二叉树的基本操作及实现.cpp

合集下载

二叉树的基本操作

二叉树的基本操作

二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。

1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。

插入操作会按照一定规则将新节点放置在正确的位置上。

插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。

-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。

-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。

-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。

-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。

2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。

删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。

-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。

-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。

3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。

查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。

-如果待查找值等于当前节点的值,则返回该节点。

-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。

-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。

-如果左子树或右子树为空,则说明在二叉树中找不到该值。

4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。

有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。

- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)

二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)
如下图所示的是二叉树及其对应的二叉链表实现示意图。
A
B
D
C
E
F
G
头指针
二叉树的list实现
二叉树节点可以看成是一个三元组,元素是左、右子树和本节点数据。
Python的list可以用于组合这样的三个元素。
下面介绍用list构造二叉树的方法。
(1)空树用None表示。
(2)非空二叉树用包含三个元素的列表[d,l,r]表示,其中:d表示根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
二叉树的遍历
在完成二叉树的建立操作后,就可以对二叉树的各个节点进行访问,即遍历操作。二叉树的遍历,是指按照一定的规则和次序访问二叉树中的所有节点,使得每个节点都被访问一次且仅被访问一次。按照不同的遍历方式对节点进行访问,其处理效率不完全相同。二叉树的遍历方式有很多,主要有前序遍历、中序遍历和后序遍历等。
1.数组实现
用数组来表示二叉树时,分为以下两种情况。
(1)完全二叉树从二叉树的根节点开始,按从上而下、自左向右的顺序对n个节点进行编号,根节点的编号为0,最后一个节点的编号为n-1。然后依次将二叉树的节点用一组连续的数组元素来表示,节点编号与数组的下标一一对应。如下图中图甲所示的完全二叉树所对应的一维数组表示如图乙所示。
A
B
C
A
B
C
甲 原二叉树
乙 补全后的二叉树
0
1
2
3
4
5
6
7
丙 数组实现示意图
A
B
C
对于完全二叉树而言,一维数组的表示方式既简单又节省存储空间。但对于一般的二叉树来说,采用一维数组表示时,结构虽然简单,却容易造成存储空间的浪费。

二叉树的建立与基本操作

二叉树的建立与基本操作

二叉树的建立与基本操作二叉树是一种特殊的树形结构,它由节点(node)组成,每个节点最多有两个子节点。

二叉树的基本操作包括建立二叉树、遍历二叉树、查找二叉树节点、插入和删除节点等。

本文将详细介绍二叉树的建立和基本操作,并给出相应的代码示例。

一、建立二叉树建立二叉树有多种方法,包括使用数组、链表和前序、中序、后序遍历等。

下面以使用链表的方式来建立二叉树为例。

1.定义二叉树节点类首先,定义一个二叉树节点的类,包含节点值、左子节点和右子节点三个属性。

```pythonclass Node:def __init__(self, value):self.value = valueself.left = Noneself.right = None```2.建立二叉树使用递归的方法来建立二叉树,先构造根节点,然后递归地构造左子树和右子树。

```pythondef build_binary_tree(lst):if not lst: # 如果 lst 为空,则返回 Nonereturn Nonemid = len(lst) // 2 # 取 lst 的中间元素作为根节点的值root = Node(lst[mid])root.left = build_binary_tree(lst[:mid]) # 递归构造左子树root.right = build_binary_tree(lst[mid+1:]) # 递归构造右子树return root```下面是建立二叉树的示例代码:```pythonlst = [1, 2, 3, 4, 5, 6, 7]root = build_binary_tree(lst)```二、遍历二叉树遍历二叉树是指按照其中一规则访问二叉树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。

