动中通天线比较
动中通天线比较
关于动中通天线的选择一、名词解释1、邻星干扰邻星干扰分两种情况1)动中通卫星系统区别与静中通及地面站卫星系统,天线的初始状态(加电前)未对准所在卫星。
此时,如果卫星功率放大器处于工作状态,则在天线寻星过程中,产生干扰载波。
CT8000型号产品在天线指向偏离大于0.5 度,回传链路自动关闭,直到指向误差被天线的跟踪系统纠正。
有效的避免了干扰载波的产生。
2)VSAT小站在向所在卫星发射载波时,会产生二次谐波,如设计不当,就会影响周边的卫星。
就此情况,Tracstar天线已被韩国卫星组织严重警告,限制进口。
2、捕获时间与再捕获时间捕获时间是指卫星设备初加电,天线锁定卫星的时间。
再捕获时间,是指卫星天线再从遮挡物出来时,天线锁定卫星的时间。
3、可维护度因为相控阵天线是由上百个天线振元组成,在单个振元出现问题后,并不影响正常使用。
而且,相控阵天线采用电子和机械混合扫描方式,对传动机构的损坏较其它天线低。
传统动中通天线和中轮廓天线对机械要求比较高,相对来说,故障率高。
二、动中通天线的分类目前,常用的动中通天线从技术上可以分为三种:1、相控阵天线(平板):起源于雷达相控阵技术,是近年来从国外引进的先进卫星天线系统,无需手动对星,采用GPS 信号;自动捕获并跟踪卫星,内置陀螺仪使之可以快速从视线遮挡中恢复,天线使用机械和电子混合扫描,保持指向精度;如果天线指向偏离大于0.5 度,回传链路自动关闭,直到指向误差被天线的跟踪系统纠正。
系统具有重量轻、安装结构简单、不占用车内空间等优点。
2、光导陀螺天线:可以分为光纤陀螺和激光陀螺两种,系统依靠陀螺高精度姿态信号,主动跟踪卫星。
天线结构大多采用带高速电机驱动系统的环焦天线,对星精度和恢复速度较快,但天线质量重、安装结构复杂。
3、信标跟踪天线:依靠卫星信标接收机,完成初始对星后,根据接收到的信标信号强、弱,结合普通电子传感器判断天线偏离角度,通过高速驱动电机调整天线对星方向。
动中通天线(80W)
动中通天线美国TracStar公司的宽带双向卫星通信系统天线系列产品——IMVS450M柱面反射器天线系统,突破了低轮廓相控阵天线系统的限制。
是专为运动中的车载VSAT卫星通信系统而设计的中等轮廓、宽带、高码速率卫星通信天线产品。
创新的天线系统自动展开技术,自动搜索、捕获指定的卫星信号,容许非专业人员在改良或非改良的公路上操作移动VSAT卫星通信天线。
存取宽带卫星通信信息。
在车辆运动过程中,可通过自动控制方位、仰角和极化角,自动跟踪保持精确的指向效果。
系统特点:∙系统最大特点是满足宽带卫星通信需要。
上行数据传输速率可大于2Mbps.天线效率和增益高,G/T值高达11dB;∙系统高度只有30cm;∙单键操作自动捕获卫星,无需手动对星;∙可配置世界范围的Ku波段卫星;∙可与任何卫星MODEM互联;∙跟踪车速大于95mph(150Km/h);∙无需专用天线校准测试设备;∙无需计算机或外部设备去操作天线;∙无需电话呼叫网络操作手或服务;∙无需标校。
系统部件(1)天线IMVS450M天线系统包括柱面反射器、极化调节器、无源RF部件和天线罩组成。
(2)远程位置调节器远程位置调节器是一个机电一体化的组合件,在规定的速度和加速度要求下使天线波束指向期望的卫星,远程位置调节器有马达、驱动部件、角位置反馈器件、速度反馈器件以及需要的结构件组成,在天线控制器的控制下使天线旋转。
(3)天线控制器天线控制器(ACU)完成控制模式、位置环闭环,极限值监控、故障监控、平台运动补偿以及天线伺服环路补偿。
ACU 可以为每个远程位置调节器马达提供放大的驱动信号,并从每个远程位置调节器反馈器件接收位置和速度数据。
(4)惯性敏感元件惯性敏感元件可以测量移动平台在惯性空间(横摇、纵摇和艏摇)的位置和动态运动并向ACU提供这些数据,以便在卫星捕获、再捕获和正常运转时补偿或隔离平台的扰动。
天线利用综合性的GPS接收机测量移动平台在地面上某一点的位置并把该数据提供给ACU, 让ACU 来确定卫星的角位置。
动中通卫星通信天线系统组成及原理分析
动中通卫星通信天线系统组成及原理分析摘要:动中通天线系统主要用于移动载体移动条件下实时通信,满足处理突发紧急事件的需求。
本文提出惯导跟踪式动中通卫星通信车载天线系统的组成,对工作原理进行了分析。
惯导跟踪式的动中通天线系统不依赖于任何外部信号,利用惯性导航系统自身即可完全实现自主对星,在移动载体移动过程中也能够进行实时对星和换星,灵活性高。
关键词:动中通,惯性导航,天线,卫星通信概述动中通卫星通信天线系统主要用于车辆等载体在快速移动的条件下,保持对卫星实时跟踪,使车载卫星天线始终对准地球同步通信卫星,在地球同步通信卫星与卫星地面站之间构建双向链路的卫星通信,以达到实时、不间断与其他地面站进行图像、语音、数据的卫星通信双向传输。
动中通卫星通信车应用动中通卫星通信天线系统跟踪卫星,利用卫星通信的无缝覆盖,加上所具备的机动灵活和行进间通信的特点,可以使动中通卫星通信车在任何时间、任何地点开通并投入使用,满足处理紧急突发事件的需求。
动中通卫星通信天线系统是实现动中通车载站的核心,天线面通常采用偏馈或正馈面反射的抛物面天线,外形呈球状,相对于相控阵天线来说,其天线增益较高,旁瓣特性较好,可以跟踪制导系统控制天线的方位和俯仰指向。
