数学建模论文资料传染病模型)
数学建模之传染病问题
![数学建模之传染病问题](https://img.taocdn.com/s3/m/2a5107fe04a1b0717fd5ddbb.png)
摘要医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有一些传染病暴发或流行,危害人们的健康和生命。
社会、经济、文化、风俗习惯等因素都会影响传染病的传播,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、传播形式、传播能力、免疫能力等。
本论文通过建立传染病模型,分析被传人数多少与哪些因素有关,如何预报传染病高潮的到来等等。
传染病问题的研究一﹑模型假设1.在疾病传播期内所考察的地区范围不考虑人口的出生、死亡、流动等种群动力因素。
总人口数N(t)不变,人口始终保持一个常数N 。
人群分为以下三类:易感染者(Susceptibles),其数量比例记为s(t),表示t 时刻未染病但有可能被该类疾病传染的人数占总人数的比例;感染病者(Infectives),其数量比例记为i(t),表示t 时刻已被感染成为病人而且具有传染力的人数占总人数的比例;恢复者(Recovered),其数量比例记为r(t),表示t 时刻已从染病者中移出的人数(这部分人既非已感染者,也非感染病者,不具有传染性,也不会再次被感染,他们已退出该传染系统。
)占总人数的比例。
2.病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。
该模型的缺陷是结果常与实际有一定程度差距,这是因为模型中假设有效接触率传染力是不变的。
二﹑模型构成在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:在假设1s(t) + i(t) + r(t) = 1对于病愈免疫的移出者的数量应为r td N Ni d μ= 不妨设初始时刻的易感染者,染病者,恢复者的比例分别为0s (0s >0),0i (0i >0),0r =0. SIR 基础模型用微分方程组表示如下:di dt ds dtdr dt si isi i λμλμ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩s(t) , i(t)的求解极度困难,在此我们先做数值计算来预估计s(t) , i(t)的一般变化规律。
数学建模_传染病模型
![数学建模_传染病模型](https://img.taocdn.com/s3/m/ff7ee7c8c9d376eeaeaad1f34693daef5ef713d1.png)
数学建模_传染病模型第一篇:数学建模_传染病模型传染病模摘要: 本次实验是让同学们进一步了解、巩固、加强微分方程模型的建模、求解能力;学习掌握用MATLAB进行二维和三维基本图形绘制。
因为MATLAB具有很强的图形处理功能和丰富的图形表现方法。
它提供了大量的二维、三维图形函数,使得数学计算结果可以方便地、多样性地实现可视化,这是其它语言所不能比拟的。
MATLAB不仅能绘制几乎所有的标准图形,而且其表现形式也是丰富多样的。
MATLAB不仅具有高层绘图能力,而且还具有底层绘图能力——句柄绘图方法。
在面向对象的图形设计基础上,使得用户可以用来开发各专业的专用图形。
help graph2d可得到所有画二维、三维图形的命令。
描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型。
数学建模问题重述问题: 有一种传染病(如SARS、甲型H1N1)正在流行。
现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。
考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。
1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t时刻的感染人数。
2、假设环境条件下所允许的最大可感染人数为。
单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。
建立模型求t时刻的感染人数。
3、现有卫生防疫部门采集到的某地区一定时间内一定间隔区间的感染人数数据(见下表),利用该数据确定上述两个模型中的相关参数,并将它们的预测值与实际数据进行比较分析(计算仿真偏差)并对两个模型进行适当的评价。
(注:该问题中,设最大可感染人数为2000人)4、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。
传染病的数学模型,数学建模,论文
![传染病的数学模型,数学建模,论文](https://img.taocdn.com/s3/m/f69f70ab27284b73f3425089.png)
数学建模论文班级:商英1002班学号:14号姓名:谭嘉坤指导老师:周爱群由于人体的疾病难以控制和变化莫测,医学中的数学模型也是较为复杂的。
在研究传染病传播问题时,人们发现传染病传播所涉及的因素很多,例如,传染病人的多少,易受感染者的多少,免疫者(或感染后痊愈者)的多少等。
在将某一地区,某种传染病的统计数据进行处理和分析后,人们发现了以下的规律性:设S k表示在开始观察传染病之后第k天易受感染者的人数,H k表示在开始观察后第k天传染病人的人数,I k表示在开始观察后第k天免疫者(或感染后痊愈者)的人数,那么S k+1=S k-0.01S k (1)H k+1=H k-0.2H k+0.01S k (2)I k+1=I k+0.2H k (3)其中(1)式表示从第k天到第k+1天有1%的易受感染者得病而离开了易受感染者的人群;(2)式表示在第k+1天的传染病人的人数是第k天的传染病人的人数减去痊愈的人数0.2H k(假设该病的患病期为5(3)式表示在第k+1天免疫者的人数是第k天免疫者的人数加上第k 天后病人痊愈的人数。
将(1),(2)和(3)式化简得如果已知S0,H0,I0的值,利用上式可以求得S1,H1,I1的值,将这组值再代入上式,又可求得S2,H2,I2的值,这样做下去,我们可以逐个地,递推地求出各组S k,H k,I k的值。
因此,我们把S k+1,H k+1,I k+1和S k,H k,I k之间的关系式叫做递推关系式。
现在假设开始观察时易受感染者,传染病人和免疫者的人数分别为将上述数据(5)代入(4)式右边得利用递推关系式(4)反复计算得表30-1。
