第四章控制系统的根轨迹分析法
自动控制原理第第四章 线性系统的根轨迹法
2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
自动控制原理 第四章 根轨迹法
第4章 根 轨 迹 法根轨迹法是分析和设计线性控制系统的图解方法,使用简便,在控制工程上得到了广泛应用。
本章首先介绍根轨迹的基本概念,然后重点介绍根轨迹绘制的基本法则,在此基础上,进一步讨论广义根轨迹的问题,最后介绍控制系统的根轨迹分析方法。
4.1 根轨迹的基本概念4.1.1 根轨迹概念所谓根轨迹,就是系统开环传递函数的某一参数从零变化到无穷时,闭环特征根在s 平面上变化的轨迹。
例如某控制系统的结构图如图4.1所示。
图4.1 控制系统其开环传递函数为()K (0.51)KG s s s =+其闭环传递函数为22()22Ks s s KΦ=++式中:K 为系统开环增益。
于是闭环特征方程可写为2220s s k ++=对上式求解得闭环特征根为1,21s =−令开环增益K 从零变化到无穷,利用上式求出闭环特征根的全部数值,将这些值标注在s 平面上,并连成光滑的粗实线,如图4.2所示,该粗实线就称为系统的根轨迹。
箭头表示随K 值增加根轨迹的变化趋势。
这种通过求解特征方程来绘制根轨迹的方法,称之为解析法。
画出根轨迹的目的是利用根轨迹分析系统的各种性能。
通过第3章的学习知道,系统第4章 根轨迹法·101··101·特征根的分布与系统的稳定性、暂态性能密切相关,而根轨迹正是直观反应了特征根在复平面的位置以及变化情况,所以利用根轨迹很容易了解系统的稳定性和暂态性能。
又因为根轨迹上的任何一点都有与之对应的开环增益值,而开环增益与稳态误差成反比,因而通过根轨迹也可以确定出系统的稳态精度。
可以看出,根轨迹与系统性能之间有着比较密切的联系。
图4.2 控制系统根轨迹4.1.2 根轨迹方程对于高阶系统,求解特征方程是很困难的,因此采用解析法绘制根轨迹只适用于较简单的低阶系统。
而高阶系统根轨迹的绘制是根据已知的开环零、极点位置,采用图解的方法来实现的。
下面给出图解法绘制根轨迹的根轨迹方程。
自动控制原理第四章-根轨迹分析法
×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s
第四章控制系统的根轨迹分析法
− p4
− p3
∠s + z 2
∠s + p2
− p2
共轭复根 相; ∠s + p2 = 2π 在 s 左边的零、极点其相角均为0
∠s + z1 + ∠s + z2 = 2π 在 s 右边的零、极点其相角均为π
n m 0 出射角公式: 出射角公式: θ pc =180 + ∑θzj − ∑θ pi j =1 i=1
ζ = 0.707
s’ s’
-2 0
K −1
Re
-1
根轨迹法的分析基本思路: 根轨迹法的分析基本思路 目的: 目的
①解决高阶系统求解特征根比较困难 的实现; 寻找到一种方便、 的实现 ②寻找到一种方便、有效的描述 系统的根轨迹的方法。 系统的根轨迹的方法。
方法: 方法
① 根据开环零极点的分布绘制出系统 的根轨迹图; 的根轨迹图;②利用根轨迹法来分析和设 计系统. 计系统
S1
0 -1 -1+j -1+j∞
∞ ↑ K
S2
-2 -1 -1-j -1-j∞ jω
1 S1 0 σ -1
闭环特征方程式 S2+2S+K= 0
S2 -2
特征方程的根 S1.2 = -1± 1-K ±
K变化时,闭环特征根 变化时,
在S平面上的轨迹图形
-1 K ∞ ↑
系统特征方程为 求得两个极点: 求得两个极点:
jω
z1 p3 -2 p2 -1 z2 1 p
1 0
-1
3、实轴上的根轨迹 、
实轴上某区间存在根轨迹, 实轴上某区间存在根轨迹,则 该区间右边的开环零、 该区间右边的开环零、极点数之和 必为奇数。 必为奇数。
自动控制原理第四章根轨迹法
i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程
