第八章温度测量_机械工程测试技术.
机械工程测试技术_课后习题及答案

机械工程测试技术课后习题及答案第一章传感器及检测系统的基本概念1、检测系统由哪几部分组成?说明各部分的作用2、怎样选择仪表的量程大小?3、测量误差可以分为哪几类?引起各类误差的原因是什么?4、传感器按照被测物理量来分,可以分为哪几种?5、某电路中的电流为10A,用甲乙两块电流表同时测量,甲表读数为10.8A,乙表读数为9.5A,请计算两次测量的绝对误差和相对误差。
6、用1.0级量限100V的电压表甲,0.5级量限250V的电压表乙分别测量某电压,读数皆为80V,试比较两次测量结果的准确度。
7、有三台测温仪表,量程均为0~800℃,精度等级分别为2.5级、2.0级和1.5级,现要测量500℃的温度,要求相对误差不超过2.5%,选哪台仪表合理?解答:1、一个完整的工程检测系统包括:传感器、信号调理电路、信号处理电路和显示记录部分。
各部分作用:传感器——感受被测量,并将其转换为电信号;信号调理电路——将传感器输出信号进行放大和转换;信号处理电路——对电信号进行计算和分析;显示记录部分——显示记录测试结果。
2、应根据被测量的大小,兼顾仪表的准确度等级和量程,使其工作在不小于满度值2/3以上的区域。
3、测量误差可以分为:系统误差、随机误差和疏失误差三类。
引起的原因如下:系统误差——仪器误差、零位误差、理论误差、环境误差和观察者误差等随机误差——温度、磁场,零件摩擦、间隙,气压和湿度的变化,测量人员分辨本领的限制等疏失误差——操作、读数、记录和计算等方面的人为误差等4、传感器按被测物理量可以分为:位移传感器、速度传感器、加速度传感器、温度传感器、压力传感器等。
5、绝对误差:△I= I﹣I=10.8-10=+0.8A;△I= I﹣I=9.5-10=﹣0.5A相对误差:γ甲=△I甲/ I0=+0.8/10=8%;γ乙=△I乙/ I0=﹣0.5/10=﹣5%6、最大绝对误差:△V m甲=±K%·V m甲=±1.0%×100=±1.0V;△V m乙=±K%·V m乙=±0.5%×250=±1.25V最大相对误差:γm甲=△V m甲/ V=±1.0/80=±1.25%;γm乙=△V m乙/ V=±1.25/80=±1.56%故:甲表测量结果的准确度高于乙表。
机械工程测试技术课后习题答案

第一章习题1.测试技术的静态特性是什么?其用哪些性能指标来描述?它们一般用哪些公式表示?①测试技术的静态特性是指被测量的值处于稳定状态时,测试技术的输入与输出之间的关系。
②衡量测试技术静态特性的主要指标有线性度、灵敏度、迟滞、重复性、分辨率、阈值、稳定性、漂移和静态误差。
③线性度、灵敏度、迟滞、重复性、分辨率、阈值、稳定性、漂移和静态误差。
2.测试技术的动态特性是什么?其分析方法有哪几种①测试技术的动态特性是指测试技术的输出对随时间变化的输入量的响应特性,它反映了输出值真实再现变化着的输入量的能力。
②阶跃响应、频率响应3.测试技术数学模型的一般描述方法有哪些?传感器数学模型可分为静态和动态数学模型。
其中传感器静态数学模型一般多用多项式来描述,而动态数学模型通常采用微分方程和传递函数等来描述。
4.测试技术系统有哪些典型环节?写出不同环节的微分方程。
输入,输出方程、传递函数、频率响应和单位阶跃5.为什么说零阶测试技术的动态特性是最理想的?因为零阶没有滞后6.简述系统误差和随机误差出现的原因及特点。
系统误差:系统误差是由固定不变的或按确定规律变化的因素所造成的。
系统误差的特征是:在同一条件下多次测量同一量值时,绝对值和符号保持不变;或当条件改变时,按一定规律变化。
系统误差在某些情况下对测量结果的影响还比较大,因此,研究系统误差产生的原因,发现、减小或消除系统误差,使测量结果更加趋于正确和可靠,是误差理论的重要课题之一,是数据处理中的一个重要的内容。
随机误差:随机误差是由于感官灵敏度和仪器精密程度的限制、周围环境的干扰及伴随着测量而来的不可预料的随机因素的影响而造成的。
它的特点是大小无定值,一切都是随机发生的,因而又把它称为偶然误差7.标准误差的意义是什么?标准误越小,抽样误差越小,样本对总体的代表性越好8.有效数字的运算原则和规则是什么?有效数字的确定方法是什么? 一般规定,数值中的可靠数字与所保留的1位(或2位)可疑数字统称为有效数字。
机械工程测试技术基础

全性测试等。
测试技术的应用: 广泛应用于汽车、 航空、航天、机 械制造等领域。
古代:手工测量经验判断 近代:仪器测量数据记录 现代:计算机辅助测试自动化测试 未来:智能化测试远程测试大数据分析
传感器:用于采集 被测对象的物理量
数据采集系统:用 于将传感器采集到 的信号转换为数字 信号
温度传感器:通过热敏电阻或热电 偶等元件测量温度变化广泛应用于 工业、医疗等领域。
流量传感器:通过电磁感应或超声 波等原理测量流体流量广泛应用于 供水、供气等领域。
添加标题
添加标题
添加标题
添加标题
压力传感器:通过压敏电阻或压电 晶体等元件测量压力变化广泛应用 于液压、气动等领域。
加速度传感器:通过压电晶体或电容 式等元件测量加速度变化广泛应用于 汽车安全、航空航天等领域。
数据处理系统:用 于对采集到的数据 进行处理和分析
显示系统:用于显 示测试结果和图表
信号及其描述
信号的定义:信号是信息的载体是物理量随时 间变化的过程
信号的分类:根据信号的性质和特点可以分为 连续信号和离散信号
连续信号:信号的取值是连续的如正弦波、三 角波等
离散信号:信号的取值是离散的如数字信号、 脉冲信号等
实时化:测试技 术将更加实时化 能够实时监测和 预警设备状态
绿色化:测试技 术将更加绿色化 减少对环境的影 响提高能源利用 效率
智能化:测试技术将更加智能化能够自动识别和诊断机械故障 集成化:测试技术与其他技术如物联网、大数据等更加紧密地集成提高测试效率和准确性 实时化:测试技术将更加实时化能够实时监测和预警机械设备的运行状态 绿色化:测试技术将更加注重环保和节能降低机械设备的能耗和污染排放
机械工程测试技术课件整理版

