弯曲工艺与模具设计
模具设计与制造第6章弯曲工艺与模具设计
06
总结与展望
弯曲工艺与模具设计的现状与挑战
现状
随着制造业的快速发展,弯曲工艺与模具设计在产品制造中占据重要地位。目前,弯曲工艺与模具设 计已经取得了长足进步,能够满足多种复杂形状的加工需求。
挑战
然而,在弯曲工艺与模具设计过程中,仍存在一些挑战,如高精度控制、复杂曲面加工、高效自动化 等方面的问题。
未来发展方向与技术前沿
柔性制造技术
随着个性化需求的增加,柔性制造技术将成为未 来发展的重点。通过柔性制造技术,可以实现快 速、高效、个性化的产品制造,提高生产效率和 降低成本。
增材制造技术
增材制造技术是一种基于数字模型的快速成型技 术,能够实现复杂形状的高精度加工。未来,增 材制造技术有望在弯曲工艺与模具设计中发挥更 大的作用。
模具材料的选择蚀性等。
常用材料
碳素工具钢、合金工具钢、硬质合金、铸铁等。
材料处理
热处理、表面处理等。
模具设计的流程与方法
设计流程
明确设计任务→收集设计资料→设计 出图→审查→修改。
设计方法
经验设计法、解析设计法、计算机辅 助设计法等。
04
弯曲工艺与模具设计的关系
THANK YOU
模具设计对弯曲工艺的影响
模具结构
模具的结构对弯曲工艺的实施具 有重要影响,合理的模具结构可 以提高弯曲效率并降低不良品率。
模具材料
模具材料的选取直接影响弯曲工艺 的效果,选用高强度、耐磨和耐热 的材料可以提高模具的使用寿命和 弯曲质量。
冷却系统
模具中的冷却系统对于控制弯曲过 程中的温度至关重要,合理的冷却 系统设计可以减少热应力,提高产 品质量。
02
弯曲工艺的基本原理
弯曲变形的过程与特点
冲压工艺学弯曲工艺与模具设计
冲压工艺学弯曲工艺与模具设计引言冲压工艺是一种常用的金属板材成型方法,其中弯曲工艺是常见的冲压工艺之一。
通过弯曲工艺,可以将金属板材弯折成所需的形状,用于制造各种零部件和产品。
而在冲压弯曲过程中,模具的设计和选择对于成品质量和效率起着至关重要的作用。
本文探讨了冲压工艺学中的弯曲工艺以及与之相关的模具设计原则和要点。
冲压弯曲工艺冲压弯曲是通过施加压力使金属板材弯曲或折叠成所需形状的一种工艺。
其主要过程包括:切割、弯曲和折叠。
下面分别介绍这些过程的一些关键要点。
切割切割是冲压弯曲的第一步,它的目的是从金属板材中切割出所需的形状。
常用的切割方法有剪切、切割、切割和激光切割等。
选择合适的切割方法要考虑到金属板材的材料、厚度和形状等因素。
弯曲弯曲是冲压弯曲的核心过程,通过施加力使金属板材弯曲成所需的形状。
弯曲的关键要点包括:弯曲角度、弯曲半径和弯曲方向。
弯曲角度是指金属板材与原始平面之间的夹角;弯曲半径是指弯曲过程中模具与金属板材之间的半径;弯曲方向是指金属板材弯曲时所受到的外力相对于模具的位置。
合理选择这些参数,可以保证弯曲后的金属板材符合设计要求。
折叠折叠是将金属板材通过弯曲工艺折叠成所需形状的过程。
折叠通常需要搭配使用额外的模具来实现。
在折叠过程中,要注意保持金属板材的平整和对称性,以确保成品的质量。
模具设计原则模具是冲压工艺中不可或缺的一部分,其设计对于冲压弯曲工艺的成功与否起着决定性作用。
以下是一些模具设计的原则和要点。
弯曲角度和半径在设计模具时,要根据产品的要求确定弯曲角度和半径。
合理选择弯曲角度和半径可以避免金属板材在弯曲过程中的过度拉伸、裂纹和变形等问题。
模具结构模具的结构设计要简单、实用,并考虑到易于加工和维修。
模具应具备足够的刚度和强度,以抵抗弯曲过程中产生的冲击力和压力。
此外,模具的表面也应平整、光滑,以确保成品的表面质量。
润滑剂在冲压弯曲过程中,使用适量的润滑剂可以减少摩擦力和磨损,提高金属板材的表面质量和模具的使用寿命。
第3章 弯曲工艺与模具设计
3.2.2、影响回弹的因素 材料的机械性能 相对弯曲半径 弯曲中心角 模具间隙 弯曲件的形状 弯曲力
3.2.3、回弹值的确定 目的:作为修正模具工作部分参数的 依据。 经验公式: 1.小半径弯曲的回弹( r / t 5 ~ 8 )
0 t
rt r 1 3
90
90
6)弹性材料的准确回弹值需要通过试模对凸、 凹模进行修正确定,因此模具结构设计要便于拆 卸。 7)由于U形弯曲件校正力大时会贴附凸模,所以 在这种情况下弯曲模需设计卸料装置。 8)结构设计应考虑当压力机滑块到达下极点时, 使工件弯曲部分在与模具相接触的工作部分间得 到校正。 9)设计制造弯曲模具时,可以先将凸模圆角半 径做成最小允许尺寸,以便试模后根据需要修整 放大。
当工件局部边缘部分需弯曲时,为防 止弯曲部分受力不均而产生变形和裂纹, 应预先切槽或冲工艺孔(如图所示) 5.弯曲件的几何形状 如果弯曲件的形状不对称或者左右弯 曲半径不一致,弯曲时板料将会因摩擦阻 力不均匀而产生滑动偏移(如图所示), 为了防止这种现象的发生,应在模具上设 置压料装置,或利用弯曲件上的工艺孔采用 定位销定位(如图所示)
第 3 章 弯曲工艺与模具设计
3.1
3.2
弯曲的基本原理 应变中性层位置、最小弯曲半径的确定及回弹现象 弯曲力和弯曲件的毛坯尺寸计算 弯曲件的工艺性 弯曲模具的设计
3.3 3.4
3.5
3.1 弯曲的基本原理
弯曲是使材料产生塑性变形,形成一 定曲率和角度零件的冲压工序(如图所示) 弯曲材料:板料、棒料、型材、管材 弯曲方法:压弯、折弯、拉弯、滚弯、 辊弯
