高中全部内容.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}24x A x =≤,集合(){}lg 1B x y x ==-,则A B I 等于( )A .[]1,2B .()1,2C .[)1,2D .(]1,2【答案】D【解析】 由集合{}24{|2}x A x x x =≤=≤,(){}{}lg 11B x y x x x ==-=>, 所以{|12}A B x x =<≤I ,故选D.2.已知复数1i 12iz -=+,则z 的虚部是( ) A .35 B .3i 5 C .3i 5- D .35- 【答案】D 【解析】根据复数除法的运算法则可得,()()()()1i 12i 1i 13i 13i 12i 12i 12i 555z -----====--++-,由复数实部与虚部的定义可得,复数z 的虚部是35-,故选D. 3.在ABC V中,)(1,1,AB BC =-=u u u r u u u r ,则sin B 等于( ) AB.2 C .23 D .12【答案】D【解析】因为)1AB =-u u u r,所以()BA =u u u r,所以cos 222BA BC B BA BC ⋅-===-⋅⋅u u u r u u u r u u u r u u u r ,所以1sin 2B ==.故选D. 4.已知等比数列的公比为正数,且,则公比=q ( )A .B .C .D .2 }{n a 25932a a a =21222【答案】C【解析】2239652a a a a ==,226252a q a ==,因为0>q ,所以2=q ,故选C. 5.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形,一块中三角形和两块全等的大三角形),一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,若向正方形内随机抛掷2000粒绿豆(大小忽略不计),则落在图中阴影部分内绿豆粒数大约为( )A .750B .500C .375D .250【答案】C 【解析】因为BIC GOH ∆≅∆,故阴影部分的面积与梯形EFOH 的面积相等,331444EFOH DOF BDFA S S S ∆∆==⨯ ,所以落在阴影部分的概率 33,20003751616EFOH BDFA S P S ∆∆==⨯= ,故选C. 6.若,,a b c 满足223,log 5,32a c b ===,则( )A .b a c >>B .b c a >>C .a b c >>D .c b a >>【答案】A 【解析】因为2log 5b =,则25b =,故222b a >>,故1b a >>.又323c =<,故1c <.综上,b a c >>,故选A .7.为计算11111123499100S =-+-++-…,设计了下面的程序框图,则在空白框中应填入( )A .1i i =+B .2i i =+C .3i i =+D .4i i =+【答案】B 【解析】由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B.8.已知函数()sin3(0,)f x a x a b a x =-++>∈R 的值域为[5,3]-,函数()cos g x b ax =-,则()g x 的图象的对称中心为( )A .,5()4k k π⎛⎫-∈ ⎪⎝⎭Z B .,5()48k k ππ⎛⎫+-∈ ⎪⎝⎭Z C .,4()5k k π⎛⎫-∈ ⎪⎝⎭Z D .,4()510k k ππ⎛⎫+-∈⎪⎝⎭Z 【答案】B【解析】因为()[,2]f x b a b ∈+,又依题意知()f x 的值域为[5,3]-,所以23a b += 得4a =,5b =-,所以()5cos4g x x =--,令4()2x k k ππ=+∈Z ,得()48k x k ππ=+∈Z ,则()g x 的图象的对称中心为,5()48k k ππ⎛⎫+-∈ ⎪⎝⎭Z .故选B. 9.过双曲线2222:1(0,0)x y C a b a b-=>>的右焦点F 作双曲线C 的一条弦AB ,且FA FB +u u u v u u u v =0,若以AB 为直径的圆经过双曲线C 的左顶点,则双曲线C 的离心率为( )A BC .2D 【答案】C【解析】因为FA FB +u u u v u u u v=0,所以F 是弦AB 的中点.且AB 垂直于x 轴.因为以AB 为直径的圆经过双曲线C的左顶点,所以2b a c a =+,即22c a a c a-=+,则c a a -=,故2c e a ==.故选C.10.在棱长为1的正方体1111ABCD A B C D -中,E 为线段1B C 的中点,F 是棱11C D 上的动点,若点P 为线段1BD 上的动点,则PE PF +的最小值为( )A B C .2D 【答案】A 【解析】图1连接1BC ,则11BC B C E =I ,点,,P E F 在平面11BC D 中,且111111,1,BC C D C D BC ⊥==1所示,在11Rt BC D ∆中,以11C D 为x 轴,1C B 为y 轴,建立平面直角坐标系,如图2所示,图2()(11,0,,0,2D B E ⎛ ⎝⎭,设点E 关于直线1BD 的对称点为'E ,1BD Q的方程为1x =,①'EE k ∴==,∴直线'EE的方程为y x =+,②由①②组成方程组,解得133x y ⎧=⎪⎪⎨⎪=⎪⎩'EE 与1BD的交点1,33M ⎛ ⎝⎭, ∴对称点2'3E ⎛ ⎝⎭,'PE PF PE PF ∴+=+,最小值为'E 到直线11C D的距离为6,故选A. 11.已知定义在R 上的函数()f x 满足()()11f x f x +=-且在[)1,+∞上是增函数,不等式()()21f ax f x +≤-对任意1,12x ⎡⎤∈⎢⎥⎣⎦恒成立,则实数a 的取值范围是( )A .[]3,1--B .[]2,0-C .[]5,1--D .[]2,1-【答案】B【解析】由()()11f x f x +=-可知函数()f x 的对称轴为x=1.因为()f x 在[5,5]-上是增函数,所以()f x 在[5,5]-上是减函数,因为1,12x ⎡⎤∈⎢⎥⎣⎦,所以1102x -≤-≤,又因为不等式()()21f ax f x +≤-对任意1,12x ⎡⎤∈⎢⎥⎣⎦恒成立,所以,当a=0时,不等式()()21f ax f x +≤-显然成立;当0a >时,12222ax a +≥+>,根据题意可得()()()220f ax f f +>=,故不满足题意;当0a <时,12222a ax a +≤+≤+,则02a ≤+且1222a +<,所以20a -≤<.综上,可得实数a 的取值范围是20a -≤≤.12.若函数()1(2)ln xf x a x e x x=-++在(0,2)上存在两个极值点,则a 的取值范围是( ) A .21(,)4e-∞-B .1(,)e -∞-C .2111(,)(,)4e e e-∞---U D .211(,)(1,)4e e--⋃+∞ 【答案】D【解析】由题意可知211()(1)0xf x ae x x x =-+-='有两个不等根.即21(1)x x ae x x--=,(0,2)x ∈,有一根1x =.另一根在方程21x x e a=-,(0,2)x ∈中,令2()x h x x e =,(0,2)x ∈,2()(2)0x h x e x x +'=>所以()h x 在(0,2)x ∈且1x ≠上单调递增.所以1(1),h e a -≠=即2()(0,)(,4)h x e e e ∈⋃13a e≠.所以a ∈()211,1,e 4e ∞⎛⎫--⋃+ ⎪⎝⎭.故选D. 二、填空题:本题共4小题,每小题5分,共20分.13.已知等差数列{}n a 中,4610a a +=,若前5项的和55S =,则其公差为___________. 【答案】2【解析】4655102105a a a a +=⇒=⇒=,155335()551,2a a S a a +===⇒=公差为53512.22a a --== 14.已知圆锥的表面积是23m ,且它的侧面展开图是一个半圆,则这个圆锥的侧面积是__________平方米. 【答案】2【解析】Q 半圆的周长为底面圆的周长,设母线为l ,则122,22l r l r ππ⋅=∴=,2213,2r l ππ∴=+⋅⨯2233,1r r ππ∴=∴=,这个圆锥的侧面积是222rl r ππ== ,故答案为2.15.某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共30个,生产一个遥控小车模型需10分钟,生产一个遥控飞机模型需12分钟,生产一个遥控火车模型需8分钟,已知总生产时间不超过320分钟,若生产一个遥控小车模型可获利160元,生产一个遥控飞机模型可获利180元,生产一个遥控火车模型可获利120元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元. 【答案】5000【解析】设每天安排生产x 个遥控小车模型,y 个遥控飞机模型,则生产(30)x y --个遥控火车模型,依题得,实数,x y 满足线性约束条件10128(30)320,300,0,0,x y x y x y x y ++--≤⎧⎪--≥⎨⎪≥≥⎩目标函数为160180z x y =++120(30)x y --,化简得240,30,0,0,x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩40603600z x y =++,作出不等式组240,30,0,0,x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩表示的可行域(如图所示):作直线02:603l y x =--,将直线0l 向右上方平移过点P 时,直线在y 轴上的截距最大, 由240,30,x y x y +=⎧⎨+=⎩得20,10,x x =⎧⎨=⎩所以(20,10)P ,此时max 402060z =⨯+⨯1036005000+=(元). 故答案为5000.16.过抛物线C :24x y =的准线上任意一点P 作抛物线的切线PA ,PB ,切点分别为A ,B ,则A 点到准线的距离与B 点到准线的距离之和的最小值是_________. 【答案】4【解析】设()11,A x y ,()22,B x y ,则直线PA ,PB 的方程分别为21124x x y x =-,22224x x y x =-,联立解得122P x x x +=,124P x x y ⋅=.又直线PA ,PB 的方程分别可表示为112xy x y =-,222x y x y =-,将P点坐标代入两方程,得1122,2,2P P P P x x y y x x y y ⋅⎧=-⎪⎪⎨⋅⎪=-⎪⎩所以直线AB 的方程为12P x x y ⋅-=-,即12P x x y ⋅=+, 所以A 点到准线的距离与B 点到准线的距离之和为1212211222P P x x y y x x ⎛⎫⎛⎫++=++++⎪ ⎪⎝⎭⎝⎭()()2121244424P x x xx x +=++=+….故答案为4. 三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知A B C ,,是ABC ∆的内角,a b c ,,分别是角A B C ,,的对边.若222cos sin sin sin cos B A A B C --=,(1)求角C 的大小; (2)若6A π=,ABC ∆,M 为BC 的中点,求AM .【解析】(1)由222cos sin sin sin cos B A A B C --=,得222sin sin sin sin sin A A B C B +=- 由正弦定理,得222c b a ab -=+,即222a b c ab +-=-,所以2221cos 222a b c ab C ab ab +--===-,又0C π<<,则23C π=(2)因为6A π=,所以6B π=.所以ABC ∆为等腰三角形,且顶角23C π=.因为1sin 2ABC S ab C ∆===所以2a =.在MAC ∆中,2AC =,1CM =,23C π=,所以2222cos AM AC CM AC CM C =+-⋅⋅ 1=4+1+221=72⨯⨯⨯,解得AM =18.(12分)微信是现代生活中进行信息交流的重要工具.据统计,某公司200 名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信时间在一小时以上,若将员工分成青年(年龄小于40 岁)和中年(年龄不小于40 岁)两个阶段,那么使用微信的人中75%是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中23都是青年人. (1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出并完成22⨯ 列联表:(2)由列联表中所得数据判断,是否有99.9%的把握认为“经常使用微信与年龄有关”?(3)采用分层抽样的方法从“经常使用微信”的人中抽取6人,从这6人中任选2人,求选出的2人均是青年人的概率. 附:22()()()()()n ad bc k a b c d a c b d -=++++.【解析】(1)由已知可得,该公司员工中使用微信的有20090%180⨯=人, 经常使用微信的有18060120-=人,其中青年人有2120803⨯=人,使用微信的人中青年人有18075%135⨯=人.所以22⨯列联表为:(2)将列联表中数据代入公式可得:()221808055540k 13.3331206013545⨯-⨯=≈⨯⨯⨯,由于13.33310.828>,所以有99.9%的把握认为“经常使用微信与年龄有关”. (3)从“经常使用微信”的人中抽取6人,其中,青年人有8064120⨯=人, 中年人有4062120⨯=,记4名青年人的编号分别为1,2,3,4,记2名中年人的编号分别为5,6, 则从这6人中任选2人的基本事件有()1,2,()1,3,()1,4,()1,5,()1,6,()2,3,()2,4,()2,5,()2,6,()3,4,()3,5,()3,6,()4,5,()4,6,()5,6,共15个,其中选出的2人均是青年人的基本事件有()1,2,()1,3,()1,4,()2,3,()2,4,()3,4,共6个,故所求事件的概率为62P 155==. 19.(12分)如图,等腰梯形ABCD 中,//AB CD ,1AD AB BC ===,2CD =,E 为CD 中点,以AE 为折痕把ADE ∆折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:AE PB ⊥;(2)当四棱锥P ABCE -体积最大时,求点C 到平面PAB 的距离. 【解析】(1)证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O ,//,AB CE AB CE =Q , ∴四边形ABCE 为平行四边形,AE BC AD DE ∴===,ADE ∴∆为等边三角形,∴在等腰梯形ABCD 中,3C ADE π∠=∠=,BD BC ⊥, BD AE ∴⊥,翻折后可得:,OP AE OB AE ⊥⊥.又OP ⊂Q 平面POB ,OB ⊂平面POB ,OP OB O =I , AE ∴⊥平面POB .PB ⊂Q 平面POB , AE PB ∴⊥.(2)当四棱锥P ABCE -的体积最大时平面PAE ⊥平面ABCE ,又Q 平面PAE I 平面ABCE AE =,PO ⊂平面PAE ,PO AE ⊥,OP ∴⊥平面ABCE,OP OB ==QPB ∴=1AP AB ==Q , 31112cos 24PAB +-∴∠==, sin 4PAB ∴∠=.1sin 28PAB S PA AB PAB ∴=⋅∠=V ,又111338P ABC ABC V OP S -=⋅==V Q , 设点C 到平面PAB 的距离为d,335C PABPABV d S -∴===V .20.(12分)过椭圆22221(0)x y a b a b+=>>的左顶点A 作斜率为2的直线,与椭圆的另一个交点为B ,与y轴的交点为C ,已知613AB BC =u u u r u u u r. (1)求椭圆的离心率;(2)设动直线y kx m =+与椭圆有且只有一个公共点P ,且与直线4x =相交于点Q ,若x 轴上存在一定点(1,0)M ,使得PM QM ⊥,求椭圆的方程.【解析】(1)∵A (,0)a -,设直线方程为2()y x a =+,11(,)B x y ,令0x =,则2y a =,∴(0,2)C a , ∴1111(,),(,2)AB x a y BC x a y =+=--u u u r u u u r∵613AB BC =u u u r u u u r ,∴1x a +=11166(),(2)1313x y a y -=-,整理得111312,1919x a y a =-= ,∵B 点在椭圆上,∴22221312()()11919a b +⋅=,∴223,4b a =∴2223,4a c a -=即2314e -=,∴12e =. (2)∵223,4b a =可设223.4b t a t ==,∴椭圆的方程为2234120x y t +-= ,由2234120x y t y kx m ⎧+-=⎨=+⎩得222(34)84120k x kmx m t +++-= ,∵动直线y kx m =+与椭圆有且只有一个公共点P,∴0∆=,即2222644(34)(412)0k m m m t -+-=,整理得2234m t k t =+,设P 11(,)x y 则有122842(34)34km km x k k =-=-++,112334my kx m k=+=+, ∴2243(,)3434km mP k k-++ ,又(1,0)M ,Q (4,4)k m +,若x 轴上存在一定点(1,0)M ,使得PM QM ⊥, ∴2243(1,)(3,(4))03434km mk m k k+-⋅--+=++恒成立,整理得2234k m +=, ∴223434k t k t +=+恒成立,故1t =,所求椭圆方程为22143x y +=.21.(12分)已知函数()23xf x xe ax =++.(1)若曲线()y f x =在0x =处切线与坐标轴围成的三角形面积为92,求实数a 的值; (2)若12a =-,求证:()ln 4f x x ≥+. 【解析】(1)()()12xf x x e a '=++,则()021f a '=+为切线斜率.又()03f =,∴切点为()0,3.∴曲线在0x =处切成方程为()321y a x -=+.当0x =时,3y =,当0y =时,321x a -=+(易知210a +≠) 则切线与坐标轴围成三角形面积为13932212a -⨯⨯=+.∴211a +=得211a +=±.所以0a =或1-.(2)法一:12a =-时,()3x f x xe x =-+ 要证的不等式为3ln 4x xe x x -+≥+,即ln 10x xe x x ---≥.令()ln 1x h x xe x x =---,则()()()11111x x h x x e x e x x ⎛⎫'=+--=+- ⎪⎝⎭. 易知()h x '递增,()10h '>,)132022h ⎛⎫'=< ⎪⎝⎭,∴()0h x '=仅有一解0x 且001x e x =,即00ln x x =-.当()00,x x ∈时,()0h x '<,()h x 递减;当()0,x x ∈+∞时,()0h x '>,()h x 递增. 从而()h x 最小值为()0000000ln 11ln 10xf x x e x x x x =---=---=∴()()00h x h x ≥=,故原不等式成立. 法二:12a =-时,要证的不等式为ln 10x xe x x ---≥.令x t xe =,则ln ln t x x =+. 故问题化为证不等式ln 10t t --≥恒成立.()0,x ∈+∞时,()0,x t xe =∈+∞令()ln 1h t t t =--,则()111t h t t t-'=-=,当()0,1t ∈时,()0h t '<,()h t 递减; 当()1,t ∈+∞时,()0h t '>,()h t 递增.∴()()10h t h ≥=,从而原不等式成立.(二)、选考题:共10分.请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.【极坐标与参数方程】(10分)在平面直角坐标系xOy 中,已知曲线1C的参数方程为5()x y ϕϕϕ⎧=+⎪⎨=⎪⎩为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos ρθ=.(1)求曲线1C 与曲线2C 两交点所在直线的极坐标方程;(2)若直线l的极坐标方程为sin()4ρθπ+=,直线l 与y 轴的交点为M ,与曲线1C 相交于,A B 两点,求MA MB +的值. 【解析】(1)曲线1C 的普通方程为:22(5)10x y -+=,曲线2C 的普通方程为:224x y x +=,即22(2)4x y -+=,由两圆心的距离32)d =∈,所以两圆相交,所以两方程相减可得交线为6215x -+=,即52x =.所以直线的极坐标方程为5cos 2ρθ=. (2)直线l 的直角坐标方程:4x y +=,则与y 轴的交点为(0,4)M直线l的参数方程为242x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩,带入曲线1C 22(5)10x y -+=得2310t ++=.设,A B 两点的参数为1t ,2t ,所以12t t +=-1231t t =,所以1t ,2t 同号.所以1212MA MB t t t t +=+=+=.23.【选修4-5:不等式选讲】(10分)已知函数()21f x x a x =-+-,()a R ∈.(1)当1a =时,求()2f x ≤的解集;(2)若()21f x x ≤+的解集包含集合1,12⎡⎤⎢⎥⎣⎦,求实数a 的取值范围. 【解析】(1)当1a =时,()21121f x x a x x x =-+-=-+-,当()2f x ≤,即1212x x -+-≤,上述不等式可化为121122x x x ⎧≤⎪⎨⎪-+-≤⎩,或1121212x x x ⎧<<⎪⎨⎪-+-≤⎩,或11212x x x ≥⎧⎨-+-≤⎩,102x ∴≤≤或112x <<或413x ≤≤,∴原不等式的解集为403x x ⎧⎫≤≤⎨⎬⎩⎭.(2)()21f x x ≤+Q 的解集包含1,12⎡⎤⎢⎥⎣⎦,∴当1,12x ⎡⎤∈⎢⎥⎣⎦时,不等式()21f x x ≤+恒成立,即在2121x a x x -++≤+1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立,2121x a x x ∴-+-≤+,即2x a -≤,22x a ∴-≤-≤,22x a x ∴-≤≤+在1,12x ⎡⎤∈⎢⎥⎣⎦上恒成立, ()()max min 22x a x ∴≤-≤-,512a ∴-≤≤,a ∴的取值范围为51,2⎡⎤-⎢⎥⎣⎦.。