1 天线系统主要分类一般来说,动中通卫星通信天线系统主要采用以下两种技术实现对星跟踪:(1)单脉冲跟踪式:利用多个方向上卫星通信信号强弱的和差关系,在短时间内判断出天线指向的偏差,即时调整卫星天线的指向,保持对通信卫星的跟踪。
(2)惯导跟踪式:利用惯性导航系统建立一个坐标基准,通过前馈控制伺服系统,使卫星天线稳定在坐标基准中,不受到车辆载体运动的干扰,始终对准通信卫星。
单脉冲跟踪式动中通卫星通信天线系统由于依赖卫星信号进行对星跟踪,因此存在以下问题:图动中通卫星通信天线系统组成和信号流程图在卫星信号受到遮挡时容易丢星,如途经隧道、桥梁等情况下,被楼宇、大树等遮挡的情况下,都难以保持正常通信;在没有卫星信号的时候无法进行初始对准卫星,在车辆载体行进中无法进行初始对准卫星;在车辆载体大动态情况下,对星跟踪精度差,容易丢星。
动中通天线的设计分析
动中通天线的设计分析河北省专网通信技术创新中心河北石家庄050200摘要:机电结合动中通天线是将机电技术与通信技术相结合,以达到高效率、高增益、低损耗和低成本的目的。
采用机电结合的方式,可提高天线的效率和增益。
本文介绍了机电结合动中通天线的设计方法,包括机械结构、馈电网络和机电耦合方式,并通过对该方案进行分析计算,指出了该方案具有较高的性价比和良好的应用前景。
关键词:机电结合动;动中通天线;设计天线是通信系统的重要组成部分,它把无线电波能量转换为电磁波能量并辐射出去,是无线通信系统的“眼睛”和“耳朵”。
天线的性能取决于所用材料和结构形式,天线的效率、方向性和增益是天线设计中最重要的参数。
因此,天线设计研究的重点之一就是要对天线进行有效地优化设计。
1.天线结构形式的选择天线结构形式是影响天线性能的一个重要因素,不同结构形式的天线在相同条件下的工作效率和增益也会有所不同。
因此,根据实际要求对天线的结构形式进行选择,是实现机电结合动中通天线的关键。
对于小型移动通信系统,一般采用微带形式的单极子天线;对于中型移动通信系统,采用微带偶极子或微带贴片天线;对于大型移动通信系统,采用微带全向天线或宽带微带天线。
在实际应用中,动中通天线可采用微带线或宽带微带线等结构形式,对于通信距离较远的中继信道,宜采用高增益、大功率、大带宽的全向天线。
本方案中所选用的动中通天线是一种单极子单微带天线,其带宽为150 MHz,增益为10 dBi。
1.1天线结构动中通天线的结构形式可采用以下几种方式:单极子单微带天线、单极子多微带天线、微带线多微带天线和微带线偶极子等。
在本方案中,选择的是单极子单微带天线。
单极子单微带天线由贴片和缝隙两部分组成,缝隙采用印刷电路加载,贴片则是由覆铜板切出的薄带状结构。
1.2馈电网络的设计动中通天线的馈电网络一般由馈电网络放大器和功分器组成。
由于该天线工作在2.4 GHz,而馈电网络放大器工作在200 MHz,因此,天线与馈电网络放大器之间的匹配网络是一个难点。
静中通天线和动中通天线的区别
静中通天线和动中通天线的区别固定站静中通天线与动中通天线都属于卫星通信系统的地球站,使用者可
以根据自己的实际应用情况来选择合适的产品,雅驰实业根据两种产品的特性
罗列出以下几点区别,以供参考。
1.使用的业务频率不同。
按照国际电联(ITU)规定,卫星固定业务地球站的卫
星通信天线主要使用C或Ku频段频率,卫星移动业务地球站的卫星通信天线主要使用L或S频段频率。
两者相比,前一种可用带宽款,后者可用带宽窄。
2.组网的自主性不同。
固定站静中通天线地球站与主站构成的卫星通信系统通
常是租用卫星转发器独立组网,自主运行,它与同一卫星其它转发器网络无关。
动中通天线地球站构成的卫星通信系统由于其系统的构架与体制受限,与前者以租赁转发器带宽计费不同,它的计费方式以实际用量计费。
3.可用卫星带宽不同。
通常固定站静中通天线比动中通天线带宽要大得多,因
此更容易实现带宽通信。
比如在实际应用中,固定站静中通卫星天线可传输的最高数据速率可达50Mbps,而机载和船载是由的动中通卫星天线终端最高数据速率仅为432kbps。
1 / 1。
1-杜彪-低轮廓“动中通”天线技术
3. 低轮廓动中通天线简介
2) 介质透镜天线
代表性产品B
法国在高铁上安装了用于扫描的龙伯 透镜天线,进行卫星信号的收发。
代表性产品C
美国空军实验室对介质透镜 阵列进行了实验研究,工作在 20/44GHz,实现双圆极化。在 20GHz增益为35dBi,44GHz增益为 41dBi,扫描范围达80度。
优点,成为机、弹、车、船载等移动载体通信的重要手段。
在移动载体上随时随地与卫星通信,也已成为军民两用应 急通信、实时通信的迫切需求
卫星移动通信
1.动中通天线的应用背景
移动载体:汽车、舰船、飞机、导弹等平台。
1.动中通天线的应用背景
卫星移动通信系统的关键技术之一是天线技术。
动中通天线技术已成为卫星移动通信技术领域的研究热点之一。
MijetLite在机载平台上的应用 StarCar机载平板天线-MijetLite
跟踪模式:惯导模块+GPS和机械波束扫描跟踪
3. 低轮廓动中通天线简介
3) 平板阵列天线
代表性产品B-Starling
C) MiniMijet
工作频率:发射14-14.5GHz,接收10.7-12.7GHz
3. 低轮廓动中通天线简介
3) 平板阵列天线
代表性产品B-Starling 以色列Starling公司的产品多为Ku频段平板天线。采用宽带天线单元,多天线子阵合成技 术,极化自动实时跟踪,代表了合成天线的最高水平。现应用于737、空客等飞机。