1.前序遍历前序遍历是指先访问根节点,然后访问左子节点,最后访问右子节点。

```pythondef pre_order_traversal(root):if root:print(root.value) # 先访问根节点pre_order_traversal(root.left) # 递归访问左子树pre_order_traversal(root.right) # 递归访问右子树```2.中序遍历中序遍历是指先访问左子节点,然后访问根节点,最后访问右子节点。

二叉树的存储结构及基本操作

二叉树的存储结构及基本操作

二叉树的存储结构及基本操作二叉树是一种常见的数据结构,广泛应用于计算机科学领域。

二叉树具有其独特的存储结构和基本操作,下面将详细介绍。

一、二叉树的存储结构二叉树的存储结构通常有两种形式:顺序存储和链式存储。

1. 顺序存储顺序存储是将二叉树中的所有元素按照一定的顺序存储在一段连续的内存单元中,通常采用数组来表示。

对于任意一个节点i,其左孩子节点的位置为2*i+1,右孩子节点的位置为2*i+2。

这种存储方式的优点是访问速度快,但需要预先确定节点总数,且不易于插入和删除操作。

2. 链式存储链式存储是采用指针的方式将二叉树的节点链接起来。

每个节点包含数据元素以及指向左孩子节点和右孩子节点的指针。

链式存储方式的优点是易于插入和删除操作,但访问速度较慢。

二、二叉树的基本操作1. 创建二叉树创建二叉树的过程就是将数据元素按照一定的顺序插入到二叉树中。

对于顺序存储的二叉树,需要预先分配内存空间;对于链式存储的二叉树,可以直接创建节点对象并链接起来。

2. 遍历二叉树遍历二叉树是指按照某种规律访问二叉树中的所有节点,通常有前序遍历、中序遍历和后序遍历三种方式。

前序遍历的顺序是根节点-左孩子节点-右孩子节点;中序遍历的顺序是左孩子节点-根节点-右孩子节点;后序遍历的顺序是左孩子节点-右孩子节点-根节点。

对于顺序存储的二叉树,可以采用循环结构实现遍历;对于链式存储的二叉树,需要使用指针逐个访问节点。

3. 查找元素在二叉树中查找元素,需要根据一定的规则搜索所有节点,直到找到目标元素或搜索范围为空。

对于顺序存储的二叉树,可以采用线性查找算法;对于链式存储的二叉树,可以采用深度优先搜索或广度优先搜索算法。

4. 插入元素在二叉树中插入元素需要遵循一定的规则,保证二叉树的性质。

对于顺序存储的二叉树,插入操作需要移动大量元素;对于链式存储的二叉树,插入操作相对简单,只需修改指针即可。

5. 删除元素在二叉树中删除元素同样需要遵循一定的规则,保证二叉树的性质。

实验三--二叉树的基本运算

实验三--二叉树的基本运算

实验三二叉树的基本运算一、实验目的1、使学生熟练掌握二叉树的逻辑结构和存储结构。

2、熟练掌握二叉树的各种遍历算法。

二、实验内容1、问题描述建立一棵二叉树,试编程实现二叉树的如下基本操作:(1). 按先序序列构造一棵二叉链表表示的二叉树T;(2). 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;(3). 求二叉树的深度/结点数目/叶结点数目;(选做)(4). 将二叉树每个结点的左右子树交换位置。

(选做)2、基本要求从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立)。

3、测试数据如输入:abc00de0g00f000(其中ф表示空格字符)则输出结果为:先序:a->b->c->d->e->g->f中序:a->b->c->d->e->g->f后序:a->b->c->d->e->g->f三、程序代码#include<malloc.h>#include<iostream.h>#define OK 1#define ERROR -1typedef char TElemType;int i;typedef struct BiTNode{TElemType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;int CreateBiTree(BiTree&T) //创建二叉树{char a;cin>>a;if(a=='0') T=NULL;else{if(!(T=(BiTNode*)malloc(sizeof(BiTNode)))) {return ERROR;}T->data=a;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}return OK;}int PreOrderTraverse(BiTree&T) //先序遍历二叉树{if(T){//cout<<"此为先序遍历"<<endl;cout<<T->data<<"->";if(PreOrderTraverse(T->lchild))if(PreOrderTraverse(T->rchild))return OK;return ERROR;}else return OK;}int InOrderTraverse(BiTree&T) //中序遍历二叉树{if(T){//cout<<"此为中序遍历"<<endl;if(InOrderTraverse(T->lchild)){cout<<T->data<<"->";if(InOrderTraverse(T->rchild))return OK;}return ERROR;}else return OK;}int PostOrderTraverse(BiTree&T) //后序遍历二叉树{if(T){//cout<<"此为后序遍历"<<endl;if (PostOrderTraverse(T->lchild))if(PostOrderTraverse(T->rchild)){cout<<T->data<<"->";i++;return (OK);}return (ERROR);}elsereturn (OK);}int CountDepth(BiTree&T) //计算二叉树的深度{if(T==NULL){return 0;}else{int depl=CountDepth(T->lchild);int depr=CountDepth(T->lchild);if(depl>depr){return depl+1;}else{return depr+1;}}}void main() //主函数{BiTree T;cout<<"请输入二叉树节点的值以创建树"<<endl;CreateBiTree(T);cout<<"此为先序遍历";PreOrderTraverse(T);cout<<"end"<<endl;cout<<"此为中序遍历";InOrderTraverse(T);cout<<"end"<<endl;cout<<"此为后序遍历";PostOrderTraverse(T);cout<<"end"<<endl<<"此树节点数是"<<i<<endl<<"此树深度是"<<CountDepth(T)<<endl;}四、调试结果及运行界面:五、实验心得通过这次程序上机实验让我认识到了以前还不太了解的二叉树的性质和作用,这次实验的的确确的加深了我对它的理解。

(完整版)C++二叉树基本操作实验报告

(完整版)C++二叉树基本操作实验报告

一、实验目的选择二叉链式存储结构作为二叉树的存储结构,设计一个程序实现二叉树的基本操作(包括建立、输出、前序遍历、中序遍历、后序遍历、求树高、统计叶子总数等)二、实验开发环境Windows 8.1 中文版Microsoft Visual Studio 6.0三、实验内容程序的菜单功能项如下:1------建立一棵二叉树2------前序遍历递归算法3------前序遍历非递归算法4------中序遍历递归算法5------中序遍历非递归算法6------后序遍历递归算法7------后序遍历非递归算法8------求树高9------求叶子总数10-----输出二叉树11-----退出四、实验分析1、建立一棵二叉树2、输入二叉树各节点数据cout<<"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t数组3、递归前序遍历void BL1(ECS_data *t){if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}4、非递归前序遍历void preOrder2(ECS_data *t){stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" ";s.push(p);p=p->l;}if(!s.empty()){p=s.top();s.pop();p=p->r;}}}5、递归中序遍历void BL2(ECS_data *t){if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}6、非递归中序遍历void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top();cout<<p->data<<" ";s.pop();p=p->r;}}}7、递归后序遍历void BL3(ECS_data *t){if(NULL!