3.1.1 弯曲变形过程 (图3.1.1) 1、变形毛坯的受力情况 从力学角度,弯曲分为: 弹性弯曲 弹塑性弯曲 纯塑性弯曲 无硬化弯曲
习题答案:第4章弯曲工艺及弯曲模具设计
第四章弯曲工艺及弯曲模具设计一、填空题(每空1分,共分)1.将各种金属坯料沿直线弯成一定角度和曲率,从而得到一定形状和零件尺寸的冲压工序称为弯曲。
(4-1)2.窄板弯曲后其横截面呈扇形形状。
(4-1)3.在弯曲变形区内,内缘金属切向受压而缩短,外缘金属切向受拉而伸长,中性层则保持不变。
(4-1)4.弯曲时外侧材料受拉伸,当外侧的拉伸应力超过材料的抗拉强度以后,在板料的外侧将产生裂纹,此中现象称为弯裂。
(4-2)5.在外荷作用下,材料产生塑性变形的同时,伴随弹性变形,当外荷去掉以后,弹性变形恢复,使制件的形状和尺寸都发生了变化,这种现象称为回弹。
(4-2)6.在弯曲过程中,坯料沿凹模边缘滑动时受到摩擦阻力的作用,当坯料各边受到摩擦阻力不等时,坯料会沿其长度方向产生滑移,从而使弯曲后的零件两直边长度不符合图样要求,这种现象称之为偏移。
(4-2)7.最小弯曲半径的影响因素有材料力学性能、弯曲线的方向、材料热处理状况、弯曲中心角。
(4-2)8.轧制钢板具有纤维组织,平行于纤维方向的塑性指标高于垂直于纤维方向的塑性指标。
(4-2)9.为了提高弯曲极限变形程度,对于经冷变形硬化的材料,可采用热处理以恢复塑性。
(4-2)10.为了提高弯曲极限变形程度,对于侧面毛刺大的工件,应先去毛刺,当毛刺较小时,也可以使毛刺的一面处于弯曲受压的内缘,以免产生应力集中而开裂。
(4-2)11.弯曲时,为防止出现偏移,可采用压料和定位两种方法解决。
(4-2)12.弯曲时,板料的最外层纤维濒于拉裂时的弯曲半径称为最小弯曲半径。
(4-2)13.弯曲变形的回弹现象的表现形式有曲率减小、弯曲中心角减小两个方面。
(4-2)14.在弯曲工艺方面,减小回弹最适当的措施是采用校正弯曲。
(4-3)15.常见的弯曲模类型有:单工序弯曲模、级进弯曲模、复合弯曲模、通用弯曲模。
(4-6)16.对于小批量生产和试制生产的弯曲件,因为生产量小,品种多,尺寸经常改变,采用常用的弯曲模成本高,周期长,采用手工时强度大,精度不易保证,所有生产中常采用通用弯曲模。
弯曲工艺和弯曲模具设计复习题答案
第三章弯曲工艺及弯曲模具设计复习题答案一、填空题1 、将板料、型材、管材或棒料等弯成一定角度、一定曲率 . 形成一定形状的零件的冲压方法称为弯曲。
2 、弯曲变形区内应变等于零的金属层称为应变中性层。
3 、窄板弯曲后起横截面呈扇形状。
窄板弯曲时的应变状态是立体的.而应力状态是平面。
4 、弯曲终了时. 变形区内圆弧部分所对的圆心角称为弯曲中心角。
5 、弯曲时.板料的最外层纤维濒于拉裂时的弯曲半径称为最小弯曲半径。
6 、弯曲时.用相对弯曲半径表示板料弯曲变形程度.不致使材料破坏的弯曲极限半径称最小弯曲半径。
7、最小弯曲半径的影响因素有材料的力学性能、弯曲线方向、材料的热处理状况、弯曲中心角。
8 、材料的塑性越好.塑性变形的稳定性越强.许可的最小弯曲半径就越小。
9 、板料表面和侧面的质量差时.容易造成应力集中并降低塑性变形的稳定性 .使材料过早破坏。
对于冲裁或剪切坯料.若未经退火.由于切断面存在冷变形硬化层.就会使材料塑性降低 .在上述情况下均应选用较大的弯曲半径。
轧制钢板具有纤维组织. 顺纤维方向的塑性指标高于垂直于纤维方向的塑性指标。
10 、为了提高弯曲极限变形程度.对于经冷变形硬化的材料.可采用热处理以恢复塑性。
11 、为了提高弯曲极限变形程度.对于侧面毛刺大的工件.应先去毛刺;当毛刺较小时.也可以使有毛刺的一面处于弯曲受压的内缘(或朝向弯曲凸模) .以免产生应力集中而开裂。
12 、为了提高弯曲极限变形程度.对于厚料.如果结构允许.可以采用先在弯角内侧开槽后.再弯曲的工艺.如果结构不允许.则采用加热弯曲或拉弯的工艺。
13 、在弯曲变形区内.内层纤维切向受压而缩短应变.外层纤维切向受受拉而伸长应变.而中性层则保持不变。
14 、板料塑性弯曲的变形特点是:( 1 )中性层内移( 2 )变形区板料的厚度变薄( 3 )变形区板料长度增加( 4 )对于细长的板料.纵向产生翘曲.对于窄板.剖面产生畸变。
15 、弯曲时.当外载荷去除后.塑性变形保留下来 .而弹性变形会完全消失 .使弯曲件的形状和尺寸发生变化而与模具尺才不一致 .这种现象叫回弹。
第三章:弯曲工艺与弯曲模具设计
校正弯曲时,回弹角修正量: K90
不是90°的角按下式修正: x ( / 90)90
➢ 当r/t < 8~10时,要分别计算弯曲半径和弯曲角的回弹值,再修正。
弯曲板料时
凸模的圆角半径: rp 1/(1/ r) (3 s / Et)
凸模圆弧所对中心角: p
(r
/ rp )
弯曲件的滑移
6. 最小弯曲半径 rmin
❖ r/t 小 —— 变形程度大 —— 弯曲破坏。 影响最小弯曲半径的因素:
❖ 材料的机械性能:好塑性(塑稳)、退火处理、热弯、开槽减薄 ❖ 方向性:折弯线垂直纤维方向:伸长变形能力强
❖ 板宽:B/t 小(< 3) ❖ 弯曲角:小, 直边有切向形变。 ❖ 板料表面质量和断面质量:差处易应力集中发生破坏。 ❖ 板料厚度:t小 —— 切向应变小 —— 开裂小。
弯曲件的工序安排
