复变函数习题答案第2章习题详解

合集下载

复变函数习题及答案解释

复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。

复变函数习题答案第2章习题详解

复变函数习题答案第2章习题详解

第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()z z z z z n n z nz z z z z z z nn n n n z n n z n∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→ 22100121limlim '()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆ lim 2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫ ⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim '2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂xv,1-=∂∂y v 都是连续函数。

只有12-=x ,即21-=x 时才满足柯西—黎曼方程。

()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。

2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂xv ,29y y v =∂∂都是连续函数。

只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。

()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。

3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy y u 2=∂∂,xy xv 2=∂∂,2x y v =∂∂都是连续函数。

复变函数第二章习题答案

复变函数第二章习题答案

复变函数第二章习题答案第二章 解析函数1-6题中:(1)只要不满足C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导y x y x v v u u ,,,,只要一阶偏导存在且连续,同时满足C-R 条件。

(3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。

(4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。

解析函数求导:x x iv u z f +=')(4、若函数)(z f 在区域D 上解析,并满足下列的条件,证明)(z f 必为常数。

(1)证明:因为)(z f 在区域上解析,所以。

令),(),()(y x iv y x u z f +=,即x v y u y v x u ∂∂-=∂∂∂∂=∂∂,0=∂∂+∂∂='yvi x u z f )(。

由复数相等的定义得:00=∂∂-=∂∂=∂∂=∂∂xv y u y v x u ,。

所以,1C y x u =),((常数),2C y x v =),((常数),即21iC C z f +=)(为常数。

5、证明函数在平面上解析,并求出其导数。

(1)()()0f z z D '=∈z (cos sin )(cos sin ).x xe x y y y ie y y x y -++证明:设=则,;;满足xvy u y v x u ∂∂-=∂∂∂∂=∂∂,。

即函数在平面上),(y x 可微且满足C-R 条件,故函数在平面上解析。

8、(1)由已知条件求解析函数iv u z f +=)(,xy y x u +-=22,i i f +-=1)(。

复变函数第二章答案

复变函数第二章答案

32页9. 设
f ( z ) u iv 是Z的解析函数, 证明 2 | f ( z ) | )2 | f ( z )|2 (1) ( | f ( z ) | ) ( y x 证 | f ( z ) | u2 v 2 2u ux 2v v x u ux v v x | f (z) | x u2 v 2 2 u2 v 2 2u u y 2v v y u v x v ux | f (z) | 2 2 y 2 u v u2 v 2
z 0 时 ux v y , u y v x
因此 f ( z ) 在除去原点的 复平面上处处 可导 处处 解析
(4) 解
u y 1, 0, v y 0, ux 由 u y v x 得 f ( z ) Im z
f ( z ) Im z y v 0 u y,
33页16. 计算
3
i
Ln 3 ln 3 i 2k

3 e
iБайду номын сангаас
i Ln 3
e
2k [cos(ln 3) i sin(ln 3)]
k 0, 1, 2,...,
e
2k i ln 3
计算

(1 i ) i Ln(1 i ) i (1 i ) e
i
e

ln 2 ( 2k ) i 2 4
ln 2 ln 2 4 i sin ) (cos e 2 2 i 1 4) ln 2 i ( 2k ) Ln( 1 i ) Ln( 2 e
2 4
(
2k )
满足 u y v x f ( z ) x 2 iy 只有在直线 2 x 1 上可导 因此 在复平面上处处 不解析 2 2 (2) f ( z ) xy ix y 2 v x2 y 解 u xy , 2 由 ux v y 得 x y ux y , v y x 2 u y 2 xy , v x 2xy 由 u y v x 得 xy 0

复变函数与积分第二章(1)答案

复变函数与积分第二章(1)答案

1、函数2)(z z z f =在何处可导?何处不可导?何处解析?何处不解析? 解:2()f z zz =223223()()()()()f z zz x iy x iy x xy i x y y ==-+=+++32u x xy =+ ,23v x y y =+ 223u x y x∂=+∂ ,2u xy y ∂=∂2v xy x ∂=∂ ,223v x y y ∂=+∂ 显然只有当x=y=0时,四个偏导才能满足C-R 方程,因此函数只是在原点,即z=0处可导,但在整个复平面上处处不解析。

2、如果iv u z f +=)(为解析函数,试证u -是v 的共轭调和函数。

证明:由于()f z u iv =+是解析函数,所以有 u v x y∂∂=∂∂ ,u v y x ∂∂=-∂∂ 即()v u x y ∂∂-=∂∂ ,()v u y x ∂∂-=-∂∂ 也就是说,以v 为实部,以–u 为虚部构成的复变函数是一个解析函数,所以–u 是v 的共轭调和函数。

3、由下列条件求解析函数iv u z f +=)(。

(1) i f y x u -=-=)0(,)1(2;(2) (cos sin ),(0)0x u e x y y y f =-=。

解:(1) 2(1),(0)u x y f i =-=-由柯西-黎曼方程得 )12--=∂∂-=∂∂x y u x v ( ① y xu y v 2=∂∂-=∂∂ ② 由式①得)()1()()1(22⎰+--=+--=y g x y g dx x v将所得v 代入式②有 所以,)(2)(2c y y g y y g +=⇒=' []222222)1()(,0)0()1()1()1(2)()1(),(--==⇒-=+-⇒-=+--=++--+-=+=++--=z i z f c i ic i i f ic z i c y x i y x iv u z f cy x y x v 即又(2) (cos sin ),(0)0x u e x y y y f =-=因 []c y y e y x e c ydy ydy y y y x e cydy ydy y ydy x e cdy y e y y y x e dx c dy xu dx y u y x v y e y y y x e yv y y y y x e yu x v z f y y y y x e yu y e y y y x e xu x x y y x y y y x x x y x y x x x x x x x +-=++--=++-=++-+=+∂∂+∂∂-=+-=∂∂----=∂∂-=∂∂---=∂∂+-=∂∂⎰⎰⎰⎰⎰⎰⎰⎰cos sin )cos cos cos sin ()cos sin cos (cos )sin cos (0),(,cos )sin cos ()cos sin sin ()()cos sin sin (cos )sin cos (0000000),()0'0(则的解析性,有由因此ic y y y x ie y y y x e z f x x +-+-=)cos sin ()sin cos ()(由0,0)0(==C f 知,即z x x ze y y y x ie y y y x e z f =-+-=)cos sin ()sin cos ()(。

复变函数习题解答(第2章)