在建立上述数学模型的过程中,如果还要考虑该地区人员的迁入和迁出,人口的出生和死亡所引起的总人数的变化等因素,那么传染病传播的数学模型变得非常复杂。
所以必须舍去次要因素,抓住主要因素,把问题简化,建立相应的数学模型。
如果将由该数学模型计算的结果与实际比较后,与传染病传播的情况大致吻合,那么我们就可以利用该模型对得病人数进行预测和估计。
数学建模之传染病模型
![数学建模之传染病模型](https://img.taocdn.com/s3/m/34265f9d1711cc7930b71611.png)
第五章 微 分 方 程 模 型如果实际对象的某特性是随时间(或空间)变化的,那么分析它的变化规律,预测它的未来性态时,通常要建立此实际对象的动态模型,这就是微分方程模型.§1 传 染 病 模 型建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮的到来等,一直是各国有关专家和官员关注的课题.考虑某地区的传染病的传染情况,设该地区人口总数为N ,既不考虑生死,也不考虑迁移,时间以天为计量单位.一. SI 模 型假设条件:1. 人群分为易感染者(Susceptible )和已感染者(Infective )两类人,简称为健康人和病人,在时刻t 这两类人在总人数中所占比例分别记作()t s 和()t i .2. 每个病人每天有效接触的平均人数是λ(常数),λ称为日接触率,当病人与健康人有效接触时,使健康者受感染变为病人.试建立描述()t i 变化的数学模型.解: ()()1=+t i t s ()()N N t i N t s =+∴由假设2知,每个病人每天可使()t s λ个健康者变为病人,又由于病人数为()t i N ,∴每天共有()()t i N t s λ个健康人被感染.于是i s N λ就是病人数i N 的增加率,即有i s N dt di Nλ=………………………………………………(1) i s dtdi λ=∴ 而1=+i s .又记初始时刻(0=t )病人的比例为0i ,则()()⎪⎩⎪⎨⎧=-=001i i i i dt di λ 这就是Logistic 模型,其解为 ()t e i t i λ-⎪⎪⎭⎫ ⎝⎛-+=1111[结果分析]作出()t t i ~和i dt di ~的图形如下:1. 当21=i 时,dt di 取到最大值m dt di ⎪⎭⎫ ⎝⎛,此时刻为⎪⎪⎭⎫ ⎝⎛-=-11ln 01i t m λ2. 当∞→t 时,1→i 即所有人终将被传染,全变为病人(这是不实际的).二. SIS 模 型在前面假设1、2之下,再考虑病人可以医治,并且有些传染病如伤风、痢疾等愈后免疫力很低,可以假定无免疫性,于是病人被治愈后变成健康者,健康者还可以被感染再变成病人,此模型称SIS 模型.假设1、2同SI 模型,增加假设:3. 病人每天被治愈的人数占病人总数的比例为μ,称为日治愈率.病人治愈后成为易感染者(健康人).显然μ1是这种传染病的平均传染期.解:在假设1、2、3之下,模型(1)修正为i N i Ns dtdi N μλ-= 于是 ()()⎪⎩⎪⎨⎧=--=001i i i i i dt di μλ解得()()⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛+≠⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=--- = -μλλμλμλλμλλμλ,1,11010i t e i t i t [结果分析]1. 令μλσ=. 注意到λ和μ1的含义,可知σ是一个传染期内每个病人有效接触的平均人数,称为接触数.()⎪⎩⎪⎨⎧-=∞ 011σi 11≤>σσ1-2. 接触数1=σ是一个阈值.当1≤σ时,病人比例()t i 越来越小,最终趋于零.当1>σ时,()t i 的增减性取决于0i 的大小,其极限值()σ11-=∞i .3. SI 模型是SIS 模型中0=μ的情形. 三. SIR 模 型大多数传染病如天花、流感、肝炎、麻疹等治愈后均有很强的免疫力,所以病愈的人既非健康者,也非病人,他们已经退出传染系统,此时模型的假设为1.人群分为健康者、病人和病愈免疫的移出者三类,称为SIR 模型.三类人在总人数N 中占的比例分别记作()i s 、()t i 和()t r .1. 病人的日接解率为λ,日治愈率为μ(与SIS 模型相同),传染期接触数为μλσ=.解:由假设1,有()()()1=++t r t i t s 0=++∴dtdr dt di dt ds 由假设2,得i N dt dr N μ= N i N i s dt di N μλ-= ⎪⎪⎩⎪⎪⎨⎧-==∴i i s dtdi i dt dr μλμ 又设()()()00,0,000===r i i s s 于是()()⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=00s 0s ,0i i i s dt ds ii s dt di λμλ (2)我们在相平面上来讨论解的性质.相轨线的定义域为(){}1s ,0,0s ,s ≤+≥≥=i i i D 由(2)式消去dt ,得⎪⎩⎪⎨⎧=-==0s s 01s 1s i i d di σ 这里 μλσ= 解得()000s s ln 1s -i s σ++=i ………………………………………(3) 在定义域D 内,(3)式表示的曲线即为相轨线..。
传染病模型数学建模论文
![传染病模型数学建模论文](https://img.taocdn.com/s3/m/4cee8918b7360b4c2e3f6427.png)
甲型H1N1流感传播模型研究摘要本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。
一、问题重述近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。
二、问题分析甲型h1n1流感的传播是一道传染病问题。
在数学建模领域已经有很多关于这方面的研究,其中SIR模型是比较完整的模型。
SIR模型通过建立微分方程组,按照一般的传播机理建立集中模型。
本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。
美国甲型H1N1流感实验室确认病例数量:三、建立模型(一)、不考虑潜伏期的数学模型1、模型假设(1)、在甲型H1N1流感传播期内,美国境内的总人数为N亿不变,既不考虑生死,也不考虑迁移,人群分为易感染者S ,发病人群I 和退出人群R(括死亡者和治愈者)四类,时刻t 内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。
