spss 多因素方差分析例子

合集下载

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model 打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

多元方差分析spss实例

多元方差分析spss实例

多元方差分析1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。

从支持三位候选人的选民中分别分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。

从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析具体操作(spss)1、打开spss,录入数据,定义变量和相应的值在此不作详述。

结果如图1图1 被投票人:1、布什2、佩罗特3、克林顿2、在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和受教育程度移入因变量框中,被投票人移入固定因子框中。

如图2图2 多变量分析主界面3、点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐性分析),其它使用默认即可,点击继续返回主界面。

如图3图3 选项子对话框4、点击确定,运行多变量分析过程。

结果解释1、协方差矩阵等同性的Box检验结果,如图4图4 协方差矩阵检验结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。

因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组中是相等的。

可以对其进行多元方差分析。

2、多变量检验结果,如图5图5 多变量检验结果说明:被投票人在四种统计方法中的sig均小于0.05,所以差异显著,即三组的总体均值有显著性差异3、误差方差等同性的Levene检验结果,如图6图6 Levene检验结果说明:只考虑单个变量,年龄段或者受教育程度,每位候选人的20名支持者的随机误差是否有显著性差异。

因为sig>0.05,差异不显著,所以三位候选人的20名支持者的随机误差相等。

可以进行单因素方差分析。

4、主体间效应的检验结果,如图7图7 主体间效应的检验结果说明:被投票人一行中,年龄段的sig<0.05,差异显著,即支持三位候选人的选民中,年龄段之间存在显著差异;而受教育程度的sig>0.05,差异不显著,即支持三位候选人的选民中,受教育程度差异不显著。

spss多因素方差分析例子

spss多因素方差分析例子

1, data0806-height 是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打 开 spss 软 件 , 打 开 data0806-height 数 据 , 点 击 Analyze->General Linear Model->Univariate 打开:把 plot 和 species 送入 Fixed Factor(s) ,把 height 送入 Dependent Variable ,点击 Model 打开:选择 Full factorial , Type III Sum of squares , Include intercept in model (即 全部默认选项) ,点击 Continue 回到 Univariate 主对话框,对其他选项卡不做任何选 择, 结果输出:因无法计算 ???? ??rror ,即无法分开 ???? intercept的影响,无法进行方差分析,重新 Analyze->General Linear Model->Univariate 打开:选择好 Dependent Variable 和 Fixed Factor(s) 点击Custom,把主效应变量 species 和plot 送入 Model 框,点击 Continue 回到Univariate 主对话框,点击 Plots : 把 date 送入 Horizontal Axis ,把 depth 送入 Separate Lines ,点击 Add ,点击 Continue 回到 Univariate 对话框,点击 Options :把 OVERALL,species, plot 送入 Display Means for 框,选择 Compare main effects , Bonferroni ,点击 Continue 回到 Univariate 对话框,输出结果:可以看到: SS species =, df species =7, MS species= ;SS plot =, df plot =7, MS plot= ;SS error =, df error =14, MS error= ;Fspecies= , p=<;Fplot=,p=<;所以故认为在 5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

最新SPSS生物统计分析示例4-多因素方差分析

最新SPSS生物统计分析示例4-多因素方差分析

S P S S生物统计分析示例4-多因素方差分析SPSS生物统计分析示例3(多因素方差分析)例一:番薯种植的两因素方差分析品种5532304徐薯18胜利百号红东利丰3号二黄C-17C-3039(脱毒通过SPSS统计分析推断种植密度(因素一)、品种(因素二)对亩产量(鲜重)的影响数据文件“sweetpotato-wet.sav”1)方差分析:Analyze→ General linear model→Univariate…结果输出:方差分析表Tests of Between-Subjects Effects Dependent Variable: 每亩鲜产Source Type III Sum ofSquares df Mean Square F Sig.Corrected Model 11407755.723(a) 29 393370.887 3.050 .002 Intercept 149601670.918 1 149601670.918 1159.757 .000 密度689784.506 2 344892.253 2.674 .085 品种8311710.289 9 923523.365 7.159 .000 密度 * 品种2406260.927 18 133681.163 1.036 .453 Error 3869819.834 30 128993.994a R Squared = .747 (Adjusted R Squared = .502)无交互效应,密度因素不显著,品种因素极显著2)多重比较(Post Hoc)结果LSD法:Multiple Comparisons Dependent Variable: 每亩鲜产Based on observed means.* The mean difference is significant at the .05 level.2304胜利百39(脱毒胜徐薯180.276黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异Duncan法:每亩鲜产品种NSubset1 2 3 4 5红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931二黄 6 1764.122633 1764.1226332304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .05.每亩鲜产DuncanMeans for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .01.汇总表:品种每亩产率Alpha=0.01 Alpha=0.05红东982.982509 a AC-30 1183.224658 ab ABC-17 1246.833306 ab AB39(脱毒胜百) 1378.033689 abc ABC553 1469.473579 abc BC胜利百号1717.694931 bcd CD二黄1764.122633 bcd CD2304 1819.723120 bcd CDE徐薯18 1999.091807 cd DE利丰3号2229.200327 d E注:不同字母代表用邓肯新复极差法多重比较中差异显著2304 胜利百39(脱毒胜C-30 ** ** * * *C-17 ** ** * * *39(脱毒胜** *百)553 ** *胜利百号*二黄2304徐薯18黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异。