复变函数习题解答(第2章)

p90第二章习题(一)[ 1, 6, 9, 14(3), 26 ]1. 设连续曲线C : z = z(t), t∈[α, β],有z’(t0) ≠ 0 (t0∈[α, β]),试证曲线C在点z(t0)有切线.【解】首先,因为当t →t0时,(z(t) -z(t0))/(t-t0) →z’(t0) ≠ 0,故| (z(t) -z(t0))/(t-t0) | → | z’(t0)| ≠ 0,因此存在δ> 0,使得∀t∈[α, β],当0 < | t-t0 | < δ时,有| (z(t) -z(t0))/(t-t0) |≠ 0,故| z(t) -z(t0) |≠ 0,即z(t) ≠z(t0).此时,存在唯一确定的过点z(t0)以及点z(t) (t ≠t0)的割线:(y(t) -y(t0))(X-x(t0)) + (x(t) -x(t0))(Y-y(t0)) = 0.此方程等价于(y(t) -y(t0))/(t-t0) · (X-x(t0)) + (x(t) -x(t0))/(t-t0) · (Y-y(t0)) = 0.当t→t0时,有y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0.因为z’(t0) ≠ 0,故y’(t0)2 + x’(t0)2≠ 0.直线y’(t0) (X-x(t0)) + x’(t0)) (Y-y(t0)) = 0就是曲线C在点z(t0)处的切线.[这里采用的切线的定义:切线是指割线的极限位置的直线.在这个题目的证明中,我们主要说明两点:第一,当t充分接近t0 (t≠t0),有唯一确定的割线过点z(t0)和z(t);第二,当t →t0 (t≠t0)时,过z(t0)和z(t)的割线确实有“极限位置”] 6. 若函数f(z)在区域D内解析,且满足下述条件之一,试证f(z)在D内为常数.(6.1) 在D内f’(z) = 0;【解】设f(z) = u(x, y) + i v(x, y),(x, y)∈D.由f’(z) = 0及f’(z) = u x + i v x,知u x = v x = 0;由Cauchy-Riemann方程,v y = u x = 0,u y = -v x = 0;因u x = u y = 0,故u在区域D内为常数.因v x = v y = 0,故v在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.2) ( f(z))*在D内解析;【解】因f(z) = u(x, y) + i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = v y,v x = -u y;因( f(z))* = u(x, y) -i v(x, y)在区域D内解析,由Cauchy-Riemann方程,u x = -v y,v x = u y;因此得到u x = u y = v x = v y = 0,所以u, v都在区域D内为常数.所以,f(z) = u(x, y) + i v(x, y)在区域D内为常数.(6.3) | f(z) |在D内为常数;【解】若| f(z) |在D内恒为零,则在D内f(z) = 0 (常数).若在D内| f(z) | = c > 0,则f(z) · ( f(z))* = c2.因f(z)在D内解析且f(z) ≠ 0,故( f(z))* = c2/ f(z)在D内解析.由(2)知f(z)在区域D内为常数.(6.4) Re( f(z))或Im( f(z))在D内为常数.【解】设f(z) = u(x, y) + i v(x, y).若u(x, y) = Re( f(z))在D内为常数,则u x = u y = 0.由Cauchy-Riemann方程,v x = -u y = 0,v y = u x = 0;所以v(x, y) = Im( f(z))也在D内为常数.故f(z)在区域D内为常数.9. 试证下面的定理:设f(z) = u(r, θ) + i v(r, θ),z = r e iθ,若u(r, θ), v(r, θ)在点(r, θ)是可微的,且满足极坐标的Cauchy-Riemann方程:∂u/∂r = (1/r)∂v/∂θ,∂v/∂r = (-1/r)∂u/∂θ(r > 0),则f(z)在点z是可微的,并且f’(z) = (cosθ-i sinθ)(∂u/∂r + i∂v/∂r) = (r/z)(∂u/∂r + i∂v/∂r).【解】注意到在点(r, θ)处,因为r > 0,r, θ也是(x, y)的可微函数,并且,r x = x/r = cosθ,r y = y/r = sinθ;θx = -y/r2 = - sinθ/r,θy = x/r2 = cosθ /r.所以u, v也是(x, y)的可微函数.由求导的链锁法则,我们有u x = u r·r x + uθ·θx = ((1/r)vθ)· cosθ + (-r v r) · (- sinθ/r)= vθ · (cosθ /r) + v r · sinθ= vθ ·θy + v r ·r y= v y;以及v x = v r·r x + vθ·θx = ((-1/r)uθ)· cosθ + (r u r) · (- sinθ/r)= uθ · (- cosθ /r) + u r · (- sinθ)= - (uθ ·θy + u r ·r y)= -u y;即满足Cauchy-Riemann方程,故f(z)在点z是可微的,且f’(a) = u x + i v x = (vθ · (cosθ /r) + v r · sinθ) + i (uθ · (- cosθ /r) + u r · (- sinθ))= (r u r · (cosθ /r) + v r · sinθ) + i ((-r v r) · (- cosθ /r) + u r · (- sinθ))= (cosθ-i sinθ)(∂u/∂r + i∂v/∂r)= (r/z)(∂u/∂r + i∂v/∂r).[ r = √(x2 + y2)在(x, y) ≠ (0, 0)处有连续的偏导数,所以是可微的.θ作为(x, y)函数在(x, y) ≠ (0, 0)处的可微性的证明如下(参考第一章习题13的解答):设D1 = { z∈ | Re(z) > 0},D2 = { z∈ | Im(z) > 0},D3 = { z∈ | Im(z) < 0},D4 = { z∈ | Re(z) < 0}.