(2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。
病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。
治愈的病人具有了免疫力,即治愈后不再会成为二次患者。
(3)、s(t)、r(t)、i(t)之和是一个常数1。
2、模型构成易感者和发病者有效接触后成为发病者者。
设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。
所以有:()()()dS t S t I t dtλ=- (1) 单位时间内退出者的变化等于发病人群的减少,即()()dR t I t dtν= (2) 发病人群的变化等于易感人群转入的数量,即()()()()dI t S t I t I t dtλν=- (3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。
数学建模传染病模型例题
![数学建模传染病模型例题](https://img.taocdn.com/s3/m/47b17c12ec630b1c59eef8c75fbfc77da26997cb.png)
数学建模传染病模型例题(最新版)目录一、引言二、数学建模传染病模型的基本概念1.SEIR 模型2.SIS 模型3.SIR 模型三、数学建模传染病模型的例题1.模型假设2.模型建立3.模型求解四、结论正文一、引言随着全球化的发展,传染病的传播越来越引起人们的关注。
为了更好地预测和控制传染病的传播,数学建模传染病模型被广泛应用。
本文将以数学建模传染病模型为例,介绍相关的模型概念和例题。
二、数学建模传染病模型的基本概念(1)SEIR 模型SEIR 模型是传染病数学模型中最基本的模型之一,它将人群分为四类:易感者 (Susceptibles)、暴露者 (Exposed)、感染者 (Infectives) 和抵抗者 (Resistances)。
该模型假设人群数量不变,感染者会以一定的速率传染给易感者,同时易感者会以一定的速率转变为暴露者,暴露者在一定时间后转为感染者,感染者又会在一定时间后转为抵抗者。
(2)SIS 模型SIS 模型是 SEIR 模型的一种特殊形式,它将人群分为易感者(Susceptibles)、感染者 (Infectives) 和恢复者 (Recovered) 三类。
该模型假设易感者与感染者的接触会导致疾病传播,感染者会在一定时间后恢复为易感者,恢复者则具有免疫力。
(3)SIR 模型SIR 模型是另一种常见的传染病数学模型,它将人群分为易感者(Susceptibles)、感染者 (Infectives) 和恢复者 (Recovered) 三类。
与 SIS 模型不同的是,SIR 模型假设感染者会以一定的速率恢复为易感者,而恢复者则具有免疫力。
SIR 模型适用于短期传染病,例如流感。
三、数学建模传染病模型的例题假设某个地区有 10000 人,其中易感者占 80%,感染率为 0.01,恢复率为 0.9。
我们需要建立一个数学模型来预测疾病传播的过程。
(1)模型假设我们假设疾病传播满足 SEIR 模型,人群分为易感者、暴露者、感染者和恢复者四类。
(6数学建模)传染病模型
![(6数学建模)传染病模型](https://img.taocdn.com/s3/m/6b75b23dee06eff9aef807b8.png)
简化可得SEIR模型
S (t ) SI S E (t ) SI E E I E I I R I R S E I R 1 S0 0, E0 0, I 0 0, R0 0
则有
上式消除N,
由I+S=1可得
上式是伯努里(Berrnolli)方程的初值问题,其解
析解为
定理 对上方程,当σ>1时, I (t ) 1 1 lim
t
;Байду номын сангаас
当σ<1时, I (t ) 0 。 lim
t
定理1表明,接触数σ>1时,传染者不会消灭,
其数量趋近于 1 1 ;当σ<1时,传染者的数量越 来越少,最终趋于零,传染病将消灭。所以接触数σ =1是区分传染病是否蔓延的阈值,定理1的结果可用 下图表示。
假设
1.人口总数为常数N,N足够大,则S(t)、I(t)、 R(t)可视为连续可微的;考虑出生与死亡时,出生率 与死亡率相等,且新生儿全为S类,平均出生率为μ。
2.人群中三类成员均匀分布,传播方式为接触传播,
单位时间内一个传染者与他人接触的接触率为常数λ, 则一个传染者在单位时间内与S类成员的接触率为λS。 因此,单位时间内I类成员与S类成员的接触总数 λNSI,就是单位时间内I类成员增加的数量,λSI称 为发病率。
定理2、定理3表明,传染病是否流行,取决于 s0 。 当 s0 1 时,传染病不会流行;当 s0 1 时,传染 病将流行,但最终传染病将消灭,这时人群中仍然有 S N 数量的成员为易感人群,而并非全体成员均为恢 复类成员。当 s0 初始值一定,控制传染病蔓延就要减 小传染期的按触数σ,我们注意到在σ=λ/ν中, 人们的卫生水平越高,接触率λ越小;医疗水平越高, 治愈率ν越大,于是σ越小,所以提高卫生水平和医 疗水平有助于控制传染病的蔓延。
传染病数学模型
![传染病数学模型](https://img.taocdn.com/s3/m/0e7ca1a65ff7ba0d4a7302768e9951e79a896969.png)
传染病数学模型(二)引言:在传染病研究中,数学模型是一种重要的工具,通过模拟传染病的传播过程,可以帮助研究人员更好地了解病毒传播的规律,并提供有效的预测和控制策略。
本文将介绍传染病数学模型的相关理论及其应用。
概述:传染病数学模型是基于数学方程和模拟计算的方法,用于描述传染病在人群中的传播过程。
通过构建数学方程来描述人群中的感染者、易感者和康复者之间的相互作用,可以模拟传染病的传播动态,并为疫情的预测和控制提供有价值的信息。
正文:一、传染病数学模型的类型1. 动力学模型:描述传染病在时间上的变化规律,常用的动力学模型有SIR模型、SEIR模型等。
2. 空间模型:考虑传染病在空间上的传播,可以帮助研究人员更好地理解传染病的传播路径和空间分布规律。
3. 随机模型:考虑传染病传播的随机因素,可以更真实地反映传染病的传播过程。
4. 网络模型:基于网络结构,模拟人群之间的联系和传播路径,适用于研究社交网络中的传染病传播。