=t){BL3(t->l);BL3(t->r);cout<<t->data<<",";}}8、非递归后序遍历void postOrder3(ECS_data *t){stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; //前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}9、求树高int Height (ECS_data *t){if(t==NULL) return 0;else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}10、求叶子总数int CountLeaf(ECS_data *t){static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)//为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);//递归统计左子树叶子数目CountLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum;}五、运行结果附:完整程序源代码://二叉树链式存储的实现#include<iostream>#include<cstring>#include <stack>using namespace std;struct ECS_data //先定义好一个数据的结构{char data;ECS_data *l;ECS_data *r;};class ECS{private://int level; //树高int n; //表示有多少个节点数int n1; //表示的是数组的总长度值,(包括#),因为后面要进行删除判断ECS_data *temp[1000];public:ECS_data *root;ECS() //初始化{ECS_data *p;char t[1000];int i;int front=0,rear=1; //front表示有多少个节点,rear表示当前插入的点的父母cout<<"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t数组//cout<<t<<" "<<endl;int n1=strlen(t); //测量数据的长度n=0;for(i=0;i<n1;i++){if(t[i]!='#'){p=NULL;if(t[i]!=',') //满足条件并开辟内存{n++;p=new ECS_data;p->data=t[i];p->l=NULL;p->r=NULL;}front++;temp[front]=p;if(1 == front){root=p;}else{if((p!=NULL)&&(0==front%2)){temp[rear]->l=p;//刚开始把这里写成了==}if((p!=NULL)&&(1==front%2)){temp[rear]->r=p;}if(1==front%2)rear++; //就当前的数据找这个数据的父母}}}}~ECS() //释放内存{int i;for(i=1;i<=n;i++)if(temp[i]!=NULL)delete temp[i];}void JS() //记录节点的个数{int s;s=n;cout<<"该二叉树的节点数为:"<<s<<endl;}void BL1(ECS_data *t)//递归前序遍历{if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}void preOrder2(ECS_data *t) //非递归前序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" ";s.push(p);p=p->l;}if(!s.empty()){p=s.top();s.pop();p=p->r;}}}void BL2(ECS_data *t)//递归中序遍历{if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top();cout<<p->data<<" ";s.pop();p=p->r;}}}void BL3(ECS_data *t)//递归后序遍历{if(NULL!=t){BL3(t->l);BL3(t->r);cout<<t->data<<",";}}void postOrder3(ECS_data *t) //非递归后序遍历{stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; //前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}int Height (ECS_data *t) //求树高{if(t==NULL) return 0;else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}int CountLeaf(ECS_data *t) //求叶子总数{static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)//为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);//递归统计左子树叶子数目CountLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum;}};int main(){ECS a;a.JS();cout<<"递归前序遍历:";a.BL1(a.root);cout<<endl;cout<<"非递归前序遍历:";a.preOrder2(a.root);cout<<endl;cout<<"递归中序遍历:";a.BL2(a.root);cout<<endl;cout<<"非递归中序遍历:";a.inOrder2(a.root);cout<<endl;cout<<"递归后序遍历:";a.BL3(a.root);cout<<endl;cout<<"非递归后序遍历:";a.postOrder3(a.root);cout<<endl;cout<<"树高为:"<<a.Height(a.root)<<endl;cout<<"叶子总数为:"<<a.CountLeaf(a.root)<<endl;return 0;}。

二叉树c语言实现完整代码

二叉树c语言实现完整代码

二叉树c语言实现完整代码二叉树是一种非常常见的数据结构,它由节点和边组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。

在计算机科学中,二叉树被广泛应用于搜索、排序、编译器等领域。

本文将介绍如何使用C语言实现二叉树的完整代码。

我们需要定义二叉树的节点结构体。

每个节点包含三个成员变量:数据、左子节点和右子节点。

代码如下:```struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;};```接下来,我们需要实现二叉树的基本操作,包括创建节点、插入节点、删除节点、查找节点等。

这些操作可以通过递归实现。

代码如下:```// 创建节点struct TreeNode* createNode(int val) {struct TreeNode* node = (struct TreeNode*)malloc(sizeof(struct TreeNode));node->val = val;node->left = NULL;node->right = NULL;return node;}// 插入节点struct TreeNode* insertNode(struct TreeNode* root, int val) {if (root == NULL) {return createNode(val);}if (val < root->val) {root->left = insertNode(root->left, val);} else {root->right = insertNode(root->right, val);}return root;}// 删除节点struct TreeNode* deleteNode(struct TreeNode* root, int val) {if (root == NULL) {return NULL;}if (val < root->val) {root->left = deleteNode(root->left, val);} else if (val > root->val) {root->right = deleteNode(root->right, val);} else {if (root->left == NULL) {struct TreeNode* temp = root->right;free(root);return temp;} else if (root->right == NULL) {struct TreeNode* temp = root->left;free(root);return temp;}struct TreeNode* temp = findMin(root->right); root->val = temp->val;root->right = deleteNode(root->right, temp->val); }return root;}// 查找节点struct TreeNode* searchNode(struct TreeNode* root, int val) {if (root == NULL || root->val == val) {return root;}if (val < root->val) {return searchNode(root->left, val);} else {return searchNode(root->right, val);}}// 查找最小节点struct TreeNode* findMin(struct TreeNode* root) {while (root->left != NULL) {root = root->left;}return root;}```我们需要实现二叉树的遍历操作,包括前序遍历、中序遍历和后序遍历。