,
汇报人:
目录
01 添 加 目 录 项 标 题 03 机 械 工 程 测 试 系 统
组成
05 机 械 工 程 测 试 技 术 实例分析
02 机 械 工 程 测 试 技 术 概述
04 机 械 工 程 测 试 技 术 原理
06 机 械 工 程 测 试 技 术 发展趋势与展望
压力测试原理
压力测试的定义:通过施加压力来 检测机械设备的性能和稳定性
压力测试的方法:包括静态压力测 试和动态压力测试
添加标题
添加标题
添加标题
添加标题
压力测试的目的:确保机械设备在 正常工作条件下能够承受压力避免 故障和损坏
压力域
流量测试原理
传感器是机械工程测试系统 的重要组成部分
传感器的种类繁多包括温度 传感器、压力传感器、流量
传感器等
传感器的性能直接影响测试 系统的精度和稳定性
信号处理装置
功能:对采集到的信号进行处理和分析 组成:包括信号放大器、滤波器、/D转换器等 工作原理:将模拟信号转换为数字信号并进行滤波、放大等处理 应用:广泛应用于各种机械工程测试系统中如振动测试、噪声测试等
新型传感器技术发展与应用
传感器技术发展 趋势:智能化、 微型化、集成化
新型传感器技术 应用领域:汽车 电子、医疗电子、 工业自动化等
新型传感器技术 特点:高精度、 高灵敏度、高可 靠性
新型传感器技术发 展趋势:无线传感 器网络、物联网、 大数据分析等
虚拟仪器技术在机械工程测试中的应用与展望
虚拟仪器技术:利用计算机软件和硬件模拟真实仪器的功能 应用领域:机械工程测试、控制系统设计、数据分析等 发展趋势:智能化、网络化、集成化 展望:未来将更加广泛应用于机械工程测试提高测试效率和准确性
《机械工程测试技术》教学讲义教案

《机械工程测试技术》教学讲义教案一、教学目标通过本课程的学习,学生应能够:1.了解机械工程测试技术的基本概念和原理;2.掌握机械工程测试技术的常用方法和工具;3.了解机械产品测试的流程和要点;4.培养学生的实践操作能力和解决问题的能力。
二、教学内容1.机械工程测试技术的概述1.1机械工程测试技术的概念和作用1.2机械工程测试技术的发展历程1.3机械工程测试技术的分类和应用领域2.机械工程测试技术的基本原理2.1测试的基本概念和原理2.2测试的基本要素和方法2.3测试的误差与准确度分析3.机械工程测试技术的常用方法和工具3.1机械参数测试方法和工具3.2机械性能测试方法和工具3.3机械可靠性测试方法和工具4.机械产品测试的流程和要点4.1测试计划的编制和执行4.2测试样品的准备和标定4.3测试数据的采集和处理4.4测试结果的分析和评价5.机械工程测试技术的应用案例5.1机械工程测试技术在制造业中的应用5.2机械工程测试技术在科研和开发中的应用5.3机械工程测试技术在质量控制中的应用三、教学方法1.理论讲授与实践结合的教学方法,通过课堂讲解、案例分析和实验操作,使学生能够深入理解机械工程测试技术的基本原理和方法,提高学生的实践操作能力;2.讨论与交流的教学方法,通过学生的互动参与,提高学生的问题解决能力,培养学生的团队合作意识和创新思维。
四、教学过程1.引入(5分钟)通过引述一个机械产品测试中的实际案例,激发学生对机械工程测试技术的兴趣,并介绍本课程的教学目标和内容。
2.讲解机械工程测试技术的概述(20分钟)讲解机械工程测试技术的定义、作用和分类,并介绍机械工程测试技术的发展历程和应用领域。
3.介绍机械工程测试技术的基本原理(30分钟)讲解测试的基本概念和原理,介绍测试的基本要素和方法,并分析测试的误差与准确度。
4.介绍机械工程测试技术的常用方法和工具(40分钟)详细介绍机械参数测试的方法和常用工具,机械性能测试的方法和常用工具,以及机械可靠性测试的方法和常用工具。
机械工程测试技术

机械工程测试技术机械工程测试技术是机械工程领域中至关重要的一部分。
它涵盖了一系列测试方法和技术,用于评估机械设备和系统的性能、可靠性以及对各种工况的适应能力。
这些测试技术可以帮助工程师们了解机械设备的运行状态,评估其是否符合设计要求,并为改进设计提供数据支持。
机械工程测试技术是一门复杂而广泛的学科,涵盖了许多不同的测试方法和技术。
其中一种常见的测试技术是静态和动态测试。
静态测试用于评估机械设备在静止状态下的性能指标,比如强度、刚度和耐久性等。
而动态测试则是通过对机械设备进行振动测试,评估其在运动或振动条件下的性能指标。
除了静态和动态测试,机械工程测试技术还包括温度测试、压力测试、流量测试等。
温度测试用于评估机械设备在不同温度条件下的工作性能,以及其是否能够在极端温度环境下正常运行。
压力测试则是用来评估机械设备在不同压力条件下的工作性能和安全性。
流量测试则是用来评估机械设备在不同流量条件下的工作性能和效率。
机械工程测试技术还可以应用于机械设备的寿命测试。
寿命测试是通过对机械设备进行长时间的运行测试,以模拟其在实际使用条件下的寿命。
通过寿命测试,可以评估机械设备的可靠性和耐久性,并为改善设计和延长设备寿命提供参考。
在机械工程测试技术中,数据记录和分析也是非常重要的一环。
通过合适的数据记录和分析方法,可以对测试结果进行定量分析,获取更准确、可靠的数据。
这些数据可以帮助工程师们深入了解机械设备的性能特点,找出潜在的问题,并提出改进方案。
除了上述提到的测试技术,还有一些新兴的测试技术在机械工程领域得到了广泛应用。
例如,红外热像仪技术可以用于检测机械设备的热量分布情况,帮助工程师们了解机械设备的热量传递机制和热量损失情况。
声发射检测技术可以用于监测机械设备中的微小裂纹和缺陷,帮助工程师们及时修复并避免潜在故障。
总的来说,机械工程测试技术对于保障机械设备的性能、可靠性和安全性具有重要意义。
通过合理使用不同的测试方法和技术,可以全面评估机械设备的性能指标,提供数据支持和理论依据,为工程师们改进设计、提高机械设备的生产效率和降低故障风险提供重要参考。
机械工程测试技术课本习题及参考答案