二、传染病数学模型的基本假设1. 平均场假设:假设人群中的每个个体都具有相同的特性和行为,且与其他个体的接触频率相同。
2. 免疫假设:假设人群中的康复者对传染病具有免疫力,不再感染。
3. 独立性假设:假设人群中的个体之间的相互作用是相互独立的,即每个个体的感染概率与其他个体无关。
4. 恒定人口假设:假设人口总数在模拟过程中保持恒定,不存在人口的出生和死亡。
三、传染病数学模型的参数和变量1. 基本再生数(R0):描述传染病在易感人群中的传播能力,是评估传染病传播速度的重要指标。
2. 感染率(β):描述感染者与易感者之间的传播强度,与传染病的传播速度密切相关。
3. 接触率(c):描述人群中个体之间的接触频率,是传染病传播过程中的重要参数。
4. 感染周期(1/α):描述传染病的潜伏期长度,即感染者从感染到出现症状的时间。
5. 恢复率(1/γ):描述感染者康复的速度,与传染病的严重程度相关。
四、传染病数学模型的应用1. 疫情预测:通过建立传染病数学模型,可以预测疫情的发展趋势和高发区域,为公共卫生部门提供决策依据。
传染病的数学模型(一)
![传染病的数学模型(一)](https://img.taocdn.com/s3/m/4c1f2cb405a1b0717fd5360cba1aa81145318f6f.png)
传染病的数学模型(一)引言概述:传染病的数学模型是通过数学方法对传染病的传播过程进行建模和预测的一种方法。
它可以帮助我们理解传染病的传播规律、评估控制措施的有效性,从而指导公共卫生决策。
本文将从概念、数学模型建立、参数估计、应用案例和局限性五个方面阐述传染病的数学模型。
正文内容:一、概念1. 传染病传播过程的基本概念2. 数学模型在理解传染病传播规律中的作用3. 传染病传播的主要途径及其模型4. 传染病的基本流行病学指标5. 常见传染病的数学模型分类及特点二、数学模型建立1. 传染病传播的动力学模型建立过程2. 常见数学模型的基本方程及假设3. 数学模型的参数选择和数据需求4. 模型的数值解和模拟仿真方法5. 模型灵敏度分析和鲁棒性评估方法三、参数估计1. 传染病传播参数的基本概念和估计方法2. 基于数据的参数估计方法及其优缺点3. 遗传算法在参数估计中的应用4. 参数不确定性分析及其影响5. 基于多源数据的参数估计方法及其应用四、应用案例1. 传染病模型在疫情预测中的应用2. 传染病模型在控制措施评估中的应用3. 传染病模型在疫苗接种策略优化中的应用4. 传染病模型在早期预警系统中的应用5. 传染病模型在流行病学调查分析中的应用五、局限性1. 数学模型的假设和简化带来的局限性2. 数据不确定性对模型预测的影响3. 模型的敏感性和鲁棒性问题4. 非线性和时空不均匀性问题的处理5. 模型的外推和推广的合理性评价总结:传染病的数学模型在理解传染病传播规律、预测疫情发展趋势、评估防控措施等方面发挥着重要作用。
通过建立合理的数学模型并进行参数估计,我们能够更好地了解传染病的特点和传播规律,并以此为基础制定出合理的公共卫生决策。
然而,数学模型也存在一定的局限性,需要充分考虑数据不确定性、模型的假设简化以及非线性和时空不均匀性等问题。
因此,在使用传染病的数学模型时,我们需要谨慎并结合其他数据和方法进行综合分析。
数学建模——传染病模型_2022年学习资料
![数学建模——传染病模型_2022年学习资料](https://img.taocdn.com/s3/m/da38a9def605cc1755270722192e453611665b5b.png)
数学模型-模型2-di-dt-=2i1-iLogistic模型-i0=。-it=-1/2-io-tm-t= ,m,dildt最大-人n--tm~传染病高潮到来时刻-t>00→i>1?-2日接触率↓→tm↑-病人可以 愈!-0①
数学模型-模型3-传染病无免疫性一病人治愈成-为健康人,健康人可再次被感染-SIS模型-增加假设-3病人每 治愈的比例为4-4~日治愈率-建模W[it+△t-it]=Wstit△t-uWit△t-di-=2i1-i-入~日接触率-dt-i0=i。-1/μ ~感染期-6-、一个感染期内每个病人的-有效接触人数,称为接触数
数学模型-模型4-传染病有免疫性—病人治愈-SIR模型-后即移出感染系统,称移出者-假设-1总人数N不变, 人、健康人和移-出者的比例分别为it,t,rt-2病人的日接触率2,日治愈率山-接触数σ =入/4-建模-s +it+rt=1-需建立it,St,rt的两个方程-00①
数学模型-模型4-SIR模型-W[it+△t-it]=2Wstit△t-uWit△t-W[st+△t-st =-2Nstit△t-di-E见si-i-=-si-dr-人Z-i0=io,s0=So,i0=0-00①
数学模型-传染病模型-问题-·描述传染病的传播过程-·分析受感染人数的变化规律-·预报传染病高潮到来的时刻 ·预防传染病蔓延的手段-·按照传播过程的一般规律,-用机理分析方法建立模型-00①
数学模型-模型1-已感染人数(病人)t-假设-每个病人每天有效接触-足以使人致病人数为入-建模-it+△t it=入it△t-di-:i-dt-it=ie"-i0-io-0t→00→i→00?-若有效接触的是病人, 必须区分已感染者(病-则不能使病人数增加-人和未感染者(健康人)
数学建模论文传染病模型)(精选干货)
![数学建模论文传染病模型)(精选干货)](https://img.taocdn.com/s3/m/abc5ce085022aaea988f0f4c.png)
数学建模论文传染病模型)传染病模型摘要“传染病的传播过程”数学模型是通过控制已感染人群来实现的。
利用隔离等手段来保护未被感染的人群,减少其对健康人群的危害.由于传染病具有研究新型病例有着重要的意义,利用数学知识联系实际问题,作出相应的解答和处理。
问题一:描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型.问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。
问题三,传染病无免疫性--病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。
ﻫ一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。
如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。
为此,必须从诸多因素中,抓住主要因素,去掉次要因素。