第四章控制系统的根轨迹法
应掌握的内容
180度,0度根轨迹的绘制 参数根轨迹的绘制 增加开环零、极点对根轨迹和系统性能的影响 分析系统的稳定性 分析系统的瞬态和稳态性能 对于二阶系统(及具有闭环主导共轭复数极点的高阶 系统),根据性能指标的要求在复平面上划出满足这一 要求的闭环极点(或高阶系统主导极点)应在的区域。
10
[例4-1]系统的开环传递函数为:Gk (s)
由根轨迹图可知,当0 k 0.858时,闭环系统有一对
不等的负实数极点,其瞬态响应呈过阻尼状态。当 0.858 k 29.14 时,闭环系统有一对共轭复数极点,其瞬 态响应呈欠阻尼状态。当29.14 k 时,闭环系统又有一 对不等的负实数极点,瞬态响应又呈过阻尼状态。
14
[例4-3]控制系统的结构图如下图所示。试绘制以a为参变 量时的根轨迹。
解得 k 5, 5 由图可知当k 5 时直线OB与圆相切,系统的阻 尼比 1 ,特征根为 5 j5 。
2
13
对于分离点 2.93 ,由幅值条件可知
2.93 5 2.93 k1 10 2.93 0.858
对于会合点17.07 ,有
45
17.07 5 17.0 k2 10 17.07 29.14
论过,利用根轨迹可清楚地看到开环根轨迹增益或其他参 数变化时,闭环系统极点位置及其瞬态性能的改变情况。
利用根轨迹确定系统的有关参数 对于二阶系统(及具有闭环主导共轭复数极点的高阶系 统),通常可根据性能指标的要求在复平面上划出满足 这一要求的闭环极点(或高阶系统主导极点)应在的区 域。如下页图所示,具有实部 和阻尼角 划成的左区域 满足的性能指标为:
17
例4-4(续2)
其分离回合点计算如下:
N(s) s2 3s, N ' (s) 2s 3
控制工程基础第4章 根轨迹法
n 3, m 0, 故三条根轨迹趋向处。
渐进线与实轴交点的坐标为
[S]
a
0
1
3
2
0
1
渐进线与实轴正向的夹角为
a -2 -1 0
a
2k
1180
3
60 , 180
六、根轨迹的起始角与终止角
起始角:起始于开环极点的根轨迹在起点 处的切线与水平线正方向的夹角。
终止角:终止于开环零点的根轨迹在终点 处的切线与水平线正方向的夹角。
s4
2
1
s3 -2 s20 s1
s3 180 , s3 2 180 s4 1, s4 2 2
若s4位于根轨迹上,则必满足
幅角条件,即1 2 180,
N
s4一定在 2,0的中垂线MN上。
利用幅值条件可算出各根轨迹上的 K 值。
例
Gs
K
s0.5s 1
2K
ss 2
K
ss 2
终止于 zb 的根轨迹在终点处
的切线与水平正方向的夹角
j 1
i 1
ib
其它零点到 zb 的向量夹角
七、分离点的坐标
几条根轨迹在[S]平面上相遇后又分开的点, 称为根轨迹的分离点(或会合点)。
分离点坐标的求法:
1 d (G(s)H (s)) 0
ds
2 由根轨迹方程
令:dK 0 解出s ds
n
1 180 p1 z p1 p2
180 116.57 90
206.57
由于对称性
2 206.57
会合点 -3
206.57
p1
[S]
z116.57
2.12
-2 -1 0
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
第4章 控制系统的根轨迹分析
绘制根轨迹如图4-13所示。
第4章 控制系统的根轨迹分析
图4-13 例4-5系统的根轨迹
第4章 控制系统的根轨迹分析
图中根轨迹与虚轴的交点可从系统临界稳定的条件
得到τ=1。τ=1时系统的特征方程为
得与虚轴交点的坐标为jω=±j。从根轨迹得到系统稳定时τ
的取值范围为0<τ<1。
第4章 控制系统的根轨迹分析
θj(j=1,2,3,4)。选取实轴上一点s0,若s0为根轨迹上的点,必满足
相角条件,有
第4章 控制系统的根轨迹分析
图4-5 实轴上根轨迹相角示意
第4章 控制系统的根轨迹分析