1. 工序安排的一般原则 ➢ 先弯外角后弯内角,后次弯曲不能影响前一次弯曲变形,前次弯曲应考 虑后次弯曲有合适的定位基准。 ➢ 当有多种方案时,要进行比较,进行优化。
2. 工序安排的一般方法 ➢ 形状简单的弯曲件可一次弯曲成形。如V形、U形、Z形。 ➢ 形状复杂的弯曲件可用两次或多次压弯成形。
➢ r/t值
小r/t: 加厚筋边或 减小 r; 其值大时拉弯
(在同条件下,r/t越小,则总变形量就越大,回弹就越小。) 工艺处理
➢ 弯曲中心角
(α越大,变形区长度越长,参与变形的区域越大,回弹越多。)
小
➢ 弯曲方式与校正力大小
(自由弯曲回弹大,校正弯曲回弹小,校正力越大回弹越小。)
➢ 工件形状
(工件形状越复杂,回弹就越少。)
弹-塑性变形: 塑性变形:
L1-L2 ,r1-r2 超过屈服极限,
钢管弯曲工艺分析及模具设计
弯 曲件宽度 ( m m);
卜 _ _弯 曲材料 厚 度 ( r n m) ;
弯 曲件 内弯曲半径 ( m m);
— —
材料抗拉强度 ( MP a )。
将七 =1 . 3,6 =1 1 4 mm ,t = 5 mm,R= 3 4 3 mm ,
譬
7 9
WI V I  ̄ . I I I Ct OI WO f l C I N RI 9 .  ̄ o . c o m J
( 2 )钢管压模弯 曲力计算 弯 曲力计算是设计
弯 曲模 和 选择 压 力设 备 吨 位 的重 要 依据 。根据 弯 曲
压模最小壁厚及宽度设计。通过对钢管 受力分析计算 ,并考虑滚压模的经济性 ,最 弯管压模壁厚取1 0 am,宽度取2 r 8 0 mm。
应变分量 ( 见图2 ) ,一种应变状态只有一组主应
变。
一
点的应变状态也可分解成 两部 分 ,如 图3 所
示 。第一部分以平均应变 为各 向应变的三 向等 应变状态 E = ( +5 : +6 )/ 3 ,表示 了单元体 体积的变化 。第二部分是以各 向主变应与 的差 值为变应值构成的应变状态 ,表示了单元体形状的
( 1 )模具材料的基本要求 根据工作部分对模 具硬度的要求 ,硬度要达 ̄ I J 5 8  ̄ 6 4 HR C,具 有高耐 磨性 和足够 韧度 ,以及 良好 的使用性能和 工艺性
图 1
能 ,故该弯管压模选用Z G 3 1 0 —5 7 0 材质。
参磊 工 热 加 工 热
= 4 6 0 MP a 代入上式 ,计算得F 自 = 3 4 2 8 N,现车间
选用功率为4 0 k W 的 三辊 卷 板 机 进 行 滚 压 生 产 ,完 全能 满 足所 需 弯 曲力 的要 求 。
第3章 弯曲工艺与弯曲模具
总之影响最小弯曲半径的主要因素如下:
⒈ 材料的机械性能;
⒉ 板材纤维的方向性;
⒊ 弯曲件的宽度; ⒋ 板材的表面质量和剪切断面质量;
⒌ 弯曲角;
⒍ 板材的厚度。 最小弯曲半径可按表3-1选取
表3-1 最小弯曲半径rmi
3.2.2、弯曲时的回弹及控制回弹的措施 1、弯曲回弹现象 弯曲回弹现象产生于弯曲变形结束后的卸载过程,是由其内部产生 的弹性回复力矩造成的。弯曲件卸载后的回弹,表现为弯曲件的弯曲 半径和弯曲角的变化,如图3-6所示。
(a )
(b ) (c) 图3-25 防止尖角处撕裂的措施
0 绪论 一、冲压概念
图3-26所示的零件,根据需要设置了工艺孔、槽及定位孔。图(a) 所示工件弯曲后很难达到理想的直角,甚至在弯曲过程中变宽、开 裂。如果在弯曲前加工出工艺缺口(M×N),则可以得到理想的弯 曲件。图(b)所示的工件,在弯曲处预先冲制了工艺孔,效果与 图(a)相同。图(c)所示的工件,要经过多次弯曲,图中的D是 定位工艺孔,目的是作为多次弯曲的定位基准,虽然经多次弯曲, 该零件仍保持了对称性和尺寸精度,
0 绪论 一、冲压概念
凸模下行,减小到r/t>200时,板料处于线形弹塑性状态,
即板料中心几附近区域为弹性变形,其他部分为塑性变形, 弯曲进行至r/t值大约在(200>r/t>5)时,板料进入线形全塑
性弯曲状态。
当其进一步减小到r/t3~5时,则为立体塑性弯曲,此即模 具弯曲最终状态。
• 窄板(b/t3)弯曲时,宽度 方向可以自由变形,故其应 力b0,内外层的应变状态 是立体的,应力状态是平面 的。 • 宽板(b/t>3)弯曲时,由于 宽度方向材料不能自由变形 (宽度基本不变),即
模具设计第3章弯曲工艺与弯曲模课件
b/t<3窄板弯曲,断面产生了 畸变 ,外窄内宽
3.1.4 弯曲件的结构工艺性
弯曲件的结构工艺性是指弯曲零件的形状、 尺寸、精度、材料以及技术要求等是否符合弯 曲加工的工艺要求。具有良好工艺性的弯曲件, 能简化弯曲的工艺过程及模具结构,提高工件 的质量。
1. 弯曲件的形状 弯曲件形状对称,对应r 相等
播放动画
1-顶杆 2-定位钉 3-模柄 4-凸模 5-凹模 6-下模座
3. L形件弯曲 适用于两直边长度相差较大的单角弯曲件
a)竖边无校正
b)竖边可校正
L形件弯曲
4.复杂零件 多次V形弯曲制造复杂零件举例
3.2.2 U形件弯曲模
1.U形件弯曲模的一般结构形式
U 形 件 弯 曲 模
1.凸模 2.凹模 3.弹簧 4.凸模活动镶块 5.凹模活动镶块 6.定位销 7.转轴 8.顶板 9.凹模活动镶块
弯曲半径r>0.5t: 按中性层不变原理,坯料总长度应等于弯曲 件直线部分和圆弧段长度之和,即:
提问:下面的弯曲件展开长度如何计算?