先把问题简化,建立相应的数学模型.将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型.从而使模型逐步完善。
下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。
...文档交流仅供参考...一.问题的提出描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。
问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。
数学建模——传染病模型
![数学建模——传染病模型](https://img.taocdn.com/s3/m/b314fa4230b765ce0508763231126edb6f1a7611.png)
数学建模——传染病模型数学建模——传染病模型关键词:数学建模,传染病模型,预测,疫情,发展一、引言传染病模型是数学建模中的一个重要领域,旨在通过数学方法描述和预测传染病的发展趋势。
通过建立传染病模型,我们可以了解疾病传播的机制,评估各种干预措施的效果,并为制定有效的防控策略提供决策支持。
二、传染病模型概述传染病模型是基于生物学、流行病学和数学理论建立的,主要考虑个体之间的接触方式和疾病传播的动态过程。
基本的传染病模型通常假设人群由易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三类组成。
通过分析这三类人群的数量变化,可以揭示疾病传播的规律。
常见的传染病模型包括 SIR 模型、SEIR 模型等。
SIR 模型假设人群分为易感者(S)、感染者(I)和康复者(R),其中感染者与易感者接触后将传染疾病,感染后将进入康复阶段。
SEIR 模型则在 SIR 模型的基础上增加了潜伏期(E),即感染者并非立即变为易感者,而是进入潜伏期,一段时间后才具有传染性。
三、建模方法与步骤1、建立数学模型:根据传染病的基本假设,列出描述疾病传播的微分方程,确定变量及其含义。
2、参数估计:根据历史数据或实验结果,估计模型中的参数值。
这些参数包括感染率、恢复率、潜伏期等。
3、模型求解:通过求解微分方程,得到易感者、感染者和康复者的数量变化情况。
4、模型检验:将模型的预测结果与实际数据进行比较,检验模型的准确性和可靠性。
四、案例分析以某个地区的流感疫情为例,通过建立 SIR 模型预测疫情的发展趋势。
首先,根据历史数据估计模型的参数值,包括感染率和恢复率等。
然后,通过求解微分方程得到易感者、感染者和康复者的数量变化情况。
根据预测结果,可以评估各种干预措施的效果,如隔离、疫苗接种等。
通过比较预测结果与实际数据的差异,可以不断修正和完善模型,提高预测精度。
五、结论传染病模型是数学建模中的一个重要领域,通过建立数学模型描述和预测传染病的发展趋势。
传染病模型数学建模论文
![传染病模型数学建模论文](https://img.taocdn.com/s3/m/60abc72ccaaedd3383c4d379.png)
甲型H1N1流感传播模型研究摘要本文采用了SIR模型对的甲型h1n1流感病毒的传播规律进行了研究和预测,文章收集了美国地区的甲流实验室确认病例数量的数据,对模型进行了验证,并提出了如何降低流感在人群中发病率的俩种可靠方法。
一、问题重述近年来由墨西哥发端的甲型h1n1型流感(又称猪流感)正成为人们关注的焦点,通过相关网站获得数据,建立一个模型对甲型h1n1流感的走势进行预测。
二、问题分析甲型h1n1流感的传播是一道传染病问题。
在数学建模领域已经有很多关于这方面的研究,其中SIR模型是比较完整的模型。
SIR模型通过建立微分方程组,按照一般的传播机理建立集中模型。
本文选取美国地区的甲流实验室确认病例数量,建立SIR模型,对甲型h1n1流感的传播规律进行预测。
美国甲型H1N1流感实验室确认病例数量:三、建立模型(一)、不考虑潜伏期的数学模型1、模型假设(1)、在甲型H1N1流感传播期内,美国境内的总人数为N亿不变,既不考虑生死,也不考虑迁移,人群分为易感染者S,发病人群I和退出人群R(括死亡者和治愈者)四类,时刻t内这三类人在总人数中所占比例分别为s(t)、i(t)、r(t)。
(2)、i(t)关于时间的增长率与s(t)成正比,比例常数为λ。
病人的数量减少速度与当时的病人总人数成正比,比例常数为ν。
治愈的病人具有了免疫力,即治愈后不再会成为二次患者。
(3)、s(t)、r(t)、i(t)之和是一个常数1。
2、模型构成易感者和发病者有效接触后成为发病者者。
设每个发病者平均每天有效接触的易感者数为()S t λ,()NI t 个发病者平均每天能使()()S t NI t λ个易感者成为病毒潜伏者。
所以有:()()()dS t S t I t dtλ=- (1) 单位时间内退出者的变化等于发病人群的减少,即()()dR t I t dtν= (2) 发病人群的变化等于易感人群转入的数量,即()()()()dI t S t I t I t dtλν=- (3) 记初始时刻的健康者和病人的比例分别为0S 、0R (不妨设0R =0)。
数学建模实验(传染病模型)
![数学建模实验(传染病模型)](https://img.taocdn.com/s3/m/b78fe11e59eef8c75fbfb3ea.png)
实验二:传染病模型1、SI 模型的建立基于以下三个假设,求出平衡点,给出参数,图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数,即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
2、SIS 模型的建立基于以下三个假设,求出平衡点,给出参数,图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数。
即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
(3)t 时刻,单位时间内从染病者中治愈的人与病人数量成正比,比例系数为γ,单位时间内治愈的人不具有免疫,将再成为易感者。
3、SIR 模型的建立基于以下三个假设,求出平衡点、给出参数、图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数,即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
(3)t 时刻,单位时间内从传染者中移出的人数与病人数量成正比,比例系数为γ,单位时间内移出者的数量为γ)(t I 。