第二章 信号描述及其分析【2-1】 描述周期信号的频率结构可采用什么数学工具? 如何进行描述? 周期信号是否可以进行傅里叶变换? 为什么?参考答案:一般采用傅里叶级数展开式。
根据具体情况可选择采用傅里叶级数三角函数展开式和傅里叶级数复指数函数展开式两种形式。
不考虑周期信号的奇偶性,周期信号通过傅里叶级数三角函数展开可表示为:001()sin()(1,2,3,)n n n x t a A n n ωϕ∞==++=∑2021()T T a x t dt T-=⎰n A =(2022()cos T n T a x t n tdt T ω-=⎰ 202()sin T n T b x t n tdt Tω-=⎰ )tan n n n b a ϕ=式中,T 为信号周期, 0ω为信号角频率, 02T ωπ=。
n A ω-图为信号的幅频图, n ϕω-图为信号的相频图。
周期信号通过傅里叶级数复指数函数展开式可表示为:0()(0,1,2,)jn tnn x t C e n ω∞=-∞==±±∑0221()T jn t n T C x t e dt Tω--=⎰n C 是一个复数,可表示为:n j n nR nI n C C jC C e ϕ=+=n C = arctan n nI nR C ϕ=n C ω-图为信号的幅频图, n ϕω-图称为信号的相频图。
▲ 不可直接进行傅里叶变换,因为周期信号不具备绝对可积条件。
但可间接进行傅里叶变换。
参见书中第25页“正弦和余弦信号的频谱”。
【2-2】 求指数函数()(0,0)at x t Ae a t -=>≥的频谱。
参考答案:由非周期信号的傅里叶变换,()()j t X x t e dt ωω∞--∞=⎰,得22()()j tA a j X x t edt A a j a ωωωωω∞--===++⎰由此得到,幅频谱为:()X ω=相频谱为: ()arctan()a ϕωω=-【2-3】 求周期三角波(图2-5a )的傅里叶级数(复指数函数形式)参考答案:周期三角波为: (2)20()(2)02A A T tT t x t A A T tt T +-≤<⎧=⎨-≤≤⎩则0221()T jn t n T C x t e dt T ω--=⎰积分得 02222204(1cos )(1cos )2n A T AC n n n T n ωπωπ=-=- 即 22()1,3,5,00,2,4,n A n n C n π⎧=±±±=⎨=±±⎩又因为周期三角波为偶函数,则0n b =,所以arctan 0n nI nR C C ϕ==所以,周期三角波傅里叶级数复指数形式展开式为:00(21)222()(0,1,2)(21)jn tj k tnn n A x t C ee k k ωωπ∞∞+=-∞=-∞===±±+∑∑【2-4】 求图2-15所示有限长余弦信号()x t 的频谱。
第八章温度测量_机械工程测试技术解读

1、温度测量基础 常用温度计 C K 273.16
测量 50℃温 度可用 什么温 度计?
摄氏度
1、温度测量基础
常用温度计 C K 273.16
方式测温 接触式
非接触式
传感器 热电偶
热 金属热电阻 电 阻 半导体热敏电阻
辐 光学高温计 射 比色高温计 式 红外光电温度计
测温范围(℃) 主要特点 -200~1700 种类多,结构简单,价廉,感温 部小,广泛应用于电测 -260~600 种类多,精度高,感温部较大, 广泛应用于电测 -260~350 体积小,响应快,灵敏度高,广 泛应用于电测 -20~3500 不干扰被测温度场,可对运动体 测温,响应较快。测温计结构复 杂,价高,需定标修正测量值
长度 (length)
米(meter)
质量 (mass)
千克(公斤)(kilogram)
时间 (time)
秒 (second)
电流 (electric current)
安培 (ampere)
热力学温度 开尔文(kelvin)
(thermodynamic temperature)
物质的量 (amount of substance) 摩尔(mole)
2、热电偶测温
热电效应:将温度信号转换成热电势
当不同材料的两导体A和B的两个结
低温端t0
点处温度不同时,则回路中产生热电势
eABt,t0 eABt eB t,t0 eABt0 eAt,t0
热电偶:两导体A和B组成 接触电势:接触点电子密度不相同而形
A B
A tn tn B
A to t
B
to
结论:
电势与温度间转换:无论热电偶的工作温度为多少,都可以用一具有相同 参考温度的分度表来确定其电势温度函数关系
《机械工程测试技术》课后习题答案机工版

2 44, 724,500, 600 2 22,362, 250,300 11,181,125,150
所以该信号的周期为 0.25s。
1-7 求正弦信号 x(t) Asin( 2 t) 的单边、双边频谱,如果该信号延时 T 后,其频谱如何变
T
4
化?
0 ea jwt dt ea jwdt
0
11 a jω a jω
2a a2 ω2
双边指数信号的傅里叶变换是一个正实数,相频谱等于零。由于双边指数信号为实偶对
称函数,因此 X ω 为 ω 的实偶对称函数。
5
1-5 设有一组合信号,有频率分别为 724Hz, 44 Hz,500 Hz,600 Hz 的同相正弦波叠加而 成,求该信号的周期。
答:在时域范围内,实现不失真的条件是:输出信号 y t 与输入信号 x t 相比,只要是幅
值上扩大 A0 ,时间上滞后 t0 ,即 y t A0x t t0 。
2-6 从频域说明测量系统不失真测量条件是什么? 答:在频域内实现不失真测试的条件即为幅频特性是一条平行于 轴的直线,相频特性
1
在教学环节中安排与本课程相关的必要的实验及习题,学习中学生必须主动积极地参加 实验及完成相应的习题才能受到应有的实验能力的训练,才能在潜移默化中获得关于动态测 试工作的比较完整的概念,也只有这样,才能初步具有处理实际测试工作的能力。
2
思考题与习题
1-1 信号的分哪几类以及特点是什么? 答:按信号随时间的变化规律分为确定性信号和分确定性信号,确定信号分为周期信号
则 有 输 出 y1 t , 且 y1 t
2
2
11
1
cos 10t
机械工程测试技术

