理论力学期末前复习题-1.计算题

合集下载

理论力学计算题复习

理论力学计算题复习

习题1-1 图中设AB=l ,在A 点受四个大小均等于F 的力1F 、2F 、3F 和4F 作用。

试分别计算每个力对B 点之矩。

【解答】:112()sin 452B M F F l F l =-⋅⋅︒=-⋅ 22()B M F F l F l =-⋅=-⋅332()sin 452B M F F l F l =-⋅⋅︒=-⋅ 4()0B M F =。

习题1-2 如图所示正平行六面体ABCD ,重为P F =100N ,边长AB=60cm ,AD=80cm 。

今将其斜放使它的底面与水平面成30ϕ=︒角,试求其重力对棱A 的力矩。

又问当ϕ等于多大时,该力矩等于零。

【解法1——直接计算法】:设AC 与BD 的交点为O ,∠BAO=α,则:cos()cos cos sin sin 33410.11965252αϕαϕαϕ+=-=⨯-⨯= 221806050cm=0.5m 2AO =+=()cos()1000.50.1196 5.98N mA P P P M F F d F AO αϕ=⋅=⨯⨯+=⨯⨯=⋅当()0A P M F =时,重力P F 的作用线必通过A 点,即90αβ+=︒,所以: 令cos()cos cos sin sin 0αϕαϕαϕ+=-=→34cos sin 055ϕϕ⨯-⨯=,得: 3tan 4ϕ=→3652ϕ'=︒。

【解法2——利用合力矩定理】:将重力P F 分解为两个正交分力1P F 和2P F , 其中:1P F AD ,2P F AB ,则:1cos P P F F ϕ=⨯,2sin P P F F ϕ=⨯根据合力矩定理:1212()()()22cos 0.3sin 0.411000.31000.4 5.98N m 2A P A P A P P P P P AB AD M F M F M F F F F F ϕϕ=+=⨯-⨯=⨯⨯-⨯⨯=-⨯⨯=⋅ 确定ϕ等于多大时,()0A P M F =令()0A P M F =,即:cos 0.3sin 0.40P P F F ϕϕ⨯⨯-⨯⨯= →100cos 0.3100sin 0.40ϕϕ⨯⨯-⨯⨯=→3tan 4ϕ=→3652ϕ'=︒。

理论力学复习题及答案(计算题部分)

理论力学复习题及答案(计算题部分)

三、计算题(计6小题,共70分)1、图示的水平横梁AB,4端为固定铰链支座,B端为一滚动支座。

梁的长为4L,梁重P,作用在梁的中点C。

在梁的AC段上受均布裁荷q作用,在梁的BC段上受力偶作用,力偶矩M=Pa。

试求A和B处的支座约束力。

2、在图示两连续梁中,已知q,M,a及θ,不计梁的自重,求各连续梁在A,B,C三处的约束力。

3、试求Z形截面重心的位置,其尺寸如图所示。

4、剪切金属板的“飞剪机”机构如图所示。

工作台AB的移动规律是s=0.2sin(π/6)tm,滑块C带动上刀片E沿导柱运动以切断工件D,下刀片F固定在工作台上。

设曲柄OC=0.6m,t=1 s时,φ=60 º。

求该瞬时刀片E相对于工作台运动的速度和加速度,并求曲柄OC转动的角速度及角加速度。

5、如图所示,在筛动机构中,筛子的摆动是由曲柄连杆机构所带动。

已知曲柄OA的转速n OA=40 r/min,OA=0.3 m。

当筛子BC运动到与点O在同一水平线上时,∠BAO=90 º。

求此瞬时筛子BC的速度。

6、在图示曲柄滑杆机构中,曲柄以等角速度ω绕 O 轴转动。

开始时,曲柄OA水平向右。

已知:曲柄的质量为m1,沿块4的质量为m2,滑杆的质量为m3,曲柄的质心在OA的中点,OA=l;滑杆的质心在点C。

求:(1)机构质量中心的运动方程;(2)作用在轴O的最大水平约束力。

7、无重水平粱的支承和载荷如题图所示。

已知力F、力偶矩为M的力偶和强度为q的均布载荷。

求支座A和B处的约束力。

8、在图所示两连续梁中,已知M 及a,不计梁的自重,求各连续梁在A ,B ,C 三处的约束力。

9、工宇钢截面尺寸如图所示。

求此截面的几何中心。

10、如图所示,半径为R 的半圆形凸轮D 以等速v 0沿水平线向右运动,带动从动杆AB 沿铅直方向上升,求φ=30º时杆AB 相对于凸轮的速度和加速度。

11、图示机构中,已知: ,OA=BD=DE=0.1m ,曲柄OA 的角速度ω=4rad/s 。

理论力学--理论力学期末考试(试卷)

理论力学--理论力学期末考试(试卷)

哈尔滨工业大学理论力学课程期末考试(试卷)1、简答题(10分)1、图示机构处于铅直平面内,质量皆为m的均质杆OA=AB,且都与水平线成45角,无重绳BC,AD分别处于铅直和水平位置。

不计摩擦,杆OA上作用矩为M的力偶,问:(1)只许用一个平衡方程来求出绳AD的张力, 如何求?(2)若突然剪断绳索AD,你能用三种不同方法求此瞬时OA杆的角加速度吗?简述求解过程。

(3)设图中无绳AD,也无力偶M,机构在静力下处于平衡,你能用两种不同方法求出机构的平衡位置吗?( 设各杆及绳BC的尺寸已知)2、如图所示系统,无摩擦,杆重不计,系统有几个自由度?属于理想约束还是非理想约束?定常约束还是非定常约束?完整约束还是非完整约束?2、计算题(20分)图示平面机构,各杆自重不计,A,B,C,D,E皆为铰链。

在BD中点作用力1F ,CD 中点作用2F 。

已知:l ,F F F 2212==。

试用最少的平衡方程数目求出杆BE 所受的力BE F 。

3、计算题(20分)图示平面机构,圆盘C 半径为R ,沿SN 平面纯滚动,杆BC 水平,OB 铅直,且BC =OB =2R ,O ,B ,C ,O 1均为铰链,直杆O 1A 总保持和圆盘C 光滑相切。

图示瞬时O 1A 与水平线夹角 60=ϕ,角速度为ω,角加速度为α,皆为顺时针转向。

求图示瞬时圆盘C 的角加速度C α,杆BC 和杆OB 的角加速度BC α,OB α。

N4、计算题(20分)设第三题中的平面机构处于水平面上,圆盘C 为均质圆盘,质量为m ,杆BC 为均质杆,质量亦为m ,杆O 1A 及OB 的质量忽略不计,机构的几何尺寸同第三题,圆盘C 仍沿SN 平面纯滚动,杆O 1A 与圆盘C 光滑接触。