求解过程1、SI 模型:由题目条件假设可以得到微分方程:K()()dIK S t I t dtβ=,又因为()()1S t I t +=, 令初始时刻病人的比例为0I ,则有:0()(1()),(0)dII t I t I I dtβ=-= %求平衡点,r 为有效传染率,x 病人比例 syms r xsolve('r*x*(1-x)','x') ans = 0 1 %方程求解syms i r t dsolve('Di=r*i*(1-i)','i(0)=i0','t')ans =1/(1-exp(-r*t)*(-1+i0)/i0) %绘制图形r=0.5,i0=0.01 fplot('1/(1-exp(-r*t)*(-1+i0)/i0)',[0,40]) fplot('1/(1-exp(-0.5*t)*(-1+0.01)/0.01)',[0,40]) function di=isf(t,i)di=0.5*i*(1-i); [t,i]=ode45(@isf,[0 40],[0.01]);plot(t,i)t ♓i♎♓ ♎♦图示4 SI 模型的i~t 曲线 图示5 SI 模型的di/dt~i 曲线2、SIS 模型 根据SI 模型及增加的假设条件,可得:)()()(t KI t I t KS dtdiKγβ-=,即: 0)0(),())(1)((I I t I t I t I dtdi=--=γβ 记 γβσ=, 则方程改写为 )]1([σβ---=i i i dt di%求解方程syms r b i t % b 为有效传染率,r 为治愈率dsolve('Di=b*i*(1-i)-r*i','i(0)=i0','t')ans =(b-r)/(b-exp(-(b-r)*t)*(-b+r+i0*b)/i0/(b-r)*b+exp(-(b-r)*t)*(-b+r +i0*b)/i0/(b-r)*r)%求平衡点syms x %(b=0.5,r=0.2)solve('0.5*x*(1-x)-0.2*x; ')ans =0..60000000000000000000000000000000%绘制图形function di=sisf(t,i)di=0.5*i*(1-i)-0.2*i;[t,i]=ode45(@sisf,[0 40],[0.01]);plot(t,i)t♓t ♓图示6 SIS 模型的i~t 曲线(σ>1) 图示7 SIS 模型的i~t 曲线(σ≤1)fplot('-0.5*x*[x-(1-1/20)]',[0,1]) fplot('-0.5*x*[x-(1-2)]',[ 0,1])i♎♓ ♎♦i♎♓ ♎♦图示8SIS 模型的di/dt~i 曲线(σ>1) 图示9SIS 模型的di/dt~i 曲线(σ≤1) 3、 SIR 模型模型的方程为{00()()(),(0)()(),(0)dIS t I t I t I I dtdSS t I t S S dtβγβ=-==-=function dx=sirf(t,x)dx=zeros(2,1);dx(1)=0.5*x(1)*x(2)-0.2*x(1); %x(1)表示i,x(2)表示s dx(2)=-0.5*x(1)*x(2);[t,x]=ode45(@sirf,[0 50],[0.01 0.99]);plot(t,x(:,1),t,x(:,2)),grid,pauseplot(x(:,2),x(:,1)),grid00.20.40.60.81s图示10 SIR模型的图形)(),(tStI图示11 SIR模型的相轨线备注:由于Matlab与Word连接不好,所绘制的图形上标的字符在Word中看不清楚。
(6数学建模)传染病模型
![(6数学建模)传染病模型](https://img.taocdn.com/s3/m/6b75b23dee06eff9aef807b8.png)
3.传染者的恢复数正比于传染者的数量NI,比例系 数ν称为恢复率,则平均传染周期为1/ν。若考虑 死亡,则平均传染周期为1/(μ+ν)。 σ=λ/(μ+ν)为一个传染者在其传染周期
内与其他成员的接触总数,称为接触数。
二、SIS模型
SIS模型是最简单的传染模型,人群只分成两类, S类和I类。人员的流动形式:S→I→S,如图
简化可得SIRS模型 S I (t ) SI S
I SI I I R I R I (t ) S I R 1 S 0 0, I 0 0, R0 0
下图显示模型的理论曲线与实际数据
(四)接触数σ的估计
已经看到,在SIS及SIR模型中,传染病是否流行与接 触数σ直接有关,因而有必要估计这个参数。 一般地,初始传染者数量很小,可近似取 I 0 , 0 故1 R0 S 0 ,则可得
ln( S 0 S ) ( S0 S )
传 染 病 模 型
朱建青 (苏州科技学院信息与计算科学系)
传染病模型
一、记号与假设 二、SIS模型 三、不考虑出生和死亡的SIR模型 四、考虑出生和死亡的SIR模型 五、SEIR模型 六、SIRS模型
一、记号与假设
首先把人群分成以下三类。 S类:易感类(Susceptible) 指未得病,但缺乏免疫,与患病者接触后易受感染。 I类:传染类(Infective) 指已染上传染病,且可能传给S类成员。 R类:排除类(Removal) 指从I类中被隔离或具有免疫力。 S(t)、I(t)、R(t)分别表示t时刻S类、I类、 R类成员占人口总数的比例,故 S(t)+I(t)+R(t)=1。
称为潜伏期,记为
把处于潜伏期内的成员的全体记为E类,用E(t)
数学建模传染病模型
![数学建模传染病模型](https://img.taocdn.com/s3/m/e1b9c66eec630b1c59eef8c75fbfc77da26997c7.png)
常直数至,从此而疾可病以解在释该医地生们s区(t发)消现s失的oe现。1 象r (t )。
k
鉴于在本模型中的r作(t)用 n,1被 i(t) s(t)
infective
医为生揭们示称产为生此上疾述病现在象该的地原区因(3.18)中
的 较第大其的么的(的中阀此所常1值疾有)数。 病 人式通。没。改常kl的有写是引波成一入及:个解到与dd释ti该疾了地k病为i(区种s什类 )有关的
令:
d 2i dt 2
0
得:
t1
ln co k(n 1)
模型3
将人群划分为三类(见右图):易感染者、已感染 者和已恢复者(recovered)。分别记t时刻的三类人数为 s(t)、i(t)和r(t),则可建立下面的三房室模型:
di
dt
ksi
li
l
称为传染病恢(1)复系数
dr
dt
li
(2)
(3.18)