2020版新高考文科数学二轮冲刺复习解答题的解法研究技巧(21页)
2020版新高考文科数学二轮冲刺复习解答题的解法研究技巧一数形结合思想方法数形结合思想包含“以形助数”和“以数辅形”两方面的内容:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来说明函数的性质;二是借助于数的精确性来阐明形的某些属性,即以数作为手段,形作为目的,比如应用曲线的方程来精确的阐明曲线的几何性质.我们在解决数学问题时,应将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,实现抽象概念与具体形象的互化,从而得到原题的解.总体目标:通过数形结合,抽象问题具体化,复杂问题简单化.解题途径:根据问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简.常见的手段:构造法、转化法、数形结合、分离变量法等等.典例1记实数x1,x2,…,x n中最小数为min{x1,x2,…,x n},求定义在区间[0,+∞)上的函数f(x)=min{x2+1,x+3,13-x}的最大值.【方法点睛】 利用函数的图象求最值,避免分段函数的讨论,正确作出函数的图象是解决此类问题的关键,数形结合应以快和准为原则.典例2 关于x 的方程sin2x +3cos2x =a +1在⎣⎢⎡⎦⎥⎤0,2π3上有两个不同的根,求实数a 的取值范围.【方法点睛】 本题要解的是一个带参数的三角方程,直接解比较困难,可以从函数的角度来研究本方程的解.通过变形,左边看成函数y 1=sin ⎝⎛⎭⎪⎫2x +π3的图象的一部分,右边看成y 2=a +12的图象.因此,方程的解可通过“数形结合”方法轻松获得.对于三角方程的解的个数问题,经常可考虑此思想方法解决.典例3 在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P是动点,且直线AP 与BP 的斜率之积等于-13.(1)求动点P 的轨迹方程;(2)设直线AP 和BP 分别与直线x =3交于点M ,N ,问:是否存在点P 使得△P AB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.【方法点睛】本题的想法看似简单,即设P(x0,y0),分别写出直线AP和BP的方程,根据已知条件用x0,y0分别表示出△P AB与△PMN的面积,从而得到x0,y0的一个关系式,再结合点P(x0,y0)在椭圆x2+3y2=4上,得到第二个方程,从而问题转化为解方程组,这是很多学生很容易想到的做法,可是这看似简单的想法计算却非常不简单.如果能先作出图形,根据△P AB与△PMN的面积相等,得到M是NC中点,易知B为AC中点,从而AM,BN都是中线,因此P为△ANC的重心,而A,N,C三点横坐标易求得,故P点的横坐标也就易求出来了.代入椭圆,很快求出P点的纵坐标.在解析几何求解过程中,如果适当考虑其中的几何关系,计算量将大大减少,“数形结合”,事半功倍,提高解题效率.典例4已知函数f(x)=|2x-3|-|x+1|.(1)若不等式f(x)≤a的解集是空集,求实数a的取值范围;(2)若存在x0∈R,使得2f(x0)≤-t2+4|t|成立,求实数t的取值范围.【方法点睛】本题如果从不等式角度进行考虑,非常不好描述,而且不易求出正确解.根据题意,将不等式恒成立问题和存在性问题转化为函数值域与参数的比较问题,思路清晰明了,再通过数形结合,很快求出相关函数的值域,继而求出参数的取值范围.在求解过程中,“数形结合”大大简化了计算量.二转化与化归思想数学思想中的一条重要原则是转化与化归,不断地变更数学问题,使要解决的问题化难为易,或变未知为已知,或把某一数学分支中的问题转化为另外一个数学分支中的问题,最终求出原题的解.总体目标:化难为易,化生为熟,化繁为简.解题途径:函数、方程、不等式间的转化;数与形间的转化;一般与特殊的转化;整体与局部的转化;正面与反面的转化等等.常见的方法:换元法、数形结合法、构造法、设参法、特殊法,拆分与整合等.典例1设f(x)是定义在R上的单调增函数,若f(1-ax-x2)≤f(2-a)对任意a∈[-1,1]恒成立,求x的取值范围.【方法点睛】将不等式恒成立问题转化为求函数的值域问题,在转化过程中,用到了构造函数法,次元、主元调换法,最后通过解不等式得到答案.典例2(2017·浙江高考)已知向量a,b满足|a|=1,|b|=2,求|a+b|+|a-b|的最小值和最大值.【方法点睛】 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.典例3 已知函数f (x )=x +1e 2x .(1)当x ≥0时,f (x )≤m 2x +1(m >0)恒成立,求实数m 的取值范围; (2)求证:f (x )ln x <x +1ex +2.【方法点睛】对于恒成立问题和存在性问题,经常可考虑用分离变量的办法将不等式问题转化为两个函数值域的问题.在求函数值域时,经常用构造法,通过导数来分析单调性,求得函数的值域,继而建立与参数有关的不等式,最终求得参数的取值范围.当然在本题中导函数的零点不易求出,我们用了设而不求的方法,间接解决问题.实际上,在解决数学题时“无处不转化”.典例4已知椭圆C:x2a2+y2b2=1(a>b>0)的四个顶点所构成的菱形面积为6,且椭圆的焦点为抛物线y=x2-8与x轴的交点.(1)求椭圆C的方程;(2)设直线l与椭圆C交于A,B两点,若AD⊥BD,且D(3,0),求△ABD面积的最大值.【方法点睛】在求椭圆方程时,经常把条件转化为方程组,方程组解出来即得到椭圆方程.在解答圆锥曲线相关问题时,经常借助相关点的坐标来研究相关性质,如定点、共线、最值等问题.转化的基本方向:消元,降次,化简.三分类整合思想方法在解某些数学问题时,我们常常会遇到这样一种情况:解到某一步之后,发现问题的发展是按照不同的方向进行的.当被研究的问题包含了多种情况时,就必须抓住主导问题发展方向的主要因素,在其变化范围内,根据问题的不同发展方向,划分为若干部分分别研究,这就是分类整合思想方法.分类整合是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练学生的思维条理性和概括性,因此在高考试题中占有重要的位置.总体目标:大化小,整体化为部分,一般化为特殊.解题途径:根据问题的不同发展方向,划分为若干部分分别进行研究,研究的基本方向是“分”,但分类解决问题之后,还必须把它们整合在一起.常见的方法:化整为零、积零为整、构造法、转化法、数形结合、分离变量法等等.典例1(2018·全国卷Ⅰ)已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【方法点睛】本题(1)(2)问都涉及到绝对值不等式,要把绝对值去掉,解答才得以继续进行,在第(1)问中,通过对变量x进行分类讨论,绝对值不等式转化为一次不等式,原不等式从而得到解答;(2)问中对参数a进行讨论,去掉绝对值,求出参数范围.典例2设b∈R,数列{a n}的前n项和S n=3n+b,试判断{a n}是否是等比数列?并说明理由.【方法点睛】本题中参数b的值影响着a1的值,进而影响着数列的通项公式.因此需要对参数b分类讨论,并以a1的值是否满足a n=2·3n-1为标准.典例3设a>0,求f(x)=2a(sin x+cos x)-sin x cos x-2a2的最大值和最小值.【方法点睛】本题通过作变量代换t=sin x+cos x,将原函数变成关于t 的二次函数(带参数a),然后根据对称轴和区间的关系进行分类讨论,继而求出原函数的最大值.典例4已知f(x)=x-a e x(a∈R,e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若f(x)≤e2x对x∈R恒成立,求实数a的取值范围.【方法点睛】参数的变化取值导致不同的结果,需对参数进行讨论,如含参数的方程、不等式、函数等.分类讨论要标准明确、统一,层次分明,分类要做到“不重不漏”.四函数与方程思想函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题.方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.有时,还实现函数与方程的互相转化,达到解决问题的目的.总体目标:动态化静态,抽象化具体,函数方程相互转化.解题途径:根据研究问题的需要,通过构造方程或函数,然后研究方程和函数的性质,从而解决原问题.常见的方法:构造法、转化法、动静结合、数形结合、分离变量法等等.典例1(2018·全国卷Ⅱ)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【方法点睛】 本题已知数列的属性(等差或等比数列),因此可以构造关于a 1和d (q )的方程组,通过a 1和d (q ),从而求出数列的通项公式,将前n 项和S n 表示为n 的函数,继而求出其最小值.求解过程体现方程思想和函数思想.典例2 已知sin θ+cos θ=15,θ∈(0,π),求tan θ的值.【方法点睛】 本题表面看是一个未知数θ,但是很难直接求出其大小.本题通过韦达定理构造一个一元二次方程,其两根分别为sin θ,cos θ,求出方程的两个解(也就是sin θ,cos θ的值),从而求出tan θ的值.典例3 (2018·全国卷Ⅱ)已知函数f (x )=e x -ax 2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【方法点睛】 本题第(1)问是个不等式问题,我们将其转化为函数问题解决.通过构造函数,分析函数的单调性,求出函数的最大值为0,从而证明了原不等式,充分体现了函数思想的应用.第(2)问是函数零点个数问题,通过构造函数,分析函数的单调性,求出函数的最值,从而讨论出不同a 的值得到不同的零点个数.典例4 设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E ,F 两点.(1)若ED→=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.【方法点睛】几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的求法来求解,这是求面积、线段长最值(范围)问题的基本方法.典例5(2017·全国卷Ⅰ)在直角坐标系xOy中,曲线C的参数方程为⎩⎪⎨⎪⎧ x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧ x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为17,求a .【方法点睛】 本题第(1)问先将直线和椭圆的参数方程化为普通方程,然后联立,求出交点坐标.第(2)问先将C上的点到直线的距离用θ表示出来,判断3cosθ+4sinθ的范围,讨论a,去掉绝对值得到距离的最大值的方程,求得a 最后结果.。
2020版高考文科数学突破二轮复习新课标通用 高考解答题的审题与答题示范数列类(2页)
从而{an}的通项公式an= (n∈N*).④
(2)记 的前n项和为Sn.
由(1)知 = = - 裂项求和.⑤
则Sn= - + - +…+ - = .
⑥
第(1)问
第(2)问
得分点
1
②
③
④
⑤
⑥
2
1
1
2
3
3
6分
6分
第(1)问踩点得分说明
①写出n≥2时的递推关系式得2分.
②求得n≥2时的{an}的通项公式得1分.
③验证a1,得1分.
④写出通项公式得2分.
第(2)问踩点得分说明
⑤将 裂项得3分.
⑥利用裂项求和得3分.
高考解答题的审题与答题示范数列类
[思பைடு நூலகம்流程]
,[审题方法]——审结构
结构是数学问题的搭配形式,某些问题已知的数式结构中常常隐含着某种特殊的关系.审视结构要对结构进行分析、加工和转化,以实现解题突破.
典例
(本题满分12分)(2017·高考全国卷Ⅲ)设数列{an}满足a1+3a2+…+(2n-1)an=2n.
(1)求{an}的通项公式;
(2)求数列 的前n项和.
审题路线
(1) ―→
(2) ―→ = = - ―→
标准答案
阅卷现场
(1)因为a1+3a2+…+(2n-1)an=2n,故当n≥2时,a1+3a2+…+(2n-3)an-1=2(n-1).①
两式相减得(2n-1)an=2.
所以an= (n≥2)求通项.②
2020年普通高等学校招生全国统一考试 数学(文)冲刺卷(二)(解析版)
【答案】 5000
【解析】设每天安排生产 x 个遥控小车模型, y 个遥控飞机模型,则生产 (30 x y) 个遥控火车模型,依 10x 12 y 8(30 x y) 320, 30 x y 0,
题得,实数 x, y 满足线性约束条件 x 0, y 0,
4
4…
4
.故答案为
4.
三、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.
17.(12 分)已知 A,, B C 是 ABC 的内角, a,, b c 分别是角 A,, B C 的对边.若 cos2 B sin2 A sin Asin B cos2 C ,
(1)求角 C 的大小;
【答案】B
【解析】因为 f (x) [b, 2a b] ,又依题意知 f (x) 的值域为[5,3] ,所以 2a b 3 得 a 4 ,
b
5 ,所以 g(x) 5 cos 4x ,令 4x
k
2
(k Z) x
,得
k 4
8
(k Z) ,则 g(x) 的图象的
k 对称中心为 4
)
3, 1
A.
2, 0
B.
5, 1
C.
2,1
D.
【答案】B
【解析】由
f
x 1
f
1 x 可知函数
f
x 的对称轴为 x=1.因为
f
x
在
[5,
5]
上是增函数,所以
f
x 在 [5,
5]
上是减函数,因为
x
1 2
,1
,所以
1 2
x 1 0
,又因为不等式
冲刺高考文科数学必看题型归纳2020
冲刺高考文科数学必看题型归纳2020冲刺高考文科数学必看题型归纳一高考文科数学必考题型:三角函数/数列一般全国卷第17题会考三角函数或数列题。
数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。
数列题可以多总结一些类型题,分析归类,找到其中规律,题做多了,自然就有思路了。
高考文科数学必考题型:概率一般全国卷第18题会考概率题。
概率题相对比较简单,也是必须得分的题,这道题主要频数分布表、频率分布直方图、回归方程的求法、概率计算、相关系数的计算等等。
主要还是对作图和识图能力考查比较多。
高考文科数学必考题型:立体几何一般全国卷第19题会考立体几何题。
例题几何也不难,但大家一定要敢于尝试,敢于动笔写,不要说没有做题思路就放弃这道题。
只要你按照常规的方法做就可以,然后一步步分析下去,边分析边写步骤,结果自然就出来了。
如果没思路可以尝试2种以上的方法做。
高考文科数学必考题型:解析几何一般全国卷第20题会考解析几何题。
解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。
所以大家不要有畏难情绪,认为这是最后2道大题就觉得有多难,其实如果你认认真真去做了,这道题还是有希望做对的。
退一步来说,即便是真的不会了,那也可以得一些步骤分,前一两问还是没问题的。
高考文科数学必考题型:函数一般全国卷第21题会考函数题。
高考对三角函数知识主要考查三角函数及解三角形两部分知识。
主要知识点有三角函数概念。
恒等变形、同角关系等。
三角函数还可以和向量知识结合在一起考,也可以和正弦定理、余弦定理结合起来一起考查。
高考文科数学必考题型:圆/坐标系与参数方程/不等式一般全国卷第22至24题会考圆/坐标系与参数方程/不等式三道选做题。
参数方程是大家选做最多的一道题,参数方程主要考查轨迹方程计算方法、三角换元求最值、极坐标方程和直角坐标方程转化等,这道题相对容易做。
冲刺高考文科数学必看题型归纳二一、三角函数或数列数列是高中数学的重要内容,又是学习高等数学的基础。
2020年高考数学(文科)冲刺卷 全国卷(二)
绝密★启用前2020年高考数学(文科)终极冲刺卷全国卷(二)注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上1.复数21i z =+的共轭复数在复平面内对应的点所在象限为() A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合2{|280},{|}P x x x Q x x a =-->=…,若P Q ⋃=R ,则实数a 的取值范围是()A.(,2]-∞-B.(4,)+∞C.(,2)-∞-D.[4,)+∞ 3.已知向量()5,m =a ,()2,2=-b ,若()-⊥a b b ,则实数m =()A.1-B.1C.2D.2-4.在等差数列{}n a 中,232,4a a ==,则10a =( )A.12B.14C.16D.185.某贫困村,在产业扶贫政策的大力支持下,种植了两种中药材甲和乙,现分别抽取6户的收入(单位:万元),制成下表:中药材甲种植户收入1x 2x 3x 4x 5x 6x 中药材乙种植户收入 1y 2y 3y 4y 5y 6y 已知12,x x 的平均数为1.35,3456,,,x x x x 的平均数为1.125,123,,y y y 的平均数为1.2,456,,y y y 的平均数为1.22,则种植中药材甲和乙收入的平均数分别为()A.1.2375,1.21B.1.2,1.21C.0.4125,0.403D.2.475,2.426.函数2()ln 1x f x x ⎛⎫= ⎪-⎝⎭的图象大致是() A. B.C. D.7.设l 表示直线,,αβγ,表示不同的平面,则下列命题中正确的是()A.若//l α且αβ⊥,则l β⊥B.若//γα且//γβ,则//αβC.若//l α且//l β,则//αβD.若γα⊥且γβ⊥,则//αβ8.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是()A.6k ≥B.5k ≥C.>6kD.>7k 9.记n S 为等比数列{}n a 的前n 项和,若2389a a =,5163a =,则() A .23nn a = B .13n n a -= C .312n n S -= D .213n n S -= 10.关于函数π()sin 24f x x ⎛⎫=+ ⎪⎝⎭有下列四个结论: ①()f x 是偶函数②()f x 的最小正周期为π2③()f x 在3ππ,88⎡⎤-⎢⎥⎣⎦上单调递增 ④()f x 的一条对称轴方程为3π8x =其中所有正确结论的编号是()A.①③B.②④C.①②③D.②③④11.已知12,F F 是双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点,P 是双曲线E 右支上一点,M 是线段1F P 的中点,O 是坐标原点,若1OF M △周长为3c a +(c 为双曲线的半焦距),1π3F MO ∠=,则双曲线E 的渐近线方程为() A .2y x =± B .12y x =± C .2y x =± D .2y x =± 12.设函数π()3cosx f x m=,若存在()f x 的极值点0x 满足[]22200()x f x m +<,则m 的取值范围是() A .(,2)(2,)-∞-+∞U B .(,3)(3,)-∞-+∞UC .(,2)(2,)-∞-+∞UD .(,1)(1,)-∞-+∞U13.已知,a b 为实数,直线2y x a =-+与曲线e 1x b y +=-相切,则a b +=__________. 14.如图,矩形的长为6,宽为3,在矩形内随机地撒了300颗黄豆,数得落在阴影部分的黄豆数为125颗,则我们可以估计出阴影部分的面积约为__________.15.已知12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左,右焦点.P 为椭圆C 上的一点,Q 是线段1PF 上靠近点1F 的三等分点,2PQF △为正三角形,则椭圆C 的离心率为________. 16.已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC △满足6BA BC =,π2ABC ∠=,若该三棱锥体积的最大值为3其外接球的体积为________. 17.在ABC △中,角,,A B C 所对的边分别为,,a b c .已知π2A C =+,2sin sin 2sin 3sin B A A C =.(1)求角B 的大小;(2)若4c =,D 是线段BC 上一点,且4BC BD =,求线段AD 的长.18.中国在欧洲的某孔子学院为了让更多的人了解中国传统文化,在当地举办了一场由当地人参加的中国传统文化知识大赛,为了了解参加本次大赛参赛人员的成绩情况,从参赛的人员中随机抽取n 名人员的成绩(满分100分)作为样本,将所得数据进行分析整理后画出频率分布直方图如下图所示,已知抽取的人员中成绩在[)50,60内的频数为3.(1)求n 的值和估计参赛人员的平均成绩(保留小数点后两位有效数字);(2)已知抽取的n 名参赛人员中,成绩在[)80,90和[]90,100女士人数都为2人,现从成绩在[)80,90和[]90,100的抽取的人员中各随机抽取1人,求这两人恰好都为女士的概率.19.在多面体ABCDE 中,ABCD 为菱形,π3DCB ∠=,BCE △为正三角形.。
2020届高考文科数学大二轮复习冲刺创新专题题型2解答题规范踩点多得分第5讲概率与统计练习2
(3)用所求回归方程预测到 2022 年年底,该地储蓄存款额可达多少?
y^ b^ a^ (附:对于线性回归方程 = x+ ,
i∑=n 1xiyi-n-x -y
b^ 其中
=
i∑=n 1x2i-n-x
2
a^ -y b^ ,= -
-x )
解 (1)t=3,-z =2.2,i∑=5 1tizi=45,i∑=5 1t2i=55,
P(K2 ≥k0)
0.50
0.40
0.25
0.15
0.10
0.05 0.025 0.010 0.005 0.001
10.82 k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879
8
1.某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余
(2)能否有 95%的把握认为男、女顾客对该商场服务的评价有差异? nad-bc2
附:K2=a+bc+da+cb+d.