名词解释1.测量:以确定被测物属性量值为目的的全部操作;测试则是具有实验性质的测量,或者可理解为测量和实验的结合。
2.测试:是具有试验性质的测量,或者可理解为测量和试验的结合。
3.测试技术:是指测试过程中所涉及的测试理论、测试方法、测试设备等.4.测试方法:是指在实施测试中所涉及的理论运算方法和实际操作方法。
5.直接测量法:指被测量直接与测量单位进行比较,或者用预先标定好的测量仪器或测试设备进行测量,而不需要对所获取数值进行运算的测量方法。
6.间接测量法:指被测量的数值不能直接由测试设备来获取,而是通过所测量到的数值同被测量间的某种函数关系运算而获得的被测值的测量方法。
7.静态测量:被测值被认为恒定不随时间变化的测量称为静态测量.8.测量系统的静态特性:是指被测量不随时间变化或随时间变化很缓慢是测量系统的输入、输出及其关系的特性或技术指标.9.动态测量:被测量值随时间变化的这种测量称为动态测量。
10.测量系统的动态特性:是指测量系统的输出对于快速变化的输入信号的动态响应特性。
11.系统的动态测量误差:测量系统低于动态量的测量过程中,若测量系统的动态响应特性不够理想,则输出信号的波形与输入信号的波形相比就会产生畸变,这种畸变造成的测量误差称为测量系统的动态测量误差.12.确定性信号:能够用明确的数学关系式描述的信号,或者可以用实验的方法以足够的精度重复产生的信号。
13.非确定性信号:又称随机信号。
如果描述随机信号的各种统计特征(如平均值、均方根值、概率密度函数等)不随时间推移而变化,这种信号成为平稳随机信号;反之,如果在不同采样时间内测得的统计参数不能看作常数,则这种信号就称为非平稳随机信号. 14.传感器:是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
15.参数式传感器:将输入的工程参数变化转变为电参数变化的传感器。
机械工程测试技术基础

机械工程测试技术基础1. 概述机械工程测试技术是机械工程领域中的一项关键技术,它主要用于对机械产品、设备和系统进行性能评估和质量控制。
本文将介绍机械工程测试技术的基础知识,包括测试的目的、方法和常用工具。
2. 测试的目的在机械工程中,测试的主要目的是评估机械产品的性能和确保其满足设计要求。
具体而言,测试的目的包括:•评估产品的静态和动态性能,如刚度、强度、耐久性等;•检测产品的功能性能,如传动系统的效率、控制系统的稳定性等;•确定产品的质量水平,如尺寸精度、表面光洁度等;•验证产品的可靠性和安全性,如使用寿命、承载能力等。
3. 测试的方法3.1 实验室测试实验室测试是机械工程测试中最常用的方法之一。
它通过模拟实际工作环境和加载条件,对机械产品进行精密的性能和质量评估。
常见的实验室测试包括:•静态力学测试:通过加载力和测量应变来评估机械产品的刚度和强度;•动力学测试:通过加载振动或冲击来评估机械产品的动态响应和耐久性;•环境适应性测试:通过模拟不同环境条件(如高温、低温、湿度等)来评估机械产品的适应性和可靠性。
3.2 原型测试原型测试是在产品开发过程中进行的一项重要测试。
它通过制造和测试原型产品,评估设计的可行性和性能。
原型测试可以帮助工程师发现和解决设计缺陷,并优化产品的性能。
常见的原型测试包括:•品质测试:通过对原型产品进行检查、测量和比较,确定产品的尺寸精度、表面光洁度等品质要求;•功能测试:通过实际操作原型产品,验证其功能是否满足设计要求;•可靠性测试:通过长时间运行原型产品,评估其使用寿命和可靠性。
3.3 数值模拟数值模拟是近年来在机械工程测试中得到广泛应用的方法。
它通过利用计算机模拟和数值计算技术,对机械产品的性能进行预测和评估。
数值模拟可以在早期设计阶段快速评估不同设计方案的性能,减少实验测试的成本和时间。
常见的数值模拟方法包括:•有限元分析:通过将机械系统离散成有限数量的单元,利用数值计算方法求解其力学行为和应力分布;•流体力学模拟:通过求解流体动力学方程,预测流体在机械系统中的流动和压力分布;•多体动力学模拟:通过求解多体动力学方程,预测机械系统中多个刚体的运动和相互作用。
机械工程测试技术测试习题答案

习题1第3章1、 传感器的定义及主要分类有哪些?2、 试绘出典型传感器的构成框图?3、从哪些方面评价或选用传感器?4、在选用传感器时,应该遵循什么原则?5、应该采取什么方法来提高传感器的性能?第4章1 什么叫金属的电阻应变效应?金属丝的应变灵敏度系数的物理意义是什么?2 什么叫金属丝的应变灵敏度系数?它与金属丝的灵敏度系数有何区别?为什么?3 何谓半导体的压阻效应?它与金属的电阻应变效应有什么本质区别?4 电阻应变计的基本测量电路有哪些?试比较它们各自的特点。
5 电阻应变片与半导体应变片的工作原理有何区别?它们各有何特点?6 某截面积为52cm 的试件,已知材料的弹性模量为2.0×10112m /N ,沿轴向受到105N的拉力,若沿受力方向粘贴一阻值为120Ω、灵敏系数为2的应变片,试求出其R ∆。
7 试说明差动式电感传感器与差动变压器式电感传感器工作原理的区别。
8 差动变压器和普通变压器的工作原理有何区别?如何提高差动变压器的灵敏度? 9 试说明电涡流式传感器的工作原理和特点。
10 根据电容式传感器的工作原理分为几种类型?各有什么特点?适用于什么场合? 11 如何改善单极式变极距型传感器的非线性?12 什么是压电效应?压电材料有哪些?压电传感器的结构和应用特点是什么?能否用压电传感器测量静态压力?13 为什么压电传感器通常用来测量动态或瞬态参量?14 用压电式加速度计及电荷放大器测量振动加速度,若传感器的灵敏度为 70pC/ g (g 为重力加速度),电荷放大器灵敏度为10mV/pC ,试确定输入3g (平均值)加速度时,电荷放大器的输出电压Uo (平均值,不考虑正负号),并计算此时该电荷放大器的反馈电容C f 。
15.用压电式单向脉动力传感器测量一正弦变化的力,压电元件用两片压电陶瓷并联,压电常数为200×10 -12C/N ,电荷放大器的反馈电容 C f =2000pF ,测得输出电压u o =5sin wt (V )。
“机械工程测试技术”课程介绍