SPSS多因素方差分析

SPSS多因素方差分析

体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。

多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。

如果再加上性别上的因素,那就成了三因素了。

如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。

如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。

下面用例子的形式来说说多因素方差分析的运用。

还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。

形成年级和不同教学法班级双因素。

分析:1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2.因为有重复数据,所以存在在数据交互效应的可能。

我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。

交互作用是多因素实验分析的一个非常重要的内容。

如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。

在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。

在大多数场合,交互作用的信息比主效应的信息更为有用。

根据上面的判断。

根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。

这里假设他们之间有交互作用。

SPSS处理多元方差分析报告例子

SPSS处理多元方差分析报告例子

实验三多元方差分析一、实验目的用多元方差分析说明民族和城乡对人均收入和文化程度的影响。

二、实验要求调查24个社区,得到民族与城乡有关数据如下表所示,其中人均收入为年均,单位百元。

文化程度指15岁以上小学毕业文化程度者所占百分比。

试依此数据通过方差分析说明民族和城乡对人均收入和文化程度的影响。

三、实验内容1.依次点击“分析”---- “常规线性模型”----“多变量”,将“人均收入”和“文化程度”加到“因变量”中,将“民族”和“居民”加到“固定因子”中,如下图一所示。

民族农村城市人均收入文化程度人均收入文化程度1 46,50,60,68 70,78,90,93 52,58,72,75 82,85,96,982 52,53,63,71 71,75,86,88 59,60,73,77 76,82,92,933 54,57,68,69 65,70,77,81 63,64,76,78 71,76,86,90【图一】2.点击“选项”,将“输出”中的相关选项选中,如下图二所示:【图二】3.点击“继续”,“确定”得到如下表一的输出:【表一】常规线性模型主体间因子值标签N民族 1.00 1 82.00 2 83.00 3 8居民 1.00 农村122.00 城市12描述性统计量民族居民均值标准差N人均收入1 农村56.0000 9.93311 4城市64.2500 11.02648 4总计60.1250 10.66955 8 2 农村59.7500 8.99537 4城市67.2500 9.10586 4总计63.5000 9.28901 8 3 农村62.0000 7.61577 4城市70.2500 7.84750 4总计66.1250 8.40812 8 总计农村59.2500 8.45442 12 城市67.2500 8.89458 12总计63.2500 9.41899 24文化程度1 农村82.7500 10.68878 4城市90.2500 7.93200 4总计86.5000 9.59166 82 农村80.0000 8.28654 4城市85.7500 8.18026 4总计82.8750 8.21910 83 农村73.2500 7.13559 4城市80.7500 8.77021 4总计77.0000 8.41767 8 总计农村78.6667 9.00841 12城市85.5833 8.53291 12总计82.1250 9.27977 24协方差矩阵等同性的 Box 检验(a)Box 的 M 12.397F .587df1 15df2 1772.187Sig. .887检验零假设,即观测到的因变量的协方差矩阵在所有组中均相等。

SPSS上机实验报告6 多因素方差分析

SPSS上机实验报告6 多因素方差分析

SPSS上机实验报告(6)学生姓名学号成绩上机实验题目考勤上机表现实验时间一、实验目的:1.熟悉并掌握单因素、双因素方差分析,univarate协方差分析的SPSS操作,其他较简单的方差分析问题,多元方差分析,重复测量的方差分析的具体操作。