40 解 (1)由调查数据,男顾客中对该商场服务满意的比率为50=0.8,因此男顾客对该商场服务满意
的概率的估计值为 0.8. 30
2020届高考数学大二轮专题复习冲刺方案-文数(创新版)文档:仿真模拟卷二+Word版含解析
仿真模拟卷二本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合P ={0,1,2},Q ={x |x <2},则P ∩Q =( ) A .{0} B .{0,1} C .{1,2} D .{0,2}答案 B解析 因为集合P ={0,1,2},Q ={x |x <2},所以P ∩Q ={0,1}.2.已知复数z 满足|z |=2,z +z -=2(z -为z 的共轭复数)(i 为虚数单位),则z =( )A .1+iB .1-iC .1+i 或1-iD .-1+i 或-1-i答案 C解析 设z =a +b i(a ,b ∈R ),则z -=a -b i ,z +z -=2a ,所以⎩⎪⎨⎪⎧ a 2+b 2=2,2a =2,得⎩⎪⎨⎪⎧a =1,b =±1,所以z =1+i 或z =1-i.3.若a >1,则“a x >a y ”是“log a x >log a y ”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 A解析 由a >1,得a x >a y 等价为x >y , log a x >log a y 等价为x >y >0,故“a x >a y ”是“log a x >log a y ”的必要不充分条件.4.已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( ) A .a <c <b B .a <b <c C .b <c <a D .c <a <b答案 A解析 因为a =log 52<log 55=12, b =log 0.50.2>log 0.50.25=2, 0.51<c =0.50.2<0.50,即12<c <1, 所以a <c <b .5.执行如图所示的程序框图,则输出的i 的值为( )A .4B .5C .6D .7答案 C解析 由题可得S =3,i =2→S =7,i =3→S =15,i =4→S =31,i =5→S =63,i =6,此时结束循环,输出i =6.6.已知{a n },{b n }均为等差数列,且a 2=4,a 4=6,b 3=9,b 7=21,则由{a n },{b n }公共项组成新数列{c n },则c 10=( )A .18B .24C .30D .36答案 C解析 (直接法)由题意,根据等差数列的通项公式得,数列{a n }的首项为3,公差为1,a n =n +2,数列{b n }的首项为3,公差为3,b n =3n ,则易知两个数列的公共项组成的新数列{c n }即为数列{b n },由此c 10=b 10=30,故选C.7.已知直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,若AO →·AB→=32,则实数m =( )A .±1B .±32 C .±22 D .±12答案 C解析 联立⎩⎪⎨⎪⎧y =x +m ,x 2+y 2=1,得2x 2+2mx +m 2-1=0,∵直线y =x +m 和圆x 2+y 2=1交于A ,B 两点,O 为坐标原点,∴Δ=-4m 2+8>0,解得-2<m <2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,x 1x 2=m 2-12,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO →=(-x 1,-y 1),AB →=(x 2-x 1,y 2-y 1),∵AO →·AB →=32,∴AO →·AB →=x 21-x 1x 2+y 21-y 1y 2=1-m 2-12-m 2-12+m 2-m 2=2-m 2=32,解得m =±22.8.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,若△ABC 的面积为S ,且43S =(a +b )2-c 2,则sin ⎝ ⎛⎭⎪⎫C +π4=( )A .1B .22C .6-24D .6+24答案 D解析 由43S =(a +b )2-c 2,得43×12ab sin C =a 2+b 2-c 2+2ab ,∵a 2+b 2-c 2=2ab cos C ,∴23ab sin C =2ab cos C +2ab ,即3sin C -cos C =1,即2sin ⎝ ⎛⎭⎪⎫C -π6=1,则sin ⎝ ⎛⎭⎪⎫C -π6=12,∵0<C <π,∴-π6<C -π6<5π6,∴C -π6=π6,即C =π3,则sin ⎝ ⎛⎭⎪⎫C +π4=sin ⎝ ⎛⎭⎪⎫π3+π4=sin π3cos π4+cos π3sin π4=32×22+12×22=6+24.9.关于函数f (x )=x -sin x ,下列说法错误的是( ) A .f (x )是奇函数B .f (x )在(-∞,+∞)上单调递增C .x =0是f (x )的唯一零点D .f (x )是周期函数 答案 D解析 f (-x )=-x -sin(-x )=-x +sin x =-f (x ),则f (x )为奇函数,故A 正确;由于f ′(x )=1-cos x ≥0,故f (x )在(-∞,+∞)上单调递增,故B 正确;根据f (x )在(-∞,+∞)上单调递增,f (0)=0,可得x =0是f (x )的唯一零点,故C 正确;根据f (x )在(-∞,+∞)上单调递增,可知它一定不是周期函数,故D 错误.10.已知log 2(a -2)+log 2(b -1)≥1,则2a +b 取到最小值时,ab =( ) A .3 B .4 C .6 D .9答案 D解析 由log 2(a -2)+log 2(b -1)≥1,可得a -2>0,b -1>0且(a -2)(b -1)≥2.所以2a +b =2(a -2)+(b -1)+5≥22(a -2)(b -1)+5≥22×2+5=9,当2(a-2)=b -1且(a -2)(b -1)=2时等号成立,解得a =b =3.所以2a +b 取到最小值时,ab =3×3=9.11.已知实数a >0,函数f (x )=⎩⎪⎨⎪⎧e x-1+a2,x <0,e x -1+a 2x 2-(a +1)x +a 2,x ≥0,若关于x 的方程f [-f (x )]=e -a +a2有三个不等的实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫1,2+2e B .⎝ ⎛⎭⎪⎫2,2+2eC.⎝ ⎛⎭⎪⎫1,1+1e D .⎝ ⎛⎭⎪⎫2,2+1e答案 B解析 当x <0时,f (x )为增函数, 当x ≥0时,f ′(x )=e x -1+ax -a -1,f ′(x )为增函数,令f ′(x )=0,解得x =1,故函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,最小值为f (1)=0. 由此画出函数f (x )的大致图象如图所示.令t =-f (x ),因为f (x )≥0,所以t ≤0, 则有⎩⎪⎨⎪⎧f (t )=e -a +a 2,f (t )=e t -1+a 2,解得-a =t -1,所以t =-a +1,所以f (x )=a -1. 所以方程要有三个不同的实数根, 则需a 2<a -1<1e +a2, 解得2<a <2e +2.12.已知△ABC 的顶点A ∈平面α,点B ,C 在平面α同侧,且AB =2,AC=3,若AB ,AC 与α所成的角分别为π3,π6,则线段BC 长度的取值范围为( )A .[2-3,1]B .[1,7]C .[7, 7+23]D .[1, 7+23]答案 B解析 如图,过点B ,C 作平面的垂线,垂足分别为M ,N ,则四边形BMNC 为直角梯形.在平面BMNC 内,过C 作CE ⊥BM 交BM 于点E .又BM =AB ·sin ∠BAM =2sin π3=3,AM =2cos π3=1,CN =AC ·sin ∠CAN =3sin π6=32,AN =3cos π6=32,所以BE =BM -CN =32,故BC 2=MN 2+34.又AN -AM ≤MN ≤AM +AN , 即12=AN -AM ≤MN ≤AM +AN =52, 所以1≤BC 2≤7,即1≤BC ≤7,故选B.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a =(1,λ),b =(3,1),c =(1,2),若向量2a -b 与c 共线,则向量a 在向量c 方向上的投影为________.答案 0解析 向量2a -b =(-1,2λ-1),由2λ-1=-2,得λ=-12.∴向量a =⎝ ⎛⎭⎪⎫1,-12, ∴向量a 在向量c 方向上的投影为|a |cos 〈a ,c 〉=a ·c|c |=1-2×125=0.14.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2ab sin C =3(b 2+c 2-a 2),若a =13,c =3,则△ABC 的面积为________.答案 3 3解析 由题意得2ab sin C2bc =3·b 2+c 2-a 22bc ,即a sin Cc =3cos A ,由正弦定理得sin A =3cos A,所以tan A =3,A =π3.由余弦定理得13=32+b 2-2×3b cos π3,解得b =4,故面积为12bc sin A =12×4×3×32=3 3.15.已知点M 为单位圆x 2+y 2=1上的动点,点O 为坐标原点,点A 在直线x =2上,则AM →·AO→的最小值为________.答案 2解析 设A (2,t ),M (cos θ,sin θ),则AM→=(cos θ-2,sin θ-t ),AO →=(-2,-t ),所以AM →·AO →=4+t 2-2cos θ-t sin θ. 又(2cos θ+t sin θ)max =4+t 2, 故AM →·AO →≥4+t 2-4+t 2.令s =4+t 2,则s ≥2,又4+t 2-4+t 2=s 2-s ≥2,当s =2,即t =0时等号成立,故(AM →·AO →)min=2. 16.已知函数f (x )=x 2-2mx +m +2,g (x )=mx -m ,若存在实数x 0∈R ,使得f (x 0)<0且g (x 0)<0同时成立,则实数m 的取值范围是________.答案 (3,+∞)解析 当m >0,x <1时,g (x )<0,所以f (x )<0在(-∞,1)上有解,则⎩⎨⎧f (1)<0,m >0或⎩⎪⎨⎪⎧ m >0,Δ>0,f (1)≥0,m <1,即m >3或⎩⎪⎨⎪⎧m >0,m 2-m -2>0,3-m ≥0,m <1,故m >3.当m <0,x >1时,g (x )<0, 所以f (x )<0在(1,+∞)上有解, 所以⎩⎪⎨⎪⎧f (1)<0,m <0,此不等式组无解.综上,m 的取值范围为(3,+∞).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数f (x )=cos x (3sin x -cos x )+12.(1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,不等式c <f (x )<c +2恒成立,求实数c 的取值范围. 解 (1)f (x )=3sin x cos x -cos 2x +12 =32sin2x -12cos2x=sin ⎝ ⎛⎭⎪⎫2x -π6, 所以f ⎝ ⎛⎭⎪⎫π3=1.(2)因为0≤x ≤π2,所以-π6≤2x -π6≤5π6, 所以-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.由不等式c <f (x )<c +2恒成立,得⎩⎨⎧c <-12,c +2>1,解得-1<c <-12.所以实数c 的取值范围为⎝ ⎛⎭⎪⎫-1,-12.18.(本小题满分12分)如图,在△BCD 中,∠BCD =90°,BC =CD =1,AB⊥平面BCD ,∠ADB =60°,E ,F 分别是AC ,AD 上的动点,且AE AC =AFAD =λ(0<λ<1).(1)求证:无论λ为何值,总有平面BEF ⊥平面ABC ; (2)是否存在实数λ,使得平面BEF ⊥平面ACD . 解 (1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD , ∴AB ⊥CD .∵CD ⊥BC ,AB ∩BC =B ,AB ,BC ⊂平面ABC , ∴CD ⊥平面ABC . 又∵AE AC =AFAD =λ(0<λ<1), ∴无论λ为何值,恒有EF ∥CD , ∴EF ⊥平面ABC . 又∵EF ⊂平面BEF ,∴无论λ为何值,总有平面BEF ⊥平面ABC .(2)假设存在λ,使得平面BEF⊥平面ACD.由(1)知BE⊥EF,∵平面BEF⊥平面ACD,平面BEF∩平面ACD=EF,BE⊂平面BEF,∴BE⊥平面ACD.又∵AC⊂平面ACD,∴BE⊥AC.∵BC=CD=1,∠BCD=∠ABD=90°,∠ADB=60°,∴BD=2,∴AB=2tan60°=6,∴AC=AB2+BC2=7.由Rt△AEB∽Rt△ABC,得AB2=AE·AC,∴AE=67,∴λ=AEAC=67.故当λ=67时,平面BEF⊥平面ACD.19.(本小题满分12分)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:74≈8.602.解(1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y -=1100×(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30,s 2=1100 i =15n i (y i -y -)2 =1100×[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.0296,s =0.0296=0.02×74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.20.(本小题满分12分)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(-1,0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:(x -1)2+y 2=4a 2交于点A ,与椭圆C 交于点D .连接AF 1并延长交圆F 2于点B ,连接BF 2交椭圆C 于点E ,连接DF 1.已知|DF 1|=52.(1)求椭圆C 的标准方程;(2)求点E 的坐标.解 (1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以|F 1F 2|=2,c =1.又因为|DF 1|=52,AF 2⊥x 轴,所以|DF 2|=|DF 1|2-|F 1F 2|2=⎝ ⎛⎭⎪⎫522-22=32, 因此2a =|DF 1|+|DF 2|=4,从而a =2.由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为x 24+y 23=1. (2)解法一:由(1)知,椭圆C :x 24+y 23=1,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1)2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4).又F 1(-1,0),所以直线AF 1:y =2x +2.由⎩⎪⎨⎪⎧ y =2x +2,(x -1)2+y 2=16,得5x 2+6x -11=0, 解得x =1或x =-115.将x =-115代入y =2x +2,得y =-125,因此B 点坐标为⎝ ⎛⎭⎪⎫-115,-125. 又F 2(1,0),所以直线BF 2:y =34(x -1). 由⎩⎪⎨⎪⎧ y =34(x -1),x 24+y 23=1,得7x 2-6x -13=0, 解得x =-1或x =137.又因为E 是线段BF 2与椭圆的交点,所以x =-1.将x =-1代入y =34(x -1),得y =-32.因此E 点坐标为⎝ ⎛⎭⎪⎫-1,-32. 解法二:由(1)知,椭圆C :x 24+y 23=1.如图,连接EF 1.因为|BF 2|=2a ,|EF 1|+|EF 2|=2a ,所以|EF 1|=|EB |,从而∠BF 1E =∠B .因为|F 2A |=|F 2B |,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由⎩⎨⎧ x =-1,x 24+y 23=1,得y =±32. 又因为E 是线段BF 2与椭圆的交点,所以y =-32.因此E 点坐标为⎝ ⎛⎭⎪⎫-1,-32. 21.(本小题满分12分)已知函数f (x )=ln x -x e x +ax (a ∈R ).(1)若函数f (x )在[1,+∞)上单调递减,求实数a 的取值范围;(2)若a =1,求f (x )的最大值.解 (1)由题意知,f ′(x )=1x -(e x +x e x )+a =1x -(x +1)e x +a ≤0在[1,+∞)上恒成立,所以a ≤(x +1)e x-1x 在[1,+∞)上恒成立.令g (x )=(x +1)e x -1x ,则g ′(x )=(x +2)e x +1x 2>0, 所以g (x )在[1,+∞)上单调递增,所以g (x )min =g (1)=2e -1,所以a ≤2e -1.(2)当a =1时,f (x )=ln x -x e x +x (x >0).则f ′(x )=1x -(x +1)e x +1=(x +1)⎝ ⎛⎭⎪⎫1x -e x , 令m (x )=1x -e x ,则m ′(x )=-1x 2-e x <0,所以m (x )在(0,+∞)上单调递减.由于m ⎝ ⎛⎭⎪⎫12>0,m (1)<0,所以存在x 0>0满足m (x 0)=0,即e x 0=1x 0. 当x ∈(0,x 0)时,m (x )>0,f ′(x )>0;当x ∈(x 0,+∞)时,m (x )<0,f ′(x )<0. 所以f (x )在(0,x 0)上单调递增,在(x 0,+∞)上单调递减.所以f (x )max =f (x 0)=ln x 0-x 0e x 0+x 0,因为e x 0=1x 0,所以x 0=-ln x 0, 所以f (x 0)=-x 0-1+x 0=-1,所以f (x )max =-1.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,已知直线l 的参数方程为⎩⎨⎧ x =2t ,y =2+t(t 为参数),曲线C 的极坐标方程为ρcos 2θ=8sin θ.(1)求曲线C 的直角坐标方程,并指出该曲线是什么曲线;(2)若直线l 与曲线C 的交点分别为M ,N ,求|MN |.解 (1)因为ρcos 2θ=8sin θ,所以ρ2cos 2θ=8ρsin θ,即x 2=8y ,所以曲线C 表示焦点坐标为(0,2),对称轴为y 轴的抛物线.(2)设点M (x 1,y 1),点N (x 2,y 2),直线l 过抛物线的焦点(0,2),则直线的参数方程⎩⎪⎨⎪⎧x =2t ,y =2+t化为一般方程为y =12x +2,代入曲线C 的直角坐标方程,得x 2-4x -16=0,所以x 1+x 2=4,x 1x 2=-16,所以|MN |=(x 1-x 2)2+(y 1-y 2)2 =1+⎝ ⎛⎭⎪⎫122·(x 1-x 2)2 =1+⎝ ⎛⎭⎪⎫122·(x 1+x 2)2-4x 1x 2 =1+⎝ ⎛⎭⎪⎫122·42-4×(-16)=10. 23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=|x +4|,不等式f (x )>8-|2x -2|的解集为M .(1)求M ;(2)设a ,b ∈M ,证明:f (ab )>f (2a )-f (-2b ).解 (1)将f (x )=|x +4|代入不等式,整理得|x +4|+|2x -2|>8.①当x ≤-4时,不等式转化为-x -4-2x +2>8,解得x <-103,所以x ≤-4;②当-4<x <1时,不等式转化为x +4+2-2x >8,解得x<-2,所以-4<x<-2;③当x≥1时,不等式转化为x+4+2x-2>8,解得x>2,所以x>2.综上,M={x|x<-2或x>2}.(2)证明:因为f(2a)-f(-2b)=|2a+4|-|-2b+4|≤|2a+4+2b-4|=|2a+2b|,所以要证f(ab)>f(2a)-f(-2b),只需证|ab+4|>|2a+2b|,即证(ab+4)2>(2a+2b)2,即证a2b2+8ab+16>4a2+8ab+4b2,即证a2b2-4a2-4b2+16>0,即证(a2-4)(b2-4)>0,因为a,b∈M,所以a2>4,b2>4,所以(a2-4)(b2-4)>0成立,所以原不等式成立.。
2020届高考数学(文)总复习:创新思维课时规范练(含答案)第二章 第二节 函数的单调性与最值