下面分别分析开环零、极点对相角条件的影响,进而分
析对实轴上根轨迹的影响。
(1)共轭复数极点p4和p5到点s0的向量的相角和为
φ4+φ5=2π,共轭复数零点到s0点的向量的相角和也为2π。
(2)实轴上,s0点左侧的开环极点p3和开环零点z2到点s0所
构成的向量的夹角φ3和θ2均为零度。
(3)实轴上,s0点右侧的开环极点p1、p2和开环零点z1到点
s0 所构成的向量的夹角φ1、φ2和θ1均为π。
第4章 控制系统的根轨迹分析
第4章 控制系统的根轨迹分析
若系统稳定,由劳斯表的第一列系数,有以下不等式成立:
得0<K* <78.47。
由此可知,当 Kc* =78.47时,系统临界稳定,此时根轨迹穿
过虚轴。K* =78.4ω 值由以下辅助方程确定:
将 K* =78.47代入辅助方程,得
解得s=±j2.16。
第4章 控制系统的根轨迹分析
对于例4-1,其在实轴上的根轨迹一条始于开环极点,止于
开环零点(根轨迹位于-2到-5之间),另两条始于开环极点,止于
第四章 控制系统根轨迹分析法
4.1 根轨迹的概念
模条件与角条件的作用: 1、角条件与k无关,即s平面上所有满足角条件的 点都属于根轨迹。(所以绘制根轨迹只要依据角条 件就足够了)。 2、模条件主要用来确定根轨迹上各点对应的根轨 I 迹增益k值。
m
k
j 1 m
n
s p
j
s Zi
args Z i
1
所以结论:实轴上线段右侧的零、极点数目之和为奇 数时,此区段为根轨迹。
jω
例
k G0 ( s ) Ts 1
1 T
×
×
×
×
σ
1 p T
j
1 1 T F 1 T 2k 1 1
k' G0 ( s ) s( s 0.5 )
j
p1 0 p2 0.5
k G0 s 举例: 开环传函: ss 1
K为开环增益(因为标准型) 有两个开环极点 无开环零点
rs
k ss 1
C s
k G s 2 闭环传函: s sk
2 D s s sk 0 则闭环特征方程为:
1 1 闭环特征根(即闭环传函的极点): s1 1 4k
0 0 .5 F 0.25 2 2k 1 3 , 2 2 2
-0.5 0
4.2 根轨迹的绘制规则
规则四:根轨迹的渐近线: (1)条数: (n-m)条 (2)与实轴所成角度 当
m n 2k 1
n m
s 时,认为所有开环零极点引向s的角相同
Z1 Z m p1 p n
G 0 s k
m
为m个开环零点
(自动控制)第四章:根轨迹法
动态性能:从根轨迹图可以分析出系统的工作状态,
如过阻尼状态、欠阻尼状态……
根轨迹增益、闭环零极点与开环零极点的关系 l f
* G(s)= KG
∏( s-p ) i i=1
f i i 1 H q
q
∏( s-z ) i i=1
;
l
j=1 * H (s)= KH h
f l m
∏(s-zj )
C(s)
C ( s) 2k 2 R ( s ) S 2 S 2k
特征方程(闭环):
S2+2s+2k=0
k s(0.5s+1)
特征根:s1,2= -1±√1-2k k=0时, s1=0, s2=-2
K:0 ~ ∞
0<k<0.5 时,两个负实根 ;若s1=-0.25, s2=? k=0.5 时,s1=s2=-1 0.5<k<∞时,s1,2=-1±j√2k-1 j
注意:一组根对应同一个K;
K一变,一组根变; K一停,一组根停;
-2
-1
0
由以上分析,s1、s2两条根轨迹反映了系统特征根随参 数k变化的规律,组成了系统的根轨迹。 1.二阶系统有两个特征根,它的根轨迹有两条分支; 一个n阶系统的根轨迹则应有n条分支。 2.k=0时的闭环极点,s1=0、s2=-2正好是开环传递函 数的两个极点,因此说,系统开环极点就是它各条根轨 迹的起点。 3. k=∞时的闭环极点,是根轨迹的终点。 4.特征方程的重根点是根轨迹的分支离开负实轴进入复 数平面的分支点。
a.系统响应单调上升(ξ>1)系统具有两个不相等的负实根┈ 过阻尼响应。 b.系统响应衰减振荡(0<ξ<1)系统具有一对负实部的共 轭复根┈欠阻尼响应。