A)MIJET天线系统
等效口径:0.45m 工作频率:发14-14.5GHz,收10.7-12.7GHz
StealthRayTM 3000内部排布
常用卫星通信天线介绍
常用卫星通信天线介绍天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。
地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
下文对一些常用的天线作简单介绍。
1.抛物面天线抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。
发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。
由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。
接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。
图1 抛物面天线抛物面天线的优点是结构简单,较双反射面天线便于装配。
缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。
2.卡塞格伦天线卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。
主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。
从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。
由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。
对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。
修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。
目前,大多数地球站采用的都是修正型卡塞格伦天线。
“动中通”技术简析
“动中通”技术简析邹佳男(四川邮电职业技术学院,四川成都610067)摘要:近年来卫星通信在抢险救灾、重大活动的通信保障中表现活跃,引起了各界的关注。
“动中通”技术作为卫星通信中卫星地面站的一种常用技术,得到了广泛应用。
文章介绍了什么是“动中通”,“动中通”与“静中通”的比较,“动中通”的技术原理以及“动中通”在应急通信中的应用。
关键词:动中通;静中通;卫星通信;应急通信中图分类号:TN927.2文献标识码:A文章编号:1673-1131(2016)10-0220-021“动中通”技术概述1.1什么是“动中通”技术“动中通”是卫星通信中的一种新兴技术,英文名称是“Satcom on the move”,其实质是一种移动中的卫星地面站通信系统。
“动中通”技术从分类上来讲与国际电信联盟(ITU)规定的传统的卫星固定业务(FSS)、卫星移动业务(MSS)都不相同。
“动中通”是一种较新的技术手段,主要使用Ku频段实现地面站与地球卫星之间的通信。
“动中通”技术解决了了卫星地面站在移动中与卫星间持续不间断的语音、数据、图像等信息的传输的难题,实现了地面站在移动中与卫星的实时通信。
1.2“动中通”技术与“静中通”技术的对比“静中通”技术是静止状态下的卫星地球站与通信卫星完成信息传递的一种技术,主要使用Ku频段,最高速率可达50Mbps。
“静中通”系统工作前需要给伺服系统设置通信卫星的位置参数,系统加电之后天线自动完成对星,即可进行通信。
“静中通”系统要求天线展开时间不超5min,对星不超3min。
“静中通”使用的是地球同步卫星,故在地面站完成对星后不再需要做其余操作。
“静中通”主要应用在超视距、多业务、大容量、高速率传输场合,例如大型活动的通信保障、电视实况转播等。
“动中通”和“静中通”在应用及网络拓扑结构上是相同的,但是也有不同点如下:(1)状态需求不同:“动中通”能在静止状态下进行通信,也能够在运动状态下进行信息传送;“静中通”只能在信号覆盖区以静止状态进行通信;(2)天线口径不同:“动中通”天线一般选用0.8m、0.9m或1.2m;“静中通”一般选用1.2m、1.5m或1.8m口径,天线口径可以做大,这样能高质量接收、发送信号,效果更好;(3)传输速率不同:“静中通”的速率一般在几十Mbps,“动中通”传输速率在几十到几百Kbps;(4)功率放大比不同:“动中通”功率放大比“静中通”要大;(5)成本不同:“动中通”的建设成本相对于“静中通”要高;(6)机动性、隐蔽性不同:“动中通”机动能力、隐蔽性要强于“静中通”。
0.6米Ku波段低轮廓动中通天线
0.6米Ku波段低轮廓动中通天线1.概述DGTX(Ku)-060型0.6米Ku波段低轮廓动中通卫星通信天线是针对应急移动宽带通信需求,严格按军标标准开发的高性能、低高度的动中通卫星通信天线,天线采用平板天线技术实现了高增益、低高度,很好地解决了运动载体对天线安装高度的严格限制。
天线跟踪系统采用三轴陀螺惯导跟踪与卫星信标跟踪相结合的混合跟踪方式,具有抗颠簸能力强、遮挡恢复快、跟踪精度高的优点,最大支持4MHz通信带宽。
