数值微分和数值积分-总结复习 习题课(陈).40页PPT

合集下载

数值分析课件第4章数值积分与数值微分

数值分析课件第4章数值积分与数值微分

森(simpson)公式(又称为抛物形求积公式),即
S b a [ f (a) 4 f (a b) f (b)].
6
2
上页 下页
n = 4 时的牛顿-柯特斯公式就特别称为柯特斯公 式. 其形式是
上页 下页
4.1.1 数值求积的基本思想
由积分中值定理, 对连续函数f(x), 在区间[a, b]
内至少存在一点,使
I
b
a
f
(x)d
x
(b
a)
f
(
)
只要对平均高度 f() 提供一种近似算法, 便可相应
地获得一种数值求积方法. 即所谓矩形公式.
几何图形见书p119.
上页 下页
例如, 用区间[a, b]两端点的函数值 f(a)与f(b)的
nn
(t j)dt
0 jk
(k=0,1,,n)
则 Ak (b a)Ck(n) , 于是得求积公式
n
In (b a) Ck(n) f ( xk )
k0
称为n 阶牛顿-柯特斯 (Newton-Cotes)公式, Ck(n) 称 为柯特斯系数。
显然, 柯特斯系数与被积函数 f (x) 和积分区间
如为了构造出上面的求积公式,原则上是一个 确定参数xk和Ak的代数问题.
上页 下页
4.1.3 插值型求积公式
设给定一组节点 a x0 x1 xn1 xn b
且已知f(x)在这些节点上的函数值 f(xk), 则可求得f(x)
的拉格朗日插值多项式(因为Ln(x)的原函数易求)
n
Ln ( x) f ( xk )lk ( x) 则 f (x)Ln(x)
k0
如果对任I给n( 小f )正 I数n(ε~f>)0, 只n 要Ak误[ f差( x|δkk)|充 ~f分k ]小就 ,有

第七章数值积分与数值微分 PPT

第七章数值积分与数值微分 PPT

a
2
b
梯形公式
b
a
f
( x)dx
1 2
(b
a)
f
(a)
f
(b)
3
一般形式
数值积分公式得一般形式
一般地,用 f(x) 在 [a, b] 上得一些离散点
a x0 < x1 < ···< xn b
上得函数值得加权平均作为 f () 得近似值,可得
b
n
f ( x)dx
a
Ai f ( xi )
29
复合梯形公式
将 [a, b] 分成 n 等分 [xi , xi+1] ,其中
xi a i h,
h
b
a n
(i = 0, 1, …, n)
复合梯形公式
b
n1
f ( x) dx
a i0
xi 1 xi
f (x)
dx
n1 i0
h[ 2
f
(
xi
)
f ( xi1)]
余项
h 2
f (a)
n
Ai =A0 A1 An b a
i0
9
大家学习辛苦了,还是要坚持
继续保持安静
插值型求积公式
设求积节点为:a x0 < x1 < ···< xn b
n
若 f (xi) 已知,则可做 n 次多项式插值: Ln( x) li ( x) f ( xi )
i0
b
b
n
b
n
a f ( x)dx a Ln( x) dx f ( xi ) a li ( x) dx Ai f ( xi )
代数精度的验证方法

数值积分与数值微分ppt课件

数值积分与数值微分ppt课件

a
,
x1

b
2
a
,
x2

b
,h

b
2
a
Cotes系数:
C0( 2 )

1 4
2
1
(t 1)(t 2)dt
0
6
4.5 4
C1(2)

1 2
2
t(t 2)dt
0
4 6
3.5 3
2.5
C2(2)

1 4
2
1
(t 1)tdt
0
6
2 1.5
1
求积公式:
2
Q2( f ) (b a)
n (t j)h
0

0
jn
(k

j)h


h
dt
jk
jk

h (1)nk n

(t j)dt
k!(n k)! 0 0 jn
jk
Ak
ˆ
(b

a
)