孙炳达版 《自动控制原理》第4章 控制系统的根轨迹分析法-5
R(s)
s 1
k s 2 (s 2)
Y(s)
j
j
σ
-1/τ
σ
4.5 系统性能的根轨迹分析
系统开环传递函数:
Gk ( s) Kg s( s 2)(s 3)
Þ ¿ Î ª » ·Á ã µ ã
j¦ Ø 2 -3 -2 -1 0 ¦ Ò -2
增加零点-z
Gk ( s) K g (s z) s( s 2)(s 3)
4.5 系统性能的根轨迹分析
例 系统的结构图如下,
R(s)
K
s 2 2 s 5 ( s 2 )( s 0.5 )
Y(s)
要求: 1)用根轨迹法确定使系统稳定的K的取值范围; 2)用根轨迹法确定系统的阶跃响应不出现超调 量的K的最大值。
4.5 系统性能的根轨迹分析
解 由已知条件画出根轨迹如图, 其中根轨迹与虚轴的交点 分别为0和1.254j,对应的开环 增益K分别为0.2和0.75。 分离点为d=-0.409。 所以,系统稳定K的取值范围为:0.2<K<0.75 不出现超调量的K最大值出现在分离点处d=-0.409 处。将d代入 D( s ) ( s 2)(s 0.5)
由根轨迹图可测得该对主导极点为:
s1, 2 b jn n j 1 2 n 0.35 j 0.61
由根轨迹方程的幅值条件,可求得A、B两点:
Kg OA CA DA 2.3
根据闭环极点和的关系可求得另一闭环系统极 点s3=-4.3,它将不会使系统超调量增大,故取 Kg=2.3可满足要求。
4.5 系统性能的根轨迹分析
将零点z1<-10,系统根轨迹为 系统根轨迹仍有两条始 终位于S平面右半部, 系统仍无法稳定。
自动控制原理第四章根轨迹法(管理PPT)
根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。
《自动控制原理》第4章_根轨迹分析法
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母
第四章根轨迹分析法
j=1
i=1 ≠b
例 设系统开环传递函数零、极点的分布如图4-9所
示,试确定根轨迹离开复数共极点- p1 、- p2的出
射角。
解 按公式(4-28),由作图结果得
øb= +180°(2k+1) + - p1+ z1- - p1+ p2-
jw
- p1+ p3- - p1+ p4
S平面
= +180°(2k+1) +45° -90°-135°-26.6°
根轨迹与虚轴相交,意味着闭环特征方程出现 纯虚根。故可在闭环特征方程中令s=jw,然后令 其实部和虚部分别等于0,从中求得交点的坐标 值及其相应的Kg值。 例 设系统的开环传递函数为
Gk(s)=s(s+1K)g(s+2)
试求根轨迹和虚轴的交点,并计算临界根轨迹增 益Kgp。
解 闭环系统的特征方程为 s(s+1)(s+2)+Kg=0
确定根轨迹上某点对应的K*值
例:开环传函 G(s)H(s)= K ,求根轨迹
(s+1)(s+2)
解 1、确定极点、零点
开环 –p1= -1, –p2= -2
无零点
1、相角条件
∠(s+zi)- ∠(s+pj) = 0-[∠(s+1)+ ∠(s+2)] =±180o(2k+1)
试差法 s= -1.5
∠θ1+ ∠θ2=180 o
故 D’(s)=3s2+6s+2
N’(s)=0
解得 s1=-0.423 s2=-1.577
由于s2不在根轨迹上,因而分离点是s1 。
(完整版)第四章根轨迹法
j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
孙炳达版《自动控制原理》第4章控制系统的根轨迹分析法-2
1 1 2 3 180 (2k 1)
L1 L2 L3 再按幅值条件求得该 Kg0 点的根轨迹传递系数: l1
4.2 绘制根轨迹的基本条件和基本规则
例 已知系统的开环传递函数