“机械工程测试技术”课程介绍1 课程在本专业中的定位与课程目标“机械工程测试技术”课程是面向“机械工程及自动化”大专业,即涵盖现有的机械工程各专业本科生的一门工程技术课。
它涉及机械工程领域中的非电量电测技术和试验技术等知识,是工业生产与科学研究必不可少的重要技术手段。
通过该课程的学习可以获得传感器测量原理、测量信号处理方法和计算机测量系统等方面的基础知识,并掌握温度、力、压力、噪声等常见物理量的测量和应用方法。
2 课程的重点、难点及解决办法机械工程测试技术是一门实践性较强的课程,教学内容包括测试信号分析理论和传感器原理两大部分。
因历史的原因和受当时教学和实验条件限制,过去侧重课本内容讲授,实践性环节偏少,学生普遍反映测试技术应用、发展部分空洞;传感器部分没有实物对象、枯燥无味;信号分析理论部分深奥、难懂。
导致学生对课程作用认识不足,严重影响教学效果。
在各章节绪论和展望部分,实行自己采编的多媒体教案为主,书本教材为辅的形式。
用计算机多媒体来丰富课程内容和表现形式,将课程组成员接触过的科研项目和工程案例融入教学内容中,现身说法,使从未接触过工程实际的学生能够建立工业测量与应用的整体概念。
对测试信号分析部分,改变重理论、轻实践的教学观点,强调对测试信号分析的本质理解和工程实际应用,淡化对公式推导过程等数学理论的要求。
课堂上结合工程案例,用演示实验对实际测试信号进行分析,让学生建立信号分析与实际应用间的联系。
课后,用仿真实验代替习题,让学生利用我们提供的虚拟仪器软件平台自己动手对测试信号进行分析。
对传感器部分,采用实物模型教学的方法。
为此,采用工业探头和敏感元件开发了20多种可直接插接在计算机A/D卡(或声卡Line in口)上的四线制无二次仪表传感器。
将传感器带到课堂上,在讲解传感器原理的同时,现场演示传感器是如何将被测物理量转化为电量和测试信号。
为在课后给学生营造一个实验学习环境,提出利用PC机上的测试资源( 鼠标:光电传感器,麦克风:电容传感器,摄象头: CCD 传感器,声卡: A/D 卡)建立PC个人测试实验室,使学生课后能够自己动手做测试实验。
《机械工程测试技术基础》知识点总结

《机械工程测试技术基础》知识点总结引言机械工程测试技术是机械工程领域中的重要组成部分,它涉及到对机械系统的性能、参数和状态进行测量、分析和评估。
随着科技的发展,测试技术在提高产品质量、优化设计、降低成本和保障安全等方面发挥着越来越重要的作用。
第一部分:测试技术概述1.1 测试技术的定义测试技术是指利用各种仪器和方法对机械系统进行定量或定性的测量,以获取系统的性能参数和状态信息。
1.2 测试技术的重要性质量控制:确保产品符合设计标准和用户需求。
故障诊断:及时发现并解决机械故障,延长设备使用寿命。
性能优化:通过测试数据对机械系统进行优化设计。
第二部分:测试技术基础2.1 测量的基本概念测量单位:国际单位制(SI)和常用单位。
测量误差:系统误差、随机误差和测量不确定度。
2.2 传感器原理电阻式传感器:利用电阻变化来测量物理量。
电容式传感器:基于电容变化来测量。
电感式传感器:基于电感变化来测量。
光电传感器:利用光电效应来测量。
2.3 信号处理技术模拟信号处理:滤波、放大、模数转换。
数字信号处理:FFT、数字滤波、谱分析。
2.4 数据采集系统硬件组成:数据采集卡、接口、传感器。
软件功能:数据采集、处理、存储和分析。
第三部分:机械性能测试3.1 力和扭矩测试力测试:静力测试和动力测试。
扭矩测试:静态扭矩和动态扭矩的测量。
3.2 振动测试振动类型:随机振动、谐波振动、冲击振动。
振动测量:加速度计、速度计和位移计的使用。
3.3 温度测试接触式温度测量:热电偶、热电阻。
非接触式温度测量:红外测温技术。
3.4 流体特性测试压力测试:压力传感器的应用。
流量测试:流量计的选择和使用。
3.5 材料特性测试硬度测试:布氏硬度、洛氏硬度和维氏硬度。
疲劳测试:循环加载下的应力-应变关系。
第四部分:测试技术的应用4.1 机械系统的故障诊断故障信号的采集:振动、声音、温度等。
故障特征的提取:频域分析、时域分析。
故障诊断方法:专家系统、神经网络、模糊逻辑。
机械测试工程技术基础知识

机械测试工程技术基础知识1. 引言机械测试工程技术是指通过对机械设备进行各种测试和评估,从而确保设备的正常运行和安全性。
机械测试工程技术基础知识是机械测试工程师必须掌握的基本概念和原理,本文将介绍机械测试工程技术的一些基础知识。
2. 机械测试概述机械测试是指通过对机械设备进行各种物理和化学测试,来评估机械设备的性能和质量。
机械测试的目的是发现潜在的问题、改善设备性能,并确保设备的可靠性和安全性。
机械测试通常包括以下几个方面:- 强度测试:评估机械设备的强度和稳定性。
- 疲劳测试:检验设备在重复加载和应力下的寿命。
- 振动测试:评估设备在振动环境下的可靠性。
- 温度测试:检验设备在不同温度下的性能和稳定性。
- 电气测试:评估设备在电气方面的性能和安全性。
3. 机械测试的方法和工具在机械测试中,有多种方法和工具可以用于评估机械设备的性能和质量。
3.1 强度测试方法强度测试是评估机械设备强度和稳定性的重要方法。
常用的强度测试方法包括:- 静态拉伸测试:通过施加拉力来评估设备的强度和断裂强度。
- 压力测试:通过施加内部或外部压力来评估设备的耐压能力。
- 弯曲测试:通过施加力矩来评估设备的强度和变形能力。
这些强度测试方法可以使用专用的测试设备,如拉力试验机、压力测试设备和弯曲测试机等。
3.2 疲劳测试方法疲劳测试是评估机械设备在重复加载和应力下的寿命的方法。
常用的疲劳测试方法包括: - 锤击疲劳测试:通过以一定频率敲击设备来模拟实际工作环境中的振动和冲击。
- 振动疲劳测试:通过以一定频率和幅值振动设备来模拟实际工作中的振动环境。
- 动态加载测试:通过施加动态载荷来评估设备在实际工作中的寿命。
这些疲劳测试方法可以使用振动试验台、冲击试验机和动态加载测试机等设备。
3.3 振动测试方法振动测试是评估机械设备在振动环境下的可靠性的方法。
常用的振动测试方法包括: - 正弦振动测试:通过施加正弦形状的振动来评估设备在不同频率下的振动特性。
机械工程测试技术基础知识点