C (n) k
C
(n)称
k
为Cotes系

(1)nk
n
Ak
(b a)
3
I3(
f
)

b
6
a
(a2

(a

b)2

b2
)

b3
3
a3
R( , x2 ) 0
(3)当 f (x) x3时,I ( f ) b4 a4
4
I3(
f
)

b

数值分析课件 第4章 数值积分与数值微分

数值分析课件 第4章 数值积分与数值微分

第4章 数值积分与数值微分1 数值积分的基本概念实际问题当中常常需要计算定积分。

在微积分中,我们熟知,牛顿—莱布尼兹公式是计算定积分的一种有效工具,在理论和实际计算上有很大作用。

对定积分()ba I f x dx =⎰,若()f x 在区间[,]ab 上连续,且()f x 的原函数为()F x ,则可计算定积分()()()ba f x dx Fb F a =-⎰ 似乎问题已经解决,其实不然。

如1)()f x 是由测量或数值计算以数据表形式给出时,Newton-Leibnitz 公式无法应用。

2)许多形式上很简单的函数,例如222sin 1(),sin ,cos ,,ln x x f x x x e x x-=等等,它们的原函数不能用初等函数的有限形式表示。

3)即使有些被积函数的原函数能通过初等函数的有限形式表示,但应用牛顿—莱布尼兹公式计算,仍涉及大量的数值计算,还不如应用数值积分的方法来得方便,既节省工作量,又满足精度的要求。

例如下列积分24111ln11arc 1)arc 1)xdxxtg tg C++=+⎡⎤+++-+⎣⎦⎰对于上述这些情况,都要求建立定积分的近似计算方法—数值积分法。

1.1 数值求积分的基本思想根据以上所述,数值求积公式应该避免用原函数表示,而由被积函数的值决定。

由积分中值定理:对()[,]f x C a b∈,存在[,]a bξ∈,有()()()baf x dx b a fξ=-⎰表明,定积分所表示的曲边梯形的面积等于底为b a-而高为()fξ的矩形面积(图4-1)。

问题在于点ξ的具体位置一般是不知道的,因而难以准确算出()fξ。

我们将()fξ称为区间[,]a b上的平均高度。

这样,只要对平均高度()fξ提供一种算法,相应地便获得一种数值求积分方法。

如果我们用两端的算术平均作为平均高度()f ξ的近似值,这样导出的求积公式[()()]2b a T f a f b -=+ (1.1)便是我们所熟悉的梯形公式(图4-2)。

数值分析课程课件 数值微分

数值分析课程课件    数值微分

f ( x1 ).
对上式两端求导,记 x1 x0 h
,有P1(x)

1 [ h
f
(x0 )
f
(x1)],
于是有下列求导公式:
P1( x0 )

1 h
[
f
(
x1
)

f ( x0 )];
P1( x1 )

1 h
[
f
(
x1
)

f ( x0 )],
第三章 数值积分与数值微分
而利用余项公式(3.5.2)知,带余项的两点公式是(当n=1时),
第三章 数值积分与数值微分
而利用余项公式(3.5.2)知,带余项的三点求导公式(n=2)如 下:
f
' x0
1 [3 f 2h
x0 4 f
x1
f

x2
]

h2 3
f
" ,
f
' x1


1 2h
[
f
x0

f
x2
]

h2 6
f " ,
f 'x2

f (x) Pn(x) (3.5.1)
统称插值型的求导公式。
第三章 数值积分与数值微分
必须指出,即使f (x) 与Pn (x) 的值相差不多,导数的近似值 Pn(x)
与导数的真值 f (x) 在某些点仍然可能差别很大,因而在使用求导
公式(3.5.1)时应特别注意误差的分析。
依据插值余项定理,求导公式(3.5.1)的余项为
Gh