天线目前已获得军方列装,适用于国内、外全部Ku波段的通信卫星。
2.技术指标2.1电性能指标l工作频率发射14~14.5GHz接收12.25~12.75GHzl天线增益(至天线外罩接口处)发射(14.25GHz)≥ 35.6dBi接收(12.5GHz)≥ 35.6dBil G/T值≥ 13(12.5 GHz) dB/K(天线仰角≥10°,晴空,LNA噪声温度80°K)l极化方式线极化,收发正交l电压驻波比(VSWR):≤1.35l交叉极化隔离度≥30dB(静态),>25dB(动态)l收、发端口隔离度≥85dB (在发射频段、含发阻滤波器)≥65dB (在接收频段、含收阻滤波器)l旁瓣特性第一旁瓣≤ -14 dBi(方位)旁瓣包络(θ为偏离方向与波束主轴方向之间的夹角):− dBi α°<θ≤48°3225lg()θ-10 dBi θ>48°α取1°或100(λ/D)中大的值,λ为载波波长,D为等效天线直径。
其中:在θ<9.2°时,超过包络线3dB的旁瓣数要少于10%;在θ>9.2°时,不超过包络线6dB。
l功率容量≥100Wl馈源接口收发接口均为BJ-120(WR75)2.2机械性能l天线运动范围方位:360°无限俯仰:0°~90°极化:±130°l天线运动速度、加速度方位:速度≥100°/s ,加速度≥400°/s2俯仰:速度≥80°/s ,加速度≥400°/s2l驱动方式:电动l极化调整方式:极化电动(也可以手动调整)l天线高度(含天线罩):298mml占用车顶面积:Φ1320mm2(直径)l天线控制器采用19英寸标准机箱,高度1Ul天线总重量:≤73.5Kg2.3天线对星及跟踪性能l跟踪方式:自动跟踪,信标跟踪与三轴陀螺惯导跟踪相结合;具有自动水平补偿、自动寻北、自动极化调整功能。
神通型动中通相控阵卫星天线
神通Ⅰ型动中通相控阵卫星天线系统产品描述:神通Ⅱ型Ku卫星双向相控阵天线是国内卫星通信的革命性的、划时代的突破产品,神通Ⅱ型的超薄(24cm厚度)相控阵天线系统是专为运动载体(飞机、火车、汽车、轮船)的“动中通”实时通信而设计的。
全新理念的天线系统自动搜索、捕获指定的卫星信号,并且在运动载体高速运动过程中,自动控制方位、仰角和极化角,自动跟踪并保持精确指向。
神通Ⅱ型卫星双向相控阵天线具有非常广泛的应用,特别是应急通信,因为它可以为公共安全部门和第一响应单位提供高速移动的宽带卫星通信链路,不依赖于易受服务中断、自然灾害和人为破坏所影响的地面通信链路。
也由于它不依赖于地面网络,它可以应用于任何需要的领域,特别是那些偏远的、无电信运营商服务覆盖到的地区和专有军事领域。
产品适用领域有:应急体系、军队、武警、公安、国安、消防、交通、能源、环保、自然资源、运输等各行各业。
系统组成:神通Ⅱ型由超薄的安装于移动载体的相控阵天线和内部的控制器组成。
外部安装天线内置BUC(可外置以增加发射功率)和LNB,控制器为天线提供电源并控制相控阵天线的运动。
系统特点:➢全自动对星;➢采用GPS信号,自动捕获并跟踪卫星(无GPS时可自动盲扫)➢运动中自动寻找卫星信号最大值;➢控制系统可以使之快速从视线遮挡中恢复,天线使用机械和电子混合扫描,保持指向精度;➢邻星干扰保护:如果天线指向偏离大于0.5度,发射链路自动关闭,直到指向误差被天线的跟踪系统纠正。
➢设备采用标准机架安装,同时优化设计适用于移动载体,易于安装和维护。
神通Ⅰ型性能指标1.天线主体型号:ST-2K 技术指标:频率范围:发送:14.0-14.5 GHz接收:12.25-12.75 GHz数据速率:发送(回传链路):64kbps~4096 Kbps(外置40W BUC)(根据不同的卫星和地区会有变化)接收(前向链路):大于15 Mbps增益:TX:33.5dBiRX:33.5dBi极化:线极化/圆极化(自动控制)上行EIRP:49.5dBw(40w BUC)G/T:9 dB/K @30度旁瓣电平:<-14dB交叉极化:>27dBIF输入/输出:L频段950-2050MHz捕获和跟踪:信号捕获并锁定:自动,<60秒极化角调整:自动跟踪速率:45°/秒重新捕获:<20秒仰角捕获误差:<0.3°极化角捕获误差:<0.35°极化调整误差:<1°天线单元:尺寸:1360×1200×248mm(L×W×H)重量:≤40Kg电性能指标电源:30VDC功耗:≤70W电源接头:TNC射频接头:TNC机械性能指标俯仰范围:20°- 70°方位范围:360°连续跟踪速率:60°/s极化范围:-90º~+90º工作温度:天线主体单元: -40°~+55°C贮存温度: -50º~+70ºC 相对湿度:<90%运动速度:≤350 Km/h2.天线控制器天线控制器作为系统的室内单元,主要完成供电,给天线提供控制信号,以及完成人机操作等工作。
关于动中通天线伺服控制系统的分析
关于动中通天线伺服控制系统的分析随着社会的不断发展,科技的不断进步,我国各个领域均得到了很好的发展,尤其在动中通天线伺服控制系统得以开发和应用后。
所谓天线伺服控制系统,其主要是起到控制天线的作用,使其能够准确地自动跟踪空中目标方向。
文章通过查阅相关资料,简要介绍了动中通天线伺服控制系统原理、天线平台伺服控制策略,以及动中通天线伺服控制系统设计与软件开发方面的内容,以期能够为促进动中通天线伺服控制系统的优化和发展提供有价值的参考。