L
l1
l2
l3
π α1 180
(r1
xt
)
π α2 180
S / E 越大,回弹越大。
E1>E2
1 2
.
1 2
图a)
E3=E4
3 4
3 4
图b)
材料的力学性能对回弹值的影响 1、3-退火软钢 2-软锰黄铜 4-经冷变形硬化的软钢
应尽量选择屈服极限小、n值小的材料以获得 形状规则、尺寸精确的弯曲件。
(2)相对弯曲半径r/t r/t越小,变形程度越大,回弹量减小。
例:1mm厚铝板、65Mn板,弯曲时易裂,退火后 再弯,则弯曲正常。
弯曲工艺和弯曲模具设计复习题答案
第三章弯曲工艺及弯曲模具设计复习题答案一、填空题1、将板料、型材、管材或棒料等弯成一定角度、一定曲率.形成一定形状的零件的冲压方法称为弯曲。
2、弯曲变形区内应变等于零的金属层称为应变中性层。
3、窄板弯曲后起横截面呈扇形状。
窄板弯曲时的应变状态是立体的.而应力状态是平面4、弯曲终了时.变形区内圆弧部分所对的圆心角称为弯曲中心角。
5、弯曲时.板料的最外层纤维濒于拉裂时的弯曲半径称为最小弯曲半径6、弯曲时.用相对弯曲半径表示板料弯曲变形程度.不致使材料破坏的弯曲极限半径称最小弯曲半径7、最小弯曲半径的影响因素有材料的力学性能、弯曲线方向、材料的热处理状况、弯曲中心角8、材料的塑性越好.塑性变形的稳定性越强.许可的最小弯曲半径就越小9、板料表面和侧面的质量差时.容易造成应力集中并降低塑性变形的稳定性.使材料过早破坏。
对于冲裁或剪切坯料.若未经退火.由于切断面存在冷变形硬化层.就会使材料塑性降低.在上述情况下均应选用较大的弯曲半径。
轧制钢板具有纤维组织.顺纤维方向的塑性指标高于垂直于纤维方向的塑性指标。
10、为了提高弯曲极限变形程度.对于经冷变形硬化的材料.可采用热处理以恢复塑性。
11、为了提高弯曲极限变形程度.对于侧面毛刺大的工件.应先去毛刺;当毛刺较小时.也可以使有毛刺的一面处于弯曲受压的内缘(或朝向弯曲凸模).以免产生应力集中而开裂。
12、为了提高弯曲极限变形程度.对于厚料.如果结构允许.可以采用先在弯角内侧开槽后.再弯曲的工艺.如果结构不允许.则采用加热弯曲或拉弯的工艺。
13、在弯曲变形区内.内层纤维切向受压而缩短应变.外层纤维切向受受拉而伸长应变.而中性层则保持不变14、板料塑性弯曲的变形特点是:(1)中性层内移(2)变形区板料的厚度变薄(3)变形区板料长度增加(4 )对于细长的板料.纵向产生翘曲.对于窄板.剖面产生畸变。
15、弯曲时.当外载荷去除后.塑性变形保留下来.而弹性变形会完全消失.使弯曲件的形状和尺寸发生变化而与模具尺才不一致.这种现象叫回弹。
弯曲与弯曲模具设计
二、弯曲件的工艺计算
2.弯曲力的计算
(1)自由弯曲力对于V形件,有
F自
0.6kbt 2 b
rt
对于U形件,有
F自
0.7kbt 2 b
rt
(2)校正弯曲力如果弯曲件在冲压行程结束时受到模具的校正
(见图3-27)
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
二、弯曲件的工艺计算
(3)顶件力或压料力
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
一、弯曲件的工艺性
(6)增添连接带和定位工艺孔 如图3-22所示。 (7尺寸标注 尺寸标注对弯曲件的工艺性有很大的影响。 如图3-23所示。
上一页 下一页
第四节 弯曲件的工艺特性及工艺计 算
二、弯曲件的工艺计算
1.弯曲件展开长度的确定
第三章 弯曲与弯曲模具设计
第一节 弯曲技术概述 第二节 弯曲变形过程分析 第三节 弯曲件坯料尺寸的计算 第四节 弯曲件的工艺特性及工艺计算 第五节 弯曲件的工序安排 第六节 弯曲模典型结构及结构设计
第一节 弯曲技术概述
弯曲是利用压力使金属板料、管料、棒料或型材在模具中弯 成一定曲率、一定角度和形状的变形工序。弯曲工艺在冲压 生产中占有很大的比例,应用相当广泛,如汽车纵梁、电器 仪表壳体、支架、铰链等,都是用弯曲方法成型的。
所示为V形件弯曲的变形过程。 2.弯曲变形特点 为了分析板料弯曲变形的规律,将试验用的长方形板料的 侧面画成正方形网格,如图3-4(a)所示,然后弯曲,观察其
变形特点,弯曲后情况如图3-4(b)所示。
下一页
第二节 弯曲变形过程分析
一、弯曲的变形特点
(1)变形区主要在弯曲件的圆角部分,圆角区内的正方形网 格变成厂扇形。
冲压模具设计与制造-弯曲工艺与模具设计
应用场景
广泛应用于手机、汽车、电视机、 计算机等产品的制造中
弯曲工艺的应用场景
个人消费品
行李车、儿童座椅、自行车座等
建筑领域
门窗、钢结构等
工业制造
吊车臂、桥架、挖掘机臂等
汽车领域
汽车车身、排气管、离合器等
弯曲工艺的优缺点
优点
• 工艺简单 • 生产效率高 • 生产成本低 • 形状可变
缺点
• 成型重量限制 • 无法实现非线性弯曲 • 弯曲角度存在最小值 • 弯曲半径限制较大
3 材料
应选择强度和韧性都较高的材料,同时应考 虑在操作过程中的磨耗性和修复性
4 可维修性
模具设计应考虑寿命和易损件,易于维修和 更换
弯曲模具的分类
按形式分类
• 单工位模 • 连续模 • 中空模 • 异形模
按应用分类
• 汽车工业专用模 • 造船业用弯管模 • 机床上安装的弯管模 • 家电制造业弯头型号模