2K GK ( s) ( s 2) 2
试证明复平面上点 s1 2 j 4, s2 2 j 4 是该系统的闭环极点。 证明 该系统的开环极点 p1 2, p2 2 若系统闭环极点为s1,s2,则它们应满足 相角条件。
4.2 绘制根轨迹的基本条件和基本规则
以s1为试验点,由图可得
(s1 p1 ) (s1 p2 ) 90 90 180(2k 1) (k 1)
以s2为试验点,由图可得
(s2 p1 ) (s2 p2 ) 90 90 180(2k 1) (k 0)
可见, s1和s2均满足相角条件, 均为闭环极点。 证毕。
4.2 绘制根轨迹的基本条件和基本规则
4 G ( s ) K /( s 1 ) 例 已知系统的开环传递函数 K
当 K 0 变化时其根轨迹如图所示, 求根轨迹上点 s1 0.5 j 0.5 所对应的K值。 解 根据幅值条件
自动控制原理
第四章 控制系统的根轨迹分析法
4.2 绘制根轨迹的基本条件和基本规则
4.2 绘制根轨迹的基本条件和基本规则
一、根轨迹的幅值条件和相角条件 一般的闭环系统结构框 图如图所示,其特征方程为:
1 G( s ) H ( s ) 0
其开环传递函数: Gk (s) G(s) H (s) 1 由等式两边幅角和相角分别相等的条件可得:
4.2 绘制根轨迹的基本条件和基本规则
5 实轴上的根轨迹
自动控制原理第四章 根 轨 迹 法
K=2.5
-2
>0.5时,特征根为共轭复根,欠阻尼系 统,响应为衰减振荡;可根据性能要求
K
设置闭环极点。
当特征方程>2阶时无法求解,如何绘制根轨迹图?
4-2. 绘制根轨迹的基本依据和条件
特征方程为: 1+G(s)H(s)=0
即: G(s)H(s)= -1
R(s)
Y(s)
G(s)
-
H(s)
G( s )H( s ) 1
4-1. 根轨迹基本概念
根轨迹的定义:
开环传递函数的某一参数从0变到∞时,闭环系 统特征方程式的根在s平面上的变化轨迹。
R(s)
-
E(s) G1(s)
D1(s) G 2(s)
H(s)
Y(s) D2(s)
如
G1( s )G2 ( s )H ( s )
Kg s( s 1 )( s 2 )
常规根轨迹
求解:设 Gk ( s ) KgG1( s ),则对于1 KgG1( s ) 0,有
dK g ds
d [G11( s )] ds
0 (Kg在根轨迹的分离点上取极值)
或 dG1( s ) 0 (特征式满足 d( s ) 0)
ds
ds
注:只须用其中之一,且只是必要条件
续前例:求分离点上的坐标。
幅值条件
G( s )H( s ) 180( 2k 1 ), k 0,1,2,
相角条件
零极点表达形式下的幅值条件和相角条件:
m
n
K g (s zi )
(s pi )
G(s)H(s)
i1 n
1 ,或
Kg
i1 m
,
(s pi )
(s zi )
自动控制原理 第四章 根轨迹
第四章 根轨迹分析法
输入
偏差
+-
控制器
输出 被控对象
反馈元件
4.1.1 自动控制系统的根轨迹
什么是根轨迹? 根轨迹是系统开环传递函数某一参数或某几
个参数从零变化到无穷大时,闭环系统特征根
在s平面上变化的轨迹。
用时域分析法,每次系统的参数发生变化都 要重新计算闭环传递函数和闭环极点。计算量 大且难以看出系统性能指标的变化趋势。
1 Gk (s) 0
根轨 迹方
m
程
s zi
K i1 gn
1s pjj 1源自根轨迹方程可以分解成幅值条件和相角条 件两个方程,即
幅值条件
Gk s 1
相角条件
Gk (s) 180 (2k 1)
k 0,1, 2,
幅值条件方程为
m
s zi
K i1 gn
1
s pj
j 1
相角条件方程为
或无穷远处。
m
s zi
i 1
n
s pj
1 Kg
j 1
根轨迹分支的起点是指当Kg=0时的闭环极点。当 s=pj ,即开环极点。
根轨迹分支的终点是指当Kg→∞时的闭环极点。
•当s=zi,即开环零点。
m
•当s→∞,方程左边趋于0.