2、对分析的结果能给出统计学的解释二、实验内容:1、熟悉方差分析菜单界面,掌握方差分析的操作。

2、对得到的结果进行解释。

3、掌握不同实验设计所使用的统计方法。

4、实际应用1)p151的三个实例,根据提示作相应的方差分析2)P153(5、6、7、8)题建立数据文件,进行方差分析三、实验要求:1、根据上机报告模板详细书写上机报告2、作业发到邮箱*****************四第七题第1步分析:需要研究不同包装和不同摆放位置对销量的影响。

这是一个多因素(双因素)方差分析问题。

第2步数据组织:如上表的变量名组织成4列数据。

第3步变量设置:按“分析|一般线性模型| 单变量”的步骤打开单变量对话框。

并将“销量”变量移入因变量框中,将“casing”和“摆放位置”移入固定因子中,如下图:第4步选择建立多因素方差分析的模型种类:打开“模型”对话框,本例用默认的全因子模型。

第5步以图形方式展示交互效果:设置方式如下图第6步设置方差齐性检验:由于方差分析要求不同casing数据方差相等,故应进行方差齐性检验,单击“选项”按钮,选中“方差齐性检验”,显著性水平设为默认值0.05。

75步设置控制变量的多重比较分析:单击“两两比较”按钮,如下图,在其中选出需要进行比较分析的控制变量,这里选“casing”,再选择一种方差相等时的检验模型,如LSD。

第8步对控制变量各个水平上的观察变量的差异进行对比检验:选择“对比”对话框,对两种因素均进行对比分析,用“简单”方法,并以最后一个水平的观察变量均值为标准。

五、程序运行结果:第七题运行结果UNIANOVA主体间因子值标签N包装1 A1 92 A2 93 A3 9摆放位置1 B1 92 B2 93 B3 9误差方差等同性的 Levene 检验a因变量: 销量F df1 df2 Sig..754 8 18 .646检验零假设,即在所有组中因变量的误差方差均相等。

spss相关分析案例多因素方差分析及SPSS检验车辆运行速度案例分析

spss相关分析案例多因素方差分析及SPSS检验车辆运行速度案例分析

本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。

本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒及饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况。

在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:表一如表一,因为该例中样本数n=31<2000,所以此处选用Shapiro-Wilk统计量。

由正态性检验结果的sig.值可以看到,人均粮食支出、烟酒及饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于0.05,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量。

另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。

如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。

具体情况这里不再赘述。

下面进行多因素方差分析:一、多变量检验表二由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig.值小于0.05,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。

二、主体间效应检验表三如表三,可以看到三个指标地区一栏的(即第三栏)Sig.值分别为0.001、0.017、0.790,说明三个地区在人均衣着支出指标上没有明显的差别(Sig.值大于0.05,不拒绝地区取值不同,对指标的取值没有显著影响的原假设),反之,而在人均副食支出和日用杂品支出指标上有显著差别。

spss多因素方差分析报告报告材料例子

spss多因素方差分析报告报告材料例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

spss相关分析案例多因素方差分析

spss相关分析案例多因素方差分析

本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。

本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒与饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况。

在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:表一如表一,因为该例中样本数n=31<2000,所以此处选用Shapiro-Wilk统计量。

由正态性检验结果的sig.值可以看到,人均粮食支出、烟酒与饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于0.05,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量。

另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。

如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。

具体情况这里不再赘述。

下面进行多因素方差分析:一、多变量检验表二由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig.值小于0.05,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。

二、主体间效应检验如表三,可以看到三个指标地区一栏的(即第三栏)Sig.值分别为0.001、0.017、0.790,说明三个地区在人均衣着支出指标上没有明显的差别(Sig.值大于0.05,不拒绝地区取值不同,对指标的取值没有显著影响的原假设),反之,而在人均副食支出和日用杂品支出指标上有显著差别。

(整理)SPSS生物统计分析示例4-多因素方差分析.

(整理)SPSS生物统计分析示例4-多因素方差分析.