Hale Waihona Puke 弯曲模具的设计方法常见方法
手工模拟、数值模拟、经验规律法、模拟仿真
设计步骤
1. 确定工件的几何形状 2. 计算弯曲力矩和弯曲角度 3. 准备模具的设计图纸 4. 优化模具的几何尺寸
弯曲模具对模具的要求
1 强度
模具应具有足够的强度来承受弯曲力矩和弯 曲压力的作用
2 精度
模具必须保证成型精度的要求,例如加工定 位孔及精度要求达到零误差
弯曲工艺的材料选择
常见材料
铝合金、钢材、不锈钢、镁合金 等
制造工艺
冷拔可广泛应用,热轧用于钢材 弯曲时的复合成型
板厚选择
在保证预算的前提下,尽量选择 薄板
弯曲模具的构造和原理
1
模具设计基础-第三章弯曲工艺与弯曲模具设计
模具设计基础 第三章 弯曲工艺与弯曲模具设计
对于形状比较简单、尺寸精度要求不高的弯曲件,可直接 采用下面介绍的方法计算坯料长度。
对于形状比较复杂或精度要求高的弯曲件,在利用下述公
式初步计算坯料长度后,还需反复试弯不断修正,才能最后
确定坯料的形状及尺寸。
模具设计基础 第三章 弯曲工艺与弯曲模具设计
模具设计基础 第三章 弯曲工艺与弯曲模具设计
(2)应变中性层 网格由正方形变成了扇形,靠近凹模的外侧纤维切向 受拉伸长,靠近凸模的内侧纤维切向受压缩短,在拉伸与 压缩之间存在一个既不伸长也不缩短的中间纤维层,称为 应变中性层。
模具设计基础 第三章 弯曲工艺与弯曲模具设计
(3)变形区横断面的变形 板料的相对宽度 b/t 对弯曲变形区的材料变形有很大影 响。 一般将相对宽度 b/t>3 的板料称为宽板;相对宽度 b/t <3 的板料称为窄板。
模具设计基础 第三章 弯曲工艺与弯曲模具设计
(2)最小弯曲半径 最小弯曲半径指弯曲件弯曲部分的内角半径,用 r 表示, 如图(a)所示。弯曲件的弯曲半径越小,则毛坯弯曲时外表面 的变形程度就越大。如果弯曲半径过小,毛坯在弯曲时,其外 表面的变形就可能会超过材料的变形极限而产生裂纹。因此弯 曲工艺受最小弯曲半径rmin 的限制。
的流动阻力。 (3) 制件的相对弯曲半径大于最小相对弯曲半径。若不能满
足时,应分两次或多次进行弯曲。 (4) 对于塑性差或加工硬化较严重的毛坯,先退火后弯曲。 (5) 把毛坯有毛刺的一面置于变形区的内侧。
模具设计基础 第三章 弯曲工艺与弯曲模具设计
2、滑移——指在弯曲过程中,毛坯沿凹模口滑动时由于 两边所承受摩擦阻力不同而出现的毛坯向左或向右移动的现象, 使弯曲件的尺寸精度达不到要求。
四角形弯曲件弯曲工艺与模具设计
四角形弯曲件弯曲工艺与模具设计1. 引言说到四角形弯曲件,大家可能会想,“这不就是个简单的弯曲吗?”其实不然,这背后可是门学问!想象一下,你在家里试着弯一根铁丝,结果发现弯来弯去不怎么好看,最后还被惹得不高兴了。
四角形的弯曲工艺,就像是做一道精致的菜,没点技巧可不行!今天咱们就来聊聊这个话题,轻松一点,幽默一点,让大家都能懂得明白。
2. 四角形弯曲件的基本概念2.1 什么是四角形弯曲件?首先,四角形弯曲件就是那种四个角都在的形状,比如说框架、外壳等等。
这种形状的工艺在很多行业都用得着,像汽车、家电,甚至建筑上都少不了它的身影。
说实话,这四角形件可真是个“大忙人”,到处跑,帮助我们解决各种问题。
2.2 为什么弯曲工艺这么重要?弯曲工艺的好坏,直接影响到产品的质量和使用效果。
想想看,假如你买的一个家电外壳弯得歪七扭八的,那看着就让人心里不爽,对吧?这时候,如果使用了合适的弯曲工艺,那可真是“如虎添翼”,让产品看起来更加完美。
总之,弯曲工艺的好坏,直接关乎着产品的“颜值”和“内涵”。
3. 四角形弯曲工艺的流程3.1 材料的选择首先,咱得选材料。
常见的有铝、钢、塑料等等。
每种材料的特性都不同,就像人有不同的性格,选错了可就麻烦了。
铝虽然轻,但强度相对较低;而钢结实,但重量也不轻。
选得好,工艺自然顺利,选得不当,可能就得重走老路,吃个大亏了。
3.2 设计与计算接下来,就是设计和计算。
这一步就像是搭建乐高积木,得把每个部分都想清楚了。
设计图纸要精细,不能马虎。
现代化的设计软件就像是个高科技的小助手,能帮我们快速计算出需要的弯曲角度和半径,简直是“如鱼得水”!3.3 模具的制作一切准备好后,就轮到模具的制作了。
模具就像是四角形弯曲件的“衣服”,得合身、得好看。
制作模具的时候,可不能心急,要仔细、要认真,才能确保最终产品的质量。
如果模具做得不行,后面的弯曲工艺就像是“竹篮打水一场空”,白忙一场。
4. 实际操作中的注意事项4.1 温度控制在实际操作中,温度可是个“隐形杀手”。
弯曲工艺和弯曲模具设计
3.2.2影响回弹的因素
1.材料的力学性能 材料的屈服点 越高,弹性模量E越小,弯曲弹性回跳
越大。
2.相对弯曲半径 相对弯曲变径
越大,则回弹也越大。
3.弯曲中心角 弯曲中心角 越大,表明变形区的长度越长,故回弹的
积累值越大,其回弹角越大。但对弯曲半径的回弹影响不大。
4.弯曲方式及弯曲模具结构 采用校正弯曲时,工件的回弹小。
时弯曲半径r继续减小,而直边部分反而向凹模方向变形, 直至板料与凸、凹模完全贴合。
3.1.2板料弯曲变形特点
通过网格试验观察弯曲变形特点(如图3.1.3)。
图3.1.3 弯曲前后坐标网络的变化