s zi
lim i1
sm lim 0
s n
s pj
s s n
b0 )
Kg
n
(s pj )
sn an1sn1 a0
snm (an1 bm1 )snm1
j 1
当s模值很大时,可以在分母中只保留前两项,即
G(s)H (s)
snm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S=±j4.47 S0
例题32:GK=K/[S(S+4)(S2+4S+20)] ,求与虚轴的交点。 解: 闭环传函为:1+GK=0 80-8K/26=0 26S2+K=0 ↓ K=260 S=±j3.16 即:S4+8S3+36S2+80S+K=0 S4 S3 S2 S S0 1 8 26 80-8K/26 K 36 80 K 0 0 K 0 0 0 0
-0.88 -2
Im
-5 结论:中间极点右移,根轨迹右移,稳定 性下降;系统中有多个极点,移动靠近虚 轴的极点对系统的影响大;移动远离虚轴 的极点对系统的影响小。
-2.33
Re
2、开环零点的改变对系统的影响: 比例微分控制 G ( S ) = K C (1 + Td S )
K C (1 + Td S ) G(S ) H (S ) = ( S + 4)( S + 1)( S − 1) 0 .5 K C ( S + 2 ) 讨论: G(S ) H (S ) = Td=0.5 ( S + 4)( S + 1)( S − 1) 1.25 K C ( S + 0.8) G(S ) H (S ) = Td=1.25 ( S + 4)( S + 1)( S − 1)
例题35: GK=K/[S(S2+6S+10)],画出K变化时的轨迹. 解:
n
3个极点,0,-3±j1
,0个零点
( 0 − 3 − j1 − 3 + j1 ) − ( 0 ) α = = = −2 n−m 3−0 ± 180 2 K + 1) ( 渐近线与实轴的夹角为 :φ = = ± 60 o ,180 3−0
n
第二节绘制根轨迹的基本条件 和基本规则
α =
∑
l =1
Pl −
m
∑
i =1
Zi
o ± 180 ( 2 K + 1) :φ = n−m
n−m
渐近线与实轴的夹角为
例题27:开环传函为GK=K/[S(S+4)(S+5)],求其根轨 迹的渐近线 解:n=3 S1,2,3=0,-4,-5 m=0 有三条渐近线
n m
α =
(−1 − 2) − 0 = −1 n−m 3−0 ± 180 2 K + 1) ( 渐近线与实轴的夹角为 :φ = = ± 60 o ,180 n−m
l =1 i =1
∑
Pl −
∑
Zi
=
o
Im
-2
-1
0
Re
6、当两条根轨迹相遇时,它们的交点(会合点、分离点) 可以通过Dk/Ds=0 确定,若有γ条根轨迹相遇,它们将与 实轴呈±180/γ的角度分开; 例题29:求GK=K/[S(S+4)(S+5)]的分离点。 解: 闭环特征方程为 1+K/[S(S+4)(S+5)]=0 K=-S(S+4)(S+5) 即-(3S2+18S+20)=0 Im 令:dK/dS=0 S1=-1.47 ,S2=-4.53
第四章控制系统的根轨迹分析法
主要内容: • • • • 根轨迹的基本概念 绘制根轨迹的基本条件和基本规则 参量根轨迹 正反馈系统的根轨迹
第一节 根轨迹的基本概念
目的: 由前面的介绍可知,闭环系统的稳定完全取决于系统 的特征根,即闭环极点,为了找出系统的极点,就必 须要求特征方程,但对于三阶以上的系统来说,求解 特征方程是非常困难的。于是产生了根轨迹方法。 根据系统开环传递函数中零、极点在[S]复平面中 的分布来确定系统中一个或多个参数变化时,闭 环系统特征根的变化轨迹。
Im
K0
-b
-a
Re
开环极点的移动:
K G f = G(S ) • H (S ) = S ( S + 4)( S + 5)
极点: 0 ,-4 , -5 中间极点右移 - 4 →- 2 -5 -4 -3 -1.47
Im
Re
K G f = G(S ) • H (S ) = S ( S + 2)( S + 5)
n
(−4 − 5) − 0 α = = = −3 n−m 3−0 ± 180 2 K + 1) ( 渐近线与实轴的夹角为 :φ = = ± 60 o ,180 n−m
l =1 i =1
∑
Pl −
m
∑
Zi
o
Im
-5
-4