SPSS 生物统计分析示例3 (多因素方差分析)例一:番薯种植的两因素方差分析通过SPSS 统计分析推断种植密度(因素一)、品种(因素二)对亩产量(鲜重)的影响数据文件“sweetpotato-wet.sav ”品种5532304徐薯18 胜利百号 红东 利丰3号 二黄C-17C-3039(脱毒胜百)1)方差分析:Analyze→ General linear model→Univariate…结果输出:方差分析表Tests of Between-Subjects Effects Dependent Variable: 每亩鲜产a R Squared = .747 (Adjusted R Squared = .502)无交互效应,密度因素不显著,品种因素极显著2)多重比较(Post Hoc)结果LSD法:Multiple Comparisons Dependent Variable: 每亩鲜产Based on observed means.* The mean difference is significant at the .05 level.2304553C-17C-3023040.0580.394徐薯180.276黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异Duncan法:每亩鲜产品种NSubset1 2 3 4 5红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931二黄 6 1764.122633 1764.1226332304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327 Sig. .090 .218 .065 .225 .070 Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .05.每亩鲜产Duncan品种NSubset1 2 3 4红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931 1717.694931 二黄 6 1764.122633 1764.122633 1764.122633 2304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327 Sig. .042 .010 .011 .033 Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .01.汇总表:品种每亩产率Alpha=0.01 Alpha=0.05红东982.982509 a AC-30 1183.224658 ab ABC-17 1246.833306 ab AB39(脱毒胜百) 1378.033689 abc ABC553 1469.473579 abc BC胜利百号1717.694931 bcd CD二黄1764.122633 bcd CD2304 1819.723120 bcd CDE徐薯18 1999.091807 cd DE利丰3号2229.200327 d E注:不同字母代表用邓肯新复极差法多重比较中差异显著利丰3号徐薯18 2304 二黄胜利百号553 39(脱毒胜百) C-17 C-30二黄2304徐薯18黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异。

SPSS计算例(多因素)

SPSS计算例(多因素)

对照组与各组均数 间差异均有统计学意义
除逍遥散与四君子 汤外,各组均数间差异 均有统计学意义
SNK 法两两比较
皮 质 酮 含量 Su bset 2 64.13 65.50 1.000 .311 89.38 1.000
组别 a,b St udent-Newman -Keuls 对照组 四君子汤组 逍遥散组 四逆散组 Si g.
P=0.231>0.05, 所以资料满足球对称性条件
方差分析
Tests of Within-S ubj ects Effects Measure: ME AS URE_1 So urce factor1 Type III Sum of S quares Sp hericity Assumed 599.7 29 Greenhou se-Geisser 599.7 29 Hu ynh -Feldt 599.7 29 Lower-bound 599.7 29 Sp hericity Assumed 9.729 Greenhou se-Geisser 9.729 Hu ynh -Feldt 9.729 Lower-bound 9.729 Sp hericity Assumed 35.29 2 Greenhou se-Geisser 35.29 2 Hu ynh -Feldt 35.29 2 Lower-bound 35.29 2 df 3 1.954 2.667 1.000 3 1.954 2.667 1.000 30 19.54 5 26.66 6 10.00 0 Mean Square 199.9 10 306.8 47 224.9 07 599.7 29 3.243 4.978 3.649 9.729 1.176 1.806 1.323 3.529 F 169.9 35 169.9 35 169.9 35 169.9 35 2.757 2.757 2.757 2.757 Si g. .000 .000 .000 .000 .060 .089 .068 .128

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业8:多因素方差分析
1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?
打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate 打开:
把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model 打开:
选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,
结果输出:
因无法计算MM e rror,即无法分开MM intercept和MM error,无法检测interaction的影响,无法进行方差分析,
重新Analyze->General Linear Model->Univariate打开:
选择好Dependent Variable和Fixed Factor(s),点击Model打开:
点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:
把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue回到Univariate对话框,点击Options:
把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,
输出结果:
可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;
Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;
所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

该表说明:SSspecies=33.165,dfspecies=7,MSspecies=4.738;SSerror=21.472,dferror=14,MSerror=1.534;Fspecies=3.089,p=0.034<0.05;物种间存在差异:
SSplot=33.165,dfplot=7,MSplot=4.738;SSerror=21.472,dferror=14,MSerror=1.534;
Fplot=12.130,p=0.005<0.01;不同的物种间在差异:
由边际分布图可知:类似结论:草的高度在不同样地的条件之间有差异(Fplot=12.130,p=0.005<0.01),具体是,样地一和样地三之间存在的差异最大;八种不同草的高度也存在差异(Fspecies=3.089,p=0.034<0.05),具体是第四种草和第五种草的差异最大。

再次检验不同种类草的高度差异:重新进行方差分析,Analyze->General Linear Model->Univariate:把species送入Fixed Factor(s),把high送入Dependent Variable,点击Plots:
把species送入Horizontal Axis,点击Add,点击Continue回到Univariate,点击Post Hoc(因为我们已经知道species效应显著):
把species送入Post Hoc Tests for框,选择Tukey,
输出结果:
各组均值从小到大向下排列。