最初系统处于静止状态。

现于杆O 1A 上施加一顺时针转向矩为M 的力偶。

求施加力偶的瞬时,杆O 1A ,杆BC ,杆OB 及圆盘C 的角加速度A O 1α,BC α,OB α,C α,以及圆盘与SN 平面接触点E 处摩擦力大小。

理论力学期末考试试题(卷)(试题(库)带答案解析)

理论力学期末考试试题(卷)(试题(库)带答案解析)

理论力学 期末考试试题1-1、自重为P=100kN 的T 字形钢架ABD,置于铅垂面,载荷如图所示。

其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。

试求固定端A 的约束力。

解:取T 型刚架为受力对象,画受力图.1-2 如图所示,飞机机翼上安装一台发动机,作用在机翼OA 上的气动力按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m 。

求机翼处于平衡状态时,机翼根部固定端O 所受的力。

解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。

求固定端A处及支座C的约束力。

1-4 已知:如图所示结构,a, M=Fa, 12F F F ==, 求:A ,D 处约束力.解:1-5、平面桁架受力如图所示。

ABC 为等边三角形,且AD=DB 。

求杆CD 的力。

1-6、如图所示的平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。

在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。

试计算杆1、2和3的力。

解:2-1 图示空间力系由6根桁架构成。

在节点A上作用力F,此力在矩形ABDC平面,且与铅直线成45º角。

ΔEAK=ΔFBM。

等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。

若F=10kN,求各杆的力。

2-2 杆系由铰链连接,位于正方形的边和对角线上,如图所示。

在节点D沿对角线LD方向作用力F。

在节点C沿CH边铅直向下作用力F。

如铰链B,L和H是固定的,杆重不D计,求各杆的力。

2-3 重为1P =980 N ,半径为r =100mm 的滚子A 与重为2P =490 N 的板B 由通过定滑轮C 的柔绳相连。

已知板与斜面的静滑动摩擦因数s f =0.1。

理论力学考试试题(题库-带答案)

理论力学考试试题(题库-带答案)

好好1学习理论力学期末考试试题1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如图所示。

其中转矩M=20kN.m,拉力F=400kN,分布力q=20kN/m,长度l=1m。

试求固定端A的约束力。

解:取T型刚架为受力对象,画受力图.1-2如图所示,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布:q=60kN/m,1 q=40kN/m,机翼重2p=45kN,发动机1重p2=20kN,发动机螺旋桨的反作用力偶矩M=18kN.m。

求机翼处于平衡状态时,机翼根部固定端O所受的力。

解:1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸如图。

求固定端A处及支座C的约束力。

1-4已知:如图所示结构,a,M=Fa, FFF,求:A,D处约束12力.解:1-5、平面桁架受力如图所示。

ABC为等边三角形,且AD=DB。

求杆CD的内力。

1-6、如图所示的平面桁架,A端采用铰链约束,B端采用滚动支座约束,各杆件长度为1m。

在节点E和G上分别作用载荷F=10kN,E F=7 GkN。

试计算杆1、2和3的内力。

解:2-1图示空间力系由6根桁架构成。

在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角。

ΔEAK=ΔFBM。

等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=D。

M若F=10kN,求各杆的内力。

2-2杆系由铰链连接,位于正方形的边和对角线上,如图所示。

在节点D沿对角线LD方向作用力F。

在节点C沿CH边铅直向下作用力F。

D如铰链B,L和H是固定的,杆重不计,求各杆的内力。

2-3重为P=980N,半径为r=100mm的滚子A与重为1 P=490N 2的板B由通过定滑轮C的柔绳相连。

已知板与斜面的静滑动摩擦因数f=0.1。

滚子A与板B间的滚阻系数为δ=0.5mm,斜面倾角α=30o,s柔绳与斜面平行,柔绳与滑轮自重不计,铰链C为光滑的。

2021年理论力学期末考试试题题库及参考答案

2021年理论力学期末考试试题题库及参考答案

理论力学 期末考试试题1-1、自重为P=100kNT 字形钢架ABD,置于铅垂面内,载荷图所示。

其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m 。

试求固定端A 约束力。

解:取T 型刚架为受力对象,画受力图.1-2 图所示,飞机机翼上安装一台发动机,作用在机翼OA 上气动力按梯形分布:1q =60kN/m ,2q =40kN/m ,机翼重1p =45kN ,发动机重2p =20kN ,发动机螺旋桨反作用力偶矩M=18kN.m 。