标签:动中通;天线伺服控制系统;原理;策略;设计;软件开发前言近年来我国经济实力不断攀升,这与各个行业的飞速发展有着密切关系,人们的生活质量也有了更大的提升,此种形势下人们对各方面的要求也越来越高。
移动中通信稳定简称动中通,该项技术的应用可以充分改善传统天线伺服控制系统实时载体方面的弊端,特别在隔离载体运动状态、方向方面能够发挥很大的作用,并且保证天线波束瞄准线能够跟踪卫星,实现不间断通信。
若要充分达到此要求,则需要应用实时伺服控制系统,在整个过程中必须充分保证伺服控制系统的性能。
1 动中通天线伺服控制系统原理(1)动中通天线伺服控制系统组成动中通天线伺服控制系统可以划分为如下几个部分:一是天线组件;二是平台机构组件;三是伺服控制系统,具体见图1。
伺服控制系统包括:控制器、测角部件、直流力矩电阻、电机驱动器、二次电源、连接线、接插件等[1]。
(2)天线平台结构分析天线平台结构在整个伺服控制系统中占据着重要地位,尤其在平台随动跟踪回路中,在平台运行过程中,平台结构能够发挥很大的作用,如其是电机驱动的运行载体、是高质量的瞄准线、是有效荷载负载设备的装置等,同时其也可以起到指导、安装等作用。
另外,当有效载荷处于工作状态下时,其也可以控制回路中的执行电机产生的驱动力,并不断提升瞄准精度。
在天线伺服控制系统不断的优化中,天线平台已经发生了较大的变化,其无论在结构方面,或是在型式方面均与以往不同,同时也提升了对天线平台的要求,如其必须具有反應快、高精度以及动作迅速等特点[2]。
关于动中通天线的选择
关于动中通xx的选择从技术层面看,目前动中通天线主要有三种基本类型,分别是:①传统抛物面天线;②阵列、赋形反射面天线③全相控阵天线。
三种天线各有自己的特点,都有自己的应用范围,不存在“谁取代谁”的问题。
做为用户,应该根据卫星天线的使用的环境、承载的方式、地理位置、主要业务和预算等情况,综合来进行选择。
下面我们根据我们的经验,对于用户政府应急平台动中通天线的选择提出一些看法,供选择参考。
一、政府应急平台动中通天线的选择应考虑的重点问题应急平台建设是应急管理的基础性工作,其中动中通天线是实现应急通信保障的工具,高可靠性和高可用度无疑是动中通天线选择的前提,确保在“突发”事件状态下能够真正“应急”,而其它指标(如体积和重量)应该是在此前提下再考虑的次要指标。
动中通天线的“高可靠性和高可用度”主要表现在以下两个方面:(1)工作的全天候性,即在任何天气环境状态下,都应该正常的工作。
而一般突发时间的发生往往伴随恶劣的天气条件。
(2)能够提供足够的带宽保证应急业务的需要。
应急一般需要图像、语音、数据等多种业务,因此选择动中通天线应该满足大数据量的需要。
以上两个方面的要求决定了动中通天线选择时应该考虑足够的增益余量。
二、3种动中通天线的特点比较目前动中通天线主要有①传统抛物面天线②阵列、赋形反射面天线③全相控阵天线三种基本类型。
1.传统抛物面天线传统抛物面天线的姿态调整采用机械式,其特点表现在:优点:增益高、带宽高弱点:体积和重量大,安装不方便2.阵列、赋形反射面天线(轮廓柱状天线)阵列、赋形反射面天线的姿态调整也采用机械式,其特点表现在:优点:安装相对简单,搜索锁星时间短弱点:天线口径效率低,增益不高,带宽也不高(比同天线口径抛物面天线要低得多)3.全相控阵天线全相控阵天线的姿态调整采用电调式,其特点表现在:优点:体积小、重量轻,xx弱点:天线有效口径低,增益低,带宽窄根据以上比较,从保障通信的“高可靠性和高可用度”出发,在选择动中通天线类型时,我们建议:应当首先考虑采用传统抛物面天线,决不能采用全相控阵天线。
Ku频段低剖面_动中通_卫星天线技术综述
阳(1982-),男,博士,工程师. 作者简介:项 * 收稿日期:2014-03-04;修回日期:2014-04-11 基金项目:国家自然科学基金资助项目(61371120) 卫星通信具有广域覆盖的特点,且不受时间、天气和地形的限制。
Ku 频段频谱资源丰富,有条件建设 宽带大容量卫星通信系统,能同时支持数据、语音、图像和视频业务,在应急通信中彰显优势。
Ku频段星载天线的尺寸和转发器的输出功率有限,而卫星距离地球表面的垂直距离约为36000km,电 波传播损耗大,雨衰严重。
为了建立可靠的高速率通信链路,要求地面站天线达到足够的增益。
一般来说,对于小型地球站,其天线增益应至少达到28dBi,天线波束宽度小于5°。
作为卫星通信的移动载体,车辆、舰 船和飞机在运动状态下,其方位、俯仰和横滚姿态角度的快速变化均能使天线波束不能准确对星,如果天线 不能快速、准确地对星跟踪,将导致通信质量下降甚至通信中断。
移动载体的姿态变化以及所在的地理经纬度,造成卫星来波信号与天线存在极化偏转角,如果不能动态 调整天线的极化方向,将对同频率极化复用的相邻信道进行干扰。