数据结构二叉树的基本操作代码

数据结构二叉树的基本操作代码

数据结构二叉树的基本操作代码x#include<iostream>using namespace std;//二叉树的结构struct TreeNode{int data;//节点的值TreeNode *left;//指向左子树TreeNode *right;//指向右子树};//插入节点void insert(TreeNode *&tree, int val){if(tree == NULL){tree = new TreeNode;tree->data = val;tree->left = tree->right = NULL;}else if(val<=tree->data)//小于根节点的值则插入到左子树 insert(tree->left, val);else if(val>tree->data)//大于根节点的值则插入到右子树 insert(tree->right,val);}//查找节点TreeNode* find(TreeNode *tree,int val){if (tree == NULL)//树为空,无法查找return NULL;else if (val == tree->data)//值和节点的值相等,返回该节点return tree;else if (val < tree->data)//值小于节点的值,查找左子树 return find(tree->left,val);else if (val > tree->data)//值大于节点的值,查找右子树 return find(tree->right,val);elsereturn NULL;//无法查找}//遍历二叉树//先序遍历void preOrder(TreeNode *tree){if(tree != NULL){cout<< tree->data <<'t'; //先访问根节点preOrder(tree->left); //再遍历左子树 preOrder(tree->right); //最后遍历右子树 }}//中序遍历void inOrder(TreeNode *tree){if(tree != NULL){inOrder(tree->left); //先遍历左子树 cout<< tree->data <<'t'; //再访问根节点inOrder(tree->right); //最后遍历右子树 }}//后序遍历void postOrder(TreeNode *tree){if(tree != NULL){postOrder(tree->left); //先遍历左子树 postOrder(tree->right); //再遍历右子树 cout<< tree->data <<'t'; //最后访问根节点 }}//查找最大值TreeNode* findMax(TreeNode *tree){if(tree == NULL)return NULL;else if(tree->right == NULL)return tree;elsereturn findMax(tree->right);}//查找最小值TreeNode* findMin(TreeNode *tree){if(tree == NULL)return NULL;else if(tree->left == NULL)return tree;elsereturn findMin(tree->left);}//删除节点void remove(TreeNode *&tree, int val){if(tree == NULL)return;else if(val < tree->data)remove(tree->left, val);else if(val > tree->data)remove(tree->right, val);else//找到要删除的节点{if(tree->left != NULL && tree->right != NULL)//左右子树均不为空{TreeNode *temp = tree;TreeNode *max = findMax(tree->left);//查找左子树的最大结点tree->data = max->data;//将最大结点的值替换到要删除的节点remove(temp->left, max->data);//将最大结点删掉}else//只有一边的子节点不为空或者左右节点都为空{TreeNode *temp = tree;if(tree->left == NULL)//如果左节点为空,就将右节点提升 tree = tree->right;else if(tree->right == NULL)//如果右节点为空,就将左节点提升tree = tree->left;delete temp;//删掉要删除的节点}}}int main(){TreeNode *tree = NULL; //声明一个空树int arr[10] = {12, 3, 4, 6, 7, 9, 10, 5, 2, 8};for(int i=0; i<10; i++){insert(tree, arr[i]);//把数组元素插入到树当中}cout<<'先序遍历:';preOrder(tree);cout<<endl;cout<<'中序遍历:';inOrder(tree);cout<<endl;cout<<'后序遍历:';postOrder(tree);cout<<endl;cout<<'查找节点数据:4';TreeNode *findNode = find(tree, 4);if(findNode != NULL)//如果节点存在cout<<'找到了,节点的值是:'<<findNode->data;else//如果节点不存在cout<<'没有找到';cout<<endl;cout<<'查找树的最大值:'<<findMax(tree)->data<<endl; cout<<'查找树的最小值:'<<findMin(tree)->data<<endl; cout<<'删除节点:。

二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。

二、实验内容
1、构造一个二叉树。

我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。

2、实现查找二叉树中的节点。

在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。

3、实现删除二叉树中的节点。

在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。

4、对二叉树进行遍历操作。

二叉树的遍历有多种方法,本实验使用的是先序遍历。

首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。

三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。

数据结构实验报告—二叉树

数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。

在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。

实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。

2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。

3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。

4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。

5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。