求机翼处在平衡状态时,机翼根部固定端O 所受力。

解:1-3图示构件由直角弯杆EBD和直杆AB构成,不计各杆自重,已知q=10kN/m,F=50kN,M=6kN.m,各尺寸图。

求固定端A处及支座C约束力。

1-4 已知:图所示构造,a ,M=Fa ,12F F F ==,求:A ,D 处约束力.解:1-5、平面桁架受力图所示。

ABC 为等边三角形,且AD=DB 。

求杆CD 内力。

1-6、图所示平面桁架,A 端采用铰链约束,B 端采用滚动支座约束,各杆件长度为1m 。

在节点E 和G 上分别作用载荷E F =10kN ,G F =7 kN 。

试计算杆1、2和3内力。

解:2-1 图示空间力系由6根桁架构成。

在节点A上作用力F,此力在矩形ABDC平面内,且和铅直线成45º角。

ΔEAK=ΔFBM。

等腰三角形EAK,FBM和NDB在顶点A,B和D处均为直角,又EC=CK=FD=DM。

若F=10kN,求各杆内力。

2-2 杆系由铰链连接,在正方形边和对角线上,图所示。

在节点D沿对角线LD方向作用力F。

在节点C沿CH边铅直向下作用力F。

如铰链B,L和H是固定,杆重不计,求各杆D内力。

2-3 重为1P =980 N ,半径为r =100mm 滚子A 和重为2P =490 N 板B 由通过定滑轮C 柔绳相连。

已知板和斜面静滑动摩擦因数s f =0.1。

完整版理论力学期末考试试题题库带答案

完整版理论力学期末考试试题题库带答案

理论力学期末测试试题1-1、自重为P=100kN的T字形钢架ABD,置于铅垂面内,载荷如下列图.其中转矩M=20kN.m ,拉力F=400kN,分布力q=20kN/m,长度l=1m.试求固定端A的约束力.解:取T型刚架为受力对象,画受力图其中耳一;q •次-3(ikN工已二“产看十骂—F£m6<r = 0工弓=0 ^-?-Fcos600 = 0一.一^ A必-W-Fi/十外必60F + F疝g= 0i^ = 3164kN 为二SOQkNMi= - IlSSkNm1-2如下列图,飞机机翼上安装一台发动机,作用在机翼OA上的气动力按梯形分布:解:q i=60kN/m, q2 =40kN/m ,机翼重P i=45kN ,发动机重P2 =20kN ,发动机螺旋桨的反作用力偶矩M=18kN.m .求机翼处于平衡状态时,机翼根部固定端.所受的力.幅研究机翼.把梯形教荷分解为一三角形载荷与一轮修救荷,其合力分利为Fja = y(^)- q2) , 9 = 90 kN,F k2= 9 * = 36° kN分别作用在矩赛.点3m与4.5 m处,如下列图,由= 口,F山=01Y = 0, F% - K - P# 1 中k=0SM0(F1 = Q t Mo - 3.6P| — 4.2尸工一M + 3F RI + 4.$F R1 = 0解得For = 0T F Q,=- 3S5 k\, M0 二-1 626 kN * m1-3图示构件由直角弯杆EBD以及直杆AB组成,不计各杆自重,q=10kN/m , F=50kN , M=6kN.m ,各尺寸如图.求固定端A处及支座C的约束力.6 m 1 i m } I m !M 先研究构架EBD如图(b),由WX= 0, F小-F sin30' = 0E Y = 0.F HJ + F3 - F mfi30 = 02A什⑺=0T F2 T - M + 2F = 0 解得= 25 kN. = 87.3 kN. F/ =-44 kN 再研究AB梁如图(a).由解:XX = 04 -如* 6 sinJO* * F旭一Fn, = 0XV - 0,为-1 6 (xx3tf . F* 二UEM八F) - 0, - 2 * -j * & * fl coeJO -白产皿"0懈得F〞 = 40 kN. F A I= 113 3 kN. M A= 575,S kN - m it愿也可先研究EBD,求得F*之后.再研究整体,求a处反力।这样祈减少平街方程数■但计算鼠并未明髭减少,1-4:如下列图结构, a, M=Fa, F1 F2 F,求:A, D处约束力.以上修为明究时聚.受力如下列图.广%-0 加-:'=. T工… 4・%七.二工9口 : 0 A<P -I %'二昌1'二小l nF吗一:F /=F1-5、平面桁架受力如下列图. ABC为等边三角形,且AD=DB .求杆CD的内力.H 翌体受力如图Q).由工M A(F)=0,方,/\ *F\B"4B - F - 1■心・sinbU- - Q 6蹲得Fw 一§F⑸.反将桁架微升.研究右边局部,如图化)所 \ __________________示,由人汽J^*Wf)= g Fft* ■ DB * sinfiO f+ F.nc , flH - F , £)P - sinGO,= 0 %⑻解樗Ffp = -|F/再研究节点匚,如图(cl由尔工K =①(Ftr- F在加曲,=0 代〞的EV = 0, -(F CF +F C¥)m&S0,- F QJ = Q *3 57ffl解得Fm =一与F t) 866F(压)本剧晟筒单的解法是.菖先断定QE杆为零杆,再觎取&BDF来研兆,只由一个方覆LM a(f> =.,即可健出R* ,读者不妨一试.1-6、如下列图的平面桁架,A端采用钱链约束,B端采用滚动支座约束, 各杆件长度为1m.在节点E和G上分别作用载荷F E=10kN, F G=7 kN.试计算杆1、2和3的内力.解:取圣体.求支庄为束力.工…小口口小0%+品一3%A取= 9kN / = SLN用盘面法,取疗架上边局部,s城■ g一月1 y〔峪3.“ 一/.」二9▽5=.&+鸟/疝16.“ 一鸟二0 E氏=0 F{\H 十巴83600 —.^ = l04kN(aj ^=l.l?kN 但弓।牛iilkNlji】2-1图示空间力系由6根桁架构成.在节点A上作用力F,此力在矩形ABDC平面内,且与铅直线成45o角.A EAK= A FBM.等腰三角形EAK , FBM和NDB在顶点A, B和D处均为直角,又EC=CK=FD=DM .假设F=10kN ,求各杆的内力.解节点受力分别如图所开:,对节点八,由工X —0, F1 sin45 - % sin45 = 0+ F sin45' = 0£Y " F3= 0, —F] C3s45 —F± COH45-F cos45 - 0解得Fi = F:= -5kN〔压〕, F3=一7.07 kN〔压〕再对节点B,由SX ~ 0, F$ stn45* - F< sin45, ; 0EV = 0. Fi sin45 - F3 = 0三2 士0, 一居a>s45 - F? crt?45" - F6 co^45' = 0 解得F4 = 5 kN〔拉〕,R=5卜^1〔拉〕,5& =- 10 kN〔压〕2-2杆系由钱链连接, 位于正方形的边和对角线上,如下列图.在节点D沿对角线LD方向作用力F D.在节点C沿CH边铅直向下作用力F.如钱链B, L和H是固定的,杆重不计, 求各杆的内力.求解TY = 0,SZ = 0,求二 0,F| 4M5* + Fj + F. sn45 = 0 厕 4,30 图解得 Fi = F D (1C),F $ =F J =二 Ji F 虱电然后研究节点c ,由SX = 0, - Fj - F*W cut45' - 0v3 £Y = ar -Fj - Fi — sin45 = 0心SZ = 0h - F, - F - F4言=0得 Fj = 7年户口,匕=-/5匹口. Fs M- (F + \2F D )2-3 重为R=980 N,半径为r =100mm 的滚子A 与重为P 2 = 490 N 的板B 由通过定滑轮 C 的柔绳相连.板与斜面的静滑动摩擦因数f s =0.1 o 滚子A 与板B 间的滚阻系数为8C 为光滑的.求各杆的内力. 先研究节点D,由- F)cts?45 + F 口 au45 - 0=0.5mm,斜面倾角a =30o,柔绳与斜面平行,柔绳与滑轮自重不计,钱链 拉动板B 且平行于斜面的力 F 的大小.〔l i 设闻拄口有向下漆动慧等.取国校DFsu 话出—凡-H-3=0EFf =❶ /一 Fcosfl = 0一% /Vine 7- co*?i 算豉圄杜.有向匕浪动越势.虢S ]社“ 三H 』二UJ£ 一%】R l J 'O U _EF F - 0 及-Fai%一.又Mn>« =的&- /J(siii 口 \ — u.凶 81J JI ,13.jp."系怩平衍叶F4五河n 日一)co* 6}工A4 尸I 五m n 8一 3 cow R'\-3/c - 0 1氏-A& =0 工尸j 二.