机械工程测试技术基础知识点第一章绪论1. 测试技术是测量和试验技术的统称。
2. 工程测量可分为静态测量和动态测量。
3. 测量过程的四要素分别是被测对象、计量单位、测量方法和测量误差。
4. 基准是用来保存、复现计量单位的计量器具5. 基准通常分为国家基准、副基准和工作基准三种等级。
6. 测量方法包括直接测量、间接测量、组合测量。
7. 测量结果与被测量真值之差称为测量误差。
8. 误差的分类:系统误差、随机误差、粗大误差。
第二章信号及其描述1. 由多个乃至无穷多个不同频率的简单周期信号叠加而成,叠加后存在公共周期的信号称为一般周期信号。
2. 周期信号的频谱是离散的,而非周期信号的频谱是连续的。
1.信号的时域描述,以时间为独立变量。
4.两个信号在时域中的卷积对应于频域中这两个信号的傅里叶变换的乘积。
5信息传输的载体是信号。
6一个信息,有多个与其对应的信号;一个信号,包含许多信息。
7从信号描述上:确定性信号与非确定性信号。
8从信号幅值和能量:能量信号与功率信号。
9从分析域:时域信号与频域信号。
10从连续性:连续时间信号与离散时间信号。
11从可实现性:物理可实现信号与物理不可实现信号。
12可以用明确数学关系式描述的信号称为确定性信号。
13不能用数学关系式描述的信号称为随机信号。
14周期信号。
按一定时间间隔周而复始出现的信号15一般周期信号:由多个乃至无穷多个不同频率的简单周期信号叠加而成,叠加后存在公共周期的信号。
16准周期信号:由多个简单周期信号合成,但其组成分量间无法找到公共周期。
或多个周期信号中至少有一对频率比不是有理数。
17瞬态信号(瞬变非周期信号):在一定时间区间内存在,或随着时间的增加而幅值衰减至零的信号。
18非确定性信号:不能用数学式描述,其幅值、相位变化不可预知,所描述物理现象是一种随机过程。
19一般持续时间无限的信号都属于功率信号。
20一般持续时间有限的瞬态信号是能量信号(可以理解成能量衰减的过程)。
机械工程测试技术概述

机械工程测试技术概述机械工程测试技术是机械工程领域中不可或缺的一部分,它涉及到对机械设备和系统进行各种测试、检测和评估的过程。
通过测试技术的应用,可以确保机械设备的安全性、性能可靠性以及生产效率的提高。
本文将对机械工程测试技术进行概述,并介绍其中常用的测试方法和工具。
一、机械工程测试的意义机械工程测试是确保机械设备安全运行和性能可靠性的重要手段,具有以下几个方面的意义:1. 保证机械设备安全性:通过对机械设备的各项性能指标进行测试,可以发现潜在的安全隐患,及时采取措施进行修复,确保设备运行的安全性。
2. 提高机械设备性能:通过测试技术的应用,可以评估机械设备的性能指标,发现问题并进行优化改进,提高机械设备的运行效率和性能水平。
3. 确保产品质量:机械工程测试技术可以对机械产品的关键性能指标进行检测与评估,以确保产品质量符合设计和制造要求,满足客户的需求。
二、机械工程测试的常用方法在机械工程领域,有许多不同的测试方法可供选择,下面将介绍其中常用的几种测试方法:1. 功能测试:功能测试是对机械设备的各项功能进行测试,以验证其是否符合设计要求。
通过模拟实际工作场景,测试设备的各项功能是否正常,例如启停、加速度、力矩等。
2. 耐久性测试:耐久性测试是检测机械设备在长时间使用过程中是否能够保持其性能和可靠性。
通过模拟设备的使用寿命、重复工作等条件,测试设备在不同工况下的使用寿命和故障率。
3. 环境适应性测试:环境适应性测试是模拟机械设备在不同环境条件下的工作状况,以验证其在不同温度、湿度、振动等环境条件下的可靠性和适应性。
4. 可靠性试验:可靠性试验是对机械设备进行长时间的稳定运行,以检测其在实际工作条件下的可靠性和寿命。
通过对设备进行连续运行、负载测试等,评估其使用寿命和可靠性。
三、机械工程测试的常用工具在机械工程测试过程中,还需要使用一些专用的测试工具和设备,以辅助完成测试任务。
下面介绍几种常用的机械工程测试工具:1. 传感器:传感器是用于检测和测量设备各种物理量的装置,如温度传感器、压力传感器、振动传感器等。
机械工程测试技术实验报告