则 \{0} = D1⋂D2⋂D3⋂D4.在D1上,θ = arctan(y/x) + 2k1π;在D2上,θ = arccot(x/y) + 2k2π;在D3上,θ = arccot(x/y) -π + 2k3π;在D4上,θ = arctan(y/x) + π + 2k4π.不论在那个区域D j上,θ都有连续的偏导数,因此θ在 \{0}上是可微的.] 14. 试验证:(3) lim z→ 0 ( z–z cos z )/( z– sin z ) = 3.【解】因分母z– sin z的一阶导数1 – cos z在原点处的值为0,故此题不能直接用L’Hospital法则(第2题的结论).但可对lim z→ 0 sin z / z用L’Hospital法则.开始以为这个题目应该放在后面的章节,可是终究不甘心,考虑再三,退到sin z 最原始的定义,发现可以以它的实部和虚部为实变量展开.先用L’Hospital法则,lim z→ 0 sin z / z = cos 0 = 1,得到sin z = z + o(z),z→ 0.所以1 – cos z = 2 sin 2(z/2) = 2 ( z/2 + o(z) )2 = z2/2 + o(z2),z→ 0.而sin z = sin(x + i y) = exp( i (x + i y) ) – exp( –i (x + i y) )/(2 i)= (exp(–y)(cos x + i sin x) – exp(y)(cos x–i sin x))/(2 i)= (exp(y) + exp(–y)) sin x + i (exp(y) – exp(–y)) cos x )/2注意到当k + m≥ 3时,o(x k y m) = o(| z |3),z→ 0;故sin z = (1 + y2/2 + o(y3)) (x–x3/6 + o(x4) ) + i (y + y3/6 + o(y4)) (1 –x2/2 + o(x3))= (x + i y ) – (x3 + i 3x2y– 3xy2/2 –i y3 )/6 + o(z3) = z–z3/6 + o(z3),z→ 0.所以,( z–z cos z )/( z– sin z ) = z (1 – cos z )/( z– sin z )= z (z2/2 + o(z2))/(z3/6 + o(z3)) → 3,z→ 0.26. 试证:在将z平面适当割开后,函数f(z) = ( (1 – z ) z2 )1/3能分出三个单值解析分支.并求出在点z = 2取负值的那个分支在z = i处的值.【解】根据课本p83的结论,1和0是仅有的支点,∞不是支点.所以,将z平面沿从0到1的直线段I = { z∈ | Im(z) = 0, 0 ≤ Re(z) ≤ 1 }割开后,就能保证变点z不会单绕0或1转一周,因此在G= \I上函数f(z)就能分出三个单值解析分支.设g(z) = ((1 – z ) z2 )1/3是在点z = 2取负值的那个分支.设arg g(2) = π + 2kπ ( k∈ ).又设C是G内一条从2到i的任一曲线,当变点z沿着曲线C从2到i时,z的辐角的连续增量为∆C arg z = π/2 + 2k0π ( k0∈ ),因此∆C arg (z2 )= π + 4k0π,相应地,1 –z的辐角的连续增量为∆C arg (1 –z )= 3π/2 + 2k0π ( m∈ ),所以g(z)的辐角的连续增量为∆C arg g(z) = (π + 3π/4 + 6k0π)/3 = 7π/12 + 2k0π.根据课本p84的结论,g(i) = | g(i) | · exp( i ∆C arg g(z)) · exp( i arg g(2))= | ((1 –i )i2 )1/3 | · exp( i (7π/12 + 2k0π)) · exp( i (π + 2kπ))= - 21/6 · exp( 7πi/12 ).[从上述的做法中可以看出,我们不妨(事实上也常常地)取k, k0 = 0,并不会造成任何影响.这类题目用辐角的连续增量来考虑是方便的,否则就有可能陷入辐角难以选择的困境,因为那时我们已经忘记了要求辐角是随着变点z连续变化的.设z = r1 exp( iθ1),1 –z = r2 exp( iθ2),那么g(z) = (r12 r2 )1/3 exp( i (2θ1 + θ2 + 2kπ)/3) (k是0, 1, 2之一).当z = 2时,r1(2)= 2,r2(2)= 1;θ1(2) = 0,θ2(2)= π.由于g(2) = 21/3 exp( i (π + 2kπ)/3) < 0,故只能k = 1.当z = i时,r1(i)= 1,r2(i)= 21/2;θ1(i) = π/2,θ2(i) = 7π/4.所以g(i) = (21/2)1/3 exp( i (2(π/2) + 7π/4 + 2π)/3) = - 21/6 · exp( 7πi/12 ).但是,为什么θ2(i) = 7π/4而不是θ2(i) = –π/4 ?事实上,当初的θ1(2)和θ2(2)一旦选定,就决定了其这个单值解析分支中其他点的辐角选择,因为我们要求辐角是连续变化的.确定i的辐角θ1(i)时,要保证z从2到i的过程中,θ1(z)是连续变化的.故应该取θ1(i) = π/2.(增加了π/2)但1 –i的辐角θ2(i),则应该是从z = 2时θ2(2)= π开始连续变化到z = i时所得到的辐角θ2(i),也就是说,θ2从π开始增加了3π/4,因此θ2(i) = π + 3π/4 = 7π/4.特别强调的是:这里的θj(z)的连续变化,应该是随着同一个变点z来变化的.比如,如果我们认为z绕割线I反向地从2转到i,那么,θ1(i) = - 3π/2,这时,θ2(i) = π- 5π/4 = -π/4,显然,如此计算g(i)也会得到上述的结果.至此,我们应该可以看出,两种做法的本质是相同的.]∀∃∅-⨯±≠≥·◦≤≡⊕⊗≅αβχδεφγηιϕκλμνοπθρστυϖωξψζ∞∙︒ℵℜ℘∇∏∑⎰ ⊥∠ √§ψ∈∉⊆⊂⊃⊇⊄⊄∠⇒♣♦♥♠§ #↔→←↑↓⌝∨∧⋃⋂⇔⇒⇐∆∑ΓΦΛΩ∂∀m∈ +,∃m∈ +,★〈α1, α2, ..., αn〉lim n→∞,+n→∞∀ε > 0,∑u n,∑n≥ 1u n,m∈ ,∀ε > 0,∃δ> 0,【解】⎰[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]。