G1
h

计算方法课件-第5章-数值微分与数值积分讲解

计算方法课件-第5章-数值微分与数值积分讲解
11
h2 R2 ( x0 ) 3
f (1 )—左端
h2 R2 ( x1 ) - 6
f (2 )
—中
R2 ( x2 )
h2 3
f (3 )
—右端
例1:已知列表
X 2.5
2.55 2.60 2.65 2.70
Y 1.58114 1.59687 1.61245 1.62788 1.64317
求f (2.50), f (2.6), f (2.7)的近似值。
h 2!
f ''( ) O(h)
因此,有误差
f ( x0 h)
f ( x0 ) hf
'( x0 )
h2 2!
f
''( ), x0
x0 h
4
5.1 数值微分
5.1.1 差商型求导公式
中心差商
f '( x0 )
f ( x0 h) f ( x0 h) 2h
由Taylor展开
f ( x0
因此,有误差
R( x)
f
'( x0 )
f ( x0 h) h
f ( x0 )
h 2!
f
''( ) O(h)
3
5.1 数值微分
5.1.1 差商型求导公式
向后差商
f '( x0 )
f ( x0 ) f ( x0 h) h
由Taylor展开
R( x)
f '( x0 )
f ( x0 ) f ( x0 h) h
f ( )的近似值,这样导出的求积公式
ab
f
( x)dx
b
2
a

数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分

数值分析数值计算方法课程课件PPT之第四章数值积分与数值微分
4
( x a )( x b ) d x a
b
[ a , b ].
(2) f ( x) C [a, b], 则 辛 普 森 公 式 的 截 断 差 误 为:
f ()b a b 2 R ( x a )( x ) ( x b ) d x S a 4 ! 2
b ab a 4 ( 4 ) ( ) f ( ), 180 2
n 1
I k 求出积分值Ik,然后将它们累加求和,用 作为所求积分 I的近 k 0 似值。
h I f ( x ) dx f ( x ) dx f ( x ) f ( x ) k k 1 a x k 2 k 0 k 0 h f ( x ) 2 ( f ( x ) f ( x ) ... f ( x )) f ( x ) 0 1 2 n 1 n 2

1 S f ( a ) 4 f ( x ) 2 f ( x ) f ( b ) 1 n k k 2 6 k 0 k 1
n 1 n 1
称为复化辛普森公式。
18
类似于复化梯形公式余项的讨论,复化辛普森公式的求 积余项为
R s h f 2880 ba
1

4.3 复化求积公式
问题1:由梯形、辛普森和柯特斯求积公式余项,分析随着求 积节点数的增加,对应公式的精度是怎样变化? 问题2:当n≥8时N—C求积公式还具有数值稳定性吗?可用增 加求积节点数的方法来提高计算精度吗? 在实际应用中,通常将积分区间分成若干个小区间, 在每个小区间上采用低阶求积公式,然后把所有小区间上 的计算结果加起来得到整个区间上的求积公式,这就是复 化求积公式的基本思想。常用的复化求积公式有复化梯形 公式和复化辛普森公式。

【推荐】数值计算方法:第5章-数值微分与数值积分.ppt

【推荐】数值计算方法:第5章-数值微分与数值积分.ppt
的具体形式.
20
(1)插值型求积公式
2.由下列列表函数求L-插值多项式
x0
x1 --- xi-1
xi
xi+1
---
xn
f(x0) f(x1) --- f(xi-1) f(xi) f(xi+1) --- f(xn)
21
称为插值型求积公式,
称为求积节点, 称为求积系数,其和
22
求积系数 通过插值基函数
这称为梯形公式;
a
b
图1 梯形公式
几何意义:用梯形面积 代替f(x)作为曲边的曲边 梯形面积。
25
这称为Simpsion公式。
a
b
图2 Simpson公式
几何意义:用抛物线 作曲边的曲边
梯形面积代替f(x)作 为曲边的曲边梯形面26积。
这称为Cotes公式。
求积公式的误差(余项)
27
28
例 5. 1 分别用梯形公式、Simpson公式计算定积分
时的步长h/2就是合适的步长
6
例:
f(x)=exp(x)
h
f’(1.15) R(x)
h
f’(1.15) R(x)
0.10 0.09 0.08 0.07 0.06
3.1630 -0.0048
3.1622 3.1613 3.1607 3.1600
-0.0040 -0.0031 -0.0025 -0.0018
17
构造数值积分公式的基本思想: 由积分中值定理知,在积分区间
成立
内存在一点ξ,
问题:点ξ的具体位置一般是不知道的,因而难以 准确算出 的值,怎么办?
只要对平均高度 一种数值求积方法.
提供一种算法,相应地便可获得