课时规范练 A 组 基础对点练1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:当x >0时,f (x )=3-x 为减函数; 当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C. 答案:C2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -x C .y =-x 2+1D .y =lg|x |解析:A 中y =1x 是奇函数,A 不正确;B 中y =e -x=⎝ ⎛⎭⎪⎫1e x 是非奇非偶函数,B不正确;C 中y =-x 2+1是偶函数且在(0,+∞)上是单调递减的,C 正确;D 中y =lg|x |在(0,+∞)上是增函数,D 不正确.故选C. 答案:C3.(2019·天津模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( ) A .f (x )=(x -1)2 B .f (x )=e x C .f (x )=1xD .f (x )=ln(x +1)解析:根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ; 对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确; 对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D. 答案:C4.(2019·福州模拟)函数f (x )=⎩⎨⎧-x +3a ,x <0a x ,x ≥0,(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A .(0,1) B.⎣⎢⎡⎭⎪⎫13,1 C.⎝ ⎛⎦⎥⎤0,13 D.⎝ ⎛⎦⎥⎤0,23 解析:∵⎩⎪⎨⎪⎧0<a <13a ≥1,∴13≤a <1.答案:B5.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 解析:若函数f (x )=a x 在R 上为减函数,则有0<a <1;若函数g (x )=(2-a )x 3在R 上为增函数,则有2-a >0,即a <2,所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件,选A. 答案:A6.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25)B .f (log 25)<f (20.3)<f (0.32)C .f (log 25)<f (0.32)<f (20.3)D .f (0.32)<f (log 25)<f (20.3)解析:∵对任意的x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数. 又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数, ∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A. 答案:AB 组 能力提升练7.定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( ) A .[-1,2) B .[0,2) C .[0,1)D .[-1,1)解析:函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,∴函数在[-2,2]上单调递增,∴⎩⎪⎨⎪⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a ,∴⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C. 答案:C8.已知定义在R 上的函数f (x )在[1,+∞)上单调递减,且f (x +1)是偶函数,不等式f (m +2)≥f (x -1)对任意的x ∈[-1,0]恒成立,则实数m 的取值范围是( ) A .[-3,1]B .[-4,2]C .(-∞,-3]∪[1,+∞)D .(-∞,-4]∪[2,+∞)解析:因为f (x +1)是偶函数,所以f (-x +1)=f (x +1),所以f (x )的图象关于x =1对称,由f (m +2)≥f (x -1)得|(m +2)-1|≤|(x -1)-1|,所以根据题意得|m +1|≤2,解得-3≤m ≤1.故选A. 答案:A9.若函数f (x )=x 2-12ln x +1在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B.⎣⎢⎡⎭⎪⎫1,32 C .[1,2)D.⎣⎢⎡⎭⎪⎫32,2 解析:函数f (x )的定义域为(0,+∞),所以k -1≥0,即k ≥1.令f ′(x )=4x 2-12x =0,解得x =12⎝ ⎛⎭⎪⎫x =-12舍.因为函数f (x )在区间(k -1,k +1)内不是单调函数,所以k -1<12<k +1,得-12<k <32.综上得1≤k <32. 答案:B10.(2018·西安一中模拟)已知函数f (x )=⎩⎨⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-∞,-2)∪(1,+∞) C .(-1,2)D .(-2,1)解析:∵当x =0时,两个表达式对应的函数值都为零,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.故选D.答案:D11.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.解析:由f (x )=⎩⎪⎨⎪⎧-2x -a ,x <-a22x +a ,x ≥-a2,可得函数f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫-a 2,+∞,故3=-a 2,解得a =-6.答案:-612.已知函数f (x )=x +ax (x ≠0,a ∈R ),若函数f (x )在(-∞,-2]上单调递增,则实数a 的取值范围是__________.解析:设x 1<x 2≤-2,则Δy =f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2=(x 1-x 2)(x 1x 2-a )x 1x 2.因为x 1-x 2<0,x 1x 2>0,所以要使Δy =(x 1-x 2)(x 1x 2-a )x 1x 2<0恒成立,只需使x 1x 2-a >0恒成立,即a <x 1x 2恒成立.因为x 1<x 2≤-2,所以x 1x 2>4,所以a ≤4,故函数f (x )在(-∞,-2]上单调递增时,实数a 的取值范围是(-∞,4]. 答案:(-∞,4]。
卷02-2020年高考数学(文)冲刺逆袭必备卷【学科网名师堂】(解析版)
2020年高考数学(文)冲刺逆袭必备卷02(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:高中全部内容.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知实数集R ,集合{|13}A x x =<<,集合|B x y ⎧==⎨⎩,则()R A C B ⋂=( ) A .{|12}x x <≤B .{|13}x x <<C .{|23}x x ≤<D .{|12}x x << 【答案】A0>,得2x >,即(2,)B =+∞,所以R C B (,2]=-∞,所以()R A C B ⋂=(1,2].故选:A【点睛】本题考查了集合的补集和交集的混合运算,属于基础题.2.已知a 、b R ∈,则“0a b >>”是“22a b +>+”的什么条件( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】0a b >>,则220a b +>+>,∴22a b +>+, 反之若22a b +>+,如10,1a b =-=-,满足22a b +>+,但不能得出0a b >>.∴“0a b >>”是“22a b +>+”的充分不必要条件.故选:A .【点睛】本题考查充分必要条件,掌握充分必要条件的定义是解题关键.3.i 是虚数单位,若17(,)2i a bi a b R i +=+∈-,则乘积ab 的值是( ) A .-15B .-3C .3D .15【答案】B【解析】 17(17)(2)1325i i i i i +++==-+-,∴1,3,3a b ab =-==-,选B . 4.定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f <<C .(64)(49)(81)f f f <<D .(64)(81)(49)f f f <<【答案】A【解析】试题分析:因为(3)()f x f x -=-,所以()(6)(3)f x f x f x -=--=,及()f x 是周期为6的函数,结合()f x 是偶函数可得,()()()()()(49)1,(64)22,(81)33f f f f f f f f ==-==-=,再由12,[0,3]x x ∀∈且12x x ≠,1212()()0f x f x x x ->-得()f x 在[0,3]上递增,因此(1)(2)(3)f f f <<,即(49)(64)(81)f f f <<,故选A .5.若51sin 24πα⎛⎫+= ⎪⎝⎭,则cos2=α( ) A .78 B .78- C .34 D .34- 【答案】B 【解析】因为51sin 24πα⎛⎫+= ⎪⎝⎭,所以1cos 4α=,则217cos 22cos 121168αα=-=⨯-=-. 故选:B .【点睛】本题考查诱导公式与余弦的二倍角公式,考查运算求解能力.解题时要根据已知和求值式确定选用公式的顺序,以便正确快速地得出结论.6.已知向量()()1,3,2a m b ==-v v ,,且()a b b +⊥v v v ,则m =( )A .−8B .−6C .6D .8【答案】D 【解析】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-r r r r ,又()a b b +⊥r r r ,∴3×4+(﹣2)×(m ﹣2)=0,解得m =8.故选D .【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题.7.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( ) A .2550100,,777 B .252550,,1477 C .100200400,,777 D .50100200,,777【答案】D【解析】设羊户赔粮1a 升,马户赔粮2a 升,牛户赔粮3a 升,则123,,a a a 成等比数列,且公比1232,50q a a a =++=,则1(1a q +)250q +=,故1250501227a ==++,2110027a a ==,23120027a a ==. 故选:D. 8.程序框图如图所示,运行相应的程序,若输入的a 的值为1-,则输出S 的值为( )A .2B .3C .4D .5【答案】A 【解析】按照程序框图运行程序,输入1a =-,则0S =,1k =,满足4k ≤,循环;则()0111S =+-⨯=-,1a =,2k =,满足4k ≤,循环;则1121S =-+⨯=,1a =-,3k =,满足4k ≤,循环;则()1132S =+-⨯=-,1a =,4k =,满足4k ≤,循环;则2142S =-+⨯=,1a =-,5k =,不满足4k ≤,输出2S =本题正确选项:A9.某几何体的三视图如图所示,则该几何体的体积为( )A .B .4π3CD .【答案】D【解析】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积1114π233V =⨯⨯⨯=,下半部分的正三棱柱的体积21442V =⨯⨯=故该几何体的体积12V V V =+=+ 故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题. 10.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么( )A .国防大学,研究生B .国防大学,博士C .军事科学院,学士D .国防科技大学,研究生【答案】C【解析】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题. 11.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,1F ,2F 为双曲线C 的左、右焦点,若212||||PF F F =,且直线1PF 与以C 的实轴为直径的圆相切,则C 的离心率为( )A .53BC .43D .54【答案】A【解析】设1PF 与圆的切于点M ,如图,21F N PF ⊥,由212PF F F =知N 是1PF 中点,P 在双曲线上,122PF PF a -=,所以12122222PF PF a F F a c a =+=+=+,由1OM PF ⊥,O 是12F F 中点,可得11111242a c F M F N F P +===, 1F MO ∆中由勾股定理得222()2a c c a +=+,整理得223250c ac a --=,即23250e e --=,(1)(35)0e e +-=,所以53e =. 故选:A .【点睛】本题考查求双曲线的离心率,解题关键是把切线与等腰三角形结合起来,得出切点是1PF 的等分点.本题还考查双曲线的定义,直线与圆相切问题,属于中档题.12.在△ABC 中,1cos 7A =,sin()14C B -=,6BC =,则AC 边的长为A BC .4D .【答案】C【解析】如图所示,在AB 边上取一点D ,使B DCB ∠=∠,设ACD θ∠=,则()sin sin C B θ-==由1cos 7A =得sin 7A =. 因为sin sin A θ>,所以θ为锐角,从而11cos 14θ=. 所以()()1cos cos 180cos 2ADC A A θθ∠=︒--=-+=, 于是60ADC ∠=︒, 故1302B ADC =∠=︒,在△ABC 中,由正弦定理sin sin BC AC A B =得AC = 故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.若实数x,y 满足不等式组{x +y −4≤0,2x −3y −8≤0,x ≥1,则目标函数z =3x −y 的最大值为__________.【答案】12【解析】根据约束条件画出可行域,如下图,由{x +y −4=02x −3y −8=0,解得A(4,0) 目标函数y =3x −z ,当y =3x −z 过点(4,0)时,z 有最大值,且最大值为12.故答案为:12.【点睛】本题考查线性规划的简单应用,属于基础题.14.已知半圆C :221x y +=(0y ≥),A 、B 分别为半圆C 与x 轴的左、右交点,直线m 过点B 且与x 轴垂直,点P 在直线m 上,纵坐标为t ,若在半圆C 上存在点Q 使3BPQ π=∠,则t 的取值范围是【答案】[⋃ 【解析】根据题意,设PQ 与x 轴交于点T ,则|PB |=|t |,由于BP 与x 轴垂直,且∠BPQ 3π=,则在Rt △PBT 中,|BT |=PB |=t |,当P 在x 轴上方时,PT 与半圆有公共点Q ,PT 与半圆相切时,|BT |有最大值3,此时t当P 在x 轴下方时,当Q 与A 重合时,|BT |有最大值2,|t |有最大值3,则t 取得最小值3-,t =0时,P 与B 重合,不符合题意,则t 的取值范围为[,0)(0⋃.15.已知函数()()2cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是______. 【答案】20,3⎛⎤ ⎥⎝⎦【解析】因为cos y x =在[]2,2,k k k Z πππ-∈上单调递增, 由223k x k πππωπ-≤-≤,得22233k k x ππππωωωω-≤≤+,k Z ∈, 所以()()2cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在2,33ππωω⎡⎤-⎢⎥⎣⎦上单调递增,则2,,3233ππππωω⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,解得203ω<≤. 故答案为:2(0,]3.【点睛】本题考查三角函数的单调性,考查运算求解能力与推理论证能力.掌握余弦函数的性质是解题关键. 16.,M N 分别为菱形ABCD 的边,BC CD 的中点,将菱形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,以下命题正确的是___________.(写出所有正确命题的序号)①//MN 平面ABD ;②异面直线AC 与MN 所成的角为定值;③在二面角D AC B --逐渐渐变小的过程中,三棱锥D ABC -的外接球半径先变小后变大;④若存在某个位程,使得直线AD 与直线BC 垂直,则ABC ∠的取值范围是0,2π⎛⎫ ⎪⎝⎭. 【答案】①②④【解析】①由,M N 分别为菱形ABCD 的边,BC CD 的中点,故//MN BD ,MN ⊄平面ABD ,故//MN 平面ABD ;②取A C 中点P ,连接DP ,BP ,由于菱形ABCD ,所以,DP AC BP AC ⊥⊥,可证得AC ⊥平面DPB ,故BD AC ⊥,又//MN BD ,故MN AC ⊥,异面直线AC 与MN 所成的角为定值.③ 借助极限状态,当平面DCA 与平面BCA 重合时,三棱锥D ABC -的外接球即为以三角形ABC 的外接圆为圆心,半径为半径的球,当二面角变大时球心离开平面ABC ,但球心在平面ABC 的投影仍然为三角形ABC 的外接圆的圆心,故二面角不为0时,外接球半径一定大于三角形ABC 的外接圆半径,故三棱锥D ABC -的外接球半径不可能先变小后变大.④过A 在平面AB C 中作AH BC ⊥交BC 于H ,若ABC ∠为锐角,H 在线段BC 上;若ABC ∠为直角,H 与B 点重合;ABC ∠为钝角,H 在线段BC 的延长线射线CB 上.若存在某个位程,使得直线AD 与直线BC 垂直,由于AH BC ⊥,因此BC ⊥平面AHD ,故DH BC ⊥.若ABC ∠为直角,H 与B 点重合,即DB BC ⊥,由于CD CB =,不可能成立.若ABC ∠为钝角,则原平面图中,DCB ∠为锐角,由于立体图中DB DP PB <+,故立体图中DCB ∠一定比原图中更小,因此DCB ∠为锐角,DH BC ⊥,故H 在线段CB 上,与H 在线段BC 的延长线射线CB 上矛盾,因此ABC ∠的取值范围是0,2π⎛⎫ ⎪⎝⎭. 故答案为:①②④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知首项为2的数列{}n a 满足11221n n n na a n +++=+. (1)证明:数列2n n na ⎧⎫⎨⎬⎩⎭是等差数列. (2)令n n b a n =+,求数列{}n b 的前n 项和n S .【解析】(1)证明:因为11221n n n na a n +++=+,所以11(1)22n n n n a na +++=+, 所以11(1)122n n n n n a na +++=+,从而11(1)122n n n n n a na +++-=,因为12a =,所以112a =, 故数列2n n na ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列. (2)由(1)可知()112n n na n n =+-=,则2n n a =,因为n n b a n =+,所以2n n b n =+, 则123n n S b b b b =+++⋯+()()()23(21)22232n n =++++++++L()232222(123)n n =+++++++++L L ()212(1)122nn n ⨯-+=+-12112222n n n +=++-. 18.(本小题满分12分)如图,已知菱形ABCD 和矩形ACEF ,60ABC ∠=o ,2AB AF ==点M 是EF 的中点.(1).求证://AM 平面BDE ;(2).平面ABCD ⊥平面ACEF ,求三棱锥D EFB -的体积.【解析】(1) ACEF Q 为矩形,M 是EF 中点设AC 和BD 的交点为O,连EO ,ABCD Q 为菱形,O ∴为AC 的中点,//EO AM ∴,又EO ⊂平面,BDE AE ⊄平面BDE ,//AM ∴平面BDE 。
2020届高考数学大二轮专题复习冲刺方案-文数(创新版)文档:仿真模拟卷一+Word版含解析
仿真模拟卷一本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |3x <1},则( ) A .A ∪B ={x |x >1} B .A ∪B =R C .A ∩B ={x |x <0} D .A ∩B =∅答案 C解析 集合B ={x |3x <1},即B ={x |x <0},而A ={x |x <1},所以A ∪B ={x |x <1},A ∩B ={x |x <0}.2.记复数z 的共轭复数为z -,若z -(1-i)=2i(i 为虚数单位),则|z |=( ) A. 2 B .1 C .2 2 D .2答案 A解析 由z -(1-i)=2i ,可得z -=2i 1-i =2i (1+i )2=-1+i ,所以z =-1-i ,|z |= 2.3.设a =ln 13,b =20.3,c =⎝ ⎛⎭⎪⎫132,则( )A .a <c <bB .c <a <bC .a <b <cD .b <a <c答案 A解析 由对数函数的性质可知a =ln 13<0,由指数函数的性质可知b =20.3>1,又0<c =⎝ ⎛⎭⎪⎫132<1,故选A.4.设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π6<π6”是“sin θ<32”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由⎪⎪⎪⎪⎪⎪θ-π6<π6可得0<θ<π3,所以由“⎪⎪⎪⎪⎪⎪θ-π6<π6”可得“sin θ<32”,但由“sin θ<32”推不出“⎪⎪⎪⎪⎪⎪θ-π6<π6”,所以“⎪⎪⎪⎪⎪⎪θ-π6<π6”是“sin θ<32”的充分不必要条件.5.在如图所示的计算1+5+9+…+2021的程序框图中,判断框内应填入的条件是( )A .i ≤2021?B .i <2021?C .i <2017?D .i ≤2025?答案 A解析 由题意结合流程图可知当i =2021时,程序应执行S =S +i ,i =i +4=2025,再次进入判断框时应该跳出循环,输出S 的值;结合所给的选项可知判断框内应填入的条件是i ≤2021?.6.已知函数f (x )=e |x |+cos x ,若f (2x -1)≥f (1),则x 的取值范围为( ) A .(-∞,0]∪[1,+∞) B .[0,1] C .(-∞,0] D .[1,+∞)答案 A解析 解法一:(直接法)因为f (-x )=f (x ),且x ≥0时f (x )=e x +cos x ⇒f ′(x )=e x -sin x >e 0-1=0,所以函数f (x )为偶函数,且在[0,+∞)上单调递增,因此f (2x -1)≥f (1)⇒f (|2x -1|)≥f (1)⇒|2x -1|≥1⇒2x -1≥1或2x -1≤-1⇒x ≥1或x ≤0.故选A.解法二:(排除法)由题知f (1)=e +cos1.取x =π,则f (2π-1)=e |2π-1|+cos(2π-1)=e 2π-1+cos1>f (1),排除B ,C ;取x =-π,则f (-2π-1)=e |-2π-1|+cos(-2π-1)=e 2π+1+cos1>f (1),排除D.故选A.7.在△ABC 中,AB →+AC →=2AD →,AE →+DE →=0,若EB →=xAB →+yAC →,则( )A .y =3xB .x =3yC .y =-3xD .x =-3y答案 D解析 因为AB→+AC →=2AD →,所以点D 是BC 的中点,又因为AE →+DE →=0,所以点E 是AD 的中点,所以有BE→=BA →+AE →=-AB →+12AD →=-AB →+12×12(AB →+AC →)=-34AB →+14AC →,因此EB →=34AB →-14AC →.所以x =34,y =-14,即x =-3y .8.已知函数f (x )=A sin(ωx +φ),A >0,ω>0,|φ|<π2的部分图象如图所示,则使f (a +x )-f (a -x )=0成立的a 的最小正值为( )A.π12B.π6C.π4D.π3答案 B解析 由图象易知,A =2,f (0)=1,即2sin φ=1,且|φ|<π2,即φ=π6,由图可知,f ⎝ ⎛⎭⎪⎫11π12=0,所以sin ⎝ ⎛⎭⎪⎫11π12·ω+π6=0,所以11π12·ω+π6=2k π,k ∈Z ,即ω=24k -211,k ∈Z ,又由图可知,周期T >11π12⇒2πω>11π12,得ω<2411,且ω>0,所以k =1,ω=2,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,因为f (a +x )-f (a -x )=0,所以函数f (x )的图象关于x=a 对称,即有2a +π6=k π+π2,k ∈Z ,所以可得a =k π2+π6,k ∈Z ,所以a 的最小正值为π6.9.