复变函数论第二章习题全解

复变函数论第二章习题全解

第二章 解析函数(一)1.证明:0>∃δ,使{}0001/),(t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的对应去心邻域内无重点,即能够联结割线)()(10t z t z ,是否就存在数列{}01t t n →,使)()(01t z t z n =,于是有 0)()(lim)(0101001=--='→t t t z t z t z n n t t n此与假设矛盾. 01001),(t t t t t >⇒+∈δ 因为 [])()(arg )()(arg010101t z t z t t t z t z -=--所以 []])()(lim arg[)()(arglim )()(arg lim 0101010101010101t t t z t z t t t z t z t z t z t t t t t t --=--=-→→→因此,割线确实有其极限位置,即曲线C 在点)(0t z 的切线存在,其倾角为)(arg 0t z '.2.证明:因)(),(z g z f 在0z 点解析,则)(),(00z g z f ''均存在.所以 )()()()()()(lim )()()()(lim )()(lim 00000000000z g z f z z z g z g z z z f z f z g z g z f z f z g z f z z z z z z ''=----=--=→→→ 3.证明:()()()()()3322,0,0,,0,00x y x y u x y x y x y ≠⎧-⎪=+⎨⎪=⎩()()()()()3322,0,0,,0,00x y x y v x y x y x y ≠⎧+⎪=+⎨⎪=⎩于是()()()00,00,00,0limlim 1x x x u x u xu xx →→-===,从而在原点()f z 满足C R -条件,但在原点,()()()()()'0,00,0x x u iv u iv f f z z z +-+-=()()()()()()333311i x y i zx y z ⎡⎤+--+⎣⎦=⎡⎤+⎣⎦当z 沿0y x =→时,有()()()'212f f z i z x --+= 故()f z 在原点不可微.4.证明:(1)当0≠z 时,即y x ,至少有一个不等于0时,或有y x u u ≠,,或有y x u u ≠-,故z 至多在原点可微. (2)在C 上处处不满足C R -条件.(3)在C 上处处不满足C R -条件. (4)221yx yix z z z z ++==,除原点外, 在C 上处处不满足C R -条件. 5.解:(1) y x y x v xy y x u 22),(,),(==,此时仅当0==y x 时有 xy v xy u x v y u x y y x 22,22-=-===== 且这四个偏导数在原点连续,故)(z f 只在原点可微. (2) 22),(,),(y y x v x y x u ==,此时仅当y x =这条直线上时有 00,22=-=====x y y x v u y v x u且在y x =这四个偏导数连续,故)(z f 只在y x =可微但不解析. (3) 333),(,2),(y y x v x y x u ==,且 00,9622=-=====x y y x v u y v x u 故只在曲线0212312=-x y 上可微但不解析.(4) 32233),(,3),(y y x y x v xy x y x u -=-=在全平面上有 xy v xy u y x v y x u x y y x 66,33332222-=-=-=-==-=且在全平面上这四个偏导数连续,故可微且解析. 6.证明:(1)y y x x iu v iv u z f D yi x z -=+='=∈+=∀)(0,(2)设().f z u iv =+则()f z u iv =-,由()f z 与()f z 均在D 内解析知,,x y y x u v u v ==-,,x y y x u v u v =-=结合此两式得0x y x y u u v v ====,故,u v 均为常数,故)(z f 亦为常数. (3)若0)(=≡C z f ,则显然0)(≡z f ,若0)(≠≡C z f ,则此时有0)(≠z f ,且2)()(C z f z f ≡,即)()(2z f C z f ≡也时解析函数,由(2)知)(z f 为常数. (4)设().f z u iv =+,若C y x u ≡),(,则0,0≡≡y x u u ,由C R -条件得 0,0≡=≡-=x y y x u v u v 因此v u ,为常数, 则)(z f 亦为常数.7.证明:设,f u iv g i f p iQ =+==+则,,f u iv g v iu =-=-由 ()f z 在D 内解析知,x y y x u v u v ==-从而 ,x x y v y y x p v u Q p v u Qx ==-====- 因而()g z 亦D 内解析.8.解:(1)由32233),(,3),(y y x y x v xy x y x u -=-=,则有 222233,6,6,33y x v xy v xy u y x u y x y x -==-=-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 22236)33()(z xyi y x i v u z f x x =+-=+='(2) ()()()(),cos sin ,cos sin x x u x y e x y y y v x y e y y x y =-⋅=- ()cos sin cos x x y u e x y y y y v =-+= ()sin sin cos x y x u e x y y y y v =--+=- 故()f z 在z 平面上解析,且()()()'cos 1sin sin 1cos x xf z e y x y y ie y x y y =⋅+-+⋅+-⎡⎤⎡⎤⎣⎦⎣⎦(3)由xshy y x v xchy y x u cos ),(,sin ),(==,则有xchy v xshy v xshy u xchy u y x y x cos ,sin ,sin ,cos =-===故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x cos sin cos )(=-=+=' (4)由xshy y x v xchy y x u sin ),(,cos ),(-==,则有xchy v xshy v xshy u xchy u y x y x sin ,cos ,cos ,sin -=-==-=故y x y x v v u u ,,,为连续的,且满足C R -条件,所以()z f 在z 平面上解析,且 z xshyi xchy i v u z f x x sin cos sin )(-=--=+=' 9.证明:设,i z x yi re θ=+=则cos ,sin ,x r y r θθ== 从而cos sin ,sin cos r x y x y u u u u u r u r θθθθθ=+=-+cos sin ,sin cos ,r x y x y v u v v v r v r θθθθθ=+=-+再由11,r r u v v u r rθθ==-,可得,x y y x u v u v ==-,因此可得()f z 在点z 可微且()()()'11cos sin sin cos x y r r f z u iu r u u i r u u r r θθθθθθ=-=--+()()1cos sin sin cos r i u i u rθθθθθ=--+()()cos sin sin cos r r i u i v θθθθ=-++ ()()cos sin r r i u iv θθ=-+ ()()1cos sin r r r r ru iv u iv i zθθ=+=++10.解:(1)x y i x z i e e e 2)21(22--+--== (2)222222y zxyiy zz e e e -+-==(3) 22222211x yi xy ix iyx yx yx y ze eeee--++++===⋅所以22221Re cos x yx y x y z e e ++⎛⎫= ⎪⎝⎭11.证明:(1)因为)sin (cos y i y e e e e e x yi x yi z z +=⋅==+ 因此 )sin (cos y i y e e x z -=而)sin (cos y i y e e e e e x yi x yi z z -=⋅==--,得证.(2)因为 ie e z iziz 2sin --=所以 z ie e i e e z iziz z i z i sin 22sin =+=-=---(3)因为2cos iziz e e z -+=所以z e e e e z iziz z i z i cos 22cos =+=+=--12.证明:分别就m 为正整数,零,负整数的情形证明,仅以正整数为例当1=m 时,等式自然成立. 假设当1-=k m 时,等式成立.那么当k m =时,kz z k z k z e e e e =⋅=-1)()(,等式任成立. 故结论正确.13.解:(1) )1sin 1(cos 333i e e e e i i +=⋅=+(2) ()()()11cos 12i i i i e e i ---+-=()112i i i e e-+++=cos11sin1122e i e e e ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭14.