尸M -FCQ博.二.只浪不滑3t.应点 门“用=¥斗型8那么上之£ y K 同理一圆柱.有向上填动趋势时得二二三 K 间柱匀速蛇淳时. f一 R2-4两个均质杆AB 和BC 分别重P i 和P 2 ,其端点A 和C 用球较固定在水平面, 另一端B 由 球镀链相连接,靠在光滑的铅直墙上,墙面与 AC 平行,如下列图.如 AB 与水平线的交角 为45o, / BAC=90.,求A 和C 的支座约束力以及墙上点B 所受的压力.解先研究AB 杆,受力如图(b),由। n 投阅柱.有向下滚动越舜O题4.27-SMjF)三0, 一几,QA = 0 得1 0 再取AB、CD两杆为一体来研究,受力如图(月海茉:由EM AC(F)= 0t(P[ + Pj) <WG45_F N* AB 热in45 —0XX = 0,九十 % = 0工My(F)= 0, Fc - AC - pj • AC = 0 LNZ 〞开工+如一2】一丹=0(F) —0, -(F AT+ FQ • OA - Fc y *- AC= 0工M塞2 K = 0, % + % + Fn = 0解得Fx = y(Pi + Pj)»Fer =.产值=2^P:t町=Pi +yp2>F o= 0,%=-2(P[ + 尸口3-1:如下列图平面机构中,曲柄OA=r,以匀角速度°转动.套筒A沿BC杆滑动.BC=DE ,且BD=CE=l.求图示位置时,杆BD的角速度和角加速度.解:].动点:滑块T 动系:贰广杆绝对运动:国周运动〔.点〕相对运动:直线运动〔£「二)j|iij V V V&加速度4_ 3/十&*)疝13伊_ J5诏r(/+r)耳cos30Q ST?收属/(/ + r)cz w= 1—1=----- 不 ------w BD 3 户3-2 图示钱链四边形机构中, O i A = O2B =100mm ,又QO2 = AB,杆O〔A以等角速度=2rad/s绕轴01转动.杆AB上有一套筒C,此套筒与杆CD相较接.机构的各部件都在同一铅直面内.求当①二60o时杆CD的速度和加速度.〔15分〕解取CD杆上的点C为动点,AB杆为动系,时动点作速度分析和加速度分析,如图S〕、〔b〕所示,图中式中口月=〔八一4 •田二0一2 ir〕/s5 - 0iA • J = 0*4 m/s2 解出杆CD的速度.加速度为G =-UA coep = 0. I mA&3 = since;= 0,3464 m/s2«1aAM1Al1V!4-1:如下列图凸轮机构中,凸轮以匀角速度3绕水平.轴转动,带动直杆AB沿铅直线上、下运动,且O, A, B共线.凸轮上与点A接触的点为A',图示瞬时凸轮轮缘线上' '点A的曲率半径为 A ,点A的法线与OA夹角为e , OA=l.求该瞬时AB的速度及加速度.〔15 分〕绝对运动: 相对运动: 奉连道处:2.速度大小 方向 1, 二、Ja 】iH=「WkmH I丫3,加速度 比=凡."'+ %r 门 大小9炉『『、;"2 方向 / /4-2:如下列图,在外啮合行星齿轮机构中,系杆以匀角速度 定,行星轮半径为r,在大轮上只滚不滑.设 A 和B 是行星轮缘 上的两点,点 A 在O 1O 的延长线上,而点 B 在垂直于o 1o 的半径上.求:点 A 和B 的加速度.解:2.选基点为〔〕亓*二后.*疗;口 +疗;. 大小0 *忒0 1时 方向“ J JJi7A ~ a ? +^C?I .轮I 作平面运动,瞬心为「沿"轴投勉乙8々4 * ■献i 1+ .1绕O i 转动.大齿轮固S 二「" 直线运动 曲线运动 定购林动 功系:凸轮. C 凸轮外边瘴〕〔.轴〕大小,方向?% ="g =仃口+ "什=fuclaii——=闺.㈢11 -4-3: 动.摇杆OC铅直,〔科氏加速度〕如下列图平面机构, AB长为1,滑块A可沿摇杆OC的长槽滑OC以匀角速度3绕轴O转动,滑块B以匀速v 1沿水平导轨滑动.图示瞬时AB与水平线OB夹角为300.求:此瞬时AB杆的角速度及角加速度.〔20分〕* *沿】:方向投彩大小方句V4B COS30J LD F福:速度分析1-杆.〞作平面运动,族点为瓦V A = V S - y AP2.动点:滑块.心动系:〞抨沿£方向强彩以一=1■沿吃方向表恁% ; gin 30" -4?os 对15-1如下列图均质圆盘,质量为m 、半径为R,沿地面纯滚动,角加速为3.求圆盘对图中A,C 和P 三点的动量矩. 平行轴定理:4二=一十/嫉 一或点P 为睡心 3hL ? = ^^R-\ L e =mP 2it 〕\ 1相?\"= -15-2 〔动量矩定理〕:如下列图均质圆环半径为 r,质量为m,其上焊接刚杆 OA,杆加生度介册 0f Ai = = 3VJtv 2AB点「为眉心上匚二J屯+ 1师;-G长为r,质量也为m.用手扶住圆环使其在OA水平位置静止.设圆环与地面间为纯滚动.独汰庵一方「.斗管力加玛所示建丸平为走动微分方程2f -月—+Y2由朱加R先K熹法瑞拽彩到水平强错乱两个才向20 r3"悟105-3 11-23 〔动量矩定理〕均质圆柱体的质量为m,半径为r,放在倾角为60o的斜面上, 一细绳绕在圆柱体上,其一端固定在A点,此绳和A点相连局部与斜面平行,如下列图.如圆柱体与斜面间的东摩擦因数为f=1/3,求圆柱体的加速度.〔15〕(15)解:解IW柱受力与运动分析如图.平而运动徽分方程为nta〔;= mg sin60* 一尸一Fj,.=F\ —fiig CQt^ff』社- 〔F=—广〕『式中F = /Fv» ac - fQ解得口c=O.355q5-4 11-28 〔动量矩定理〕均质圆柱体A和B的质量均为m,半径均为r, 一细绳缠在绕固定轴.转动的圆柱A上,绳的另一端绕在圆柱B上,直线绳段铅垂,如下列图.不计摩擦.求:〔1〕圆柱体B下落时质心的加速度;〔2〕假设在圆柱体A上作用一逆时针转向力偶矩M,试问在什么条彳^下圆柱体B的质心加速度将向上.〔15分〕解:解“〕两轮的受力与运动分析分别如用w.1 2 ET™r=近]对E轮,有以轮与直樊和切点为基点,明轮心B的加速度〃工,M t s4解得5g〔2〕再分别对两卷作受力与运动分析如图〔b〕对内轮,有fflaa =ntg -Ppj~2 tfrr~afj —rFj2依然存运动学关系dj}二皿用+的日J但Q.i中也B〕令< 0,可解得31柱体B的质心加速度向上的条件:M〉217UJT6-1:轮O的半径为R1 ,质量为ml,质量分布在轮缘上;均质轮C的半径为R2 , 质量为m2 ,与斜面纯滚动,初始静止.斜面倾角为.,轮.受到常力偶M驱动. 求: 轮心C走过路程s时的速度和加速度.〔15分〕韩:轮C1月轮0扶同作为一个质点系九一a『w 一阁7j = o石—,血人"吊斗!岫甘&岫对网」言必二% =9 1V :3/聚TH得J弘口日=-^―〔+3JJL〕旭〕中二二¥ =:羡居迎日一式G〕是函数关系式.两端计『求导,得-〔Jffij + 访看网收=M -Kin H - 鸟2 例U 尸―- :〔加1+.%啊〕局6-2均质杆 OB=AB=l,质量均为 m,在铅垂面内运动,AB 杆上作用一不变的力偶矩M,系统初始静止,不计摩擦.求当端点 A 运动到与端点 .重合时的速度. 〔15分〕解:由于A 京不离并地面,那么,EAO= /BOA.牝=可=H嫌同:是否可以利用求寻求此蜓时的商和速段? 〔H 与行没 有必然联系,角度不是时间的函数.〕6-3:重物m,以v 匀速下降,钢索刚度系数为 k .求轮D 突然卡住时,钢索的最大张 力.〔15分〕1J 上口『9-"将『〔1-E 穹 2/ V itt由「二心〞;有6-4均质杆 AB 的质量m=4kg,长l=600mm,均匀圆盘B 的质量为6kg,半径为r=600mm, 作纯滚动.弹簧刚度为 k=2N/mm,不计套筒A 及弹簧的质量.连杆在与水平面成 30o 角时无 初速释放.求〔1〕当AB 杆达水平位置而接触弹簧时,圆盘与连杆的角速度;〔2〕弹簧的最大压缩量 max o 〔 15分〕彝:卡住前E 二些 s* kF - kS SJ - mg - 2.45kN卡隹后取点物平街位苜1为更力加弹性力的 搴势T ; 一"解U〕该系统初始静tL.动能为杆达水平位置时.B 点是33杆的速度瞬心,网盅的角速度3H = 0,设杆的角速度为那么业,山幼能近理,得\ * ;配%品-0 = mg * ~ 5in341,解得连杆的角速度号〞:4;殳巴丝⑵AB杆达水平位置接触赢亚,统的动能为“,弹簧达到最大压缩量bz.的瞬时,系魂再次鄢止.动能丁;:= 0.由72 - 7】二五得0 _ [■闻]品=-J 6ra«二+ mJ片0 W *■解得1AM= 87.1 mm。