若函数f (x )是定义在R 上的奇函数,f ⎝ ⎛⎭⎪⎫14=1,当x <0时,f (x )=log 2(-x )+m ,则实数m =( )A .-1B .0C .1D .2答案 C解析 ∵f (x )是定义在R 上的奇函数,f ⎝ ⎛⎭⎪⎫14=1,且x <0时,f (x )=log 2(-x )+m ,∴f ⎝ ⎛⎭⎪⎫-14=log 214+m =-2+m =-1,∴m =1. 10.在等差数列{a n }中,a 3,a 9是方程x 2+24x +12=0的两根,则数列{a n }的前11项和等于( )A .66B .132C .-66D .-132 答案 D解析 因为a 3,a 9是方程x 2+24x +12=0的两根, 所以a 3+a 9=-24,又a 3+a 9=-24=2a 6,所以a 6=-12, S 11=11×(a 1+a 11)2=11×2a 62=-132.11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点分别为A ,B ,P 为双曲线左支上一点,△ABP 为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为( )A.155B.154C.153D.152 答案 C解析 由题意知等腰△ABP 中,|AB |=|AP |=2a ,设∠ABP =∠APB =θ,F 1为双曲线的左焦点,则∠F 1AP =2θ,其中θ必为锐角.∵△ABP 外接圆的半径为5a , ∴25a =2asin θ,∴sin θ=55,cos θ=255,∴sin2θ=2×55×255=45,cos2θ=2×⎝⎛⎭⎪⎫2552-1=35. 设点P 的坐标为(x ,y ),则x =-a -|AP |cos2θ=-11a 5,y =|AP |sin2θ=8a5,故点P 的坐标为⎝ ⎛⎭⎪⎫-11a 5,8a 5.由点P 在双曲线上,得⎝ ⎛⎭⎪⎫-11a 52a 2-⎝ ⎛⎭⎪⎫8a 52b 2=1,整理得b 2a 2=23,∴e =c a = 1+b 2a 2=153.12.德国著名数学家狄利克雷(Dirichlet,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”:y =f (x )=⎩⎨⎧1,x ∈Q ,0,x ∈∁R Q ,其中R 为实数集,Q 为有理数集.则关于函数f (x )有如下四个命题:①f [f (x )]=0;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x +T )=f (x )对任意的x ∈R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数是( )A .1B .2C .3D .4 答案 C解析 当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0.∴当x 为有理数时,f [f (x )]=f (1)=1;当x 为无理数时,f [f (x )]=f (0)=1,∴无论x 是有理数还是无理数,均有f [f (x )]=1,故①不正确;∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x ∈R ,都有f (-x )=f (x ),故②正确;当T ∈Q 时,若x 是有理数,则x +T 也是有理数;若x 是无理数,则x +T 也是无理数,∴根据函数的表达式,任取一个不为零的有理数T ,f (x +T )=f (x )对x ∈R 恒成立,故③正确;取x 1=33,x 2=0,x 3=-33,f (x 1)=0,f (x 2)=1,f (x 3)=0,∴A ⎝ ⎛⎭⎪⎫33,0,B (0,1),C ⎝ ⎛⎭⎪⎫-33,0,△ABC 恰好为等边三角形,故④正确,故选C.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13.已知x ,y 满足约束条件⎩⎨⎧x -3y +4≥0,x -2≤0,x +y ≥0,x ,y ∈R ,则x 2+y 2的最大值为________.答案 8解析 画出不等式组表示的可行域如图阴影部分所示(含边界).x 2+y 2表示可行域内的点(x ,y )到原点距离的平方.由图形可得,可行域内的点A 或点B 到原点的距离最大,且A (2,-2),B (2,2),又|OA |=|OB |=22,∴(x 2+y 2)max =8.14.设直三棱柱ABC -A 1B 1C 1的所有顶点都在同一个球面上,且球的表面积是40π,AB =AC =AA 1,∠BAC =120°,则此直三棱柱的高是________.答案 2 2解析 设AB =AC =AA 1=x ,在△ABC 中,∠BAC =120°, 则由余弦定理可得BC =3x . 由正弦定理,可得△ABC 外接圆的半径为r =x , 又∵球的表面积是40π, ∴球的半径为R =10.设△ABC 外接圆的圆心为O ′,球心为O ,在Rt △OBO ′中,有⎝ ⎛⎭⎪⎫12x 2+x 2=10,解得x =22,即AA 1=2 2.∴直三棱柱的高是2 2.15.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图,在一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是________.答案 316解析 由七巧板的构造可知,△BIC ≌△GOH ,故黑色部分的面积与梯形EFOH 的面积相等,而S 梯形EFOH =34S △DOF =34×14S 正方形ABDF = 316S 正方形ABDF ,∴所求的概率为P =S 梯形EFOH S 正方形ABDF =316. 16.在数列{a n }中,a 1=1,a n +1=S n +3n (n ∈N *,n ≥1),则数列{S n }的通项公式为________.答案 S n =3n -2n解析 ∵a n +1=S n +3n =S n +1-S n , ∴S n +1=2S n +3n , ∴S n +13n +1=23·S n 3n +13, ∴S n +13n +1-1=23⎝ ⎛⎭⎪⎫S n 3n -1,又S 13-1=13-1=-23,∴数列⎩⎨⎧⎭⎬⎫S n 3n -1是首项为-23,公比为23的等比数列, ∴S n 3n -1=-23×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n ,∴S n =3n -2n .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且3b cos A =sin A (a cos C +c cos A ).(1)求角A 的大小;(2)若a =23,△ABC 的面积为534,求△ABC 的周长. 解 (1)∵3b cos A =sin A (a cos C +c cos A ),∴由正弦定理可得,3sin B cos A =sin A (sin A cos C +sin C cos A )=sin A sin(A +C )=sin A sin B ,即3sin B cos A =sin A sin B , ∵sin B ≠0,∴tan A =3, ∵A ∈(0,π),∴A =π3.(2)∵A =π3,a =23,△ABC 的面积为534, ∴12bc sin A =34bc =534, ∴bc =5,∴由余弦定理可得,a2=b2+c2-2bc cos A,即12=b2+c2-bc=(b+c)2-3bc=(b+c)2-15,解得b+c=33,∴△ABC的周长为a+b+c=23+33=5 3.18.(本小题满分12分)如图,在三棱柱ABF-DCE中,∠ABC=120°,BC=2CD,AD=AF,AF⊥平面ABCD.(1)求证:BD⊥EC;(2)若AB=1,求四棱锥B-ADEF的体积.解(1)证明:已知ABF-DCE为三棱柱,且AF⊥平面ABCD,∴DE∥AF,ED⊥平面ABCD.∵BD⊂平面ABCD,∴ED⊥BD,又四边形ABCD为平行四边形,∠ABC=120°,故∠BCD=60°,又BC=2CD,故∠BDC=90°,故BD⊥CD,∵ED∩CD=D,ED,CD⊂平面ECD,∴BD⊥平面ECD,∵EC⊂平面ECD,故BD⊥EC.(2)由BC=2CD得AD=2AB,∵AB=1,故AD=2,作BH⊥AD于点H,∵AF ⊥平面ABCD ,BH ⊂平面ABCD ,∴AF ⊥BH ,又AD ∩AF =A ,AD ,AF ⊂平面ADEF , ∴BH ⊥平面ADEF ,又∠ABC =120°, ∴在△ABH 中,∠BAH =60°,又AB =1, ∴BH =32,∴V B -ADEF =13×(2×2)×32=233.19.(本小题满分12分)某工厂某产品近几年的产量统计如下表:年份 2014 2015 2016 2017 2018 2019 年份代码t 1 2 3 4 5 6 年产量y /万件 6.66.777.17.27.4(1)根据表中数据,求y 关于t 的线性回归方程y ^=b ^t +a ^;(2)若近几年该产品每件的价格v (单位:元)与年产量y 满足的函数关系式为v =4.5-0.3y ,且每年该产品都能售完.①根据(1)中所建立的回归方程预测该工厂2020(t =7)年该产品的年产量; ②当t (1≤t ≤7)为何值时,该产品的年销售额S (单位:元)最大?附:对于一组数据(t 1,y 1),(t 2,y 2),…,(t n ,y n ),其回归直线y ^=b ^t +a ^的斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t )(y i -y -)∑i =1n(t i -t )2,a ^=y --b ^t .解 (1)由题意,得t =1+2+3+4+5+66=3.5,y -=6.6+6.7+7+7.1+7.2+7.46=7,∑i =16(t i -t )(y i -y -)=(-2.5)×(-0.4)+(-1.5)×(-0.3)+0+0.5×0.1+1.5×0.2+2.5×0.4=2.8,∑i =16(t i -t )2=(-2.5)2+(-1.5)2+(-0.5)2+0.52+1.52+2.52=17.5.由b ^=∑i =16(t i -t )(y i -y -)∑i =16(t i -t )2,得b ^=2.817.5=0.16,由a ^=y --b ^ t ,得a ^=7-0.16×3.5=6.44, 所以y 关于t 的线性回归方程为y ^=0.16t +6.44.(2)①由(1)知y ^=0.16t +6.44,当t =7时,y ^=0.16×7+6.44=7.56, 所以预测该工厂2020年该产品的年产量为7.56万件. ②当年产量为y 时,年销售额S =(4.5-0.3y )y ×104 =(-0.3y 2+4.5y )×104=[-0.3(y -7.5)2+16.875]×104, 由题知y ∈{6.6,6.7,7,7.1,7.2,7.4,7.56},所以当y =7.56,即t =7时,年销售额最大,即2020年的销售额最大. 20.(本小题满分12分)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点,过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程;(2)求S 1S 2的最小值及此时点G 的坐标.解 (1)由题意得p2=1,即p =2. 所以抛物线的准线方程为x =-1. (2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ), 重心G (x G ,y G ). 令y A =2t,2t ≠0,则x A =t 2.由于直线AB 过F ,故直线AB 的方程为x =t 2-12t y +1,代入y 2=4x ,得y 2-2(t 2-1)ty -4=0, 故2ty B =-4,即y B =-2t ,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又由于x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,故2t -2t +y C =0,得C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0. 所以直线AC 的方程为y -2t =2t (x -t 2), 得Q (t 2-1,0).由于Q 在焦点F 的右侧,故t 2>2.从而S 1S 2=12|FG |·|y A |12|QG |·|y C |=⎪⎪⎪⎪⎪⎪2t 4-2t 2+23t 2-1·|2t |⎪⎪⎪⎪⎪⎪t 2-1-2t 4-2t 2+23t 2·⎪⎪⎪⎪⎪⎪2t -2t =2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m =t 2-2,则m >0, S 1S 2=2-m m 2+4m +3=2-1m +3m +4≥2-12m ·3m +4=1+32.当m =3时,S 1S 2取得最小值1+32,此时G (2,0).21.(本小题满分12分)设函数f (x )=m e x -x 2+3,其中m ∈R . (1)当f (x )为偶函数时,求函数h (x )=xf (x )的极值;(2)若函数f (x )在区间[-2,4]上有两个零点,求m 的取值范围. 解 (1)由函数f (x )是偶函数,得f (-x )=f (x ),即m e -x -(-x )2+3=m e x -x 2+3对于任意实数x 都成立,所以m =0. 此时h (x )=xf (x )=-x 3+3x ,则h ′(x )=-3x 2+3. 由h ′(x )=0,解得x =±1.当x 变化时,h ′(x )与h (x )的变化情况如下表所示:所以h(x)在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.所以h(x)有极小值h(-1)=-2,极大值h(1)=2.(2)由f(x)=m e x-x2+3=0,得m=x2-3 e x.所以“f(x)在区间[-2,4]上有两个零点”等价于“直线y=m与曲线g(x)=x2-3e x,x∈[-2,4]有且只有两个公共点”.对函数g(x)求导,得g′(x)=-x2+2x+3e x.由g′(x)=0,解得x1=-1,x2=3.当x变化时,g′(x)与g(x)的变化情况如下表所示:所以g(x)在(-2,-1),(3,4)上单调递减,在(-1,3)上单调递增.又因为g(-2)=e2,g(-1)=-2e,g(3)=6e3<g(-2),g(4)=13e4>g(-1),所以当-2e<m<13e4或m=6e3时,直线y=m与曲线g(x)=x2-3e x,x∈[-2,4]有且只有两个公共点.即当-2e<m<13e4或m=6e3时,函数f(x)在区间[-2,4]上有两个零点.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy中,曲线C1的方程为x2+y2=4,直线l的参数方程为⎩⎨⎧x =-2-t ,y =33+3t (t 为参数),若将曲线C 1上的点的横坐标不变,纵坐标变为原来的32,得曲线C 2.(1)写出曲线C 2的参数方程;(2)设点P (-2,33),直线l 与曲线C 2的两个交点分别为A ,B ,求1|P A |+1|PB |的值.解 (1)若将曲线C 1上的点的横坐标不变,纵坐标变为原来的32, 则得到曲线C 2的直角坐标方程为x 2+⎝ ⎛⎭⎪⎫23y 2=4,整理,得x 24+y 29=1,∴曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).(2)将直线l 的参数方程化为标准形式为 ⎩⎪⎨⎪⎧x =-2-12t ′,y =33+32t ′(t ′为参数),将参数方程代入x 24+y 29=1,得⎝ ⎛⎭⎪⎫-2-12t ′24+⎝ ⎛⎭⎪⎫33+32t ′29=1, 整理,得74(t ′)2+18t ′+36=0.∴|P A |+|PB |=|t 1′+t 2′|=727,|P A |·|PB |=t 1′t 2′=1447,∴1|P A |+1|PB |=|P A |+|PB ||P A |·|PB |=7271447=12.23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +3|+|x -1|的最小值为m .(1)求m的值以及此时x的取值范围;(2)若实数p,q,r满足:p2+2q2+r2=m,证明:q(p+r)≤2.解(1)依题意,得f(x)=|x+3|+|x-1|≥|x+3-x+1|=4,故m的值为4.当且仅当(x+3)(x-1)≤0,即-3≤x≤1时等号成立,即x的取值范围为[-3,1].(2)证明:因为p2+2q2+r2=m,故(p2+q2)+(q2+r2)=4.因为p2+q2≥2pq,当且仅当p=q时等号成立;q2+r2≥2qr,当且仅当q=r时等号成立,所以(p2+q2)+(q2+r2)=4≥2pq+2qr,故q(p+r)≤2,当且仅当p=q=r时等号成立.。
2020届高考数学大二轮专题复习冲刺方案-文数(经典版)文档:基础保分强化训练(二)+Word版含解析
基础保分强化训练(二)1.已知集合A =[1,+∞),B ={|x ∈R 12a ≤x ≤2a -1},若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞) B.⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)答案 A解析因为A ∩B ≠∅,所以⎩⎨⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.2.若复数z =1+m i1+i在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)答案 A解析 因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i ,在复平面内对应的点为⎝ ⎛⎭⎪⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m2>0,m -12<0,解得-1<m <1,故选A.3.设S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,则a 7a 4等于( )A .1B .3C .7D .13 答案 C解析 因为S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,所以13(a 1+a 13)2=13×7(a 1+a 7)2,即a 7=7a 4,所以a 7a 4=7.故选C.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某简单几何体的三视图,则该几何体的体积为( )A.4π3B.8π3C.16π3D.32π3 答案 A解析 由三视图可得该几何体为半圆锥,底面半圆的半径为2,高为2,则其体积V =12×13×π×22×2=4π3,故选A.5.已知i 与j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12 B.⎝ ⎛⎭⎪⎫12,+∞ C.⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫-∞,12 答案 A解析 因为i 与j 为互相垂直的单位向量,所以i 2=j 2=1,i ·j =0.又因为a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,所以a ·b =1-2λ>0,λ<12.但当λ=-2时,a =b ,不满足要求,故满足条件的实数λ的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12.故选A.6.若函数f (x )=sin2x +cos2x ,则下列结论正确的是( ) A .函数f (x )的最小正周期为2πB .对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=0C .函数f (x )在⎝ ⎛⎭⎪⎫π2,3π4上是减函数D .函数f (x )的图象关于直线x =-π8对称 答案 B解析 函数f (x )=sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,则函数f (x )的最小正周期为T=2π2=π,故A 错误;f ⎝ ⎛⎭⎪⎫x -π4+f (-x )=2sin ⎝ ⎛⎭⎪⎫2x -π4+2sin ⎝ ⎛⎭⎪⎫-2x +π4=0,故B 正确;令π2+2k π≤2x +π4≤2k π+3π2(k ∈Z ),解得π8+k π≤x ≤k π+5π8(k ∈Z ),当k =0时,函数的单调递减区间为⎣⎢⎡⎦⎥⎤π8,5π8,故C 错误;当x =-π8时,f ⎝ ⎛⎭⎪⎫-π8=0.故D 错误,故选B.7.已知长方体ABCD -A 1B 1C 1D 1中,B 1C ,C 1D 与底面ABCD 所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为( )A.64B.14C.26D.36 答案 A解析 ∵B 1C 和C 1D 与底面ABCD 所成的角分别为60°和45°,∴∠B 1CB =60°,∠C 1DC =45°.由图可知,B 1C 与C 1D 所成的角,即为A 1D 与C 1D 所成的角,即∠A 1DC 1.令BC =1,则B 1B =AB =3,∴A 1D =2,A 1C 1=2,C 1D = 6.由余弦定理,得cos ∠A 1DC 1=22+(6)2-222×2×6=64.故选A.8.如图,在矩形区域ABCD 中,AB =2,AD =1,且在A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机选一地点,则该地点无信号的概率是( )A .2-π2 B.π2-1 C .1-π4 D.π4 答案 C解析 由条件得扇形区域ADE 和扇形区域CBF 的面积均为π4,又矩形区域ABCD 的面积为2×1=2,根据几何概型概率公式可得所求概率为P =2-2×π42=1-π4,即在该矩形区域内随机选一地点,则该地点无信号的概率是1-π4.9.已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是双曲线C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角的大小为30°,则双曲线C 的渐近线方程是( )A.2x ±y =0 B .x ±2y =0 C .2x ±y =0 D .x ±2y =0答案 A解析 不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a ,且|F 1F 2|=2c ,即|PF 2|为最小边,所以∠PF 1F 2=30°,则△PF 1F 2为直角三角形,所以2c =23a ,所以b =2a ,即渐近线方程为y =±2x ,故选A.10.若x ,y 满足⎩⎨⎧x +y -3≥0,kx -y +3≥0,y ≥0,且z =y -x 的最小值为-12,则k 的值为( )A.12 B .-12 C.14 D .-14 答案 D解析 依题意,易知k ≤-1和k ≥0不符合题意.由⎩⎪⎨⎪⎧kx -y +3=0,y =0得A ⎝ ⎛⎭⎪⎫-3k ,0,结合图形可知,当直线z =y -x 过点A ⎝ ⎛⎭⎪⎫-3k ,0时,z 有最小值,于是有0+3k =-12,k =-14,选D.11.椭圆x 24+y 2=1上存在两点A ,B 关于直线4x -2y -3=0对称,若O 为坐标原点,则|OA →+OB →|=( )A .1 B. 3 C. 5 D.7 答案 C解析 由题意,直线AB 与直线4x -2y -3=0垂直,设直线AB 的方程为y =-12x +m .由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 2=1消去y 整理得x 2-2mx +2m 2-2=0,∵直线AB 与椭圆交于两点,∴Δ=(-2m )2-4(2m 2-2)=-4m 2+8>0,解得-2<m < 2.设A (x 1,y 1),B (x 2,y 2),AB 的中点为M (x 0,y 0),则x 1+x 2=2m ,∴x 0=x 1+x 22=m ,y 0=-12x 0+m =m 2,∴点M 的坐标为⎝ ⎛⎭⎪⎫m ,m 2.由题意得点M 在直线4x -2y -3=0上,∴4m-2×m 2-3=3m -3=0,解得m =1.∴x 1+x 2=2,y 1+y 2=-12(x 1+x 2)+2m =1,∴OA →+OB →=(2,1),∴|OA →+OB →|= 5.故选C.12.已知角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点P(-1,2),则cos2α=________.答案-35解析设点P到原点的距离是r,由三角函数的定义,得r=5,sinα=2r=25,可得cos2α=1-2sin2α=1-2×⎝⎛⎭⎪⎫252=-35.13.将1,2,3,4,…正整数按如图所示的方式排成三角形数组,则第10行左数第10个数为________.答案91解析由三角形数组可推断出,第n行共有2n-1项,且最后一项为n2,所以第10行共19项,最后一项为100,左数第10个数是91.14.已知在△ABC中,B=2A,∠ACB的平分线CD把三角形分成△BCD和△ACD,且S△BCD∶S△ACD=4∶3,则cos A=________.答案38解析在△ADC中,由正弦定理,得ACsin∠ADC=37ABsin∠ACD⇒AC37AB=sin∠ADCsin∠ACD.同理,在△BCD中,得BCsin∠BDC=47ABsin∠BCD⇒BC47AB=sin∠BDCsin∠BCD,又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以AC 37AB =BC 47AB ⇒AC =34BC ,由正弦定理,得sin B =34sin A ,又B =2A ,即sin B =2sin A cos A ,求得cos A =38.。