证明:(1)由于z z g z z f ==)(,sin )(在点0=z 解析 且01)0(,0)0()0(≠='==g g f 因此 11cos sin lim0===→z z zz z(2)由于0)(,1)(=-=z g e z f z 在点0=z 解析,且01)0(,0)0()0(≠='==g g f因此 11lim0==-=→z z z z e ze(3)由于z z z g z z z z f sin )(,cos )(-=-=在点0=z 解析, 且1)0(,0)0()0(,0)0()0(,0)0()0(='''=''=''='='==g g f g f g f 因此 3cos 1sin cos 1lim sin cos lim00=-+-=--→→zzz z z z z z z z z 15.证明:2cos iziz e e z -+=)cos()cos(cos nb a b a a +++-+=222)()()()(nb a i nb a i b a i b a i ia ia e e e e e e +-++-+-++++++ =⎥⎦⎤⎢⎣⎡--⋅+--⋅+-+ib bn i ia ib b n i ia e e e e e e 111121)1()1(=)2cos(2sin 21sinnb a b bn ++=右边同理证明(2).16.证明:(1) z i e e i i e e i e e iz zz z z iz i iz i sinh 222)sin()()(=-⋅=-=-=--- (2) z e e e e iz z z iz i iz i cosh 22)cos()()(=+=+=-- (3) z i ie e i e e iz iziz iz iz sin 22)sinh(=-⋅=-=-- (4) z z iz i iz cos )cos()cos()cosh(=-=⋅=(5) z i zz i iz iz iz tanh cosh sinh )cos()sin()tan(===(6) z i zzi iz iz iz tan cos sin )cosh()sinh()tanh(===17.证明:(1) 1)(sin )(cos )(222222=+=+=-iz iz ishz z ch z sh z ch(2) 111sec 2222222=+=+=+zch zsh z ch z sh z ch z th z h (3) )sin()sin()cos()cos()cos()(21212121iz iz iz iz iz iz z z ch -=+=+ 2121shz shz chz chz +=18.证明:(1) xshy i xchy iy x yi x yi x z cos sin )sin(cos )cos(sin )sin(sin +=+=+= (2) xshy i xchy iy x yi x yi x z sin cos )sin(sin )cos(cos )cos(cos +=-=+= (3) y x y xsh y xch xshy i xchy z 22222222sinh sin cos sin cos sin sin +=+=+= (4) y x y xsh y xch xshyi xchy z 22222222sinh cos sin cos sin cos cos +=+=-=19.证明: chz e e e e shz zz z z =+='-='--2)2()( shz e e e e chz zz z z =-='+='--2)2()( 20.解:(1) )31arg(31ln )31ln(i i i i z +++=+= )23(2ln ππk i ++= ),1,0( ±=k(2)由于2ln iz π=,则有i i e z i=+==2sin2cos2πππ(3)由于)2(1ππk e e i z +=-=,故)2(ππk i z +=(4)z z sin cos -=,即1tan -=z ,所以ππk i i i z +-=+-=411ln21 (5) 设,z x iy =+由12tgz i =+得()()sin 122cos iz iz iz iz zi e e i e e z--=+→-=-+ 2255iz i e →=-+22cos 25y e x -→=-,1sin 25x =41ln 5,54y e y -→==且1112,222tg x x arctg π⎡⎤⎛⎫=-=-+ ⎪⎢⎥⎝⎭⎣⎦11ln 5224z arctg i π⎡⎤⎛⎫→=-++ ⎪⎢⎥⎝⎭⎣⎦21.证明:因)1arg(1ln )1ln()1ln(-+-=-=-θθθi i i re i re re z ,所以)cos 21ln(21)sin ()1(ln 1ln )]1Re[ln(222θθθθr r r re re z i i -+=+-=-=- 22.解: 32)(3)()(πθk z ik ez r z w +=,)2,1,0;2)(0;(=<<∈k z G z πθ利用i i w -=)(定2,=k k ,再计算)(2i w -23.解: 2,22ππii e i e ==-,由32)2(-=-w 定1,=k k ,再计算i e i w π451)(=24.解: )24(2ln )]2)1(arg(1[ln )1ln()1(πππk i k i i i i i i ieeei +-+++++===+)24(2ln ππk i ee+-⋅= ),2,1,0( ±±=kππk i k i i i i e e e e 23ln )]23(arg 3[ln 3ln 3-++⋅=== ),2,1,0( ±±=k25.解:z 在z 平面上沿0=z 为圆心,1>R 为半径的圆周C 从A 走到B ,经过变换4z w =,其象点w 在w 平面上沿以0=w 为心,14>R 为半径的象圆周从A '走到B ',刚好绕1+=w w 的支点-1转一整周,故它在B '的值为B w '+1.因此 1)()(4+-=-=R z f z f AB.26.证明:()f z = 0,1,∞由于 3|12+,故()f z 的支点为0,1z =,因此在将z 平面沿实轴从0到期割开后,就可保证变点z 不会单绕0或者说转一周,于是在这样割开后的z 平面上()f z 就可以分出三个单值解析分支. 另由已知 ()arg f z π=得()()arg c i f z i f i e π∆=()2arg 1arg 3c c i z z ⎡⎤∆-+∆⎣⎦=32342i ππ⎡⎤+⋅⎢⎥⎣⎦=712i π=.(二)1.证明:由()21z f z z =-得()()2'2211z f z z +=-,从而于是()f z 在D 必常数()()()()()()22'2222111111z z f z z z f z z z z+-+⋅==---()4242121Re mz I z i z z-+=+- 所以 ()()4'421Re 12Re zf z z f z z z ⎛⎫-⋅= ⎪ ⎪+-⎝⎭由于1z <,因此410,z ->且()24422212Re 1210z z z z z+-≥+-=->故()()'Re 0f z z f z ⎛⎫⋅> ⎪ ⎪⎝⎭.2.证明:同第一题221Im 2111)()(1zzi z z z z f z f z -+-=-+='''+. 3.证明:题目等价域以下命题:设1,E E 为关于实轴对称的区域,则函数在E 内解析)(z f ⇒在1E 内解析.设)(z f 在E 内解析,对任意的10E z ∈,当1E z ∈时,有E z E z ∈∈,0,所以 )()()(lim )()(lim0000000z f z z z f z f z z z f z f z z z z '=--=--→→ 这是因为)(z f 在E 内解析,从而有)()()(lim0000z f z z z f z f z z '=--→,由0z 的任意性可知, )(z f 在1E 内解析. 4.证明:(1)由于)(21),(21z z iy z z x -=+=,根据复合函数求偏导数的法则,即可得证. (2))(21)(21x vy u i yv x u z v i z u z f ∂∂+∂∂+∂∂-∂∂=∂∂+∂∂=∂∂所以x vy u y v x u ∂∂-=∂∂∂∂=∂∂,,得0=∂∂zf 5.证明: x y sh y sh x y xch yi x z 222222sin )sin 1(sin )sin(sin +=-+=+= 所以 z x y sh shy sin sin 22=+≤ 而 z y shy Im =≥ ,故左边成立.右边证明可应用z sin 的定义及三角不等式来证明. 6.证明:有 R ch y ch y sh y sh x z 2222221sin sin ≤=+≤+= 即 chR t ≤sin又有 R ch y ch y sh y x z 2222221sinh cos cos ≤=+≤+= 7.证明:据定义,任两相异点21,z z 为单位圆1<z ,有212221212121)32()32()()(z z z z z z z z z f z f -++-++=--0112222121=-->--≥++=z z z z 故函数)(z f 在1<z 内是单叶的.8.证明:因为)(z f 有支点-1,1,取其割线[-1,1],有 (1) 10182)(,8)(arg ie c ei f z f ππ-=-=∆(2) i c c e i f z f i z f 852)(,85)(arg ,811)(arg 32πππ=--=∆-=∆ 9.解: 因为)(z f 有支点∞±,,1i ,此时支割线可取为:沿虚轴割开],[i i -,沿实轴割开],1[+∞,线路未穿过支割线,记线路为C ,)]arg())(arg()1arg([21)(arg i z i z z z f c c c c ⋅∆+--∆+-∆=∆2]0[21ππ-=-=故 i z f 5)(-=.10.证明:因为()f z =0,1,z =∞,由题知()f z 的支点为0,1,z =于是在割去线段0Re 1≤≤的平面上变点就不可能性单绕0或1转一周,故此时可出两二个单值解析分支,由于当z 从支割线上岸一点出发,连续变动到1z =-时,只z 的幅角共增加2π,由已知所取分支在支割线上岸取正值,于是可认为该分支在上岸之幅角为0,因而此分支在1z =-的幅角为2π,故()21i f π-==,i f 162)1(-=-''.。