1.弯曲圆角部分是弯曲变形的主要变形区 变形区的材料外侧伸长,内侧缩短,中性层长度不变。
2.弯曲变形区的应变中性层
•
• 1、弹性弯曲条件
若材料的屈服应力为 σs ,
则• 弹性弯曲的条件为:
•
2、塑性弯曲的应力与应变条件
• (a)弹性弯曲; (b)弹-塑性弯曲; (c)塑性弯 曲
• 图3.1.5弯曲毛坯变形区的切向应力分布
• 3.1.3弯曲时变形区的应力和应变
•
• 板料在塑性弯曲时,变形区
内的应力应变状态取决于弯曲
铰链弯曲和一般弯曲件有所不同,铰链弯曲常用推卷的方法成形
。在弯曲卷圆的过程中,材料除了弯曲以外还受到挤压作用,板料不是 变薄而是增厚了,中性层将向外侧移动,因此其中性层位移系数K≥0.5。 图3.3.13所示为铰链中性层位置示意图。
•图3.3.12 铰链中性层位置
•图3.3.13 铰链弯曲件
3.3.5弯曲件弯曲工序的安排
3.弯曲件直边高度对弯曲的影响(如图3.3.5) 在进行弯曲时,若弯曲的直边高度过短,弯曲过程中
弯曲工艺与模具设计
第三章弯曲工艺与模具设计弯曲是使材料(板料、棒料、管材等)产生塑性变形,形成具有一定角度或一定曲率零件的冲压工艺。
它属于成形工序,是冲压的基本工序之一,各种常见弯曲件如图4-1所示。
根据所使用的工具及设备的不同,可以把弯曲工序分为使用模具在普通压力机上进行的压弯及在专门的弯曲设备上进行的折弯、滚弯、拉弯等。
虽然各种弯曲方法使用的工具及设备不同,但其变形过程和变形特点有共同规律。
(【1】p108)第一节弯曲变形过程及特点一、弯曲变形过(本节内容摘自【2】p148)V形弯曲是最基本的弯曲变形,任何复杂弯曲都可以看成是由多个v形弯曲组成。
所以以v形弯曲为代表分析弯曲变形的过程。
弯曲过程中,当坯料上受到凸模压力(弯曲力矩)时,坯料的曲率半径会发生变化。
图4-3所示为一副常见的v形件弯曲。
其弯曲过程简述如下:弯曲开始前,先将平板毛坯放入模具定位板中定位,然后凸模下行,实施弯曲,直到板料与凸模、凹模完全贴紧(此时冲床下行至下死点),然后开模(此时冲床上行至上死点),再从模具中取出v形件。
其受力情况如图4-4所示,弯曲过程分析如图4-5所示。
在板材A处,凸模施加外力2F,在凹模支撑点B1,B2处则产生反力与这外力构成了弯曲力矩M=FxL,该我弯曲力矩使板材产生弯曲变形。
弯曲变形可分成弹性变形阶段、塑性变形阶段和矫正弯曲阶段。
(1)弹性变形阶段:在凸模的压力下,板料受弯曲力矩M的作用,坯料变形区应力最大的内、外表面的材料没有产生变形,变形区内的材料仅产生弹性变形,且是自由弯曲,此时如果消除弯曲力矩时,坯料将恢复原状。
如图4-5(a)所示。
(2)塑性变形阶段:坯料变形区内、外表面的应力分量满足塑性条件,进入塑性变形状态。
此时如果消除弯曲力矩时,坯料将不能恢复原状。
随着凸模进一步下行,塑性变形有表面向中心进一步扩展。
板料与凹模v形表面逐渐靠紧,同时曲率半径和曲率力臂逐渐变小,即r0>r1>r2>r k,L0>L1>L2>L k。
第3章 弯曲工艺与弯曲模具
另一种克服回弹的有效方法:采用 摆动式凹模 ,而凸模侧 壁应有补偿回弹角β ;当材料厚度负偏差较大时,可设计成凸、 凹模间隙可调的弯曲模。
在弯曲件直边端部纵向加压。 用橡胶或聚氨酯代替刚性金属凹模能减小回弹。
23
弯曲时的偏移
板料在弯曲过程中沿凹模圆角滑移时,会受到凹模圆角 处摩擦阻力的作用。当板料各边所受的摩擦阻力不等时,有 可能使毛坯在弯曲过程中沿工件的长度方向产生移动,使工 件两直边的高度不符合图样的要求,这种现象称为偏移。
第二节 弯曲工艺设计及计算
一、弯曲变形过程
V形件弯曲是最基本的弯曲变形。
弯曲变形过程
r0 r1 r2 r
l0 l1 l2 lK
弯曲结果:表现为弯曲半径和弯曲力臂的变化(减小)。
弯曲半径逐渐减小:弯曲变形部分的变形程度逐渐增加。 弯曲力臂逐渐减小:弯曲变形过程中板料与凹模之间有相对滑移。
铰支板弯曲模
37
二、连续模
对于批量大、尺寸较小的弯曲件,为了提高生产率,操作 安全,保证产品质量等,可以采用连续弯曲模进行多工位的冲 裁、压弯、切断连续工艺成形。
三、复合模
对于尺寸不大的弯曲件,还可以采用复合模,即在压力 机一次行程内,在模具同一位置上完成落料、弯曲、冲孔等 几种不同工序。
两次弯曲复合的弯曲模
38
第四节 弯曲模工作部分结构参数的确定
一、弯曲凸模圆角半径
r rmin r rmin
r凸=r
r凸=rmin
当r/t>10时,则应考虑回弹,将凸模圆角半径r凸 加以修正。
39
二、凹模圆角半径
凹模圆角半径不能过小,否则弯矩的力臂减小,毛坯沿凹 模圆角滑进时阻力增大,从耐增加弯曲力,并使毛坯表面擦伤。
弯曲工艺与弯曲模设计(ppt 68页)
3. 塑性弯曲阶段
当凸模到达下止 点时,毛坯被紧 紧地压在凸模与 凹模之间,使毛 坯内侧弯曲半径 与凸模的弯曲半 径吻合,完成弯 曲过程,变形由 弹—塑性弯曲过 渡到塑性弯曲。
•5
弯曲分类
自由弯曲 校正弯曲
当弯曲过程结束,凸模、凹模、毛 坯三者相吻合后,凸模不再下压的 弯曲工序,回弹量较大。
当弯曲过程结束,凸模、凹模、毛 坯三者相吻合后,凸模继续下压, 产生刚性镦压,使毛坯产生进一步 塑性变形,从而对弯曲件的弯曲变 形部分进行校正的弯曲工序。