普通高等学校2020年招生全国统一考试临考冲刺卷二数学文含解析推荐
年招生全国统一考试临考冲刺卷普通高等学校2020高三文科数学(二)注意事项:.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码1 粘贴在答题卡上的指定位置。
铅笔把答题卡上对应题目的答案标号涂黑,2B2.选择题的作答:每小题选出答案后,用写在试题卷、草稿纸和答题卡上的非答题区域均无效。
.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿3 纸和答题卡上的非答题区域均无效。
.考试结束后,请将本试题卷和答题卡一并上交。
4卷Ⅰ第分,在每小题给出的四个选项中,只有5一、选择题:本大题共12小题,每小题一项是符合题目要求的.?1???2x?y4B=x?BA1?A=x,则,1).已知集合(??x????????????1,??,1??0,10, DBA....CB【答案】???7i1z?2i??z z,则(.若复数2满足)510222.A.D B.C.A【答案】3.阅读程序框图,该算法的功能是输出()????nn1122??的第45项B.数列项A.数列的第????nn12??12.数列5项的和的前4 D.数列的前项的和CB【答案】1AD?=?ACAD3ABC△?DB3?CDAB?AD(,则),中,4.在,13421.B.D CA..D【答案】5.七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()9537.C.A.D B.1632168【答案】C????na?SS aa2n?n为递增数列”的前6.已知对是等差数列项和,则“恒成立”是“数列nnnnn 的()A.充分必要条件B.充分而不必要条件D.既不充分也不必条件C.必要而不充分条件【答案】A7.将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片,选出每列标号最小的a;选出每行标号最大的卡片,将这些卡片中标号最小的数设卡片,将这些卡片中标号最大的数设为b.为bbaa有可能相等,那么甲乙两位同学的说法中(和甲同学认为)有可能比大,乙同学认为A.甲对乙不对B.乙对甲不对C.甲乙都对D.甲乙都不对B【答案】A.某几何体的三视图如图所示,记8为此几何体所有棱的长度构成的集合,则()2A?6?A342AA5?3? D.A.C B ..D 【答案】1??x?cos fx?),下列说法中正确的个数为(9.已知函数x?????0,xf①上是减函数;在??2??2?????xf0,上的最小值是②在;??????0,f2x③在上有两个零点.3021个DB..个CA..个个C【答案】511??BCADCD?AB?BD?C4ACDAB,,的球面上,.已知,且,,,四点在半径为10ABC?D则三棱锥)的体积是(7772476..CDB..AC【答案】????2x??x0,1??xx?x ln fxa?a,不等式11.已知函数,,,对任意的1≠0a?且a12????2xx?ff?a?a恒成立,则)的取值范围为(21?????22???2,ee,??e,e,??eDC .B.A..???A【答案】22yx??0?0,b??1a?SS分别引其渐近线的平行线,分别交为双曲线上的任意一点,过??8OQ???OP?NxQPMy恒成立,则双曲线离心,若轴于12.已知22ba??11点,,交轴于点,????ONOM??e)率的取值范围为(3??????11,?25,C.A.D..B????【答案】B第Ⅱ卷二、填空题:本大题共4小题,每小题5分.x?1?y??x?33x?yyx的最大值为13.已知实数,则,_______满足:.??y?1?0?13【答案】???????fx?f?f4_______.,则14.设函数??lg x,x?1??1【答案】2π2??x?2,xx?12xy?8CO FFAB x,过轴交于点15.抛物线,原点为,的焦点为,,弦抛物线准线与??OFA3?ACB tan?则._______34【答案】aaaa k,后三个数构成一个,,16.设有四个数的数列,前三个数构成一个等比数列,其和为,4213kk的1,且公差非零.对于任意固定的实数,则,若满足条件的数列个数大于等差数列,其和为15 取值范围为_______.15????????15,,55,15【答案】??4??三、解答题:解答应写出文字说明、证明过程或演算步骤.??A s c co3os C?2b?c3a CABC△bBA ca,且的对边分别是,,,,1217.(分)在.中,角A 1)求角的大小;(ABC?2△a面积的最大值.)若(2,求?2?3?A.;【答案】(1)(2 )63sin A cos C?2sin B cos A?3sin C cos A,)由正弦定理可得:1【解析】(??3sin B?2sin B cos A A cos2sin C3sin A?B?,从而可得:,即3?cos A0?sin BB,,于是为三角形内角,所以又24??A A.又为三角形内角,所以6322222?2bcbc?3bc4?b?c?2A2?bca cos?b?c,得:(2)由余弦定理:21??32?bc?4bc sin A?2?3S?.,所以所以218.(12分)在2020年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:(1)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?(2)如果语文和数学两科都特别优秀的共有3人.①从(1)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.2?2列联表,并分析是否有99%②根据以上数据,完成的把握认为语文特别优秀的同学,数学也特别优秀.1【答案】(1)5人,4人;①,②是.5【解析】(1)我校共有100名文科学生参加考试,其中语文考试成绩低于130的有95%人,语文成绩P=1?0.95=0.05100?0.05=5人,数学成绩特别优秀的特别优秀的概率为,语文特别优秀的同学有1P=0.002?20=0.04100?0.04=4人.,数学特别优秀的同学有概率为2①语文数学两科都特别优秀的有3人,单科特别优秀的有3人,ABBABA,从中随机,,3,单科特别优秀的人分别为记两科都特别优秀的3人分别为,,221133????????????????BBA,,A,B,B,B,A,A,AAAABBB,共有:2抽取人,,,,,,,,21213231213231115??????????????B,AA,B,,AB,AA,BB,ABBA共15,,,,,,种,其中这两人成绩33122212133323??????A,AAA,A,A这3都特别优秀的有,种,则这两人两科成绩都特别优秀的概率为:,32211331?=P.155②,2??2?94?100?13?245026.63542.982????k?,5795596??4??的把握认为语文特别优秀的同学,数学也特别优秀.有99%1BC??1AD?AB?AEBC?AD∥BCE?ABCDABE,底面中,19.(12分)如图,四棱锥,且2CEM的中点.为棱CBE?DM;(1)求证:直线平面E?ABCD ABE?D的体积.的体积最大时,求四棱锥(2)当四面体1.)1)见解析;(2【答案】(2NAN?EBEB?ABAE,的中点,所以)因为,设为【解析】(1BCBE?B AN?BC?AN?BCAEBAEB,平面,,所以又,又平面BCE∥ANBCEAN?DM?DM平面,又平面所以,所以.?=AE?EAB?CDAD=AB?AE?1,,(2),设111??sin?sin?AD????V?AEABABED?,则四面体的体积3266??90?AE?AB时体积最大,当,即BCAB?B BC??AEBC AEBAEBAE?,,所以又平面平面,因为,ABC?AE平面所以,111???1?21V????1?.ABCDE?32222??????22?2?xx?1?1?yy?2yxM,.20.(12分)已知动点满足:EM的轨迹的方程;(1)求动点1??l:xNABBEABA的中垂线上的两个动点,线段在直线是轨迹的中点(2)设上,线段,2??,01NNPQQ PE点坐标,与为直径的圆经过点交于,使以,,若存在,求出两点,是否存在点若不存在,请说明理由.??2x19121??y N?,?.)(2 ;【答案】(1)????2192??2x2?1?y.【解析】(1)21??xxABAB,方程为(2)当直线轴时,直线垂直于2????2,02,0QP?1??P?FQF,此时,不合题意;,221????N?m?,m0kxABAB轴时,设存在点的斜率为当直线,直线,不垂直于??2??2?x21?1?y???1yy??2????????12?yx?x??20y?yxBA,x,y,,,由得:???22112211xx?2x???21221??y?2?2?1?4mk?0,则1k??4m?kPQ,斜率为,此时,直线故14m1??y?m??4mx?yPQ??4mx?m,,即的直线方??222202?216?mx?m?x?32m1y消去,联立,整理得:2?x2?y?1?程为??2??y??4mx?m???2722?22m16mx?x??x?x?,所以,2121221?13232m?m0??FQFP由题意,于是22??????????mmxmx?mx?x??1??FQ?4x?1?x14?yy?x?x?FP221112122221??????222m1x??4mx??11?16m??x?x2121????????2222m4m2?1161?16m?2m?21m?1920?1?m????,????2221?32m132m?32m?1191972?m?m??????mN,因为,在椭圆内,符合条件,19198?? 191??,NN综上所述,存在两点符合条件,坐标为.????192????2?x?fxx ln?ax e x? 12分)已知函数在处取得极值.(21.a的值;(1)求实数????????22?x?xxx x ln x?fx?1xFxa?x??F.,求证:存在两个相异零点(2)设,若,21211a??;(【答案】(1)2)见解析.??????2??x1fxax?x ln f ln xx??afx??e x?处取得极,所以,因为函数在(【解析】1)因为????22???2??0?a?elne f?e1?0f?,即大值,所以,???2??f ln xx?1a??所以,,此时??????22??xf??0,e,e在经检验,上单调递增,在单调递减,??2?xf e x?1?a?.所以在处取得极大值,符合题意,所以??????2a?x?x?1f ln Fxx?x?)知:函数,(2)由(1????????xx,0FxxC,0x?D x,图像与,轴交于两个不同的点,函数2121??21?Fxx??x ln?x 为函数的零点,????21x?1?2x1x21x???????1?2?Fxx?,令xxx??????????x????x010,1,1,??xF1???F?1在,,单调递减,在单调递增且,12????????xx2???x?2x x2x?F?Fx?F?2xF,即证:,即证,即证欲证:,12211121???????????0,1?Fx?x?F2xx?,构造函数82??1?2?x ??????????0??x0??1x?,得证.,??x?2x23两题中任选一题作答,如果多做,则按所做的第一题记分.请考生在22、4-4:坐标系与参数方程(10分)选修22.?cos?tx??t??O0?l xoy以坐标原点为参数,)的参数方程为在平面直角坐标系(中,直线.??sin?ty?1?2???4sincos?Cx轴正半轴为极轴,建立极坐标系,已知曲线.为极点,以的极坐标方程为:C l的普通方程与曲线的直角坐标方程;(1)求直线8?ABC lBA a(2)设直线,若与曲线,求交于不同的两点的值.,?3?2????y4x??0?cos?y?cos?x sin?或.;(,2【答案】(1))44???C l0cos y?cos?x?sin??的极坐标方程为普通方程为,曲线【解析】(1)直线222???????????sin4?4sincoscos?y?x?cossin,,,则,2?4y?xC的普通方程.即为曲线?cos?tx?2??C:x?4yt??0,)代入曲线((2)将为参数,??sin?ty?1???4sin422???t?t??t?t0??t sin?cos?4?4t?,,,221122??coscos2?4sin?4??2???4t?t??4tAB??t??tt??8,??22211122??coscos??2?3??????cos??或.,24423.(10分)选修4-5:不等式选讲???x?a?f2xx?b0b?0a?的最小值为,函数已知1.,2a?b?2;)证明:1(ttab??2ba的最大值.)若(2恒成立,求实数9.)(1(【答案】)见解析;229??a?b,x??3x?a??bbb????????x?a??x?a??fbx,???,?xf?a?上单调,显然1在)证明:,【解析】(???222???b?3x?a?b,x???2bbb??????f?a???,?1xf2a?b?2.递减,在,即上单调递增,所以的最小值为????222????a?2b?ttab?a?2b恒成立,恒成立,所以)因为(2aba?2b1211212a2b9???????5??ab+?????2,????abba2ba2ba2????2a?2b9??ba时,取得最小值,当且仅当ab3299t?t的最大值为.,即实数所以2210。
2020年高考考前大冲刺卷 文科数学(二)解析
2020年高考大冲刺卷文 科 数 学(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知集合{}11A x x =-<<,{}220B x x x =--<,则()A B =R I ð( ) A .(1,0]- B .[1,2)-C .[1,2)D .(1,2]【答案】C【解析】由题意知,{1A x x =≥R ð或}1x ≤-,又{}{}22012B x x x x x =--<=-<<,{}()12A B x x ∴=≤<R I ð,故选C .2.已知i 为虚数单位,则复数13i 1iz -=+的共轭复数是( )A .1i +B .1i -C .1i -+D .2i +【答案】A 【解析】13i 2(1i)1i 1i(1i)(1i)z --===-++-,z ∴的共轭复数为1i +,故选A .3.已知平面向量(1,)x =a ,(4,2)=b ,若向量2+a b 与向量b 共线,则x =( )A .13B .12C .25D .27【答案】B【解析】由题意,得2(6,22)x +=+a b ,又向量2+a b 与向量b 共线,4(22)12x ∴⨯+=,解得12x =. 4.执行如图所示的程序框图,若输入的14π3x =,则输出的y 的值为( )A .12B .12-C .32D .32-【答案】D 【解析】2π4π3x =+Q ,223sin(ππ4π)sin π332y ∴=++=-=-,故选D . 5.在新一轮的高考改革中,一名高二学生在确定选修地理的情况下,想从历史、政治、化学、生物、物理中再选择两科学习,则所选的两科中一定有生物的概率是( )A .310B .710C .25D .35【答案】C【解析】学生在确定选修地理的情况下,从历史、政治、化学、生物、物理中再选择两科的方法有:(历史,政治),(历史,化学),(历史,生物),(历史,物理),(政治,化学),(政治,物理),(政治,生物),(化学,生物),(化学,物理),(生物,物理),共10种,其中含有生物的选择方法有:(历史,生物),(政治,生物),(化学,生物),(生物,物理),共4种, 则所选的两科中一定有生物的概率42105P ==,故选C . 6.等差数列{}n a 的前n 项和为n S ,若82a =,798S =,则39a a +=( ) A .16 B .14 C .12 D .10【答案】A【解析】由74798S a ==,解得414a =, 又82a =,394816a a a a ∴+=+=.7.已知直线l 过点(2,0)-且倾斜角为θ,若l 与圆22(3)20x y -+=相切,则3sin(π2)2θ-=( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .35B .35-C .45D .45-【答案】A【解析】由题意可设直线:tan (2)l y x θ=+,因为l 与圆22(3)20x y -+=相切,25tan 201tan θθ∴=+,2tan 4θ∴=,2222223sin cos tan 1413sin(π2)cos 22cos sin 1tan 145θθθθθθθθ---∴-=-====+++,故选A .8.已知实数x ,y 满足约束条件104400x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩,则22y z x +=-的取值范围是( )A .3(,][1,)2-∞-+∞UB .1(,][2,)2-∞-+∞UC .1[,2]2-D .(,1][2,)-∞-+∞U【答案】A【解析】作出约束条件104400x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩表示的平面区域如图中阴影部分所示.22y z x +=-的几何意义是可行域内的点(,)x y 与点(2,2)P -连线所在直线的斜率, 易知(4,0)A ,(0,1)B ,1PA k =,32PB k =-,由图可知23(,][1,)22y x +∈-∞-+∞-U ,故选A .9.已知函数π()sin()(0,0,)2f x A x A ωϕωϕ=+>><的部分图象如图所示,则π()6f -=( )A .12-B .1-C .12D .32-【答案】B【解析】由题意及()f x 的图象得,2A =,411π(π)π3126T =⨯-=,2ω∴=, 易知ππ262ϕ⨯+=,π6ϕ∴=,π()2sin(2)6f x x ∴=+,ππππ()2sin[2()]2sin()16666f ∴-=⨯-+=-=-,故选B .10.在正三棱锥O ABC -中,7OA =,23BC =,M 为OA 上一点,过点M 且与平面ABC平行的平面截三棱锥成表面积相等的两部分,则OMOA=( ) A .12B .13 C .32D .33【答案】C【解析】设过点M 且与平面ABC 平行的平面分别交OB ,OC 于点N ,T , 则被截得的上下两部分的表面积各去掉TMN S △之后仍相等, 都等于正三棱锥O ABC -表面积的12. 对于正三棱锥O ABC -,易知其表面积为2113232(23)sin 609322⨯⨯⨯+⨯︒=, 侧面积为63,所以三棱锥O MNT -的侧面积为932,故293332()463OM OM OA OA ==⇒=. 11.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>,过右顶点A 作一条渐近线的垂线交另一条渐近线于点B ,若3OB OA =,则双曲线的离心率为( )A 2333B 2 C 3D 332【答案】A【解析】不妨设点(,)B x y 在渐近线b y x a =-上,易知直线AB 的方程为()ay x a b=--, 联立得()b y x a a y x a b ⎧=-⎪⎪⎨⎪=--⎪⎩,解得322222a x a b a by a b ⎧=⎪⎪-⎨⎪=-⎪-⎩,3OB OA =Q ,223OB OA =,即322222222()()3a a b a a b a b+-=--,化简得4222223()a a b a b +=-,得223a b =或222a b =,22222413c b e a a ∴==+=或3,233e ∴=或3,故选A .12.