我国幅员辽阔,为了兼顾高纬度和低纬度Abstract:TheKubandsatellitecommunicationiswidelyusedin militaryandcivilianfields fortransmissionofvoice,data,highdefinitionimageandvideo.The Kuband mobileantenna withhighgainandnarrowbeamwithisthekeyequipment,whichhasprofoundimpactonthesys- temcapability.SeveralimportantsolutionsfortheKubandantennasonthemoveweregivenin detail.Inaddition,thefeaturesandkeytechnologiesinvolvedinthegivensolutionswereana- lyzed.Keywords:communicationonthemove;lowprofile;satallitecommunication XIANGYang1 ,SHIWei1 ,YANG Hua2 ,HUANGDe-yu3 ,LUOJian-hua2 (1.The63rdResearchInstituteoftheGeneralStaffHeadquarters,Nanjing210007,China; 2.GuangdongShengluTelecommunicationTechnologyCo.,Ltd,Foshan528100,China; 3.Unit78046ofPLA,Chengdu610011,China) LowProfileAntennasforKuBandMobileSatelliteCommunication文章编号:CN32-1289(2014)03-0034-06 文献标识码:A 中图分类号:TN82 域获得广泛应用。
Ku频段“动中通”天线口径最小限值分析
Ku频段“动中通”天线口径最小限值分析+ 贾玉仙 中国卫通集团有限公司1 引言2013年工信部发布了《卫星固定业务通信网内设置使用移动平台地球站管理暂行办法》(以下简称“办法”),其中,规定了包括 “动中通”在内的“车载、可搬移式或便携式移动平台地球站所使用的抛物面天线口径不得小于0.8米(非抛物面天线的电性能等效口径不得小于0.6米)”。
“办法”实施以来,行业内对该最小天线口径限制条件有很多争议。
一些“动中通”生产厂商认为,该限制条件限制了“动中通”的使用和发展,通过目前已经成熟的扩频技术,完全可以解决动中通在使用过程中的邻星干扰问题和功率超标问题。
一些用户也反映,最小天线口径的规定,使得动中通无法小型化,进而使得动中通的灵活性受到限制。
然而,“动中通”以往的实际使用情况表明,当采用如0.3米或0.45米等甚小口径的动中通时,为了节省卫星租用带宽,用户基本都未采用扩频技术,结果造成实际的邻星干扰和功率严重超标,对卫星转发器的运行管【摘 要】2013年工信部发布《卫星固定业务通信网内设置使用移动平台地球站管理暂行办法》以来,Ku频段动中通抛物面天线最小天线口径0.8米(非抛物面天线等效口径0.6米)的限制条件在业内引起强烈反响和广泛争议。
本文从邻星干扰和链路计算两个角度对该限制的必要性和合理性进行了分析。
【关键词】动中通 天线口径 限制条件 邻星干扰 链路计算理及其他相关网络造成严重的影响。
“办法”出台后,由于小天线“动中通”的逐渐减少,这些不规范现象已逐渐得到改善。
实际情况说明,对“动中通”最小口径进行限制是必要的、有效的。
本文从邻星干扰和链路计算两个角度,对0.8米抛物面天线口径限制条件的技术合理性进行分析,并在此基础上对0.6米低轮廓天线的口径限制条件进行简要地分析。
2.抛物线天线0.8米最小口径的限值分析1)邻星干扰分析对于任何一个地球站而言,为了避免其旁瓣信号发射到相邻卫星以造成对邻星的上行干扰,或通过该天线的接收旁瓣接收到来自相邻卫星的信号造成对自身信号的干扰,首先应该保证其上行和下行指向相邻卫星方向的信号落在天线方面图的远旁瓣上,而不宜落在主瓣和第一旁瓣上,否则由于天线方向图增益衰落在主瓣和第一旁瓣区域不够大(第一旁瓣指标通常要求比主轴增益低14dB以上,而14dB的衰落不足以隔离干扰)而容易形成有害的邻星干扰。
基于相控阵的卫星“动中通”天线现状及展望
基于相控阵的卫星“动中通”天线现状及展望文I 国家无线电监测中心福建监测站朱杰赖新权摘埂:本文丨"I 顾/H 星“动屮迪”人线发MWft ?和趋势,洋细比较了传统机械天线与相控阼人线的优 缺点;介绍了基于til 校阵的U 星“动屮迪”天线现状及士:耍技术形忒,特別计对P 4内外不同炎甩的相控阵 天线产品进行了说明,指出f 各f l 产品在具体使川坏垃中的特点。
iiiifi ,对RM 移动通信平台屮fl 丨校阵天 线的发M 趋势进行乂键词:卫星通信“动中迪’’天线tl 丨控阵太线发M 趋势0引言随着卫星通信的技术发展和应用领域的拓展,人类关 于在任何时候、任何地点、任何情况下(甚至在高速移动中) 进行较好通信的愿望得以实现。
“动中通”天线技术研究 和产品开发是当前卫星通信技术领域的研究热点之一。
在 卫星通信系统中,地面卫星接收天线多采用性能较为优越 的反射面天线,但这类天线体积过大,影响了移动载体的 机动性。
高性能、重量轻、体积小、低轮廓以及易于安装 于移动载体的相控阵天线成为“动中通”系统研究的热点 之一⑴。
1 “动中通”天线发展历程及趋势“动中通”通信系统是指能在搭载平台高速移动过程 中与地球同步卫星保持稳定信息传输的地面通信系统。
“动 中通”通信系统具有覆盖范围广、传输质量好、传输距离 远、容量大等优点,能在移动平台上随时随地与卫星通信, 能满足军民应急、实时通信的需求121。