二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。

节点被表示为一个由数据和指向其左右子节点的指针组成的结构。

二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。

二叉树可以用链式存储结构或顺序存储结构表示。

- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。

- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。

二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。

我们可以通过手动输入或读取外部文件中的数据来创建二叉树。

对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。

对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。

一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。

2. 创建子节点,并到父节点。

3. 重复步骤2,直到创建完整个二叉树。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

二叉树实验报告

二叉树实验报告

二叉树实验报告1. 引言二叉树是一种常用的数据结构,广泛应用于计算机科学和信息技术领域。

本实验旨在通过对二叉树的理解和实现,加深对数据结构与算法的认识和应用能力。

本报告将介绍二叉树的定义、基本操作以及实验过程中的设计和实现。

2. 二叉树的定义二叉树是一个有序树,其每个节点最多有两个子节点。

树的左子节点和右子节点被称为二叉树的左子树和右子树。

3. 二叉树的基本操作3.1 二叉树的创建在实验中,我们通过定义一个二叉树的节点结构来创建一个二叉树。

节点结构包含一个数据域和左右指针,用于指向左右子节点。

创建二叉树的过程可以通过递归或者迭代的方式来完成。

3.2 二叉树的插入和删除二叉树的插入操作是将新节点插入到树中的合适位置。

插入时需要考虑保持二叉树的有序性。

删除操作是将指定节点从树中删除,并保持二叉树的有序性。

在实验中,我们可以使用递归或者循环的方式实现这些操作。

3.3 二叉树的遍历二叉树的遍历是指按照某种次序访问二叉树的所有节点。

常见的遍历方式包括前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后按照左孩子-右孩子的顺序递归遍历左右子树。

中序遍历按照左孩子-根节点-右孩子的顺序递归遍历左右子树。

后序遍历按照左孩子-右孩子-根节点的顺序递归遍历左右子树。

3.4 二叉树的查找查找操作是指在二叉树中查找指定的值。

可以通过递归或者循环的方式实现二叉树的查找操作。

基本思路是从根节点开始,通过比较节点的值和目标值的大小关系,逐步向左子树或者右子树进行查找,直到找到目标节点或者遍历到叶子节点。

4. 实验设计和实现在本实验中,我们设计并实现了一个基于Python语言的二叉树类。

具体实现包括二叉树的创建、插入、删除、遍历和查找操作。

在实验过程中,我们运用了递归和迭代的方法实现了这些操作,并进行了测试和验证。

4.1 二叉树类的设计我们将二叉树的节点设计为一个类,其中包括数据域和左右子节点的指针。

另外,我们设计了一个二叉树类,包含了二叉树的基本操作方法。

c语言二叉树代码

c语言二叉树代码

c语言二叉树代码以下是一个简单的C语言二叉树代码,包括二叉树的创建、插入、遍历、删除等操作:```#include<stdio.h>#include<stdlib.h>//定义二叉树节点类型typedef struct node{int data;struct node *left;struct node *right;}Node;//创建二叉树Node* create_tree(){int value;printf('请输入节点的值(-1表示结束):');scanf('%d', &value);if(value == -1){return NULL;}else{Node *p = (Node*)malloc(sizeof(Node));p->data = value;printf('请输入%d的左子节点:', value);p->left = create_tree();printf('请输入%d的右子节点:', value);p->right = create_tree();return p;}}//插入节点Node* insert_node(Node *root, int value){if(root == NULL){Node *p = (Node*)malloc(sizeof(Node));p->data = value;p->left = NULL;p->right = NULL;return p;}else if(value < root->data){root->left = insert_node(root->left, value);}else if(value > root->data){root->right = insert_node(root->right, value); }return root;}//先序遍历void preorder_traversal(Node *root){if(root != NULL){printf('%d ', root->data);preorder_traversal(root->left);preorder_traversal(root->right);}}//中序遍历void inorder_traversal(Node *root){if(root != NULL){inorder_traversal(root->left);printf('%d ', root->data);inorder_traversal(root->right);}}//后序遍历void postorder_traversal(Node *root){if(root != NULL){postorder_traversal(root->left);postorder_traversal(root->right);printf('%d ', root->data);}}//查找节点Node* search_node(Node *root, int value){ if(root == NULL){return NULL;}else if(root->data == value){return root;}else if(value < root->data){return search_node(root->left, value);}else{return search_node(root->right, value); }}//删除节点Node* delete_node(Node *root, int value){if(root == NULL){return NULL;}else if(value < root->data){root->left = delete_node(root->left, value); }else if(value > root->data){root->right = delete_node(root->right, value); }else{//情况一:被删除节点没有子节点if(root->left == NULL && root->right == NULL){ free(root);root = NULL;}//情况二:被删除节点只有一个子节点else if(root->left == NULL){Node *temp = root;root = root->right;free(temp);}else if(root->right == NULL){Node *temp = root;root = root->left;free(temp);}//情况三:被删除节点有两个子节点else{Node *temp = root->right;while(temp->left != NULL){temp = temp->left;}root->data = temp->data;root->right = delete_node(root->right, temp->data); }}return root;}//主函数int main(){Node *root = NULL;int choice, value;while(1){printf('请选择操作: ');printf('1.创建二叉树 ');printf('2.插入节点');printf('3.遍历二叉树 ');printf('4.查找节点');printf('5.删除节点');printf('6.退出程序');scanf('%d', &choice); switch(choice){case 1:root = create_tree(); break;case 2:printf('请输入要插入的节点值:');scanf('%d', &value);root = insert_node(root, value);break;case 3:printf('先序遍历:');preorder_traversal(root);printf('中序遍历:');inorder_traversal(root);printf('后序遍历:');postorder_traversal(root);printf('');break;case 4:printf('请输入要查找的节点值:');scanf('%d', &value);Node *result = search_node(root, value);if(result != NULL){printf('找到节点:%d', result->data);}else{printf('未找到节点:%d', value);}break;case 5:printf('请输入要删除的节点值:');scanf('%d', &value);root = delete_node(root, value); break;case 6:printf('程序已退出。