-3
0
Re
例题28:设闭环特征方程为1+K/[S(S+1)(S+2)], 求渐近线。 解:开环传函为GK=K/ [S(S+1)(S+2)] 3个极点,0,-1,-2,无零点
l =1 i =1
∑
Pl −
m
∑
Zi
=
o
与虚轴的交点
S=±j5
分离点: 由闭环特征方程得:K=-[S3+6S2+25S] S1,2=-2±j2.0817 将S代入K的表达式,若K为正实数,则S必为 根轨迹上的点 出射角: 根轨迹 α=1800-(θ
1+θ2)=
-36.870 θ
Im j5
0 Re -j5
-5
-4
-3
-1.47 0
Re
例题30:求GK=K(S+3)/[(S+0.5)(S+1.5)]的分离点。 解:开环传函为GK=K(S+3) /[(S+0.5)(S+1.5)] 2个极点,-0.5,-1.5
n
,1个零点 -3
α =
闭环传函特征方程1+K(S+3) /[(S+0.5)(S+1.5)]=0 K=-(S+0.5)(S+1.5)/(S+3) dK/dS=0 → S1=-1.063, S2=-4.936
10、若开环传递函数的极点数大于零点数加1,则闭环特征 根之和等于开环特征根之和。(n≥m) n≥m 二、绘制根轨迹的规则: 例题34: GK=K/[S(S2+6S+25)],画出K变化时的轨迹. 解:
n
3个极点,0,-3±j4
,0个零点
α =
(0 − 3 − j 4 − 3 + j 4 ) − (0 ) = −2 n−m 3−0 ± 180 2 K + 1) ( 渐近线与实轴的夹角为 :φ = = ± 60 o ,180 3−0
8、出射角=1800-所有其它开环极点到该极点所有向量的相 角和+所有其它开环零点到该极点所有向量的相角和。 出射角指的是从极点出发的角度,主要针对有虚根的情况。
入射角=1800-所有其它开环零点到该零点所有向量的相角 和+所有其它开环极点到该零点所有向量的相角和。 入射角指的是进入零点的角度。 例题33:GK=K/[S(S+4)(S2+4S+20)] ,画出根轨迹图。 解: 4个极点,0,-4,-2±j4 ,0个零点
n
α =
( − 0 . 2 − 1) − ( − 2 ) = 0 .8 n−m 2 −1 ± 180 2 K + 1) ( 渐近线与实轴的夹角为 :φ = = 180 2 −1
l =1 i =1
∑
Pl −
m
∑
Zi
=
o
与虚轴的交点: 无 分离点: S1 =-0.66 , 根轨迹
S2=-3.34
Im
-2
令 : S − Z i = AZ i • e j φ i S − Pl = B Pl • e jφl
m
i = 1,2,⋅ ⋅ ⋅, m l = 1,2,⋅ ⋅ ⋅, n = Kg ∏ AZ i
i =1 m j(
GK = G • H =
Kg ∏ AZ i • e jφ i
i =1
∑ φi − ∑ φl )
Re -1
三、控制系统的一般分析: 1、开环极点的变化对系统的影响 增加开环极点: Im
K G f = G(S ) • H (S ) = S (S + a)
-a -0.5
0 Re
K G f = G(S ) • H (S ) = S ( S + a )( S + b)
结论:增加开环极点对稳定性不利!! 0
( − 0 .5 − 1 .5 ) − ( − 3 ) =1 n−m 2 −1 ± 180 2 K + 1) ( 渐近线与实轴的夹角为 :φ = = 180 n−m
l =1 i =1
∑
Pl −
m
∑
Zi
=
o
Im
-3
-1.5 -0.5
0
Re
7、系统的根轨迹与虚轴相交,交点由劳斯判据来确定;或 令S=±jω代入,闭环传递函数特征方程,求解。 例题31:GK=K/[S(S+4)(S+5)] ,求与虚轴的交点。 解: 闭环传函为:1+GK=0 S3 1 20 即:S3+9S2+20S+K=0 S2 9 k (180-K)/9=0 9S2+ K=0 → K=180 S (180-k)/9 0 k
1, 2
0 Re
1 1 =− ± j 4K − 1 2 2
任意一系统,特征方程为: R(S) 1+G(S)H(S)=0 即:G(S)H(S)=-1 也就是 幅值条件
E(S) G(S) B(S) H(S)
Y(S)
相位条件
G(S)H(S) = 1
若系统的开传为
G ( S ) H ( S ) = ±180(2 K + 1)