“动中通”天线经过20多年的发展,已经从传统拋 物面天线发展到低轮廓天线,其发展历程可以归纳为3个 阶段:高轮廓、中轮廓和低轮廓天线。
为了追求更低的剖 面,低轮廓天线已开始向相控阵天线和特种材料天线方向 发展(见图1 )。
回顾“动中通”天线的发展过程,首先出现的是以圆 口径反射面为主的高轮廓天线。
其优点是易于实现高增益、低旁瓣和低交叉极化性能;缺点是轮廓高,受其体积、重量的限制。
该类“动中通”天线主要用于大型移动载体(船 舶、大型车辆等)。
动中通天线(80W)
动中通天线美国TracStar公司的宽带双向卫星通信系统天线系列产品——IMVS450M柱面反射器天线系统,突破了低轮廓相控阵天线系统的限制。
是专为运动中的车载VSAT卫星通信系统而设计的中等轮廓、宽带、高码速率卫星通信天线产品。
创新的天线系统自动展开技术,自动搜索、捕获指定的卫星信号,容许非专业人员在改良或非改良的公路上操作移动VSAT卫星通信天线。
存取宽带卫星通信信息。
在车辆运动过程中,可通过自动控制方位、仰角和极化角,自动跟踪保持精确的指向效果。
系统特点:∙系统最大特点是满足宽带卫星通信需要。
上行数据传输速率可大于2Mbps.天线效率和增益高,G/T值高达11dB;∙系统高度只有30cm;∙单键操作自动捕获卫星,无需手动对星;∙可配置世界范围的Ku波段卫星;∙可与任何卫星MODEM互联;∙跟踪车速大于95mph(150Km/h);∙无需专用天线校准测试设备;∙无需计算机或外部设备去操作天线;∙无需电话呼叫网络操作手或服务;∙无需标校。
系统部件(1)天线IMVS450M天线系统包括柱面反射器、极化调节器、无源RF部件和天线罩组成。
(2)远程位置调节器远程位置调节器是一个机电一体化的组合件,在规定的速度和加速度要求下使天线波束指向期望的卫星,远程位置调节器有马达、驱动部件、角位置反馈器件、速度反馈器件以及需要的结构件组成,在天线控制器的控制下使天线旋转。
(3)天线控制器天线控制器(ACU)完成控制模式、位置环闭环,极限值监控、故障监控、平台运动补偿以及天线伺服环路补偿。
ACU 可以为每个远程位置调节器马达提供放大的驱动信号,并从每个远程位置调节器反馈器件接收位置和速度数据。
(4)惯性敏感元件惯性敏感元件可以测量移动平台在惯性空间(横摇、纵摇和艏摇)的位置和动态运动并向ACU提供这些数据,以便在卫星捕获、再捕获和正常运转时补偿或隔离平台的扰动。
天线利用综合性的GPS接收机测量移动平台在地面上某一点的位置并把该数据提供给ACU, 让ACU 来确定卫星的角位置。
动中通天线的应用
动中通天线的应用“动中通”是由卫星自动跟踪系统和卫星通信系统两部分组成。
卫星自动跟踪系统卫星自动跟踪系统是用以保证卫星发射天线在车体运动时对卫星的准确指向。
其主要设备有:(1)天线座,采用卸载和储力方式减小天线传动时的负载惯量。
(2)伺服,采用位置环或速度环控制方式,使用模拟硬件提高电路响应速度,减小伺服跟踪系统的动态滞后误差。
(3)数据处理,使用专用的数学解算平台,对误差信号、载体的动态信号进行处理,解算出天线的控制信号。
(4)载体测量,使用捷联惯导测量组合测量出载体的变化量,使其反应在天线跟踪上。
其中,激光陀螺是在光学干涉原理基础上发展起来的新型导航仪器,成为新一代捷联式惯性导航系统理想的主要部件,用于对所设想的物体精确定位。
石英挠性摆式加速度计是由熔融石英制成的敏感元件,挠性摆式结构装有一个反馈放大器和一个温度传感器,用于测量沿载体一个轴的线加速度。
光纤陀螺三轴惯测组合由三个光纤陀螺仪和三个石英挠性摆式加速度计组成,可以实时地输出载体的角速度、线加速度、线速度等数据,具有对准、导航和航向姿态参考基准等多种工作方式,用于移动载体的组合导航和定位,同时为随动天线的机械操控装置提供准确的数据。
主要性能:加表精度1×10-4g;光纤陀螺精度(漂移稳定性)≤1°/h;标度固形线性度≤5×10-4。
卫星通信系统卫星通信系统的作用是使电视信号上行传输到卫星,并由转发器下行传送到地面卫星接收装置。
其主要设备有:编/解码器、调制/解调器、上/下变频器、高功率放大器、双工器和低噪声放大器。
“动中通”系统工作原理载体在移动过程中,由于其姿态和地理位置发生变化,会引起原对准卫星天线偏离卫星,使通信中断,因此必须对载体的这些变化进行隔离,使天线不受影响并始终对准卫星。
这就是天线稳定系统要解决的主要问题,也是移动载体进行不间断卫星通信的前提。
“动中通”自动跟踪系统是在初始静态情况下,由GPS、经纬仪、捷联惯导系统测量出航向角、载体所在位置的经度和纬度及相对水平面的初始角,然后根据其姿态及地理位置、卫星经度自动确定以水平面为基准的天线仰角,在保持仰角对水平面不变的前提下转动方位,并以信号极大值方式自动对准卫星。
SWE-DISH动中通天线
SWE-DISH动中通天线
----它是一款通过卫星实时不断地传递语音、数据、高清晰的动态通信产品。
SWE-DISH动中通天线