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。

本实验将介绍二叉树的基本操作与实现,并给出相应的实验报告。

一、引言二叉树是一种特殊的树状结构,每个节点至多有两个子节点。

二叉树有许多重要的特性,如平衡二叉树、二叉树等,应用广泛。

在本实验中,我们将介绍二叉树的基本操作和实现。

二、实验目的1.掌握二叉树的基本概念和特性;2.熟悉二叉树的基本操作,包括创建、插入、删除、遍历等;3.学会使用编程语言实现二叉树的基本操作。

三、实验内容本实验主要包括以下内容:1.二叉树的定义和基本概念;2.二叉树的基本操作,包括创建、插入、删除、遍历等;3.使用编程语言实现二叉树的基本操作;4.测试和验证二叉树的基本操作的正确性。

四、实验步骤1.二叉树的定义和基本概念二叉树是一种树状结构,每个节点至多有两个子节点。

二叉树的每个节点包含一个数据项和指向左子树和右子树的指针。

二叉树的特性有很多,如完全二叉树、平衡二叉树、二叉树等。

2.二叉树的基本操作(1)创建二叉树:可以通过手动输入节点数据来创建二叉树,也可以通过读取文件中的数据来创建二叉树。

(2)插入节点:在指定位置插入一个新节点。

(3)删除节点:删除指定位置的节点。

(4)遍历二叉树:有前序遍历、中序遍历和后序遍历三种遍历方式。

3.使用编程语言实现二叉树的基本操作实现二叉树的基本操作可以使用编程语言来完成。

我们可以定义一个二叉树的结构体,包含节点数据和指向左右子树的指针。

然后根据具体的需求,实现相应的操作函数。

4.测试和验证二叉树的基本操作的正确性在完成二叉树的基本操作后,我们可以编写测试代码来验证操作的正确性。

通过创建二叉树,并进行插入、删除和遍历操作,观察输出结果是否符合预期。

五、实验结果与分析在完成二叉树的基本操作后,我们可以进行测试和验证。

通过输出二叉树的遍历结果,比对预期结果来判断操作是否正确。

同时,我们还可以观察二叉树的结构和特性,如是否满足平衡二叉树或二叉树的条件。

二叉树的基本操作实验报告

二叉树的基本操作实验报告

二叉树的基本操作实验报告二叉树的基本操作实验报告引言:二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。

二叉树的基本操作包括创建、遍历、插入和删除等。

本实验旨在通过实践来深入了解二叉树的基本操作,并通过实验结果验证其正确性和有效性。

一、创建二叉树创建二叉树是二叉树操作中的第一步。

在本实验中,我们使用了递归算法来创建二叉树。

递归算法是一种重要的算法思想,通过将问题划分为更小的子问题来解决复杂的问题。

在创建二叉树时,我们首先创建根节点,然后递归地创建左子树和右子树。

二、遍历二叉树遍历二叉树是对二叉树中的每个节点进行访问的过程。

常见的遍历方式有前序遍历、中序遍历和后序遍历。

前序遍历先访问根节点,然后递归遍历左子树和右子树;中序遍历先递归遍历左子树,然后访问根节点,最后递归遍历右子树;后序遍历先递归遍历左子树和右子树,最后访问根节点。

三、插入节点插入节点是向二叉树中添加新节点的操作。

插入节点的过程需要遵循二叉树的特性,即左子节点的值小于父节点的值,右子节点的值大于父节点的值。

在插入节点时,我们需要找到合适的位置,将新节点插入到正确的位置上。

四、删除节点删除节点是从二叉树中移除节点的操作。

删除节点的过程相对复杂,需要考虑多种情况。

如果要删除的节点是叶子节点,直接删除即可。

如果要删除的节点只有一个子节点,将其子节点连接到父节点上。

如果要删除的节点有两个子节点,我们需要找到其后继节点或前驱节点来替代被删除的节点。

实验结果:通过实验,我们成功地实现了二叉树的基本操作。

创建二叉树的递归算法能够正确地创建出符合要求的二叉树。

遍历二叉树的算法能够按照指定的顺序遍历每个节点。

插入节点和删除节点的操作也能够正确地修改二叉树的结构。

讨论与总结:二叉树的基本操作是数据结构中的重要内容,对于理解和应用其他数据结构具有重要意义。

通过本次实验,我们深入了解了二叉树的创建、遍历、插入和删除等操作,并通过实验验证了其正确性和有效性。

二叉树基本操作C程序

二叉树基本操作C程序
if((stricmp(tree->data,ch))==0){
return tree;
}
else{
return NULL;
}
}
else{
L=findleaf(tree->lchild,ch);
R=findleaf(tree->rchild,ch);
return L>R?L:R;
}
}
else{
return NULL;
if(tree==NULL){
result=-1; //指针为空,表示已达叶子结点,result赋值为-1,表示没找到回朔递归
return;
}
else if(stricmp(tree->data,ch)==0){
result=lev; //在二叉树中找到了结点ch,把中间变量lev中保存的到结点ch的层数存到result中后回朔递归
testlevel(tree); //调用函数testlevel(tree),确定某个结点的层数
testfindleaf(tree); //调用函数testfindleaf(tree),输出查找某个叶子结点并返回结点指针的函数的测试结果
}
while(stricmp(ch,"exit")){
leaf=findleaf(tree,ch);
if(leaf!=NULL){
printf("找到叶子结点:%s\n",ch);
}
else{
printf("叶子结点中没有:%s\n",ch);
}
printf("输入要查找的叶子结点编号(输入“exit”则结束):");
}

二叉树基本运算算法的实现

二叉树基本运算算法的实现

二叉树基本运算算法的实现
二叉树是一种常见的数据结构,基本运算算法包括二叉树的遍历、查找、插入、删除等操作。

下面是这些算法的实现:
1. 二叉树遍历:二叉树遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。

其中,前序遍历先访问根节点,再访问左子树和右子树;中序遍历先访问左子树,再访问根节点和右子树;后序遍历先访问左子树,再访问右子树和根节点。

遍历可以使用递归算法或栈实现。

2. 二叉树查找:二叉树查找可以使用递归算法或循环算法实现。

递归算法通过比较节点值实现查找,如果查找值小于当前节点值,则在左子树中查找,否则在右子树中查找。

循环算法使用二叉树的特性,比较查找值和当前节点值的大小,根据大小关系不断移动到左子树或右子树中进行查找,直到找到目标节点或遍历到叶子节点为止。

3. 二叉树插入:二叉树插入需要先查找到插入位置,然后在该位置插入一个新节点。

插入操作可以使用递归算法或循环算法实现。

4. 二叉树删除:二叉树删除分为三种情况:删除叶子节点、删除只有一个孩子的节点和删除有两个孩子的节点。

删除叶子节点很简单,只需要将其父节点的指针设为NULL即可。

删除只有一个孩子的节点需要将父节点的指针指向该节点的
孩子节点。

删除有两个孩子的节点需要找到该节点的后继节点(或前驱节点),将后继节点的值复制到该节点中,然后删除后继节点。

上述算法的实现需要根据具体的编程语言进行调整和实现。

二叉树基本操作--实验报告

二叉树基本操作--实验报告

宁波工程学院电信学院计算机教研室实验报告一、实验目的1、熟悉二叉树树的基本操作。

2、掌握二叉树的实现以及实际应用。

3、加深二叉树的理解,逐步培养解决实际问题的编程能力。

二、实验环境1台WINDOWS环境的PC机,装有Visual C++ 6.0。

三、实验内容【问题描述】现需要编写一套二叉树的操作函数,以便用户能够方便的利用这些函数来实现自己的应用。

其中操作函数包括:1>创建二叉树CreateBTNode(*b,*str):根据二叉树括号表示法的字符串*str生成对应的链式存储结构。

2>输出二叉树DispBTNode(*b):以括号表示法输出一棵二叉树。

3>查找结点FindNode(*b,x):在二叉树b中寻找data域值为x的结点,并返回指向该结点的指针。