复变函数第二章答案

复变函数第二章答案

第二章第二章 解析函数解析函数1.用导数定义,求下列函数的导数:.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z D ®+D -D0()Re()Re lim z z z z z z zz D ®+D +D -=D 0Re Re Re limz z z z z z zz D ®D +D +D D =D0Re lim(ReRe )z zz z z z D ®D =+D +D00Re lim(Re )lim(Re ),z x y zx z z z z z x i y D ®D ®D ®D D =+=+D D +D当0z ¹时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =× 解: 22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =×=××=×=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x yu u v v 均连续,故2().f z z z =×仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az bc d cz d++至少有一不为零解: 当0c ¹时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点, 222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +¢¢=+¢¢++-++=++-+-==++ 当0c =时,显然有0d ¹,故()az b f z d +=在复平面上处处解析,且()a f z d ¢=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数; (4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件条件,,u v u v x y y x¶¶¶¶==-¶¶¶¶又()f z u iv =-也在D 中解析,也满足C R -条件条件()(),.u v u v x y y x¶¶-¶¶-==-¶¶¶¶ 从而应有0u u v v x y x y¶¶¶¶====¶¶¶¶恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u uu x y u u u yx ¶¶ì=ﶶïí¶¶ï=-ﶶî 则可推出0u u x y¶¶==¶¶,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u =,从而22(/)(/)0,0,1(/)1(/)v u v u yx v u v u ¶¶¶¶==++计算得计算得2222()/0v uu u v u xxu v ¶¶-¶¶=+,2222()/0,v uu u v u yy u v ¶¶-¶¶=+化简,利用C R -条件得条件得0,0.uu u v yx u u u v xy ¶¶ì--=ﶶïí¶¶ï-=ﶶî 所以0,u u x y ¶¶==¶¶同理0,v vx y ¶¶==¶¶即在D 中,u v 为常数,故()f z 在D 中为常数. (4) 法一:设0,a ¹则()/,u c bv a =-求导得求导得,,u b v u b v xa x ya y ¶¶¶¶=-=-¶¶¶¶由C R -条件条件,,u b u v b vx a y x a y ¶¶¶¶==¶¶¶¶ 故,u v 必为常数,即()f z 在D 中为常数. 设0,0,0a b c =¹¹则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数. 法二:等式两边对,x y 求偏导得:00x x y y au bv au bv +=ìí+=î,由C R -条件,我们有条件,我们有0,00x y x x y y au bu u a b bu au u b a -=-ìæöæö=íç÷ç÷+=èøîèø即, 而220a b+¹,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z xy¶¶¢+=¶¶证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().uuu u f z i f z x yx y ¶¶¶¶¢¢=-=+¶¶¶¶ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v xyx y u u v v u u v vu v u v x x x x y y y y ¶¶¶¶+=+++¶¶¶¶éù¶¶¶¶¶¶¶¶=+++++++êú¶¶¶¶¶¶¶¶ëû又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v v u v xyx y¶¶¶¶=+==+=¶¶¶¶则22222222()|()|4(()())4|()|.u u f z f z x yxy¶¶¶¶¢+=+=¶¶¶¶6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y ¶¶==+-¶¶所以所以 22(363)v x xy y dy =+-ò22333(),x y xy y x j =+-+又222263(),363,()3,v u xy y x x xy y x x xxj j ¶¶¢¢=++=--=-¶¶而所以 则3()x x C j =-+.故2222222233332222222233()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ciz i x y xyi iz i Cii z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---×-+=---+=-+ (2) 23;v xy x =+解: 因23,2,v v y x xy¶¶=+=¶¶由()f z 解析,有22,2().u v x u xdx x y x yf ¶¶====+¶¶ò又23,u v y y x ¶¶=-=--¶¶而(),u y y f ¶¢=¶所以()23,y y f ¢=--则2()3.y y y C f =--+故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=-解: 因2,2(1),u u y x x y ¶¶==-¶¶由()f z 的解析性,有2(1),v ux x y ¶¶=-=--¶¶22(1)(1)(),v x d x x y f =--=--+ò 又2,v uy y x ¶¶==¶¶而(),v y yf ¶¢=¶所以2()2,(),y y y y C f f ¢==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,pxv e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+解: 要使(,)v x y 为调和函数,则有0.xx yyv v v D =+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.xy y x uv u v ==-1(,)cos cos (),1sin ()sin .pxpx x px px y u x y u dx e ydx e y y pu e y y pe y pf f ===+¢=-+=-òò()3i 33)i 3p),i p p p.22ee e e ==c t 3(1)l n 2(2)4l n22l n 2244ln 224cos(ln 2)sin(ln 2).44i i k k i k k ee ei p p p p p p pp p p éù++-+êúëûéù+-++-êúëû+-==éù=-+-êúëû(4) 33;i- 解: 3(3)ln3(3)(ln32)3ii i k i eep---+==(3)l n 323l n 32227(c o s l n3s i n l n 3).i k k i ik ee eee i p p p-+-=×=×=-。

(完整版)复变函数习题答案第2章习题详解

(完整版)复变函数习题答案第2章习题详解

第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()z z z z z n n z nz z z z z z z nn n n n z n n z n∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→Λ22100121limlim '()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆Λlim 2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫ ⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim '2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂xv,1-=∂∂y v 都是连续函数。

只有12-=x ,即21-=x 时才满足柯西—黎曼方程。

()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。

2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂xv ,29y y v =∂∂都是连续函数。

只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。

()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。

3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy y u 2=∂∂,xy xv 2=∂∂,2x y v =∂∂都是连续函数。

《复变函数》第四版习题解答第2章

《复变函数》第四版习题解答第2章

(2)由于 ∂u = 6x2 , ∂u = 0 , ∂v = 0 , ∂v = 9 y2
∂x
∂y
∂x
∂y
在 z 平面上处处连续,且当且仅当 2x2 = 3y2 ,即 2x ± 3y = 0 时,u,v 才满足 C-R 条件,故
f ( z ) = u + i v = 2x3 + 3y3i 仅在直线 2x ± 3y = 0 上可导,在 z 平面上处处不解析。
解 (1)由于 ∂u = 2x, ∂u = 0, ∂v = 0, ∂v = −1
∂x
∂y ∂x ∂y
在 z 平面上处处连续,且当且仅当 x = − 1 时,u,v 才满足 C-R 条件,故 f (z) = u + i v = x − i y 仅在
2
直线 x = − 1 上可导,在 z 平面上处处不解析。 2
(5)命题假。如函数 f (z) = z Re z = x2 + i xy 仅在点 z=0 处满足 C-R 条件,故 f (z)仅在点 z=0
处可导。
(6)命题真。由 u 是实常数,根据 C-R 方程知 v 也是实常数,故 f (z) 在整个 D 内是常数;
后面同理可得。
7.如果 f (z) = u + i v 是 z 的解析函数,证明:

(1)命题假。如函数 f (z) =| z |2 = x 2 + y 2 在 z 平面上处处连续,除了点 z=0 外处处不可导。 (2)命题假,如函数 f (z) =| z |2 在点 z=0 处可导,却在点 z=0 处不解析。
(3)命题假,如果 f (z)在z0点不解析,则z0称为f (z)的奇点。如上例。 (4)命题假,如 f (z) = sin x ch y, g(z) = i cos x sh y , z = (π / 2, 0) 为它们的奇点,但不 是 f (z) + g(z) 的奇点。