理论力学期末复习题(附答案)

理论力学期末复习题(附答案)

理论力学期末复习题(附答案)理论力学基础期末复习题一、填空题1. 在介质中上抛一质量为m 的小球,已知小球所受阻力R kv ,若选择坐标轴x 铅直向上,则小球的运动微分方程为_____________________。

2. 质点在运动过程中,在下列条件下,各作何种运动?①a t 0 ,a n 0 (答):;②a 0 ,a n 0 (答):;③a t 0 ,a n 0t(答):;④a 0,a 0(答):。

t n3. 质量为10kg 的质点,受水平力F 的作用,在光滑水平面上运动,设 F 3 4t ( t以s计,F 以N 计),初瞬间(t 0)质点位于坐标原点,且其初速度为零。

则t 3s 时,质点的位移等于_______________,速度等于_______________。

4. 在平面极坐标系中,质点的径向加速度为__________;横向加速度为_______。

5. 哈密顿正则方程用泊松括号表示为,。

6. 质量m 2kg 的重物M ,挂在长l 0.5m 的细绳下端,重物受到水平冲击后获得了速度 1v0 5m s ,则此时绳子的拉力等于。

7. 平面自然坐标系中的切向加速度为,法向加速度为。

8. 如果F V ,则力所作的功与无关,只与的位置有关。

9. 在南半球地面附近自南向北的气流有朝的偏向;而北半球的河流岸冲刷较为严重。

2 210. 已知力的表达式为 F axy F z ax 。

则该力做功与路径_ (填F y az ,x ,“有关”或“无关”),该力_ 保守力(填“是”或“不是”)。

11. 一质量组由质量分别为m、2 m0 、3 m0 的三个质点组成,某时刻它们的位矢和速度分别为r1 i j 、v1 2i、r2 j k 、v2 i 、r3 k 、yv3 i j k 。

则该时刻质点组相对于坐标原点的动量等于,相对于坐标原点的动量矩等于_ 。

12. 一光滑水平直管中有一质量为m 的小球,直管以恒Oa P vmx定角速度绕通过管子一端的竖直轴转动,若某一时刻,小z球到达距O点的距离为 a 的P 点,取x 轴沿管,y 轴竖直向上,并垂直于管,z 轴水平向前,并于管面垂直,如图所示,此时小球相对于管子的速度为v1,则惯性离心力大小为,方向为,科里奥利力大小为,方向为。

《理论力学》期末考试试卷附答案

《理论力学》期末考试试卷附答案

《理论力学》期末考试试卷附答案一、填空题(每小题 5 分,共 35 分)1、如图1.1所示结构,已知力F ,AC =BC =AD =a ,则CD 杆所受的力F CD =( ),A 点约束反力F Ax =( )。

2、如图1.2 所示结构,,不计各构件自重,已知力偶矩M ,AC=CE=a ,A B ∥CD 。

则B 处的约束反力F B =( );CD 杆所受的力F CD =( )。

1.1 1.23、如图1.3所示,已知杆OA L ,以匀角速度ω绕O 轴转动,如以滑块A 为动点,动系建立在BC 杆上,当BO 铅垂、BC 杆处于水平位置时,滑块A 的相对速度v r =( );科氏加速度a C =( )。

4、平面机构在图1.4位置时, AB 杆水平而OA 杆铅直,轮B 在水平面上作纯滚动,已知速度v B ,OA 杆、AB 杆、轮B 的质量均为m 。

则杆AB 的动能T AB =( ),轮B 的动能T B =( )。

1.3 1.45、如图1.5所示均质杆AB 长为L ,质量为m,其A 端用铰链支承,B 端用细绳悬挂。

当B 端细绳突然剪断瞬时, 杆AB 的角加速度 =( ),当杆AB 转到与水平线成300角时,AB 杆的角速度的平方ω2=( )。

6、图1.6所示机构中,当曲柄OA 铅直向上时,BC 杆也铅直向上,且点B 和点O 在同一水平线上;已知OA=0.3m,BC=1m ,AB=1.2m,当曲柄OA 具有角速度ω=10rad/s 时,则AB 杆的角速度ωAB =( )rad/s,BC 杆的角速度ωBC =( )rad/s 。

AB1.57、图1.7所示结构由平板1、平板2及CD 杆、EF 杆在C 、D 、E 、F 处铰接而成,在力偶M 的作用下,在图上画出固定铰支座A 、B 的约束反力F A 、F B 的作用线方位和箭头指向为()(要求保留作图过程)。