机械工程测试技术实验报告机械工程测试技术实验报告引言:机械工程是一门应用科学,涉及到设计、制造、维护和运用机械设备的各个方面。
在机械工程实践中,测试技术是至关重要的一环。
本实验报告将介绍机械工程测试技术的应用和实验结果。
一、背景介绍机械工程涉及到各种各样的机械设备和系统,而测试技术是评估这些设备和系统性能的关键。
通过测试,我们可以获得关于机械设备和系统的各种参数和性能指标,从而进行性能评估、故障诊断和改进设计等工作。
二、实验目的本实验旨在通过对某型号某种机械设备的测试,掌握机械工程测试技术的应用方法,并分析测试结果,为改进设计和优化性能提供参考。
三、实验装置和方法本实验使用了某型号某种机械设备,并采用了以下测试方法:1. 温度测量:使用热电偶测量设备的工作温度,以评估其热性能。
2. 动力测试:使用功率计和转速计测量设备的功率输出和转速,以评估其动力性能。
3. 声音测试:使用声级计测量设备的噪声水平,以评估其噪声性能。
4. 振动测试:使用加速度计和振动传感器测量设备的振动水平,以评估其振动性能。
5. 效率测试:通过测量输入功率和输出功率,计算设备的效率。
四、实验结果与分析通过以上测试方法,我们得到了如下实验结果:1. 温度测量结果显示,设备在正常工作状态下的温度稳定在70°C左右,符合设计要求。
2. 动力测试结果显示,设备的功率输出为10 kW,转速为1000 rpm,满足预期性能指标。
3. 声音测试结果显示,设备的噪声水平为80 dB,符合环境噪声标准。
4. 振动测试结果显示,设备的振动水平在可接受范围内,不会对设备的正常运行造成影响。
5. 效率测试结果显示,设备的效率为90%,说明其能够有效地将输入能量转化为有用的输出能量。
通过对实验结果的分析,我们可以得出以下结论:1. 设备的温度控制良好,不会因过热而导致故障。
2. 设备的动力性能满足设计要求,可以提供足够的功率输出。
3. 设备的噪声水平在可接受范围内,不会对工作环境造成干扰。
机械工程测试技术课程设计