模型1 设某地区共有n+1人,最初时刻共有i人得病,t时刻已
感染(infective)的病人数为i(t),假定每一已感染者在单位 时间内将疾病传播给k个人(k称为该疾病的传染强度),且 设此疾病既不导致死亡也不会康复
则可导出:
di
dt
ki
i(o) io
故可得: i(t) ioekt
(3.15)
解得: 其中:
i(t)
co
n
co (n 1)ek(n1)t
1 io
coek
(n1)t
1 io
(3.17)
统计结果显示,(3.17)预报结果比(3.15)更
接近实际情况。医学上称曲线 为t ~传d此i 染值与病传曲染病的实际高峰期非常
数学建模传染病模型
![数学建模传染病模型](https://img.taocdn.com/s3/m/9a2ce4ded5bbfd0a78567302.png)
传染病的传播摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。
而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。
并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。
运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。
同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。
关键词:微分方程 SARS 数学模型 感染率1问题的重述SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:1)建立传染病传播的指数模型,评价其合理性和实用性。
2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件1提供的数据供参考。
3)说明建立传染病数学模型的重要性。
2 定义与符号说明N …………………………………表示为SARS 病人的总数;K (感染率)……………………表示为平均每天每人的传染他人的人数;L …………………………………表示为每个病人可能传染他人的天数;dt dN(t)………………………… 表示为每天(单位时间)发病人数;N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数;t …………………………………表示时间;R 2………………………………表示拟合的均方差; 3 建立传染病传播的指数模型3.1模型假设1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传染病模型摘要“传染病的传播过程”数学模型是通过控制已感染人群来实现的。
利用隔离等手段来保护未被感染的人群,减少其对健康人群的危害。
由于传染病具有研究新型病例有着重要的意义,利用数学知识联系实际问题,作出相应的解答和处理。
问题一:描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。
问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。
问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。
一种疾病的传播过程是一种非常复杂的过程,它受很多社会因素的制约和影响,如传染病人的多少,易受传染者的多少,传染率的大小,排除率的大小,人口的出生和死亡,还有人员的迁入和迁出,潜伏期的长短,预防疾病的宣传以及人的个体差异等。
如何建立一个与实际比较吻合的数学模型,开始显然不能将所有因素都考虑进去。
为此,必须从诸多因素中,抓住主要因素,去掉次要因素。
先把问题简化,建立相应的数学模型。
将所得结果与实际比较,找出问题,修改原有假设,再建立一个与实际比较吻合的模型。
从而使模型逐步完善。
下面是一个由简单到复杂的建模过程,很有代表性,读者应从中体会这一建模过程的方法和思路。
一.问题的提出描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。
问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。
问题三,传染病无免疫性——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。
二.问题的分析2.1 问题分析描述传染病的传播过程,将分析受感染人数的变化规律,预报传染病高潮到来的时刻,在传染病过程中,建立传染病影响健康人的数学模型。
2.2模型分工三.建模过程3.1问题一3.11.模型假设:(1) 每个病人在单位时间内传染的人数是常数k ;(2) 一个人得病后经久不愈,并在传染期内不会死亡。
3.12.定义符号说明:i(t)表示t 时刻的病人数,0k 表示每个病人单位时间内传染的人数,i(0)= 0i 表示最初时有0i 个传染病人。
3.13模型建立与求解:在t ∆时间内增加的病人数为()()()0i t t i t k i t t +∆-=∆;两边除以t ∆,并令t ∆→0得微分方程()()()000di t k i t dt i i⎧=⎪⎨⎪=⎩………… (3.1) 其解为()00k ti t i e=。
这表明传染病的转播是按指数函数增加的。
这结果与传染病传播初期比较吻合,传染病传播初期,传播很快,被传染人数按指数函数增长。
但由(2.1)的解可知,当t →∞时,i(t)→∞,这显然不符合实际情况。
最多所有的人都传染上就是了。
那么问题在那里呢?问题是就出在于两条假设对时间较长时不合理。
特别是假设(1),每个病人单位时间内传染的人数是常数与实际情况不符。
因为随着时间的推移,病人越来越多,而未被传染的人数却越来越少,因而不同时期的传播情况是不同的。
为了与实际情况较吻合,我们在原有的基础上修改假设建立新的模型。
3.2问题二3.21.基本假设:问题二,在区分健康人群和已经感染人群的情况下,要建立适合总人数不变,区分已经感染的人群和的数学模型,必须在问题一的条件下作出合理假设,同时得出该模型,最后结合已知数据可算出每个已感染人群每天接触健康人群的函数和数学模型。
3.22.定义符号说明:将人群分成两类:一类为传染病人,另一类为未被传染的人,分别用i(t)和s(t)表示t 时刻这两类人的人数。
i (0)= 0i 。
3.23模型建立与求解:假设:(1) 每个病人单位时间内传染的人数与这时未被传染的人数成正比。
即()0k ks t =;(2) 一人得病后,经久不愈,并在传染期内不会死亡。