1.7二、单项选择题(每小题 5 分,共35 分)1、如图2.1所示,四本相同的书,每本重均为P ,设书与书间的摩擦因数为0.1,书与手间的摩擦因数为0.25,欲将四本书一起抱起,则两侧手应加的压力至少大于( )。

《理论力学》期末考试试题及答案

《理论力学》期末考试试题及答案

理论力学部分第一章静力学基础一、是非题(每题3分,30分)1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

()2.在理论力学中只研究力的外效应。

()3.两端用光滑铰链连接的构件是二力构件。

()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

()9. 力偶只能使刚体发生转动,不能使刚体移动。

()10.固定铰链的约束反力是一个力和一个力偶。

()二、选择题(每题4分,24分)1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。

则其合力可以表示为。

①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。

①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。

③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。

3.三力平衡定理是。

①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。

①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。

5.在下述原理、法则、定理中,只适用于刚体的有。

①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。

6.关于约束的说法正确的是 。

① 柔体约束,沿柔体轴线背离物体。

② 光滑接触面约束,约束反力沿接触面公法线,指向物体。

理论力学复习题答案

理论力学复习题答案

理论力学复习题1一、是非题1、力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

(√)2、在理论力学中只研究力的外效应。

(√)3、两端用光滑铰链连接的构件是二力构件。

(×)4、作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

(√)5、作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

(×)6、三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

(×)7、平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

(√)8、约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

(×)9、在有摩擦的情况下,全约束力与法向约束力之间的夹角称为摩擦角。

(×)10、用解析法求平面汇交力系的平衡问题时,所建立的坐标系x,y轴一定要相互垂直。

(×)11、一空间任意力系,若各力的作用线均平行于某一固定平面,则其独立的平衡方程最多只有3个。

(×)12、静摩擦因数等于摩擦角的正切值。

(√)13、一个质点只要运动,就一定受有力的作用,而且运动的方向就是它受力方向。

(×)14、已知质点的质量和作用于质点的力,质点的运动规律就完全确定。

(×)15、质点系中各质点都处于静止时,质点系的动量为零。

于是可知如果质点系的动量为零,则质点系中各质点必都静止。

(×)16、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。

(×)17、力对于一点的矩不因力沿其作用线移动而改变。

(√)18、在自然坐标系中,如果速度υ = 常数,则加速度α = 0。

(×)19、 设一质点的质量为m ,其速度υ与x 轴的夹角为α,则其动量在x 轴上的投影为mvx =mvcos a 。

(√)20、 用力的平行四边形法则,将一已知力分解为F1和F2两个分力,要得到唯一解答,必须具备:已知F1和F2两力的大小;或已知F1和F2两力的方向;或已知F1或F2中任一个力的大小和方向。

理论力学期末试题及答案

理论力学期末试题及答案

一、填空题(共15分,共 5题,每题3 分)1. 如图所示的悬臂梁结构,在图中受力情况下,固定端A 处的约束反力为: M A = ;F Ax =;F Ay =。

2.已知正方形板ABCD 作定轴转动,转轴垂直于板面,A 点的速度v A =10cm/s ,加速度a A =cm/s 2,方向如图所示。

则正方形板的角加速度的大小为。

AABD题1图题2图3. 图示滚压机构中,曲柄OA = r ,以匀角速度绕垂直于图面的O 轴转动,半径为R 的轮子沿水平面作纯滚动,轮子中心B 与O 轴位于同一水平线上。

则有ωAB = ,ωB =。

4. 如图所示,已知圆环的半径为R ,弹簧的刚度系数为k ,弹簧的原长为R 。

弹簧的一端与圆环上的O 点铰接,当弹簧从A 端移动到B 端时弹簧所做的功为 ;当弹簧从A 端移动到C 端时弹簧所做的功为。

oBC题3图题4图5. 质点的达朗贝尔原理是指:作用在质点上的 、和在形式上组成平衡力系。

二、选择题(共20分,共 5 题,每题4 分)1. 图示机构中,已知均质杆AB 的质量为m ,且O 1A =O 2B =r ,O 1O 2=AB =l ,O 1O =OO 2=l /2,若曲柄转动的角速度为ω,则杆对O 轴的动量矩L O 的大小为( )。

A. L O= mr 2ωB. L O= 2mr 2ωC. L O =mr 2ωD. L O = 0122. 质点系动量守恒的条件是:()A. 作用于质点系上外力冲量和恒为零B. 作用于质点系的内力矢量和为零C. 作用于质点系上外力的矢量和为零D. 作用于质点系内力冲量和为零3. 将质量为m 的质点,以速度 v 铅直上抛,试计算质点从开始上抛至再回到原处的过程中质点动量的改变量:()A. 质点动量没有改变B. 质点动量的改变量大小为 2m v ,方向铅垂向上C. 质点动量的改变量大小为 2m v ,方向铅垂向下D. 质点动量的改变量大小为 m v ,方向铅垂向下4. 图示的桁架结构,铰链D 处作用一外力F ,下列哪组杆的内力均为零? ()A. 杆CG 与杆GFB. 杆BC 与杆BGC. 杆BG 与杆BFD. 杆EF 与杆AF5. 如图所示,已知均质光球重为Q ,由无重杆支撑,靠在重为P 的物块M 上。

理论力学期末复习题全套

理论力学期末复习题全套

理论力学期末复习题一一、单选题1、F= 100N 方向如图示,若将F 沿图示x ,y 方向分解,则x 向分力大小为( )。

A) 86.6 N ; B) 70.7 N ; C) 136.6 N ; D) 25.9 N 。

2、某平面任意力系F1 =4KN ,F2=3 KN ,如图所示,若向A 点简化,则得到( )A .F ’=3 KN ,M=0.2KNmB .F ’=4KN ,M=0.3KNmC .F ’=5 KN ,M=0.2KNmD .F ’=6 KN ,M=0.3 KNm第1题图 第2题图3、实验测定摩擦系数的方法,把物体放在斜面上,逐渐从零起增大斜面的倾角φ直到物体刚开始下滑为止,这时的φ就是对应的摩擦角φf ,求得摩擦系数为( )4、直角杆自重不计,其上作用一力偶矩为M 的力偶,图(a )与图(b )相比,B 点约束反力的关系为( )。

A 、大于B 、小于C 、相等D 、不能确定图(a ) 图(b )5、圆轮绕固定轴O 转动,某瞬时轮缘上一点的速度为v ,加速度为a ,如图所示。

试问哪些情况是不可能的?( )A 、(a)、(b)B 、(b)、(c)C 、(c)、(d)D 、(a)、(d)6、杆AB 的两端可分别沿水平、铅直滑道运动,已知B 端的速度为vB ,则图示瞬时B 点相对于A 点的速度为____________________。

A) B v sinθ; B) B v cosθ; C) B v ⁄ sinθ; D) B v ⁄ cosθ.第6题图 第7题图二、填空题7、图示物块重G=100N ,用水平力P 将它压在铅垂墙上,P=400N ,物块与墙间静摩擦系数fs=0.3,物块与墙间的摩擦力为F= 。