数值分析第四版第四章数值积分与数值微分精品PPT课件

数值分析第四版第四章数值积分与数值微分精品PPT课件

b
n
b
R( f ) f (x)dx a
在a,b内存在一点 ,使得
b
I ( f ) f (x)dx (b a) f ( )
a
f ?
称 f 为 f x 在区间 a,b上的平均高度.
3、求积公式的构造
➢ 若简单选取区间端点或中点的函数值作为平均高度,则 可得一点求积公式如下:
左矩形公式: I f f ab a
中矩形公式:Biblioteka nAk b ak 0
n
k 0
Ak xk
1 2
b2 a2
n
k 0
Ak
xk m
1 m 1
bm1 am1
§2 插值型求积公式
一、定义
在积分区间 a,b上,取 n 1个节点 xi , i 0,1, 2,..., n
作f x 的 n 次代数插值多项式(拉格朗日插值公式):
2 式(两点求积公式)
I f f a f b b a
2
y
f b
f a Oa
f x
bx

若取三点,a,b, c
ab 2
并令 f
f
a4 f
c
f
b
6
则可得Simpson公式(三点求积公式)
I f b a f a 4 f c f b
6
➢ 一般地 ,取区间 a,b 内 n 1 个点xi,i 0,1, 2,..., n
2. 有些被积函数其原函数虽然可以用初等函数表示,但表达 式相当复杂,计算极不方便.
例如函数:
x2 2x2 3
并不复杂,但它的原函数却十分复杂:
1 x 2 2x 2 3 3 x 2x 2 3 9 ln( 2 x 2x 2 3 )

习题课三(数值积分和数值微分) ppt

习题课三(数值积分和数值微分) ppt

解:令f (x)=1,x,x2,则
f (x)=1
左边 x2h 4hABC右边 2h
f (x)=x 左边 12x2 2h2h0AC右边
f (x)=x2 左边 1 3x3 2h 2h13h 63h2Ah2C右边
-
14
关于A、B、C的三元一次方程组
A B C 4h
AC 0
解得
AC
16 3
h
所以该插值型求积公式为
I 3 2f(1 4 ) 1 3f(1 2 ) 3 2f(4 3 )
-
7
(2)求代数精度,f (x)分别取1,x,x2, x3, …代入求积公式
f (x)1
左边=1
右边=
2 3
1 3
2 3
1
f (x) x
左边=
1 2
x2
1 0
1 2
右边=
2111231 34 32 34 2
-
(2)将区间[0,1]二等分,x=0. 5是新 分点,得
f'(1 .0 ) 3 0 .2 5 4 0 .622 0 .2 60 7 6 5 7 .6 6 77 10 245
2 0 .1
-
2
f'(x1)f(x02 )h f(x2)
f'(1.1)0.2 50.206 6 01 .22 1694 20.1
f'(x2)f(x0)4f2 (h x1)3f(x2)
11
0 v(H ) dH
h[ 2
f
(a) Biblioteka fn 1(b) 2
i 1
f
(xi )]
2 [ 1 1 2( 1 1 1 1 )] 2 50 10 46 40 32.2 22.5

数值积分和数值微分课件

数值积分和数值微分课件

一般地,欲使求积公具 式有m 次代数精度,只要令对 它于 f(x) 1,x,,xm 都能准确成立。
利用代数精度的概念求求积公式的代数精确度
梯 形 公 式 (T b f (x) dx [ f (a) f (b)] (b a))
a
2
令f (x) 1, x,....
当f (x) 1, 左 边
xk a kh 构造出的插值型求积公式
n
In (b a)
C(n) k
f
( xk
),
k 0
称为 牛顿 - 柯特斯公式(Newton- Cotes公式),
C(n) k
称为 柯特斯系数.
作变换x a th,则有
C(n) k
h ba
n n t j dt 0 j0 k j
jk
(1)nk
定理1 形如 (1)式的求积公式至少有n次代数精度的充分必要条件是, 它是插值型的。
如果求积公式是插值型的,按 (2) 式,对于次数不超过n 的多项式
f(x),其余项 R[f] 等于零,因而这时求积公式至少具有n 次代数精度。
反之,如果求积公式 (1) 至少具有 n 次代数精度,则它必定是
插值型的。事实上,这时公式 (1) 对于特殊的n 次多项式 插值基
二、复化梯形公式
将区间[a, b] 等分为 n 个小区间[xk , xk1],其中分点
xk
a kh,
(h
b a ,k n
0,1,, n),
并在每个小区间上应用梯形公式, 则得复化梯形公式
I
b
n1
f (x)dx
a k 0
xk 1 xk
f
(x) dx
h 2
n1
[f