定义函数348,122()1(),222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[1,2]()n n *∈N 内所有零点的和为( ) A .nB .2nC .3(21)4n-D .3(21)2n-【答案】D【解析】由函数()()60g x xf x =-=,得6()f x x =,故函数()g x 的零点,即函数()y f x =和函数6y x=图象交点的横坐标,由函数()f x 的解析式知,可将()f x 的定义区间分段为[1,2],2(2,2],23(2,2],L ,1(2,2]n n-,并且()f x 在1(2,2](2,)n n n n -*≥∈N 上的图象是将()f x 在21(2,2]n n --上的图象上所有点的横坐标伸长为原来的2倍,纵坐标缩短为原来的12后得到的. 作出函数()y f x =在区间[1,2]上的图象,再依次作出在区间(2,4],(4,8],L ,1(2,2]n n -,上的图象,并作出函数6(1)y x x=≥的图象,如图,结合图象可得两图象交点的横坐标是函数()y f x =的极大值点,由此可得函数()g x 在区间1(2,2]n n-上的零点为1222322n nn --+=⨯, 则函数()g x 在区间[1,2]()n n *∈N 内所有零点的和为3(12)32(21)122n n -=--,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.已知曲线31433y x =+,则曲线在点(2,4)处的切线方程是 . 【答案】440x y --= 【解析】2y x '=Q ,∴曲线31433y x =+在点(2,4)处切线的斜率为4, ∴切线的方程为44(2)y x -=⨯-,即440x y --=.14.某空间几何体的三视图如图所示,且该几何体的体积为1,则该几何体的所有面中最大面的面积为 .【答案】3【解析】由三视图可知,该几何体为如图所示的四棱锥,记为P ABCD -,其中PA ⊥平面ABCD ,22AB AD BC ===, 设PA x =,由题意可得1(12)2132x +⨯⨯⋅=,解得1x =,故PB CD PD ===PC =易得PCD PAB S S >△△,11212PADS =⨯⨯=△,112PBC S =⨯=△, 1(12)232ABCD S =⨯+⨯=四边形,122PCD S ==△, 故该几何体中最大面的面积为3.15.设数列{}n a 满足1(1)()2n n n na n a n n *+-+=∈+N ,112a =,n a = .【答案】21n n +【解析】∵1(1)()2n n nna n a n n *+-+=∈+N ,11111(1)(2)12n n a a n n n n n n +-==-+++++, ∴11111n n a a n n n n --=--+,L ,21112123a a -=-, 累加可得:11121n a a n n -=-+,112a =Q ,1111n a nn n n ∴=-=++,21n n a n ∴=+. 16.已知()f x 是定义在R 上的奇函数,且图象关于直线2x =对称,在区间[0,2]上,()x xf x e=,(8ln 7ln 3)a f =+-,(24ln172ln 2)b f =+-,1c e=,则a ,b ,c 的大小关系是 .【答案】c a b >>【解析】由题意得()()f x f x -=-,(4)()f x f x -=,(4)()f x f x ∴-=--, 令t x =-,则(4)()f t f t +=-,(8)[4(4)](4)()f t f t f t f t ∴+=++=-+=, ∴()f x 是以8为周期的函数,故7(ln )3a f =,17(ln)4b f =, 易知7ln3,17ln 4均在区间[0,2]上, ∵在区间[0,2]上,()x x f x e=,()(1)xf x x e -'∴=-,令()0f x '=,解得1x =,故当[0,1)x ∈时,()0f x '>,当(1,2]x ∈时,()0f x '<,()f x ∴在1x =处取得极大值.又7ln 2(ln )(ln 2)32f f >=,17ln 4ln 2(ln )(ln 4)442f f <==,且(1)c f =为最大值, 故c a b >>.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC △中,E 是BC 的中点,3AC =,AE =2213cos 7cos 60ABE AEB ∠-∠-=.(1)求AB ; (2)求C .【答案】(12)π3. 【解析】(1)2213cos 7cos 60ABE AEB ∠-∠-=Q ,2213(1cos )7(1cos )0ABE AEB ∴-∠--∠=,即2213sin 7sin ABE AEB ∠=∠ABE AEB ∠=∠,=,又AE =AB ∴=(2)设EC a =,则2Bc a =,由余弦定理,得22979413cos 23232a a C a a+-+-==⨯⨯⨯⨯,2a ∴=,9471cos 2322C +-∴==⨯⨯,(0,π)C ∈Q ,π3C ∴=.18.(12分)如图,在四棱锥P ABCD -中,22AB AD BC ===,BC AD ∥,AB AD ⊥,PBD △为正三角形,且PA = (1)证明:平面PAB ⊥平面PBC ;(2)若点P 到平面ABCD 的距离为2,E 是线段PD 上一点,且PB ∥平面ACE ,求三棱锥A CDE -的体积.【答案】(1)证明见解析;(2)89. 【解析】(1)因为AB AD ⊥,2AB AD ==,22BD ∴=, 又PBD △为正三角形,22PB PD BD ===,2AB =Q ,23PA =,AB PB ∴⊥.又AB AD ⊥,BC AD ∥,AB BC ∴⊥, 又PB BC B =I ,所以AB ⊥平面PBC , 又AB ⊂平面PAB ,∴平面PAB ⊥平面PBC . (2)如图,设BD ,AC 交于点O ,BC AD Q ∥,且2AD BC =,2OD OB ∴=,连接OE ,又PB ∥平面ACE ,PB OE ∴∥,2DE PE ∴=, 又点P 到平面ABCD 的距离为2,∴点E 到平面ABCD 的距离24233h =⨯=,所以111482233239A CDE E ACD ACD V V S h --==⋅=⨯⨯⨯⨯=△,故三棱锥A CDE -的体积为89.19.(12分)2019年非洲猪瘟在东北三省出现,为了防控,某地生物医药公司派出技术人员对当地甲、乙两个养殖场提供技术服务,两种方案如下:方案一:公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;方案二:公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过的部分每头猪收费标准为8元.(1)设日收费为y (单位:元),每天需要用药的猪的数量为n (单位:头),试写出两种方案中y 与n 的函数关系式;(2)若该生物医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份的猪的发病数量(单位:头)进行了统计,得到了如下的22⨯列联表:9月份 10月份 合计未发病 4085125发病 65 20 85 合计105105210根据以上列联表判断是否有99.9%的把握认为猪未发病与该生物医药公司提供技术服务有关;附:20()P k k ≥0.050 0.010 0.0010k3.8416.63510.828(3)当地的丙养殖场对过去100天的猪的发病情况进行了统计,得到如图所示的条形图.依据该统计数据,把频率视为概率,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验,从两个方案中选择一个,那么选择哪个方案更合适,请说明理由.【答案】(1)方案一:402,y n n *=+∈N ,方案二:120,45,8240,45,n n y n n n **⎧≤∈⎪=⎨->∈⎪⎩N N ;(2)有99.9%的把握认为;(3)选择方案二,详见解析.【解析】(1)由题意得,方案一中的日收费y (单位:元)与需要用药的猪的数量n (单位:头)的函数关系式为402,y n n *=+∈N ,方案二中的日收费y (单位:元)与需要用药的猪的数量n (单位:头)的函数关系式为:120,45,8240,45,n n y n n n **⎧≤∈⎪=⎨->∈⎪⎩N N.(2)由列联表计算可得22210(85654020)40.0212585105105k ⨯⨯-⨯=≈⨯⨯⨯, 40.0210.828>Q ,所以有99.9%的把握认为猪未发病与该生物医药公司提供技术服务有关. (3)设方案一中的日收费为X ,由条形图可得X 的分布列为:()1240.21280.41320.21360.11400.1130E X ∴=⨯+⨯+⨯+⨯+⨯=;设方案二中的日收费为Y ,由条形图可得Y 的分布列为:()1200.61280.21440.11600.1128E Y ∴=⨯+⨯+⨯+⨯=, ()()E X E Y =Q ,所以从节约养殖成本的角度去考虑,丙养殖场应该选择方案二.20.(12分)已知抛物线21:2(0)C y px p =>的焦点是椭圆22222:1(0)x y C a b a b +=>>的右焦点,且两条曲线相交于点2(3. (1)求椭圆2C 的方程;(2)过椭圆2C 右顶点的两条直线1l ,2l 分别与抛物线1C 相交于点A ,C 和点B ,D ,且12l l ⊥, 设M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)∵2(3在抛物线1C 上,2223p ∴=⨯,解得2p =, ∴抛物线1C 的焦点坐标为(1,0),则221a b -=① 易知22222()331a b+=②,∴由①②可得2243a b ⎧=⎪⎨=⎪⎩,∴椭圆2C 的方程为22143x y +=. (2)设直线11:2l x k y =+,直线22:2l x k y =+,由2142y x x k y ⎧=⎨=+⎩,得21480y k y --=, 设11(,)A x y ,22(,)C x y ,则1214y y k +=,12M y k ∴=,则2122M x k =+,即211(22,2)M k k +,同理得222(22,2)N k k +,∴直线MN 的斜率21222112221(22)(22)MN k k k k k k k -==+-++,则直线MN 的方程为2111212(22)y k x k k k -=--+,即12121[2(1)]y x k k k k =--+, ∵12l l ⊥,∴12111k k ⋅=-,即121k k =-, ∴直线MN 的方程为121(4)y x k k =-+,即直线MN 恒过定点(4,0).21.(12分)已知函数()ln ()f x x ax a =-∈R . (1)讨论函数()f x 在(0,)+∞上的单调性; (2)证明:2ln 0xe e x ->恒成立. 【答案】(1)见解析;(2)证明见解析. 【解析】(1)由题意得11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以函数()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当1(0,)x a∈时,()0f x '>,()f x 单调递增; 当1(,)x a∈+∞,()0f x '<,()f x 单调递减,综上所述,当0a ≤时,函数()f x 在(0,)+∞上单调递增;当0a >时,函数()f x 在1(0,)a 上单调递增,在1(,)a+∞上单调递减.(2)记函数22()ln ln x x e x ex x e ϕ-=-=-,则21()x x e xϕ-'=-,。
2020年高考考前大冲刺卷 文科数学(二)
2020年高考大冲刺卷 文 科 数 学(二) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知集合{}11A x x =-<<,{}220B x x x =--<,则()A B =R I ð( )A .(1,0]-B .[1,2)-C .[1,2)D .(1,2]2.已知i 为虚数单位,则复数13i1i z -=+的共轭复数是( )A .1i +B .1i -C .1i -+D .2i + 3.已知平面向量(1,)x =a ,(4,2)=b ,若向量2+a b 与向量b 共线,则x =( )A .13 B .12 C .25 D .274.执行如图所示的程序框图,若输入的14π3x =,则输出的y 的值为( ) A .12 B .12- C .32 D .32- 5.在新一轮的高考改革中,一名高二学生在确定选修地理的情况下,想从历史、政治、化学、生物、物理中再选择两科学习,则所选的两科中一定有生物的概率是( ) A .310 B .710 C .25 D .35 6.等差数列{}n a 的前n 项和为n S ,若82a =,798S =,则39a a +=( ) A .16 B .14 C .12 D .10 7.已知直线l 过点(2,0)-且倾斜角为θ,若l 与圆22(3)20x y -+=相切,则3sin(π2)2θ-=( ) A .35 B .35- C .45 D .45- 8.已知实数x ,y 满足约束条件104400x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩,则22y z x +=-的取值范围是( ) A .3(,][1,)2-∞-+∞U B .1(,][2,)2-∞-+∞U C .1[,2]2- D .(,1][2,)-∞-+∞U 9.已知函数π()sin()(0,0,)2f x A x A ωϕωϕ=+>><的部分图象如图所示,则π()6f -=( ) A .12- B .1- C .12 D .3- 10.在正三棱锥O ABC -中,7OA =,23BC =,M 为OA 上一点,过点M 且与平面ABC 平行的平面截三棱锥成表面积相等的两部分,则OM OA =( ) A .12 B .13 C .32 D .33 11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>,过右顶点A 作一条渐近线的垂线交另一条渐 近线于点B ,若3OB OA =,则双曲线的离心率为( )此卷只装订不密封 班级姓名准考证号考场号座位号A .233或3B .2C .3D .33212.定义函数348,122()1(),222x x f x xf x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[1,2]()n n *∈N 内所有零点的和为( )A .nB .2nC .3(21)4n -D .3(21)2n-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.13.已知曲线31433y x =+,则曲线在点(2,4)处的切线方程是 .14.某空间几何体的三视图如图所示,且该几何体的体积为1,则该几何体的所有面中最大面的面积为 .15.设数列{}n a 满足1(1)()2n n nna n a n n *+-+=∈+N ,112a =,n a = .16.已知()f x 是定义在R 上的奇函数,且图象关于直线2x =对称,在区间[0,2]上,()x xf x e =,(8ln 7ln 3)a f =+-,(24ln172ln 2)b f =+-,1c e =,则a ,b ,c 的大小关系是 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)在ABC △中,E 是BC 的中点,3AC =,7AE =,2213cos 7cos 60ABE AEB ∠-∠-=. (1)求AB ; (2)求C . 18.(12分)如图,在四棱锥P ABCD -中,22AB AD BC ===,BC AD ∥,AB AD ⊥,PBD △为正三角形,且23PA =. (1)证明:平面PAB ⊥平面PBC ; (2)若点P 到平面ABCD 的距离为2,E 是线段PD 上一点,且PB ∥平面ACE ,求三棱锥A CDE -的体积.19.(12分)2019年非洲猪瘟在东北三省出现,为了防控,某地生物医药公司派出技术人员对当地甲、乙两个养殖场提供技术服务,两种方案如下:方案一:公司每天收取养殖场技术服务费40元,对于需要用药的每头猪收取药费2元,不需要用药的不收费;方案二:公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过的部分每头猪收费标准为8元.(1)设日收费为y(单位:元),每天需要用药的猪的数量为n(单位:头),试写出两种方案中y与n 的函数关系式;(2)若该生物医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份的猪的发病数量(单位:头)进行了统计,得到了如下的22⨯列联表:9月份10月份合计未发病4085125发病652085合计105105210根据以上列联表判断是否有99.9%的把握认为猪未发病与该生物医药公司提供技术服务有关;附:2()P k k≥0.0500.0100.001k 3.841 6.63510.828(3)当地的丙养殖场对过去100天的猪的发病情况进行了统计,得到如图所示的条形图.依据该统计数据,把频率视为概率,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验,从两个方案中选择一个,那么选择哪个方案更合适,请说明理由.20.(12分)已知抛物线21:2(0)C y px p=>的焦点是椭圆22222:1(0)x yC a ba b+=>>的右焦点,且两条曲线相交于点22(6)33.(1)求椭圆2C的方程;(2)过椭圆2C右顶点的两条直线1l,2l分别与抛物线1C相交于点A,C和点B,D,且12l l⊥,设M是AC的中点,N是BD的中点,证明:直线MN恒过定点.21.(12分)已知函数()ln ()f x x ax a =-∈R .(1)讨论函数()f x 在(0,)+∞上的单调性;(2)证明:2ln 0x e e x ->恒成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】 在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=. (1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 是过坐标原点且倾斜角为α的直线,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且点,A B 均异于坐标原点O,AB =,求α的值.23.(10分)【选修4-5:不等式选讲】 已知函数()f x x =.(1)解关于x 的不等式(2)(1)2f x f x --+<;(2)存在0x ∈R ,使得不等式00(2)()(1)2f x f x a f a -++<--,求实数a 的取值范围.2020年高考大冲刺卷 文 科 数 学(二)答 案 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.【答案】C【解析】由题意知,{1A x x =≥R ð或}1x ≤-,又{}{}22012B x x x x x =--<=-<<, {}()12A B x x ∴=≤<R I ð,故选C .2.【答案】A 【解析】13i 2(1i)1i (1i)(1i)z --===-+-,z ∴的共轭复数为1i +,故选A .3.【答案】B【解析】由题意,得2(6,22)x +=+a b , 又向量2+a b 与向量b 共线,4(22)12x ∴⨯+=,解得12x =.4.【答案】D【解析】2π4π3x =+Q ,223sin(ππ4π)sin π33y ∴=++=-=-,故选D . 5.【答案】C【解析】学生在确定选修地理的情况下,从历史、政治、化学、生物、物理中再选择两科的方法有:(历史,政治),(历史,化学),(历史,生物),(历史,物理),(政治,化学),(政治,物理),(政治,生物),(化学,生物),(化学,物理),(生物,物理),共10种,其中含有生物的选择方法有:(历史,生物),(政治,生物),(化学,生物),(生物,物理),共4种, 则所选的两科中一定有生物的概率42105P ==,故选C .6.【答案】A【解析】由74798S a ==,解得414a =,又82a =,394816a a a a ∴+=+=.7.【答案】A【解析】由题意可设直线:tan (2)l y x θ=+,因为l 与圆22(3)20x y -+=相切,25tan 201tan θθ∴=+,2tan 4θ∴=,2222223sin cos tan 1413sin(π2)cos 22cos sin 1tan 145θθθθθθθθ---∴-=-====+++,故选A . 8.【答案】A 【解析】作出约束条件104400x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩表示的平面区域如图中阴影部分所示. 22y z x +=-的几何意义是可行域内的点(,)x y 与点(2,2)P -连线所在直线的斜率, 易知(4,0)A ,(0,1)B ,1PA k =,32PB k =-, 由图可知23(,][1,)22y x +∈-∞-+∞-U ,故选A . 9.【答案】B 【解析】由题意及()f x 的图象得,2A =,411π(π)π3126T =⨯-=,2ω∴=, 易知ππ262ϕ⨯+=,π6ϕ∴=,π()2sin(2)6f x x ∴=+, ππππ()2sin[2()]2sin()16666f ∴-=⨯-+=-=-,故选B . 10.【答案】C 【解析】设过点M 且与平面ABC 平行的平面分别交OB ,OC 于点N ,T , 则被截得的上下两部分的表面积各去掉TMN S △之后仍相等, 都等于正三棱锥O ABC -表面积的12. 对于正三棱锥O ABC -,易知其表面积为2113232(23)sin 609322⨯⨯+⨯︒=侧面积为3 所以三棱锥O MNT -932293332()463OM OM OA OA ==⇒=.11.【答案】A 【解析】不妨设点(,)B x y 在渐近线b y x a =-上,易知直线AB 的方程为()a y x a b =--,联立得()b y x a a y x a b ⎧=-⎪⎪⎨⎪=--⎪⎩,解得322222a x ab a by a b ⎧=⎪⎪-⎨⎪=-⎪-⎩,3OB OA =Q ,223OB OA =,即322222222()()3a a b a a b a b +-=--,化简得4222223()a a b a b +=-,得223a b =或222a b =, 22222413c b e a a ∴==+=或3,233e ∴=或3,故选A .12.【答案】D【解析】由函数()()60g x xf x =-=,得6()f x x =,故函数()g x 的零点,即函数()y f x =和函数6y x =图象交点的横坐标,由函数()f x 的解析式知,可将()f x 的定义区间分段为[1,2],2(2,2],23(2,2],L ,1(2,2]n n -, 并且()f x 在1(2,2](2,)n n n n -*≥∈N 上的图象是将()f x 在21(2,2]n n --上的图象上所有点的横坐标伸长为原来的2倍,纵坐标缩短为原来的12后得到的.