4>求高度BTNodeDepth(*b):求二叉树b的高度。

若二叉树为空,则其高度为0;否则,其高度等于左子树与右子树中的最大高度加l。

5>求二叉树的结点个数NodesCount(BTNode *b)6>先序遍历的递归算法:void PreOrder(BTNode *b)7>中序遍历的递归算法:void InOrder(BTNode *b)8>后序遍历递归算法:void PostOrder(BTNode *b)9>层次遍历算法void LevelOrder(BTNode *b)【基本要求】实现以上9个函数。

主函数中实现以下功能:创建下图中的树b输出二叉树b找到’H’节点,输出其左右孩子值输出b的高度输出b的节点个数输出b的四种遍历顺序上图转化为二叉树括号表示法为A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))程序:#include <stdio.h>#include <malloc.h>#define MaxSize 100typedef char ElemType;typedef struct node{ElemType data; /*数据元素*/struct node *lchild; /*指向左孩子*/struct node *rchild; /*指向右孩子*/} BTNode;void CreateBTNode(BTNode *&b,char *str);//创建BTNode *FindNode(BTNode *b,ElemType x);//查找节点int BTNodeHeight(BTNode *b);//求高度void DispBTNode(BTNode *b);//输出int NodesCount(BTNode *b);//二叉树的结点个数void PreOrder(BTNode *b);//先序遍历递归void InOrder(BTNode *b);//中序遍历递归void PostOrder(BTNode *b);//后序遍历递归void LevelOrder(BTNode *b);//层次遍历//创建void CreateBTNode(BTNode *&b,char *str){BTNode *St[MaxSize],*p=NULL;int top=-1,k,j=0;char ch;b=NULL;ch=str[j];while(ch!='\0'){switch(ch){case '(':top++;St[top]=p;k=1;break;case ')':top--;break;case ',':k=2;break;default:p=(BTNode *)malloc(sizeof(BTNode));p->data=ch;p->lchild=p->rchild=NULL;if(b==NULL)b=p;else{switch(k){case 1:St[top]->lchild=p;break;case 2:St[top]->rchild=p;break;}}}j++;ch=str[j];}}//输出void DispBTNode(BTNode *b){if(b!=NULL){printf("%c",b->data);if(b->lchild!=NULL||b->rchild!=NULL){printf("(");DispBTNode(b->lchild);if(b->rchild!=NULL)printf(",");DispBTNode(b->rchild);printf(")");}}}//查找节点BTNode *FindNode(BTNode *b,ElemType x){BTNode *p;if(b==NULL)return b;else if(b->data==x)return b;else{p=FindNode(b->lchild,x);if(p!=NULL)return p;elsereturn FindNode(b->rchild,x);}}//求高度int BTNodeHeight(BTNode *b){int lchildh,rchildh;if(b==NULL)return (0);else{lchildh=BTNodeHeight(b->lchild);rchildh=BTNodeHeight(b->rchild);return(lchildh>rchildh)?(lchildh+1):(rchildh+1);}}//二叉树的结点个数int NodesCount(BTNode *b){if(b==NULL)return 0;elsereturn NodesCount(b->lchild)+NodesCount(b->rchild)+1;}//先序遍历递归void PreOrder(BTNode *b){if(b!=NULL){printf("%c",b->data);PreOrder(b->lchild);PreOrder(b->rchild);}}//中序遍历递归void InOrder(BTNode *b){if(b!=NULL){InOrder(b->lchild);printf("%c",b->data);InOrder(b->rchild);}}//后序遍历递归void PostOrder(BTNode *b){if(b!=NULL){PostOrder(b->lchild);PostOrder(b->rchild);printf("%c",b->data);}}//层次遍历void LevelOrder(BTNode *b){BTNode *p;BTNode *qu[MaxSize];int front,rear;front=rear=-1;rear++;qu[rear]=b;while(front!=rear){front=(front+1)%MaxSize;p=qu[front];printf("%c",p->data);if(p->lchild!=NULL){rear=(rear+1)%MaxSize;qu[rear]=p->lchild;}if(p->rchild!=NULL){rear=(rear+1)%MaxSize;qu[rear]=p->rchild;}}}void main(){BTNode *b,*p,*lp,*rp;char str[]="A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))";//根据树形图改写成的//二叉树括号表示法的字符串*str//char str[100];scanf("%s",&str);//自行输入括号表示的二叉树CreateBTNode(b,str); //创建树bprintf("\n");printf("输出二叉树:");//输出二叉树bDispBTNode(b);printf("\n");printf("'H'结点:");//找到'H'节点,输出其左右孩子值p=FindNode(b,'H');printf("\n");if (p!=NULL){printf("左孩子节点的值");printf("%c",p->lchild->data);printf("\n");printf("右孩子节点的值");printf("%c",p->rchild->data);printf("\n");//此处输出p的左右孩子节点的值}printf("\n");printf("二叉树b的深度:%d\n",BTNodeHeight(b));//输出b的高度printf("二叉树b的结点个数:%d\n",NodesCount(b));//输出b的节点个数printf("\n");printf(" 先序遍历序列:\n");//输出b的四种遍历顺序printf(" 算法:");PreOrder(b);printf("\n");printf(" 中序遍历序列:\n");printf(" 算法:");InOrder(b);printf("\n");printf(" 后序遍历序列:\n");printf(" 算法:");PostOrder(b);printf("\n");printf(" 层次遍历序列:\n");printf(" 算法:");LevelOrder(b); printf("\n");}四、实验心得与小结通过实验,我熟悉二叉树树的基本操作,掌握二叉树的实现以及实际应用。

二叉树的操作实验报告

二叉树的操作实验报告

二叉树的操作实验报告
实验报告:二叉树的操作
引言:
二叉树是计算机科学中最基础、最重要的数据结构之一,它不仅在算法设计与分析中被广泛应用,而且也在计算机系统和软件工程领域被广泛使用。

在这次实验中,我们将学习和实现二叉树的基本操作,包括二叉树的建立、遍历、查找和删除等。

实验过程:
1. 二叉树的建立
2. 二叉树的遍历
3. 二叉树的查找
4. 二叉树的删除
实验结果:
1. 建立一颗二叉树,根节点为A,左子树B,右子树C,B的左子树D,右子树E,C的左子树F,右子树G。

结构如下:
A
/ \
B C
/ \ / \
D E F G
2. 对上述二叉树先进行中序遍历:DBEAFCG,再进行前序遍历:ABDECFG,最后进行后序遍历:DEBFGCA。

3. 在上述二叉树中查找元素G,并输出其父节点元素C。

4. 删除上述二叉树中的元素F,再对其进行中序遍历,结果为DBEACG。