最大的是第五组,最小的是第四组,其中有些种类草的高度存在差
异,有些不存在。

再次检验不同样地草的高度差异:过程和上相似:结果如下
不同样地的草高度存在差异,其中一样地的草高度最短,3样地的草高度最高,且三组之间都存
在差异。

2,data0807-flower,某种草的开花初期高度在两种温度和两个海拔之间有无差异?具体怎么差异的?
多因素单因变量方差分析通过Analyze->General Linear Model->Univariate实现,把因变量height送入Dependent Variable栏,把因素变量temperature和attitude送入Fixed Factor(s)栏
点击Model选项卡,打开:选着full factorial,type 3,点击)Include intercept in model。

点击Plots 对话框,打开::可选择attitude 到Horizontal Axis,然后选择temperature 到Horizontal Axis,再选择attitude到Separate Lines,Plots 框显示attitude, temperature, attitude * temperature,
Estimated Marginal Means选择OVERALL,产生边际均值的均值Display框选择要输出的统计
量,Descriptive statistics描述统计量,Homogeneity tests方差齐性检验。

结果输出:
主效应各因素各水平以及样本量,
各水平的均值和标准差。

把样本分为四组,进行方差齐性检验,方差不一致。

可以看到:SSaltitude=503.167,dfaltitude=1,MSaltitude=503.167;SStemperature=1149.798,dftemperature=1,MStemperature=1149.798;SSinteraction=338.486,dfinteraction=1,MSinteraction=338.486;SSerror=935.748,dferror=83,MSerror=935.748;Faltitude=44.63,p=0.034<0.001;Ftemperature=101.986,p=0.005<0.001;Ftemperature=101.986,<0.001; Finteraction=34.458 ,p<0.001;
所以故认为在0.1%的置信水平上,不同温度,不同海拔之间的草高度是存在差异的。

在四个样本总体中,在95%的置信区间,花的平均高度范围为137.719到139.172之间。

在海拔为3200米处,在95%的置信区间,花的平均高度范围为139.852到141.920之间。

在海拔为3400米处,在95%的置信区间,花的平均高度范围为134.985到137.036之间。

aititude各水平的边际均值的多重比较,在本试验中,事实上H0: 平均aititude(3200)= aititude(3400);但是平均aititude(3200)花高度—平均aititude(3400)花高度,在95%置信区间为3.427到6.333.故均值存在差异。


SSaltitude=503.167,dfaltitude=1,MSaltitude=503.167;SSerror=935.748,dferror=83,MSerror=935.748;Faltitude=44.63,P<0.001.不同海拔的花高度不存在差异的的概率<0.001.
在温度为T1处,在95%的置信区间,花的平均高度范围为141.149到143.119之间。

在温度为T2处,在95%的置信区间,花的平均高度范围为133.689到135.825之间。

温度各水平的边际均值的多重比较,在本试验中,事实上H0: (T1时,平均花高度)=(T2时,平均花高度);但是(T1时,平均花高度)—(T2时,平均花高度),在95%置信区间为5.924到8.830,故均值存在差异,不接受H0假设。

SStemperature=1149.798,dftemperature=1,MStemperature=1149.798;SSerror=935.748,dferror=83,MSerror=935.748;Ftemperature=101.986,p<0.001; 不同温度下,花的高度存在差异。

在温度为T1,海拔3200米处,在95%的置信区间,花的平均高度范围为145.433到148.004之间。

在温度为T2处,海拔3200米处在95%的置信区间,花的平均高度范围为133.433到136.673之间。

在温度为T1处,海拔3400米处,在95%的置信区间,花的平均高度范围为136.057到139.043之间。

在温度为T2处,海拔3400米处,在95%的置信区间,花的平均高度范围为133.068到135.853之间。

不同海拔下的的边际均值图
两个因素的边际均值交互效应图,该图直线相互交叉(即斜率不一样)表明有交互效应。

结论如下:
某种草的开花初期高度在两种温度之间有差异(Ftemperature=101.986,p<0.001;),T1时草的开花初期高度高于T2时草的开花初期高度.
某种草的开花初期高度在两种海拔之间有差异(Faltitude=44.63,P<0.001.),海拔3200时草的开花初期高度高于海拔3400时草的开花初期高度.
温度和海拔对草的开花初期高度的影响存在交互效应(Finteraction=34.458 ,p<0.001)。

相关文档
最新文档