8、鼓轮半径R=0.5m ,物体的运动方程为x=52t (t 以s 计,x 以m 计),则鼓轮的角速度ω= ,角加速度α= 。

第8题图 第9题图 9、平面图形上任意两点的加速度A a 、B a 与A 、B 连线垂直,且A a ≠ B a ,则该瞬时,平面图形的角速度ω= 和角加速度α应为 。

大学理论力学期末考试题库及答案

大学理论力学期末考试题库及答案

大学理论力学期末考试题库及答案一、选择题(每题2分,共20分)1. 质点系的质心位置取决于()。

A. 质点系的总质量B. 质点系中各质点的质量C. 质点系中各质点的位置D. 质点系中各质点的速度答案:C2. 刚体的转动惯量与()有关。

A. 质量B. 质量分布C. 质量分布和形状D. 形状3. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。

A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B4. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的速度v为()。

A. v = v0 + atB. v = v0 - atC. v = v0 + 1/2atD. v = v0 - 1/2at5. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。

A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B6. 刚体绕固定轴转动时,其转动惯量与()有关。

A. 质量B. 质量分布C. 质量分布和形状D. 形状答案:C7. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的位移s为()。

A. s = v0t + 1/2at^2B. s = v0t - 1/2at^2C. s = v0t + at^2D. s = v0t - at^2答案:A8. 刚体绕固定轴转动时,其角加速度与()有关。

A. 质量B. 质量分布C. 质量分布和形状D. 形状答案:B9. 质点沿直线做匀加速运动,加速度为a,初速度为v0,则经过时间t后的位移s为()。

A. s = v0t + 1/2at^2B. s = v0t - 1/2at^2C. s = v0t + at^2D. s = v0t - at^2答案:A10. 两个质点组成的系统,若两质点间的作用力大小相等,方向相反,则这两个力()。

A. 是一对平衡力B. 是一对作用力和反作用力C. 是一对内力D. 不能确定答案:B二、填空题(每题2分,共20分)1. 质点系的质心位置取决于质点系中各质点的________和________。

理论力学复习题参考答案

理论力学复习题参考答案

理论力学复习题一、判断题。

(10分)1. 若作用在刚体上的三个力汇交于同一个点,则该刚体必处于平衡状态。

( ×)2. 力对于一点的矩不因力沿其作用线移动而改变。

( √)3. 凡是受到二个力作用的刚体都是二力构件。

( ×)4. 平面汇交力系用几何法合成时,所得合矢量与几何相加时所取分矢量的次序有关。

( ×)5. 如果一个平面力系是平衡的,那么力系中各力矢的矢量和不等于零。

( ×)6. 选择不同的基点,平面图形随同基点平移的速度和加速度相同。

( ×)7. 势力的功仅与质点起点与终点位置有关,而与质点运动的路径无关。

( √)8. 对于整个质点系来说,只有外力才有冲量。

( √)9. 当质系对固定点的外力矩为零时,质系对该点的动量矩守恒。

( √)10. 动能定理适用于保守系统也适用于非保守系统,机械能守恒定律只适用于保守系。

( √)11. 速度投影定理只适用于作平面运动的刚体,不适用于作一般运动的刚体。

(×)12. 应用力多边形法则求合力时,所得合矢量与几何相加时所取分矢量的次序有关。

(×)13. 如果一个平面力系是平衡的,那么力系中各力矢构成的力多边形自行封闭。

( √)14. 用自然法求速度,则将弧坐标对时间取一阶导数,就得到速度的大小和方向。

(√)15. 速度瞬心等于加速度瞬心。

(×)16. 质点系动量的变化只决定于外力的主矢量而与内力无关。

( √)17. 质系动量矩的变化率与外力矩有关。

( √)18. 在复合运动问题中,相对加速度是相对速度对时间的绝对导数。

(×)19. 质点系动量的方向,就是外力主矢的方向。

(×)20. 力对于一点的矩不因力沿其作用线移动而改变。

(√)21. 若一平面力系对某点之主矩为零,且主矢亦为零,则该力系为一平衡力系。

(√)22. 牵连运动是指动系上在该瞬时与动点重合的点相对于动系的运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(六)计算题
【1101】一圆轮以匀速v 0沿直线作纯滚动,如图所示,设初始时刻P 点与坐标原点O 重合,轮半径为r ,求轮缘上一点P
速度大小。

【1201】质点沿x 轴运动,加速度,0,,0,2====x b x t k x k x
时为常数,且,求质点的运动学方程。

【1202】质点作平面运动时,其速率v 为常数C ,位矢旋转的角速度θ
为常数ω,设000=和时,θ==r t 求质点的运动学方程和轨道方程。

【1301】某人以一定的功率划船,逆流而上,当船经过一桥时,船上的鱼竿不慎掉入河中。

两分钟后,此人才发觉,立即返棹追赶。

追到鱼竿之处是在桥的下游600米的地方,问河水的流速是多大
【1302】一人手持5cm 成和两端开口的管子在雨中站立,管顶向北倾斜4ccm ,雨点直线穿过此管;如此人向南以s 的速度行走,则管顶向北倾斜3cm 就可以使雨点穿过,求雨点速度。

【1501】一质点受力32
x
mk F -=,此力指向坐标原点O ,试求质点沿x 轴从距原
点为l 处由静止开始运动,达到原点所需要的时间。

【1502】有孔小珠穿在光滑的抛物线形钢丝上且能自由滑动,抛物线的正交弦为4a ,其轴沿铅直方向而顶点位于下方,小珠从顶点开始运动时具有某一速率,这个速率使它恰能达到过焦点的水平面,试求小珠在顶点上方高为y (<Q )时受到的约束力。

【1503】船在水中航行,停机时的速度为0v ,水的阻力为2kmv f =,问经过多少时间后航速减至
2
v 。

y x
A
【1504】质量为m 的小球,在重力的作用下,在空气中竖直下落,其运动规律为
)1(3t e B At s ---=,求空气阻力(以v 的函数表示之)
【1901】求质量为m 的质点在反立方引力场中的运动轨道。