计算方法课件第七章数值积分与数值微分.ppt

计算方法课件第七章数值积分与数值微分.ppt
在[a,b]上存在一点 ,使
b f (4) ( )(x a)(x b)(x c)2 dx a
f (4) () b (x a)(x c)2 (x b)dx a
R[ f ] 1 f (4) ()(b a)(b a )4
180
2
1 f (4) ()(b a)5 (a b)
总存在求积系数 A0, A1,An,使求积公式至少有n次 代数精度。
事实上,只要令求积公式对于 f (x) 1, x, x2,, xn
都能准确成立即可得到下式:
b
n
dx
a
Ak
k 0
b
n
xdx
a
Ak xk
k 0
b xndx a
n
Ak xkn
k 0
则可通过给定的n+1个节点得到上述含n+1 个未知数、n+1个方程的方程组。
分近似值
b
n
I f (x)dx a
Ak f (xk ) In
b
n
k 0
I f (x)dx a
Ak f (xk ) R[ f ] In R[ f ]
k 0
其中R[f]称为求积公式的余项。xk (k 0,1,2,n)称为求
积节点 。Ak (k 0,1,2,n)称为求积系数。Ak 仅与求 积节点 xk 的选取有关,而不依赖与被积函数f(x)
第七章 数值积分与数值微分
§7.0 §7.1
§7.2 §7.3 §7.4 §7.5
数值积分概述 Newton Cotes 公式
复化求积公式 Romberg求积法 Gauss型求积公式 数值微分
§7.0 数值积分概述
由积分学基本定理知
b

数值分析复习之数值积分与数值微分

数值分析复习之数值积分与数值微分
4、 梯型求积公式的余项估计为:
辛甫森求积公式的余项估计为:
Cotes求积公式的余项估计为:
5、 当用Newton-Cotes求积公式的时,当很大时一样存在数值不稳定性。为 了使用低阶求积公式,并且能达到较高的计算精度,可以将区间做若干 等分,在每个子区间上使用低阶求积公式,这样的方法称为复化求积方 法。次代数精度 证明:梯型求积公式为,取时,有 取时 取时,积分真值为 梯型求积公式的值为 故,即梯型求积公式只具有1次代数精度。
3、分别应用梯型求积公式、Simpson求积公式、Cotes求积公式计算积分,并 估计各种方法的误差(要求小数点后至少保留5位) 解:运用梯形求积公式 其误差 应用Simpson求积公式, 其误差为 应用Cotes求积公式,有 其误差为:
4、推导下列三种矩形求积公式
解:将在处Taylor展开,得 两边在上积分,得 将在处Taylor展开,得 两边在上积分,得 将在处Taylor展开,得 两边在上积分,得
5、已知, (1)推导以这三个点作为求积节点在上的插值型求积公式, (2)指明求积公式所具有的代数精度 (3)用所求公式的计算 解:由构造Lagrange插值多项式 并用近似表示,可得插值型求积公式: ,其中
为数值微分。
三、例题 1、确定下列求积公式中的待定系数,使其代数精度尽量高,并指出求积公式 所具有的代数精度。
解:这是的Newton-Cotes求积公式,至少具有三次代数精度。由此可以确定它 的系数,取可得以下方程组: 如果取,它的积分真值为,如果用积分公式来计算则得到它的近似值为,所 以,求积公式只具有3次代数精度。
构造出来的求积公式称为Newton-Cotes求积公式它的一般表达式可以写 为:
其中称为Cotes系数。特别地当时Newton-Cotes求积公式称为梯型求积公 式,写为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档