机械⼯程测试技术课程设计机械⼯程测试技术课程设计说明书课题题⽬:温度测量仪专业名称:学⽣班级:学⽣姓名:学⽣学号:指导教师:2013年6⽉30⽇课程设计任务书⼀设计⽬的1、通过对温度测量电路的设计、安装和调试了解温度传感器的性能,学会在实际电路中应⽤;2、进⼀步熟悉集成运放的线性和⾮线性应⽤。
⼆设计要求和技术指标1、技术指标:要求设计⼀个温度测量器件,其主要技术指标如下:(1)测温范围:室温~50℃;(2)被测温度达到50℃时,指⽰灯亮(或蜂鸣器⼯作);2、设计要求(1)设计⼀个能满⾜要求的温度测量及报警电路;(2)要求绘出原理图,并⽤Protel画出印制板图(选做);(3)根据设计要求和技术指标设计好电路,选好元件及参数;(4)在万能板、PCB板上或⾯包板上安装好电路并调试;(5)拟定测试⽅案和设计步骤;(6)撰写设计报告、调试总结及使⽤说明书。
3、设计扩展要求(1)能显⽰输出温度;⽬录第1章绪论 (1)1.1电⼦技术的发展趋势 (1)1.2 本⼈的主要⼯作 (2)第2章温度测量仪的电路设计 (3)2.1 温度测量仪总体框图 (3)2.2 AD590集成温度传感器 (3)2.3 K—℃变换器 (4)2.4 放⼤器 (5)2.5 ⽐较器 (5)2.6 报警设备 (6)2.7 电路原理图 (7)第3章仿真与制作 (8)3.1 电路的仿真 (8)3.2 仿真结果及其分析 (12)3.3 温度测量仪的调试 (12)第4章总结报告 (13)附录A元件清单 (14)附录B实物图 (15)参考⽂献 (16)第1章绪论1.1电⼦技术的发展趋势电⼦技术是⼗九世纪末、⼆⼗世纪初开始发展起来的新兴技术,⼆⼗世纪发展最迅速,应⽤最⼴泛,成为近代科学技术发展的⼀个重要标志。
进⼊21世纪,⼈们⾯临的是以微电⼦技术(半导体和集成电路为代表)电⼦计算机和因特⽹为标志的信息社会。
⾼科技的⼴泛应⽤使社会⽣产⼒和经济获得了空前的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
Rj可调电阻
标准电阻RK 标准电池 EK
1
A
B
I
G检流计
2
K
ex
t
eX I .RAB
长度 (length) 质量 (mass) 时间 (time) 电流 (electric current) 热力学温度 (thermodynamic temperature)
米(meter) 千克(公斤)(kilogram) 秒 (second) 安培 (ampere) 开尔文(kelvin)
m kg s A K mol cd
分度表
用一张表格将感温元件(热电偶)的电阻值(热电势)与温度的 对应关系表示出来称为分度表 热电偶分度表是以冷端温度为0℃为基础而制成的
2、热电偶测温
均匀导体定律 在用同一种均质材料组成的回路中,不 论材料的截面积是否一致以及各处的温度分 布如何,该回路中的总热电势等于零
A
t t0 eA(t, t0)=0
若要回路中产生热电势,必须采用两种不同性质的材料 由同一种材料组成的闭合回路存在温差时,若回路中产生 热电势便说明该材料是不均匀的
2、热电偶测温
热电效应:将温度信号转换成热电势
当不同材料的两导体A和B的两个结 点处温度不同时,则回路中产生热电势
低温端t0
eAB t, t0 eAB t eB t, t0 eAB t0 eA t, t0
eAB t , t0 e AC t , t0 eCB t , t0 eAB t , t0 e AC t , t0 eBC t , t0
eABC t, t0 eAB t , t0
t
A
C B B ——建立通用(相对标准电极)分度表
2、热电偶测温
热 电 偶 分 度 表
2、热电偶测温
热电势测量
常用仪表:动圈式仪表、电位差计、数字式电压表 动圈式仪表:测量电流/端电压 测量线路:热电偶、补偿电路、外电路可调电阻和动圈仪表 动圈仪表的内线路电阻是一定的,要求外线路电阻规定为15Ω 外线路电阻:热电偶电阻、补偿电桥等效电阻、引线电阻和外线 调整电阻—>15Ω c
一般热电偶的灵敏度随温度降低而明显下降。这是热电偶进 行低温测量的主要困难.
2、热电偶测温
热电偶分类
分度号
2、热电偶测温
热电偶分类
C K 273 .16 铂铑-铂热电偶-中高温度计 特点:物理化学性能稳定,测量精度高,常用于精密温度 测量和作为基准温度计使用 测温范围:300℃~1300℃,短期可达1600℃ 灵敏度:室温下6 uV/℃、铂铑为正 缺点:灵敏度较低,价格昂贵,较少在中低温度下使用
R1 R2 RB a b RC
Rs
t R3 d 外电路可调电阻
动圈式仪表
2、热电偶测温
热电势测量
直流电位差计:与已知的标准电势相比较 使输入信号回路没有电流流过——消除内部压降 校正工作电流回路:标准电池EK、标准电阻RK、高精度检流计G 测量过程
t
电桥补偿: • 在 0º C时,电桥平衡,输出为U=0 • 如果环境温度上升,热电偶输出热电势数值要降低 • 电桥中桥臂电阻Rcu随温度上升而增大,使电桥输出 电压增加,它与前者迭加可起到补偿作用
d
RCu
e
2、热电偶测温
热电偶分类
热电偶材料性能要求 物理化学性能稳定、电阻温度系数小、机械性能好、灵敏度高、 复现性好、线性关系等 热电偶分类 按其热电势与温度的关系以及使用性能可分为:常用热电偶和特 殊热电偶 按其适应的温度范围不同可分为:高、中温热电偶和低温热电偶 按其结构型式不同可分为:铠装式、插入式和裸线式热电偶
镍铬-镍硅热电偶-中高温度计 特点:化学性能很稳定,灵敏度高、成本低,价格低廉; 测温范围:100℃~1000℃,短期可达1300℃。 灵敏度:室温下41 uV/℃、镍铬为正
2、热电偶测温
热电偶分类
C K 273 .16 镍铬-康铜热电偶-中低温温度计 特点:综合了镍铬-镍硅热电偶和铜-康铜热电偶 的一些优点:灵敏度高、价格便宜 测温范围:液氮温区80K~500℃ 灵敏度: 室温下70 uV/℃ 铜-康铜热电偶-中低温温度计 特点:性能稳定,复现性好,而且价格便宜 测温范围:80K~室温 灵敏度: 室温下40uV/℃ 镍铬-金铁热电偶-中低温温度计 特点:稳定性好,热导率低,适合于低温测量; 测温范围:1K~30K 灵敏度: 1K时下10 uV/℃,为铜康的30倍。
金属热电阻 半导体热敏电阻 光学高温计 比色高温计 红外光电温度计
1、温度测量基础
测温方式
接触测温法
除高温区以外的温度测量大多采用此法 主要有:热电阻、热电偶、膨胀式、二极管等
非接触测温法
在高温范围(由于感温物质的材料特性的限制),利用物体的辐 射特性来测量物体的温度 主要有:光学高温计、辐射高温计、光电高温计等
热电偶
2、热电偶测温
热电势测量
• • • •
数字式电压表 特点 分辨率很高,直接接受热电偶的电势信号 具有很高的输入阻抗(兆欧数量级)、多次放大滤波 模-数转换、数字显示 完全可以忽略电极材料的粗细和引线的长短以及电阻的变化等造 成的测量误差 MV
1、温度测量基础
常用温度计
C K 273 .16
测量 50℃温 度可用 什么温 度计?
摄氏度
1、温度测量基础
常用温度计
方式测温 接触式 传感器 热电偶 热 电 阻 非接触式 辐 射 式
C K 273 .16
测温范围(℃) 主要特点 -200~1700 -260~600 -260~350 -20~3500 种类多,结构简单,价廉,感温 部小,广泛应用于电测 种类多,精度高,感温部较大, 广泛应用于电测 体积小,响应快,灵敏度高,广 泛应用于电测 不干扰被测温度场,可对运动体 测温,响应较快。测温计结构复 杂,价高,需定标修正测量值
eAB t, tn eAB t, t0 eAB tn , t0
2、热电偶测温
冷端温度补偿
冷端:参考/比端、自由端——t0 热电偶的热电势的大小不仅与工作端温 度有关,而且与冷端温度有关 只有当冷端温度不变时,热电势才是热 端温度的单值函数
水银温度计 试管
eAB t, t0 f t C (t )
e(t, 0℃ )= e(t, t0)+e(t0,0℃)=-6.282+0.789=-5.493mV 用此电势值再查表,得该介质温度79.56K
2、热电偶测温
冷端温度补偿
补偿电桥法 ——在热电偶回路中串联一电势U=e(t0,0)
t0
U
t
t0 R1 a Rs R3
e
c
R2 b
原理:电桥输出与环境温度/冷端变化成正比 补偿环境温度对热电偶的影响
A
B
C
1、温度测量基础
温度的概念
单位
摄氏温标(℃) 华氏温标(ºF) 国际温标(K)
C K 273.16
5 C9 ( F 32)
•
常用摄氏温度
1、温度测量基础
基本原理
•
测温原理
温度本身是一个抽象的物理量,不能直接与标准量比较而测出 通过测量某些随温度而变化的物体的性质,间接地测量物体温度 传感器:测量某些材料随温度单值变化的物理参数,间接评估
2、热电偶测温
中间导体定律
在热电偶回路中加入第三种导体C,只要其两 端温度相同,热电偶产生的热电势保持不变——不 受第三金属接入的影响
eCA(t0) t0 C t0 eBC(t0)
A
eA(t, t0)
t
B
eB(t, t0) eAB(t)
可以在热电偶回路中接入仪表以便检测热 电势的大小从而测出温度 相对另一种金属C(标准电极)的热电势为 已知的金属A和B,它们组成的热电偶,其 热电势为它们对金属C热电势的代数和:
t
A B
t n tn
A B
to t
A B
to
eAB t , tn eAB t , t0 eAB tn , t0
冷端t0,测得eAB(t,t0);定点温度为tn,可查表 eAB(tn,t0),则
例 :用铜-康铜热电偶测量某介质温度,冷端置于恒温室内t0=20℃,测 出热电偶输出的热电势为-6.282mV,求该介质温度为多少? 解:根据冷端温度t0=20℃查表,得E(t0,0℃)=0.789mV,则有
热电偶在接点温度为t、tn的热电势为eAB(t,tn),在接 点温度为tn 、t0的热电势为eAB(tn,t0),则当接点的温度为 t、t0的热电势为:
eAB t, t0 eAB t, tn eAB tn , t0 t
A B
t n tn
A B
to t
A B
to
结论:
电势与温度间转换:无论热电偶的工作温度为多少,都可以用一具有相同 参考温度的分度表来确定其电势温度函数关系 温差测量:只要已知t和tn温度下的电势,则对应于t和tn温差下的热电势 便为已知