产品介绍: SWE-DISH动中通天线是非常适合应用于陆地和海洋的终端。载荷目标平台的范围 从轻型越野车到指挥所的专项作业车到小、中型船舶,产品都可以在这些目标场 所中维持高速运转和俯仰、滚转。 产品特征: 1.非常高的带宽 --- 在SWE-DISH卫星通信上的非移动STORM终端,可以提供高达 10 Mbps的真正的宽带通信。SWE-DISH在通信上的非移动终端会比其他型号在海 上、陆地和空中移动得更快! 2.在最恶劣的环境 --- 即使狂风咆哮,高波达到50节或超过40公里每小时在不平 坦的地形都没问题。 3.最小终端 --- SWE-DISH是款符合FCC的要求,在卫星通信上的非移动、不需要扩 频的最小终端。 4.卫星连接 --- 即时自动恢复,通常在重新连接线的信号丢失后不到一秒。 5.四个轴天线系统 --- 即使在波涛汹涌的海面或崎岖地形也可以快速机动。
G/T @ 20°elevation Polarization
Transmit Frequency
Receive Frequency Polarization Range Exchange time Features MODEMS Network topology
Modulation
Maximum data rate
NA Tx + Rx (Lband)
Data interfaces M&C interfaces
SWE-DISH动中通天线
技术参数:
Equivalent Isotropically Radiated Power (EIRP)
国内动中通系统技术介绍
国内动中通天线自跟踪技术介绍1 动中通卫星通信系统的组成 12 动中通天线跟踪方式介绍 22.1 精确指向跟踪系统 22.2 单脉冲自动跟踪方式 32.3 混合跟踪方式(差分GPS) 33 动中通惯导比较 51 动中通卫星通信系统的组成动中通卫星通信系统主要由天线自动跟踪系统和常规卫星通信系统两大部分组成,其中天线自动跟踪系统是关键技术。
2 动中通天线跟踪方式介绍目前,国内动中通系统天线自动跟踪系统有三大类:1精确指向跟踪系统;2单脉冲自动跟踪系统;3混合跟踪系统(差分GPS),这几种方式根据其技术特点,应用范围有所不同,分别介绍如下:2.1 精确指向跟踪系统精确指向跟踪方式根据车辆运动过程中位置(经度、纬度、高度)及姿态(航向角、俯仰角及横滚角)等参数,计算出天线指向卫星的方位角,俯仰角和极化角。
该系统要求陀螺惯导系统精度高,稳定性好(不漂移),但不能解决卫星定点位置的漂移问题,因而此种方式的优点是不需要捕获引导,可实现盲対星,不怕遮挡(但卫星通信本身还是怕遮挡的)。
但缺点是高性能高稳定度陀螺惯导(法国进口光纤惯导)价格昂贵,而且不能解决卫星定点位置的飘移,因而跟踪精度稍低。
经过国内相关机构多次调研和实际测试,在相同精度的陀螺设备中,激光陀螺比光纤陀螺的漂移累计周期短,一年内需进行多次相校。
进口光纤陀螺稳定周期长,漂移累积小,一般选用OCTANS法国高精度光纤陀螺惯性导航系统作为该跟踪系统的测姿部件。
相关指标如下:2.2 单脉冲自动跟踪方式单脉冲自动跟踪方式是跟踪卫星的信标,其主要的技术特点是利用单脉冲精密跟踪技术,实现卫星通信天线在移动载体上对卫星的精密跟踪。
因而主要的优点是跟踪精度高,不怕卫星漂移(由于受太阳和月亮引力的影响,静止卫星会在一个与地球赤道平台夹角不断变化的倾斜轨道上运行。
假设卫星轨道的东西位置保持不变,则从地球显道表面观察卫星的日漂移轨迹是一个对称于同步静止卫星轨道位置的“8”字形)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于动中通天线的选择
一、名词解释
1、邻星干扰
邻星干扰分两种情况
1)动中通卫星系统区别与静中通及地面站卫星系统,天线的初始状态(加电前)未对准所在卫星。
此时,如果卫星功率放大器处于工作状态,则在天线寻星过程中,产生干扰载波。
CT8000型号产品在天线指向偏离大于0.5 度,回传链路自动关闭,直到指向误差被天线的跟踪系统纠正。
有效的避免了干扰载波的产生。
2)VSAT小站在向所在卫星发射载波时,会产生二次谐波,如设计不当,就会影响周边的卫星。
就此情况,Tracstar天线已被韩国卫星组织严重警告,限制进口。
2、捕获时间与再捕获时间
捕获时间是指卫星设备初加电,天线锁定卫星的时间。
再捕获时间,是指卫星天线再从遮挡物出来时,天线锁定卫星的时间。
3、可维护度
因为相控阵天线是由上百个天线振元组成,在单个振元出现问题后,并不影响正常使用。
而且,相控阵天线采用电子和机械混合扫描方式,对传动机构的损坏较其它天线低。
传统动中通天线和中轮廓天线对机械要求比较高,相对来说,故障
率高。
二、动中通天线的分类
目前,常用的动中通天线从技术上可以分为三种:
1、相控阵天线(平板):起源于雷达相控阵技术,是近年来从国外引进的先进卫星天线系统,无需手动对星,采用GPS 信号;自动捕获并跟踪卫星,内置陀螺仪使之可以快速从视线遮挡中恢复,天线使用机械和电子混合扫描,保持指向精度;如果天线指向偏离大于0.5 度,回传链路自动关闭,直到指向误差被天线的跟踪系统纠正。
系统具有重量轻、安装结构简单、不占用车内空间等优点。
2、光导陀螺天线:可以分为光纤陀螺和激光陀螺两种,系统依靠陀螺高精度姿态信号,主动跟踪卫星。
天线结构大多采用带高速电机驱动系统的环焦天线,对星精度和恢复速度较快,但天线质量重、安装结构复杂。
3、信标跟踪天线:依靠卫星信标接收机,完成初始对星后,根据接收到的信标信号强、弱,结合普通电子传感器判断天线偏离角度,通过高速驱动电机调整天线对星方向。
天线结构大多采用带高速电机驱动系统的环焦天线,对星精度低和恢复速度慢,天线质量重、安装结构复杂、占用车内大部分空间。
三、天线技术性能对比。