7,8-活动凹模;10-下模座;11-滚柱
•22
4.2.3 帽形件弯曲模
1.使用两套U形弯曲模
图 4-19 两次弯曲成形
•23
2.一次弯曲成形
有回弹。较少 使用此方法
图 4-20 一次弯曲成形
图 4-21 复合弯曲模一次弯曲成形
1-凸凹模;2-活动凸模;3-凹模;4-顶板
•24
4.2.4 Z形件弯曲模
图 4-17 使用回转凹模的U形件弯曲模
1-凸模;2-定位板;3-弹簧;4-回转凹模;5-限位钉
•21
使用斜楔的U形件弯曲模
弹簧将毛坯先弯曲 成U形。受弹簧弹力 限制,该结构只适
用于弯曲薄板。
图 4-18 使用斜楔结构的U形件弯曲模
1-斜楔;2-凸模支杆;3,9-弹簧;4-上模座;5-凸模;6-定位销;
2)校正法 校正压力集中施加在弯曲变形区,使其塑性变形成 分增加,弹性变形成分减小,从而使回弹量减小。
图 4-31 校正法示意图
•35
4.4 弯曲工艺计算
4.4.1 弯曲件展开长度的计算
弯曲件展开长度的计算 依据弯曲件的形状、弯 曲半径、弯曲方向的不 同而不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、板料塑性弯曲的变形特点
3.变形区板料剖面的畸变、翘曲和破裂
相对宽度b/t较小的板料弯曲时,由于外层材 料切向受拉,引起板料宽度和厚度的收缩。
图4-10 板料弯曲后的畸变、翘曲和破裂 a)翘曲b)翘曲和不平 c)拉裂
弯曲毛坯的横截面变化情况
窄板弯曲
宽板弯曲
弯曲变形区的变形特点
工件分成了直边和圆角两个部分,变形主要发生在圆角部分,
五、板料塑性弯曲的变形特点 2.变形区内板料的变薄和增长
板料弯曲时,外层纤维受拉使厚度减薄,内 层纤维受压使厚度增加。由于应变中性层的内移, 外层拉伸区逐步扩大,内层压缩区不断减小,外层 的减薄量大于内层的增厚量,从而使板料的厚度变 薄。根据材料塑性变形体积不变的条件,厚度的减 薄必然使板料的长度增加。
最小弯曲半径
一、影响最小弯曲半径的因素
4.板料表面及冲裁断面的质量 弯曲件毛坯一般由冲裁获得,其断面存在冷 作硬化层,弯曲时,冲裁件断面上的断裂带及毛 刺在拉应力作用下会产生应力集中,导致弯曲件 从侧边开始破裂。因此在弯曲前,应将毛坯上的 毛刺去除。如弯曲件毛坯带有较小的毛刺,弯曲 时应使带毛刺朝内(即朝弯曲凸模方向),以避 免应力集中而产生破裂。
3.弯曲中心角α
弯曲中心角α越大,表示弯曲变形区的长度 越长,回弹积累值也越大,故回弹角Δα越大, 但对弯曲半径的回弹影响不大。
二、影响回弹的因素
4.弯曲方式及校正力大小
自由弯曲时的回弹角要比校正弯曲来得大, 这是因为校正弯曲时,材料受到凸、凹模的压 缩作用,不仅使弯曲变形区毛坯外侧的拉应力 有所减小,并且在外侧靠近中性层附近的切向 也出现和毛坯内侧切向一样的压缩应力。随着 校正力的增加,切向压应力区向毛坯的外表面 不断扩展,以致毛坯的全部或大部分断面均产 生切向压缩应力。这样内、外层材料回弹的方 向取得一致,使其回弹量比自由弯曲时大为减 少。因此校正力越大,回弹值越小。
三、提高弯曲极限变形程度方法
3.先在弯曲件弯曲圆角内侧开槽,如图所示, 再进行弯曲。
图4-12 开槽后弯曲 a)U形件 b)V形件
4.2.2 回弹
弯曲回弹是指弯曲件从模具中取出时,其形状和尺寸变得与模 具不一致的现象,简称回弹或弹复或回跳。
回弹的原因是塑性弯曲时的 总变形是由塑性变形和弹性 变形两部分组成,当外载荷 去除后,塑性变形保留下来, 而弹性变形会完全消失。
二、最小弯曲半径值确定 1.最小弯曲半径的近似理论计算
二、最小弯曲半径值确定 2.最小弯曲半径的经验值确定
由于影响最小弯曲半径大小的因素很多,因 此计算结果与实际的rmin有一定的误差,在实际生 产中主要是参考经验数据来确定各种材料的最小 弯曲半径。
三、提高弯曲极限变形程度方法
1.弯曲件分两次弯曲,第一次采用较大的弯 曲半径(大于rmin),第二次按要求的弯曲半径弯 曲。 2.采用先退火以增加材料塑性再进行弯曲,以 获得所需的弯曲半径,或者在工件许可情况下采 用热弯。
1.材料的力学性能
材料的屈极点ςs越高,弹性模量E 越小,弯 曲变形的回弹也越大。若材料的力学性能不稳定, 其回弹值也不稳定。材料的屈服点ςs越高,则材 料在一定的变形程度时,变形区断面内的应力也越 大,因而引起更大的弹性变形,故回弹值也越大。 弹性模量E越大,则抵抗弹性变形的能力越强,故 回弹值越小。
1. 回弹的表现形式
(1)弯曲半径的改变,由加载时的rp变为卸载时的r (2)弯曲件角度的改变,改变量:
- p
当 0 时,称为正回弹
当 0 时,称为负回弹
弯曲卸载后的回弹
一、回弹原因及表现形式
弯曲回弹的表现形式有两种。
图4-15 弯曲变形的回弹
影响回弹的因素
图4-1弯曲毛坯受力情况 a)弯曲前 b)弯曲后 1—凸模式 2—凹模
第一节 弯曲变形过程及变形特点
一、弯曲变形过程
弯曲开始阶段为自由弯 曲,随着凸模下压,板料的 弯曲半径与支撑点距离逐渐 减小。在弯曲行程接近终了 时,弯曲半径继续减小,而 直边部分反而向凹模方向变 形(图c),直至板料与凸、 凹模完全贴合。
三、回弹值的确定 1.理论计算
加载为沿折线OAB, 卸载沿线段BC。