复变函数 刘敏思 第二章 习题解答

复变函数 刘敏思 第二章 习题解答
∂u ∂x
z =iy
+i
∂v ∂x
z =iy
= k ⋅ 0 + i ⋅0 = 0 。
3. 讨论下列函数在复平面 ℂ 上的可微性和解析性,并在可导的情况下求它们的导函数: ( 1) f ( z ) = x + i y ; (2) f ( z ) = e + ie ; (3) f ( z ) = x − 3 xy + i (3 x y − y ) ; ( 4) f ( z ) = e x ( x cos y − y sin y ) + i e x ( y cos y + x sin y ) . 解 (1)记 f ( z ) = u ( x, y ) + iv ( x , y ) ,则 u ( x, y ) = x , v( x, y ) = y 。易见它们都在复平面上可 微。要使柯西—黎曼条件满足,只须
4. 设 f ( z ) 在区域 D 内解析,若下列关系之一成立, ( 1) Im[ f ( z)] ≡ c ,其中 c 为实常数; ( 2) α Re[ f ( z )] + β Im[ f ( z)] = c ,其中 α , β , c ∈ ℝ 且 α + β ≠ 0 ;
2 2
( 3) Re[ f ( z )] = {Im[ f ( z)]} , 则 f ( z) 在区域 D 内为常数 . 证明 记 f ( z ) = u ( x, y ) + iv ( x , y ) ( 1)由条件得, v( x, y ) ≡ c ,因为 f ( z ) 在区域 D 内解析,由柯西—黎曼条件,在区域 D 内
f ( z ) = x 2 + y 2 , u ( x, y ) = x 2 + y 2 , v( x, y) = 0 。

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案
(3) .
解:f(z)除 外处处可导,且 .
(4) .
解:因为
.所以f(z)除z=0外处处可导,且 .
6.试判断下列函数的可导性与解析性.
(1) ;
解: 在全平面上可微.
所以要使得
, ,
只有当z=0时,
从而f(z)在z=0处可导,在全平面上不解析.
(2) .
解: 在全平面上可微.
只有当z=0时,即(0,0)处有 , .
它们分别为

∴满足C-R条件.
(3)当z沿y=x趋向于零时,有
∴ 不存在.即f(z)在z=0处不可导.
11.设区域D位于上半平面,D1是D关于x轴的对称区域,若f(z)在区域D内解析,求证 在区域D1内解析.
证明:设f(z)=u(x,y)+iv(x,y),因为f(z)在区域D内解析.
所以u(x,y),v(x,y)在D内可微且满足C-R方程,即 .
15.计算下列各值.
(1)
(2)
(3)ln(ei)=ln1+iarg(ei)=ln1+i=i
(4)
16.试讨论函数f(z)=|z|+lnz的连续性与可导性.
解:显然g(z)=|z|在复平面上连续,lnz除负实轴及原点外处处连续.
设z=x+iy,
在复平面内可微.
故g(z)=|z|在复平面上处处不可导.
所以f(z)在z=0处可导,在全平面上不解析.
(3) ;
解: 在全平面上可微.
所以只有当 时,才满足C-R方程.
从而f(z)在 处可导,在全平面不解析.
(4) .
解:设 ,则
所以只有当z=0时才满足C-R方程.
从而f(z)在z=0处可导,处处不解析.

复变函数与积分变换答案-第2章解析函数

复变函数与积分变换答案-第2章解析函数

11 27、第二章 解析函数习题详解1、(1) f 1(z )= z 4在定义域(-,+) 内连续;2) f 2(z ) =4z +5在定义域(-,+)内连续; 1在定义域-, 3,3, +内连续。

- 4, v = 16u + 64, 为一抛物线。

4、(1)w = z 3,则w = (2i )3= -8i , w =( 2+2i )3=2 2+12i -12 2-8i =-10 2+4i ;5、 f (z )=Re z =x ,当 y →0时, f (z )→1;当x →0时, f (z )→0,因为极限不等, z x + iy 所以当z →0时, f (z )极限不存在。

1在原点处不连续,故 w =i arg z +1 在负实轴上与原点 zz3) f 3 (z )= 22、w = z2u =x 2-y 2v = 2 xy u =x 2 -4,把直线C :y =2映射成:u =x -4v = 4 xvx = ,代入第一个式子,4u =3、1zw = = = z zzx - iy22,x + yv =x 22 x + y-y 22 x + y把直线C :x =1映射成,:vu =v =1 1+y 2-y 1+y 21-u u 2u= (1- u ) u v 2 + u 22)w = z 3,像域为0arg w 26、i arg z 在负实轴上与原点处不连续, 处不连续。

f (z +z )- f (z )z →0z= limz →0(z +z )2zy 2 = 1 -1 = u为一个圆周。

uz 2-(z +z )2z 2(z +z )2z 2 -z 2 -2z z -z 22= lim = lim = - 。

z →0 z z →0z 2(z +z )2zz 38、(1) f (z ) =5-3z +5z 2,在(-,+)内解析,且导数为 f (z ) = -3+10z ;12、(1) z =e 1-2i =ecos -i sin=-ei ;1222) f (z )=1 1 1z 4 -1 (z 2 -1)(z 2 +1) (z -1)(z +1)(z +i )(z -i )在(-,+)内除z =1,5z +431 1 5 3) f (z )= z +4,在(-,+)内除z = - 3外解析, f (z )=1+ 2 =1+ 52z + 32 2 2z +32 2(2z +3)且导数为: f(z )= 1(2z +3)-2(-2)=-5 (2z +3)29、(1) f (z )=Im z = y 在z 平面上的点点不可导,不解析(因柯西-黎曼条件不满足);2) f (z )= z 4 ,在平面上的点解析。

复变函数与积分变换 第二章课后答案

复变函数与积分变换 第二章课后答案

e z sin z e z sin z 则 dz z 2i dz 2 z 2i z 4 z 3 z 2 i 1
2i
e 2i sin 2i e 2i sin 2i e 2i sin 2i e 2i sin( 2i ) 2i 2i 2i 2i 2i 2 2 sin 2i e 2i e 2i sin 2i cosh 2i . 2
i
i
i i
= 2 cos i .
7. 沿指定曲线的正向计算下列各积分: (1)

C
ez dz , C : z 2 1 ; z2 dz (a 0) , C : z a a ; z a2
2
(2)
C
(3)
C
eiz 3 dz , C : z 2i ; 2 z 1 2 f ( z) dz , C : z 1 ; f ( z ) 在 z 1 上解析, z0 1 ; z z0
z 0
0.
4
(8) f ( z ) 有四个奇点, 其中 z i在c 内,作互不相交互不包含且 在 C 内的小圆周 c1和c2 包含 i 与-i,则
c1
(z
2
1 dz 1 dz 2 4)( z i ) z i c2 ( z 4)( z i ) z i
(2) 由于被积函数在全平面上解析,利用柯西积分定理得