结论:
通过这次实验,我们掌握了二叉树的基本操作方法,对于理解和分析算法、编写系统和软件工程都具有重要的意义。

同时,在实践中我们也深刻地认识到了二叉树操作的复杂性和局限性,这需要我们在实际应用中加以考虑和综合利用,才能发挥其最大的价值和作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树的基本操作及实现二叉树的基本操作及实现的代码如下:#include <iostream.h>#define MAXNODE 100typedef char DataType;typedef struct BiTNode{DataType data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;void Visit(DataType bt){ //输出二叉树结点值cout<<bt<<" ";}BiTree Initiate(){ //初始化二叉树BiTNode *bt=new BiTNode;if(!bt)return NULL;bt->lchild=NULL;bt->rchild=NULL;return bt;}BiTree Create_BiTree(DataType x,BiTree lbt,BiTree rbt){//建立二叉树:以结点值为x的结点为头结点,并以lbt和rbt为左右子树BiTree p;p=new BiTNode;if(!p){cout<<"无法完成二叉树的建立!"<<endl;return NULL;}p->data=x;p->lchild=lbt;p->rchild=rbt;return p;}BiTree InsertL(BiTree bt,DataType x,BiTree parent){ //在某结点之后插入左结点BiTree p;if(parent==NULL){cout<<"要插入结点的父节点不存在!"<<endl;return NULL;}p=new BiTNode;if(!p){cout<<"没有存储空间!"<<endl;return NULL;}p->data=x;p->lchild=NULL;p->rchild=NULL;if(parent->lchild==NULL)parent->lchild=p;else{p->lchild=parent->lchild;parent->lchild=p;}return bt;}BiTree DeleteL(BiTree bt,BiTree parent){ //删除左子树BiTree p;if(parent==NULL||parent->lchild==NULL){cout<<"参数有误,不能完成删除操作!"<<endl;return NULL;}p=parent->lchild;parent->lchild=NULL;delete p;return bt;}void PreOrder(BiTree bt){ //递归前序遍历二叉树if(bt==NULL)return;Visit(bt->data);PreOrder(bt->lchild);PreOrder(bt->rchild);}void InOrder(BiTree bt){ //递归中序遍历二叉树if(bt==NULL)return;InOrder(bt->lchild);Visit(bt->data);InOrder(bt->rchild);}void PostOrder(BiTree bt){ //递归后序遍历二叉树if(bt==NULL)return;PostOrder(bt->lchild);PostOrder(bt->rchild);Visit(bt->data);}void LevelOrder(BiTree bt){ //层次遍历二叉树BiTree Queue[MAXNODE];int front,rear;if(bt==NULL)return;front=-1;rear=0;Queue[rear]=bt;while(rear!=front){front++;Visit(Queue[front]->data);if(Queue[front]->lchild!=NULL){rear++;Queue[rear]=Queue[front]->lchild;}if(Queue[front]->rchild!=NULL){rear++;Queue[rear]=Queue[front]->rchild;}}}void NPRreOrder(BiTree bt){ //非递归先序遍历二叉树BiTree stack[MAXNODE],p;int top=-1;if(bt==NULL){cout<<"原二叉树为空!"<<endl;return;}p=bt;while(!(p==NULL&&top==-1)){while(p!=NULL){Visit(p->data);if(top<MAXNODE-1){top++;stack[top]=p;}else{cout<<"栈的空间不够无法完成遍历操作!"<<endl;return;}p=p->lchild;}if(top==-1)return;else{p=stack[top];top--;p=p->rchild;}}}void NPInOrder(BiTree bt){ //非递归中序遍历二叉树BiTree stack[MAXNODE],p;int top=-1;if(bt==NULL){cout<<"原二叉树为空!"<<endl;return;}p=bt;while(!(p==NULL&&top==-1)){while(p!=NULL){if(top<MAXNODE-1){top++;stack[top]=p;}else{cout<<"栈的空间不够无法完成遍历操作!"<<endl;return;}p=p->lchild;}if(top==-1)return;else{p=stack[top];top--;Visit(p->data);p=p->rchild;}}}typedef struct{ //非递归后序遍历二叉树BiTree link;int flag;}StackType;void NPPostOrder(BiTree bt){StackType stack[MAXNODE];BiTree p;int top,sign;if(bt==NULL){cout<<"原二叉树为空!"<<endl;return;}top=-1;p=bt;while(!(p==NULL&&top==-1)){if(p!=NULL){top++;stack[top].link=p;stack[top].flag=1;p=p->lchild;}else{p=stack[top].link;sign=stack[top].flag;top--;if(sign==1){top++;stack[top].link=p;stack[top].flag=2;p=p->rchild;}else{Visit(p->data);p=NULL;}}}}int CountLeaf(BiTree bt){ //统计叶结点个数if(bt==NULL)return 0;if(bt->lchild==NULL&&bt->rchild==NULL)return 1;return (CountLeaf(bt->lchild)+CountLeaf(bt->rchild)); }void main(){BiTNode *bta,*btb,*btc,*btd,*btf,*btg;DataType xa,xe;int count;bta=Initiate();btb=Initiate();;btc=Initiate();;btd=Initiate();;btf=Initiate();;btg=Initiate();;bta->lchild=bta->rchild=NULL;btb->data='B';btd->data='D';btg->data='G';btc->data='C';btf->data='F';btb->lchild=btd;btb->rchild=NULL;btd->lchild=NULL;btd->rchild=btg;btg->lchild=NULL;btg->rchild=NULL;btc->lchild=NULL;btc->rchild=btf;btf->lchild=NULL;btf->lchild=NULL;xa='A';xe='E';bta=Create_BiTree(xa,btb,btc);PreOrder(bta);cout<<endl;InOrder(bta);cout<<endl;PostOrder(bta);cout<<endl;LevelOrder(bta);cout<<endl;InsertL(bta,xe,btc);PreOrder(bta);cout<<endl;DeleteL(bta,btc);PreOrder(bta);cout<<endl;NPRreOrder(bta);cout<<endl;NPInOrder(bta);cout<<endl;NPPostOrder(bta);count=CountLeaf(bta);cout<<endl;cout<<"二叉树的叶子结点个数是:"<<count<<endl;}。

相关文档
最新文档