图4-16 弯曲时加载和卸载过程
三、回弹值的确定 2.经验值选用
角度和形状的加工方法。
弯曲示例
生活中的弯曲零件
用模具成形弯曲件一
用模具成形弯曲件二
弯曲使用的模具叫弯曲模
扩展阅读
4.1 弯曲变形过程分析
4.1.1 弯曲变形过程
V形弯曲件的弯曲过程
l0>l1>l2>l
r0>r1>r2>r
第一节 弯曲变形过程及变形特点
一、弯曲变形过程
在板料A处,凸模施加 弯曲力形)或2P(V形), 在凹模的圆角半径支撑点B 处产生反力P,这样就形成 弯曲力矩M=PL,该弯曲 力矩使板料产生弯曲。
三、宽板与窄板弯曲变形区的应力、应变分析
(1)窄板弯曲 板料在弯 曲时,主要表现是内、外层 纤维的压缩和伸长,切向应 变是最大的主应变,其外层 应变为正,内层应变为负。
图4-6 弯曲变形的应力与应变状态 a)窄板
三、宽板与窄板弯曲变形区的应力、应变分析
(2)宽板弯曲 宽板弯 曲时,切向和厚度方向的 应变与窄板相同。在宽度 方向,由于板料宽度宽, 变形阻力较大,弯曲后板 宽基本不变,因此内、外 层宽度方向的应变接近于 零(ε2≈0)。
二、影响回弹的因素
2.相对弯曲半径r/t
相对弯曲半径r/t越小,弯曲变形区的总切向 变形程度增大,塑性变形部分在总变形中所占的比 例增大,而弹性变形部分所占的比例则相应减小, 因而回弹值减小。反之,当相对弯曲半径越大,回 弹值增大,这就是曲率半径很大的零件不易弯曲成 形的道理。
二、影响回弹的因素
rmin/t小
3.最小弯曲半径的值
见表4-2
4.控制弯裂的措施
(1)选择塑性好的材料进行弯曲,对冷作硬化的材料在弯
曲前进行退火处理。 (2)采用r/t大于rmin/t的弯曲。 (3)排样时,使弯曲线与板料的纤维组织方向垂直。 (4)将有毛刺的一面朝向弯曲凸模一侧,或弯曲前去除毛
刺。避免弯曲毛坯外侧有任何划伤、裂纹等缺陷。
图4-6 弯曲变形的应力与应变状态 a)窄板
弯曲方式
a)自由弯曲
b)校正弯曲4.1.2 弯源自变形特点弯曲前a1
b1
弯曲后
五、板料塑性弯曲的变形特点 1.应变中性层位置的内移
板料在弹性弯曲时,应变中性层位于板料横断 面中间,塑性弯曲时,设板料原来长度、宽度和厚 度分别为l、b、t。
图4-9 应变中性层的确定
圆角是弯曲变形的主要变形区。
变形区变形不均匀:外区切向受拉伸长;内区切向受压缩短,
出现应变中性层——变形前后长度不发生变化的金 属层。
变形区厚度变薄,η=t’/t≤1,变薄程度与r 的大小有关。 横截面的变化:宽板不变,窄板内区变宽、外区变窄。
4.1.3 弯曲变形区的应力应变状态
4.2 弯曲件质量分析及控制
图4-2 V形弯曲模校正弯曲过程
第一节 弯曲变形过程及变形特点
一、弯曲变形过程
图4-3 弯曲前后坐标网格变化 a)弯曲前 b)弯曲后
二、弯曲变形程度及其表示方法 1.弯曲变形程度及其表示(r/t)
设弯曲变形区应变中性层曲率 半径为ρ,弯曲中心角为α,则距 应变中性层为y处的材料的切向应 变为
y y ( ρ + y ) α εθ=ln =ln(1+ ρ )≈ρ ρα
2. 最小相对弯曲半径及其影响因素
最小相对弯曲半径是指板料弯曲时最外层纤维濒于拉裂时的
弯曲半径与板料厚度的比值
影响最小相对弯曲半径的因素:
1)材料的力学性能:塑性好, rmin/t小。 2)板料的纤维方向:弯曲线与 纤维方向垂直,rmin/t小
3)板料的表面质量和侧边质量:表面质量和侧面质量好, rmin/t小 4)板料的厚度薄: ……
径 r /t 。
min
(5)制件被弯曲加工的角度,即弯曲后制件直边夹角的补角 α1称为弯曲角。 (6)弯曲后制件直边夹角的对角α称为弯曲中心角。 (7)弯曲后制件直边的夹角θ称为弯曲件角度。
1. 弯曲变形程度
r/t——表示弯曲变形程度大小。
r/t越小,弯曲变形程度越大,有一最小相对弯曲半径rmin/t
第4章
弯曲工艺与模具设计
4.1 弯曲变形过程分析
4.2 弯曲件质量分析及控制
4.3 弯曲工艺计算 4.4 弯曲工艺设计 4.5 弯曲模设计 4.6 弯曲模设计举例
能力要求
能根据弯曲件的废品形式分析其产生的原因,熟
悉解决的措施。
能完成典型弯曲件的工艺与模具设计。
弯曲定义
弯曲是指在冲压生产中,利用模具将制件弯曲成一定
2. 影响回弹的因素
1)材料的力学性能:屈服极限越大、硬化指数越高,回弹量越大; 弹性模量越大,回弹越小。 2)相对弯曲半径:越大,回弹越大。 3)弯曲中心角:越大,变形区的长度越长,回弹积累值也越大, 故回弹增加。 4)弯曲方式 :校正弯曲的回弹比自由弯曲时大为减小。 5)工件形状: 形状越复杂、一次弯曲的角度越多,回弹越小。 6)模具结构: 带底凹模的回弹小。
最小弯曲半径
一、影响最小弯曲半径的因素
3.板料的轧制方向与弯曲线夹角的关系 板料经过多次轧制,其力学性能具有方向 性,因此弯曲件的弯曲线与板料轧制方向垂直时, 最小弯曲半径数值最小;弯曲件的弯曲线与板料 轧制方向平行时,则最小弯曲半径最大。所以对 于r/t较小的弯曲件,应尽可能使弯曲线垂直 于轧制方向。如果零件有两个以上弯曲线相互垂 直,可安排弯曲线与轧制方向成45°夹角。
二、影响回弹的因素
5.工件形状
U 形件的回弹小于V 形件。复杂形状弯