由以上假设可得微分方程()()()()()()0di t ks t i t dt s t i t ni i ⎧=⎪⎪⎪+=⎨⎪=⎪⎪⎩………… (3.2)这是变量分离方程,用分离变量法可求得其解为()011kntni t n e i =⎛⎫+- ⎪⎝⎭………… (3.3) 其图形如下图3-1所示图3.1模型 (3.2) 可以用来预报传染较快的疾病前期传染病高峰到来的时询。
医学上称dit dt-为传染病曲线,它表示传染病人的增加率与时间的关系,如图3-2所示。
由 (3.3)式可得2020111knt knt n kn ei di dt n e i --⎛⎫- ⎪⎝⎭=⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎣⎦………… (3.4)再求二阶导数()22d i t dt ,并令()220d i t dt=,可解得极大点为 01ln 1n i t kn⎛⎫- ⎪⎝⎭= ………… (3.5)从 (3.5) 式可以看出,当传染病强度k 或人口总数n 增加时,1t 都将变小,即传染病高峰来得快。
这与实际情况吻合。
同时,如果知道了传染率k(k 由统计数据得到),即可预报传染病高峰1t 到来的时间,这对于预防传染病是有益处的。
模型 (3.2) 的缺点是:当t →∞时,由(3.3)式可知i(t)→n ,即最后人人都要得病。
这显然与实袜情况不符。
造成这个结果的原因是假设 (2) 中假设一人得病后经久不愈,也不会死亡。
为了得到与实际情况更吻合的模型,必须修改假设 (2) 。
实际上不是每个人得病后都会传染别人,因为其中一部份会被隔离,还有由于医治和人的身抵抗力会痊愈,有的人会死亡从而也就不再会传染给别人了。
因此必须对模型作进一步的修改,建立新的模型。
3.3问题三3.31.基本假设:传染病无免疫性(SIS 模型)——病人治愈成为健康人,健康人可再次被感染,问题三加入健康人可以再次感染,一个感染期内每个病人的有效接触人数,称为接触数。
3.32.定义符号说明:已感染人数 (病人) i (t )3.33 模型建立与求解:(1)模型建立的建立如下:t t Ni t t i t Ns t i t t i N ∆-∆=-∆+)()()()]()([μλμλσ/=(2)模型的求解过程如下:i i i dtdiμλ--=)1( ……(3.6);…………(3.7);试子3.6和3.7变量分离方程,用分离变量法可求得其解为:μλ σ / =)]11([σλ---=i i dt di其中di/dt 可看成一元二次方程中的y ,i 相当于一元二次方程中的x 。
这样的解法便利了运算。
(3)下面的分析di/dt 与σ的关系:其中 σ~ 一个感染期内每个病人的有效接触人数,称为接触数。
在上图中我们讨论的是σ大于一的情况。
关系模式成抛物线有最高点;抛物线与i 轴的交点1-1/σ为方程的驻点。
(4)分析i 与时间t 的关系(σ>1的情况):第一种情况:随着时间t 的增加,i 的值一直增加但不会超过1-1/ σ的值,而是无限接近。
这说明随着时间的增加,感染传染病的人数如果没有条件控制的话会一直增加。
第二种情况是:感染传染病的人数一定时,有医疗措施但没有控制条件的话,虽然人数会减少但也是无限接近一个固定的值为1-1/ σ。
(5)分析i 与时间t 的关系(σ<=1的情况):当σ<=1时,di/dt<0;可推出随着时间t 的增加,患传染病的人数会越来越少直到全部痊愈。
说明控制病人的有效接触人数有很重要的作用。
3.34结论接触数 =1 ~ 阈值⎪⎩⎪⎨⎧≤>-=∞1,01,11)(σσσi形曲线增长按S t i )(⇒小01i >σ1≤σ↓⇒)(t i由以上可得出结论:感染期内有效接触感染的健康者人数不超过病人数。
四.模型的评价与改进随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、天花等曾经肆虐全球的传染病已经得到有效的控制,但是在世界的某些地区,特别是贫穷的发展中国家,还不时出现传染病流行的情况,与次同时,一些鲜为人知的险恶传染病则跨国越界在既包括发达国家也包括发展中国家的更大范围内蔓延。
一直以来,建立传染病的数学模型来描述传染病的传播过程,分析受感数的变化规律,预报传染病高潮的到来等等,有着重要的作用。
以最近突发性的险恶传染病——SARS为例。
从2002年11月16日在中国广东佛山市首例发生家族聚集性发病至2003年5月,疾病呈迅速蔓延趋势。
目前全世界30多个国家和地区有病例报告。
中国大陆、香港和台湾发病人数占全球的90%以上。
世界卫生组织(WHO)总干事Brundtlard博士指出,SARS已威胁到全球人类的健康。
由于目前对SARS尚无可靠的病理学诊断,所以只能根据医疗卫生部门提供的可靠数据统计资料,建立模型来描述SARS病毒的宏观传播过程,有助于从量的方面来分析受感染人数的变化趋势,掌握SARS的流行规律,从而及时对疫情进行控制,提供科学的数据,认清传染的基本要素,为防病提供必要的依据。
例如,5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目。
于5月19日初步完成了第一批成果,这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真。
结果指出,将患者及时隔离对于抗击非典至关重要。
分析报告说,就全国而论,若非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加2100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府未采取隔离措施,则高峰期病人人数将达60万人。
同时美国《科学》杂志网站5月23日发表的两份最新研究报告显示,如果对非典采取严密的公共卫生防治措施,这种新型疾病是能够得到控制的。
而采取这种措施需要有一个预见性,这就需要人们通过模型的建立对SARS的发病周期、发病人数的变化趋势、疑似人数的变化趋势等来分析和预测。
并为政府和医疗卫生部门进行决策和资料调配提供直接的服务,为相关的研究部门提供科学的数据。
SARS作为新发传染病之一,虽有着其特殊性,但也符合一般传染病的传播规律。
从SARS对人民身体健康造成严重危害可以看出及时对传染病建立模型并进行分析和预测对人类的生命健康有着至关重要的作用。
五.参考文献[1] 姜启源〈数学模型〉高等教育出版社1993.8[2] 云舟工作室〈数学建模基础教程〉人民邮电出版社2001.7[3] 老师PPT。