作出函数()y f x =在区间[1,2]上的图象,再依次作出在区间(2,4],(4,8],L ,1(2,2]n n -,上的图象,并作出函数6(1)y x x =≥的图象,如图,结合图象可得两图象交点的横坐标是函数()y f x =的极大值点,由此可得函数()g x 在区间1(2,2]n n -上的零点为1222322n nn --+=⨯,则函数()g x 在区间[1,2]()n n *∈N 内所有零点的和为3(12)32(21)122n n -=--,故选D .第Ⅱ卷 二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】440x y --= 【解析】2y x '=Q ,∴曲线31433y x =+在点(2,4)处切线的斜率为4, ∴切线的方程为44(2)y x -=⨯-,即440x y --=. 14.【答案】3 【解析】由三视图可知,该几何体为如图所示的四棱锥, 记为P ABCD -,其中PA ⊥平面ABCD ,22AB AD BC ===, 设PA x =,由题意可得1(12)2132x +⨯⨯⋅=,解得1x =, 故5PB CD PD ===6PC = 易得PCD PAB S S >△△,11212PAD S =⨯⨯=△,151522PBC S =⨯=△, 1(12)232ABCD S =⨯+⨯=四边形,2162165()222PCD S =-=△, 故该几何体中最大面的面积为3. 15.【答案】21n n + 【解析】∵1(1)()2n n n na n a n n *+-+=∈+N ,11111(1)(2)12n n a a n n n n n n +-==-+++++,∴11111n n a a n n n n --=--+,L ,21112123a a -=-,累加可得:11121na a n n -=-+,112a =Q ,1111na nn n n ∴=-=++,21n na n ∴=+.16.【答案】c a b >>【解析】由题意得()()f x f x -=-,(4)()f x f x -=,(4)()f x f x ∴-=--,令t x =-,则(4)()f t f t +=-,(8)[4(4)](4)()f t f t f t f t ∴+=++=-+=,∴()f x 是以8为周期的函数,故7(ln )3a f =,17(ln )4b f =,易知7ln 3,17ln 4均在区间[0,2]上,∵在区间[0,2]上,()x x f x e =,()(1)xf x x e -'∴=-,令()0f x '=,解得1x =,故当[0,1)x ∈时,()0f x '>,当(1,2]x ∈时,()0f x '<,()f x ∴在1x =处取得极大值.又7ln 2(ln )(ln 2)32f f >=,17ln 4ln 2(ln )(ln 4)442f f <==,且(1)c f =为最大值,故c a b >>.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)13;(2)π3.【解析】(1)2213cos 7cos 60ABE AEB ∠-∠-=Q ,2213(1cos )7(1cos )0ABE AEB ∴-∠--∠=,即2213sin 7sin ABE AEB ∠=∠,13sin 7sin ABE AEB ∠=∠,由正弦定理,得137AE AB =,又7AE =,13AB ∴=.(2)设EC a =,则2Bc a =,由余弦定理,得22979413cos 23232a a C a a +-+-==⨯⨯⨯⨯,2a ∴=,9471cos 2322C +-∴==⨯⨯, (0,π)C ∈Q ,π3C ∴=. 18.【答案】(1)证明见解析;(2)89. 【解析】(1)因为AB AD ⊥,2AB AD ==,22BD ∴=, 又PBD △为正三角形,22PB PD BD ===, 2AB =Q ,23PA =,AB PB ∴⊥. 又AB AD ⊥,BC AD ∥,AB BC ∴⊥, 又PB BC B =I ,所以AB ⊥平面PBC , 又AB ⊂平面PAB ,∴平面PAB ⊥平面PBC . (2)如图,设BD ,AC 交于点O , BC AD Q ∥,且2AD BC =,2OD OB ∴=,连接OE , 又PB ∥平面ACE ,PB OE ∴∥,2DE PE ∴=, 又点P 到平面ABCD 的距离为2, ∴点E 到平面ABCD 的距离24233h =⨯=, 所以111482233239A CDE E ACD ACD V V S h --==⋅=⨯⨯⨯⨯=△, 故三棱锥A CDE -的体积为89. 19.【答案】(1)方案一:402,y n n *=+∈N ,方案二:120,45,8240,45,n n y n n n **⎧≤∈⎪=⎨->∈⎪⎩N N ;(2)有99.9%的把握认为;(3)选择方案二,详见解析. 【解析】(1)由题意得,方案一中的日收费y (单位:元)与需要用药的猪的数量n (单位:头)的函数关系式为402,y n n *=+∈N , 方案二中的日收费y (单位:元)与需要用药的猪的数量n (单位:头)的函数关系式为:120,45,8240,45,n n y n n n **⎧≤∈⎪=⎨->∈⎪⎩N N . (2)由列联表计算可得22210(85654020)40.0212585105105k ⨯⨯-⨯=≈⨯⨯⨯, 40.0210.828>Q ,所以有99.9%的把握认为猪未发病与该生物医药公司提供技术服务有关.(3)设方案一中的日收费为X ,由条形图可得X 的分布列为:()1240.21280.41320.21360.11400.1130E X ∴=⨯+⨯+⨯+⨯+⨯=; 设方案二中的日收费为Y ,由条形图可得Y 的分布列为:()1200.61280.21440.11600.1128E Y ∴=⨯+⨯+⨯+⨯=,()()E X E Y =Q ,所以从节约养殖成本的角度去考虑,丙养殖场应该选择方案二.20.【答案】(1)22143x y +=;(2)证明见解析.【解析】(1)∵2(3在抛物线1C 上,2223p ∴=⨯,解得2p =,∴抛物线1C 的焦点坐标为(1,0),则221a b -=① 易知22222()331a b +=②,∴由①②可得2243a b ⎧=⎪⎨=⎪⎩,∴椭圆2C 的方程为22143x y +=.(2)设直线11:2l x k y =+,直线22:2l x k y =+,由2142y xx k y ⎧=⎨=+⎩,得21480y k y --=,设11(,)A x y ,22(,)C x y ,则1214y y k +=,12M y k ∴=,则2122M x k =+,即211(22,2)M k k +,同理得222(22,2)N k k +, ∴直线MN 的斜率21222112221(22)(22)MN k k k k k k k -==+-++, 则直线MN 的方程为2111212(22)y k x k k k -=--+, 即12121[2(1)]y x k k k k =--+, ∵12l l ⊥,∴12111k k ⋅=-,即121k k =-, ∴直线MN 的方程为121(4)y x k k =-+,即直线MN 恒过定点(4,0). 21.【答案】(1)见解析;(2)证明见解析. 【解析】(1)由题意得11()(0)ax f x a x x x -'=-=>, 当0a ≤时,()0f x '>恒成立,所以函数()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a =, 所以当1(0,)x a ∈时,()0f x '>,()f x 单调递增; 当1(,)x a ∈+∞,()0f x '<,()f x 单调递减, 综上所述,当0a ≤时,函数()f x 在(0,)+∞上单调递增; 当0a >时,函数()f x 在1(0,)a 上单调递增,在1(,)a +∞上单调递减. (2)记函数22()ln ln x x e x e x x e ϕ-=-=-,则21()x x e x ϕ-'=-, 可知()x ϕ'在(0,)+∞上单调递增, 由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一零点0x ,且012x <<, 则02001()x x e x ϕ-'=-,即0201x e x -=① 当0(0,)x x ∈时,()0x ϕ'<,()x ϕ单调递减; 当0(,)x x ∈+∞时,()0x ϕ'>,()x ϕ单调递增, 所以0200()()ln x x x e x ϕϕ-≥=-,由①式021x ex -=,知002ln x x -=-, 所以022000000(1)1()()ln 20x x x x e x x x x ϕϕ--≥=-=+-=>,则2()ln 0x x ex ϕ-=->,所以有2ln 0x e e x ->恒成立.22.【答案】(1)221:(2)4C x y -+=,222:(2)4C x y +-=;(2)3π4. 【解析】(1)由22cos 2sin x y ϕϕ=+⎧⎨=⎩,消去参数ϕ,可得1C 的普通方程为22(2)4x y -+=,∵4sin ρθ=,∴24sin ρρθ=,∴曲线2C 的直角坐标方程为22(2)4x y +-=.(2)由(1)得,曲线221:(2)4C x y -+=,其极坐标方程为4cos ρθ=,由题意设1(,)A ρα,2(,)B ρα,则12π4sin cos 42sin()424AB ρρααα=-=-=-=,πsin()14α∴-=±,πππ()42k k α∴-=+∈Z ,3ππ()4k k α∴=+∈Z ,0πα<<Q ,3π4α∴=. 23.【答案】(1)1(,)2-+∞;(2)3(,)2-∞-.【解析】原不等式可化为212x x --+<, 作出函数2y x =-与1y x =+的图象如图所示,当212x x --+=时,12x =, ∵直线12y x =-与21y x =+的斜率相等, ∴结合图象可知,原不等式的解集为1(,)2-+∞.(2)原不等式可化为00212x x a a -++<--,00002(2)()2x x a x x a a -++≥--+=+Q , 212a a ∴+<--,即122a a --+>,上式可化为(1)2(1)12a a +--++>,由(1)得112a +<-,解得32a <-, 故a 的取值范围为3(,)2-∞-.。
2020届高考数学大二轮复习冲刺经典专题第二编讲专题专题五解析几何第2讲椭圆、双曲线、抛物线课件文
∴∠F1PF2=60°,由余弦定理可得 4c2=16a2+4a2-2·4a·2a·cos60°, ∴c= 3a,∴b= c2-a2= 2a. ∴ba= 2,∴双曲线 C 的渐近线方程为 y=± 2x.故选 A.
(2)已知 F1,F2 为双曲线ax22-by22=1(a>0,b>0)的左、右焦点,以 F1F2 为直
第二编 讲专题 专题五 解析几何
第2讲 椭圆、双曲线、抛物线
「考情研析」1.考查圆锥曲线的定义、方程及几何性质,特别是椭圆、 双曲线的离心率和双曲线的渐近线. 2.以解答题的形式考查直线与圆锥曲 线的位置关系(弦长、中点等).
1
PART ONE
核心知识回顾
1.圆锥曲线的定义式 (1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|); (2)双曲线:||PF1|-|PF2||=2a(2a<|F1F2|); (3)抛物线:|PF|=|PM|,点 F 不在直线 l 上,PM⊥l 于 M(l 为抛物线的准 线方程).
A.y=± 2x
B.y=±
2 2x
C.y=±2x D.y=±2 2x
答案 A
解析 由题意得,|PF1|=2|PF2|,|PF1|-|PF2|=2a,∴|PF1|=4a,|PF2|= 2a,
由于 P,M 关于原点对称,F1,F2 关于原点对称,∴线段 PM,F1F2 互 相平分,四边形 PF1MF2 为平行四边形,PF1∥MF2,∵∠MF2N=60°,
D. 10
答案 B
解析 设双曲线的右焦点为 F′,取 MN 的中点 P,连接 F′P,F′M, F′N,如图所示,由F→N=3F→M,可知|MF|=|MP|=|NP|.又 O 为 FF′的中点, 可知 OM∥PF′.∵OM⊥FN,∴PF′⊥FN.∴PF′为线段 MN 的垂直平分线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 三角函数[考情分析] 高考中,三角函数的核心考点是三角函数的图象和性质与解三角形.高考在该部分一般有两个试题,如果在解答题部分没有涉及到正、余弦定理的考查,会有一个与正、余弦定理有关的小题;如果在解答题中涉及到了正、余弦定理,可能还会有一个和解答题相互补充的三角函数图象、性质、恒等变换的小题.热点题型分析热点1 三角函数的图象和性质三角函数的单调性及周期性的求法:(1)三角函数单调性的求法求形如y =A sin(ωx +φ)[或y =A cos(ωx +φ)](A ,ω,φ为常数,A ≠0,ω>0)的单调性的一般思路是令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求解.(2)三角函数周期性的求法函数y =A sin(ωx +φ)[或y =A cos(ωx +φ)]的最小正周期T =.应特别注意2π|ω|y =|A sin(ωx +φ)|的最小正周期为T =.π|ω|(2019·浙江高考)设函数f (x )=sin x ,x ∈R .(1)已知θ∈[0,2π),函数f (x +θ)是偶函数,求θ的值;(2)求函数y =2+2的值域.[f (x +π12)][f (x +π4)]解 (1)因为f (x +θ)=sin(x +θ)是偶函数,所以对任意实数x 都有sin(x +θ)=sin(-x +θ),即sin x cos θ+cos x sin θ=-sin x cos θ+cos x sin θ,故2sin x cos θ=0,所以cos θ=0.又θ∈[0,2π),因此θ=或θ=.π23π2(2)y =2+2[f (x +π12)][f (x +π4)]=sin 2+sin 2(x +π12)(x +π4)=+1-cos (2x +π6)21-cos (2x +π2)2=1-12(32cos2x -32sin2x )=1-cos .32(2x +π3)因此,所求函数的值域是.[1-32,1+32]求三角函数的值域,一般可化为y =A sin(ωx +φ)+k 或y =A cos(ωx +φ)+k 的形式,在转化的过程中经常要用到诱导公式、两角差(和)正(余)弦公式、二倍角公式、辅助角公式等.1.(2017·江苏高考)已知向量a =(cos x ,sin x ),b =(3,-),x ∈[0,π].3(1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-),a ∥b ,3所以-cos x =3sin x .3若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾,故cos x ≠0.于是tan x =-.33又x ∈[0,π],所以x =.5π6(2)f (x )=a ·b =(cos x ,sin x )·(3,-)3=3cos x -sin x =2cos .33(x +π6)因为x ∈[0,π],所以x +∈,π6[π6,7π6]从而-1≤cos ≤.(x +π6)32于是,当x +=,即x =0时,f (x )取到最大值3;π6π6当x +=π,即x =时,f (x )取到最小值-2.π65π632.如图,已知函数f (x )=A sin(ωx +φ)在一个周期内的图象经过B (A >0,ω>0,|φ|<π2),C ,D 三点.(π6,0)(2π3,0)(5π12,2)(1)写出A ,ω,φ的值;(2)若α∈,且f (α)=1,求cos2α的值.(5π12,2π3)解 (1)由题意,知A =2,ω=2,φ=-.π3(2)由(1),得f (x )=2sin .(2x -π3)因为f (α)=1,所以sin =.(2α-π3)12因为α∈,所以2α-∈.(5π12,2π3)π3(π2,π)则2α-=,所以2α=,则cos2α=cos =-.π35π67π67π632热点2 解三角形解三角形的一般方法:(1)已知两角和一边,如已知A ,B 和c ,由A +B +C =π求C ,由正弦定理求a ,b .(2)已知两边和这两边的夹角,如已知a ,b 和C ,应先用余弦定理求c ,再应用正弦定理求较短边所对的角,然后利用A +B +C =π求另一角.(3)已知两边和其中一边的对角,如已知a ,b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要注意解可能有多种情况.(4)已知三边a ,b ,c ,可应用余弦定理求A ,B ,C .(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若a +b =2c ,求sin C .2解 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A ==.b 2+c 2-a 22bc 12因为0°<A <180°,所以A =60°.(2)由(1)知B =120°-C ,由题设及正弦定理得sin A +sin(120°-C )=2sin C ,2即+cos C +sin C =2sin C ,可得cos(C +60°)=-.62321222因为0°<C <120°,所以sin(C +60°)=,22故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=.6+24解三角形问题主要利用三角形的内角和定理,正、余弦定理、三角形的面积公式、同角三角函数关系等知识解题,解题时要灵活利用三角形的边角关系进行“边化角”“角化边”,另外要注意a +c ,ac ,a 2+c 2三者的关系.1.(2019·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin =b sin A .A +C2(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.解 (1)由题设及正弦定理得sin A sin =sin B sin A .A +C2因为sin A ≠0,所以sin =sin B .A +C2由A +B +C =180°,可得sin =cos ,A +C 2B 2故cos =2sin cos .B2B 2B 2因为cos ≠0,所以sin =,所以=30°,B2B 212B 2所以B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =a .34由(1)知A +C =120°,由正弦定理得a ===+.c sin A sin C sin 120°-C sin C 32tan C 12由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.结合A +C =120°,得30°<C <90°,所以<a <2,从而<S △ABC <.123832因此,△ABC 面积的取值范围是.(38,32)2.(2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos .(B -π6)(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解 (1)在△ABC 中,由正弦定理=,可得asin A b sin B b sin A =a sin B ,又由b sin A =a cos,得a sin B =a cos ,(B -π6)(B -π6)即sin B =cos ,可得tan B =.(B -π6)3又因为B ∈(0,π),可得B =.π3(2)在△ABC 中,由余弦定理及a =2,c =3,B =,π3有b 2=a 2+c 2-2ac cos B =7,故b =.7由b sin A =a cos ,可得sin A =.(B -π6)37因为a <c ,故cos A =.27因此sin2A =2sin A cos A =,437cos2A =2cos 2A -1=.17所以,sin(2A -B )=sin2A cos B -cos2A sin B=×-×=.4371217323314专题作业1.(2019·北京高考)在△ABC 中,a =3,b -c =2,cos B =-.12(1)求b ,c 的值;(2)求sin(B +C )的值.解 (1)由余弦定理b 2=a 2+c 2-2ac cos B ,得b 2=32+c 2-2×3×c ×.(-12)因为b =c +2,所以(c +2)2=32+c 2-2×3×c ×.(-12)解得c =5.所以b =7.(2)由cos B =-,得sin B =.1232由正弦定理,得sin A =sin B =.a b 3314在△ABC 中,B +C =π-A ,所以sin(B +C )=sin A =.33142.已知函数f (x )=2cos 2x -1.(sin x cos x +1)(1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递减区间.解 (1)由cos x ≠0,得x ≠+k π(k ∈Z ),π2所以f (x )的定义域为Error!.因为f (x )=2·cos 2x -1(sin x cos x +1)=2sin x cos x +2cos 2x -1=sin2x +cos2x =sin .2(2x +π4)所以f (x )的最小正周期为T ==π.2π2(2)由+2k π≤2x +≤+2k π,得+k π≤x ≤+k π,π2π43π2π85π8所以f (x )的单调递减区间为,(k ∈Z ).[π8+k π,π2+k π)(π2+k π,5π8+k π]3.(2019·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C .(1)求cos B 的值;(2)求sin 的值.(2B +π6)解 (1)在△ABC 中,由正弦定理=,bsin B c sin C 得b sin C =c sin B .由3c sin B =4a sin C ,得3b sin C =4a sin C ,即3b =4a .因为b +c =2a ,所以b =a ,c =a .由余弦定理可得4323cos B ===-.a 2+c 2-b 22ac a 2+49a 2-169a 22·a ·23a 14(2)由(1)可得sin B ==,1-cos2B 154从而sin2B =2sin B cos B =-,158cos2B =cos 2B -sin 2B =-,78故sin =sin2B cos +cos2B sin (2B +π6)π6π6=-×-×=-.158********+7164.(2018·北京高考)在△ABC 中,a =7,b =8,cos B =-.17(1)求角A ;(2)求AC 边上的高.解 (1)在△ABC 中,∵cos B =-,17∴B ∈,∴sin B ==.(π2,π)1-cos2B 437由正弦定理,得=⇒=,∴sin A =.a sin Ab sin B 7sin A 843732∵B ∈,∴A ∈,∴∠A =.(π2,π)(0,π2)π3(2)在△ABC 中,∵sin C =sin(A +B )=sin A cos B +sin B cos A =×+×=.32(-17)437123314如图所示,在△ABC 中,∵sin C =,h BC ∴h =BC ·sin C=7×=,3314332∴AC 边上的高为.332。