【1902】质点在有心力的作用下作双纽线θ2cos 22a r =运动,试求有心力。

【2101】求半径为R 的均质半球体的质心。

【2701】总长度为a 的均质链条的一段b (0<b<a)挂在光滑桌面AB 边缘上,另一端躺在桌面上。

如果链条从静止开始运动,试求链条滑离桌子时所需要的时间。

【2702】雨滴下落时其质量增加率与雨滴的表面积成正比,求雨滴速度与时间的关系。

【2703】长为l 的均匀细链条伸直地平放在水平光滑桌面上,其方向与桌边缘垂直,此时链条的一半从桌上下垂。

开始时,整个链条是静止的,试以变质量方法来求此链条的末端滑到桌子的边缘时,链条的速度v 。

【2704】长为l 的均匀细链条盘成一团放在水平光滑桌面上,链条的一半从桌上下垂。

开始时,整个链条是静止的,试求此链条的末端滑到桌子的边缘时,链条的速度v 。

【3501】质量为m 1和m 2的两质点相距为l
(题【3501】图) (题【3502】图)
【3502
】由轻杆连成的刚性等腰三角形,高为h ,底边长为a ,在三角形三个顶
m 1
m 2
x
m 1
m 1
点上分布有三个质点,上顶点质点的质量为2m ,底边上两质点质量均为1m ,求系统的中心主转动惯量321,I I I 及。

【3503】半径为R 的非均质圆球,在距中心r 处的密度可以用下式表示
)1(22
0R
r αρρ-=,式中0ρ 及α是常数。

试求圆柱绕直径转动时的回转半径。

(已
知球壳绕直径的转动惯量为 2
3
2mr I =
) 【3601】通风机的转动部分以某一初角速度0ω绕其轴转动,空气阻力矩与角速度成正比,比例常数为k ,如转动部分对其轴的转动惯量为I ,问经过多少时间后其转动的角速度为初角速度的一半。

【3602】质量为M ,半径为R 的圆环放在光滑水平面上,可以绕过环边上一点O 的铅直轴转动,若环开始时处于静止状态,有一质量为m 的小虫自O 点出发,沿圆环以相对匀速度v 0爬行,当小虫爬了半圈时,环的转动角速度是多少
(题【3602】图) (题【3603】图)
【3603】质量为m 的平板放在两个圆柱体上,圆柱体质量都是m ,半径均为R ,若在板上加一水平力F ,求平板的加速度。

设平板与圆柱,圆柱与地面之间均是纯滚动。

【3701】长为2a 的均质棒,以铰链悬挂于A 点上,在起始时,棒自水平位置无初速地运动,并且当棒通过竖直位置时,铰链突然松脱,棒成为自由体,试证在以后运动中,棒以质心轨迹为一抛物线,并求当棒的质心下降h 距离后,棒一共转了几圈
【3702】一端固结于天花板上的细绳缠绕在一个半径为r ,重为w 的圆盘上。

求圆盘中心向下运动的加速度a ,
V 0
O
F
中心且垂直于盘面的轴的转动惯量为22
1
mr )
【3703】一矩形板ABCD 在平行于自身的平面内运动,其角速度为定值ω,在某一瞬时已知A 点的速度为0v ,方向沿对角线AC ,试求此瞬时B 点的速度量值B v ,其中矩形边长b BC a AB ==,为已知。

【3704】如图所示,一圆轮沿水平轨道向右作纯滚动,AB 杆在A 端铰链在轮缘上,B 端可沿斜面滑动,已知圆轮中心O 的速度为v 0当AB 杆在水平位置时, (1)标出圆轮及AB 杆的转动瞬心的位置; (2)求A 、B 两点的速率。

(题【3704】图) (题【3801】图) 【3801】转轮AB ,绕OC 轴转动的角速度为1ω,而OC 绕竖直直线OE 转动的角速度则为 2ω。

如θ=∠===COE b OD a DB AD ,,,试求转轮最低点B 的速度。

【4101】一直线以匀角速度ω在一固定平面内绕其一端转动,当其直线位于ox 的位置时,有一质点P 开始从O 点沿该直线运动,如欲使此点的绝对速度v 的量值为常数,问此点应按何种规律沿此直线运动
【4102】一等腰直角三角形OBA 在其自身所在的平面内以等角速度ω绕顶点O 转动,某点M 以不变的相对速度沿AB 边运动,当三角形转一周时,M 点正好走过AB ,已知AB=b ,求M 点在A
A O
B
【5201】质量为m ,长为l 2的均质棒,A 端抵在光滑墙上,而棒身斜靠在与墙相距为d (θcos l d ≤)的光滑棱角上,棒的B 端固定一质量为m 的质点,试用虚功原理求平衡时棒与水平面所成的角θ。

(题【5201】图) (题【5202】图)
【5202】两根均质棒AB 、BC 在B 处刚性联结在一起,且ABC ∠形成一直角,如图,将棒的A 点用绳系于固定点上,棒AB 长为a ,BC 长为b ,线密度均为ρ,用虚功原理求平衡时AB 和竖直方向所成θ角。

【5203】半径为r 的光滑半球形碗,固定在水平面上。

一均质棒斜靠在碗缘,一端在碗内,令一端在碗外,在碗内的长度为c ,试求证棒的全长为
()
c
r c 2
224- 【5301】利用拉格朗日方程推导平面极坐标系下质点运动方程。

(题【5301】图) (题【5302】图)
【5302】一光滑细管可在竖直平面内绕通过其一端的水平轴以匀角速度ω转动,管中有一质量为m 的质点,开始时细管取水平方向,质点距转动轴的距离为a ,质点相对于管的速度为v 0,试由拉格朗日方程求质点相对管的运动微分方程。

O
B
C
【5303】质量为m 1的质点,沿倾角为α的光滑直角劈滑下,劈的质量为m 2,可在光滑水平面上自由滑动,
速度。

(题【5303】图) (题【5501】图)
【5304】匀质棒AB ,质量为m ,长为2a ,其A 端可在光滑水平导槽上运动。

而棒本身又可在竖直面内绕A 端摆动。

除受重力外,B 端还受有一水平力F 的作用。

试用拉格朗日方程求其运动微分方程。

【5501】试用哈密顿正则方程导出单摆作微振动时的运动微分方程,设单摆的摆长为l 。

【5601】试求由质点组动量P
及动量矩J 的直角坐标分量y x x x p J p J 与,与所组
成的泊松括号。

【5602】试求质点组动量矩J
的笛卡儿分量x J 与x J ,x J 与y J 所组成的泊松括号。

【5701】试通过哈密顿原理求复摆作微振动时的周期。

设复摆对定点O 的转动惯量为I 0,质量为m ,质心到点O 的距离为l 。

【5702】半径为a 的光滑圆形金属丝圈,以匀角速ω绕竖直直线转动,圈上套着质量为m 的小环,起始时小环自圆圈最高点无初速地沿着圆圈滑下当环和圈中心
(题【5701】图) (题【5702】图)
【5zh1】考虑水平面上不受外力作用的自由质点(取该水平面势能为零),设广义坐标取为直角坐标x 、y ,试写出系统的哈密顿函数、正则方程、及其首次积
m
x
x
O
分。

【5zh2】一质点m 在固定光滑平面上运动,其势能为2
2
1kr V =
(k 为负数)
,若以θ,r 为广义坐标,写出其哈密顿函数和正则方程,并指出其循环坐标及循环积分。

相关文档
最新文档