求积分
C
3 z 2 dz 0 .
2. 设 C 是由点 0 到点 3 的直线段与点 3 到点 3 i 的直线段组成的折线,

C
Re zdz .
解 将 C 分为两段,从 z=0 到 z=3, c1 的方程为 z 3 x, 0 x 1,

(含答案)复变函数与积分变换习题解析2

(含答案)复变函数与积分变换习题解析2

习题2.11. 判断下列命题的真假,若真,给出证明;若假,请举例说明. (1)如果()f z 在0z 连续,那么0()f z '存在. (2)如果0()f z '存在,那么)(z f 在0z 解析. (3)如果0z 是()f z 的奇点,那么()f z 在0z 不可导. (4) 如果0z 是()f z和()g z 的一个奇点,那么0z 也是()()f z g z +和()()f z g z ⋅的奇点.(5)如果(,)u x y 和(,)v x y 可导,那么()(,)(,)f z u x y iv x y =+亦可导.2.应用导数定义讨论函数)Re()(z z f =的可导性,并说明其解析性.3.证明函数在0z =处不可导. 习题2.21. 设试证)(z f 在原点满足柯西-黎曼方程,但却不可导.(提示:沿抛物线x y =2趋向于原点)2. 判断下列函数在何处可导,何处解析,并在可导处求出其导数.(1)y ix xy z f222)(+=; (2)i y x y x z f 22332)(+-=; (3)=)(z f232z z -+; (4)22()2(1(2)f z x y i x y y =-+-+). 3.(1 (2 (3)iy x z f 2)(+=; (4 4. (1)iz z z f 2)(3+=; (25. 讨论下列各函数的解析性.(1)3223()33f z x x yi xy y i =+--; (2 (0)z ≠; (3)1(33)x iy ω-=-; (4习题2.31. 证明下列u 或v 为某区域的调和函数,并求解析函数()f z u iv =+. (1)2(1)u x y =-; (2)3223u x x xy =-+;(3)323u x xy =-; (4)23v xy x =+;(5)x y x v 222+-=; (62. 求k 值使22ky x u +=为调和函数,并求满足1)(-=i f 的解析函数iv u z f +=)(.3. 设函数iv u z f +=)(是一个解析函数,且y x xy y x y x v u 22332233---+-=+,求iv u z f +=)(.4. 证明:如果函数iv u z f +=)(在区域D 内解析,并满足下列条件之一,则)(z f 是常数.(1(2(3(4(5.5.(1(2)u -是v 的共轭调和函数.6. 如果iv u z f +=)(是z 的解析函数,证明:(1(2习题2.41.(2 (3(4(5(6)()i Ln e ; (7)i 3; (8)i i )1(+;(9)1(34)i i ++; (10))1sin(i +;(11)cos(5)i π+; (12)i ei cos 1++π.2(1 (2)0cos sin =+z z .3. (1 (2 (34.证明:(1)121212sin()sin cos cos sin z z z z z z +=+,212121sin sin cos cos )cos(z z z z z z -=+;2)1cos sin 22=+z z ; (3(4 (55.证明:(1)122=-z sh z ch ; (2)z ch z sh z ch 222=+;(3)cos sin shz shx y ichx y =+,cos sin chz chx y ishx y =+;(4)212121)(shz chz chz shz z z sh +=+,212121)(shz shz chz chz z z ch +=+.复 习 题 二一、单项选择题1.D2.C3.B4.A5.C6.C7.A8.A9.D 10.C 11.C 12.B一、单项选择题1. ). D.z sin2. 下列说法正确的是( ).A.函数的连续点一定不是奇点B.可微的点一定不是奇点C.)(z f 在区域D 内解析,则)(z f 在D 内无奇点D.不存在处处不可导的函数3. 下列说法错误的是( ). A.如果)(z f 在点0z 解析,则)(z f 在点0z 可导B.如果0z 是)(z f 的奇点,则)(0z f '不存在C.如果)(z f 在区域D 内可导,则)(z f 在D 内解析D.如果)(z f 在点0z 可导,则)(z f 在点0z 连续 4. 下列说法正确的是( ).A.iv u z f +=)(在区域D内解析,则v u ,都是调和函数B.如果v u ,都是区域D 内的调和函数,则iv u +是D 内的解析函数C.如果v u ,满足C-R 方程,则v u ,都是调和函数D.iv u +是解析函数的充要条件是v u ,都是调和函数5. 设函数iv u z f +=)(解析,则下列命题中错误的是( ).A.v u ,均为调和函数B.v 是u 的共轭调和函数C.u 是v 的共轭调和函数D.u -是v 的共轭调和函数6. 设函数iv u z f +=)(在区域D 内解析,下列等式中错误的是( ).7. 设在区域D 内v 为u 的共轭调和函数,则下列函数中为D 内解析函数的是( ). A.iu v - B.iu v + C.iv u - D.x x iv u -8. 函数z z z f Im )(2=在0=z 处的导数( ). A. 等于0 B. 等于1 C. 等于 -1 D. 不存在9. 下列数中为实数的是( ).A. 3)1(i -B. i sinC. LniD. i e π-310. 下列函数中是解析函数的是( ).A.xyi y x 222--B.xyi x +2 C. )2()1(222x x y i y x +-+- D. 33iy x + 11. 设z z f cos )(=,则下列命题中,不正确的是( ). A. )(z f 在复平面上处处解析 B. )(z f 以π2为周期12. 设Lnz =ω是对数函数,则下列命题正确的是( ).A. nLnz Lnz n =B. 2121Lnz Lnz z Lnz +=因为x z =是实常数,所以x Lnx Lnz ln ==二、填空题 在区域D 内三、计算题1. 指出下列函数的解析区域和奇点,并求出其导数.(1)zzezf z sincos)(+-=;(2(3(4(5(62..(1(3(53. 试证下列函数为调和函数,并求出相应的解析函数ivuzf+=)(.(1)xu=;(2)xyu=;(3)3223236yxyyxxu+--=;(4(5)yev x sin2=;(64. 已知22yxvu-=-,试确定解析函数ivuzf+=)(.5. 函数yxv+=是yxu+=的共轭调和函数吗?为什么?6.(1(2)ie43+;(3)Lni;(4(5(6)i-13;(7(8四、证明题1. 若函数),(yxu和),(yxv都具有二阶连续偏导数,且满足拉普拉斯方程,现令xyvus-=,yxvut+=,则2. 设)(zf与)(zg都在,0()0g z'≠,证明第二章习题、复习题参考答案习题2.11.(1)假(2)假(3)假(4)假(5)假2. 函数)Re()(zzf=处处不可导,处处不解析.习题2.22.(1)在0z =处可导,处处不解析,导数(0)0f '=;(2)在点)0,0(和处可导,处处不解析,导数0)0(='f ,(3)处处可导, (44.(1(25.(1(3.习题2.31.(1)ci iz z z f ++=22)(; (2)ci z z z f +-=32)(; (3)=)(z f 3z ci +; (4)=)(z f 23z iz c ++;(5)c iz iz z f ++=2)(2; (62.1k =-;2()f z z =.3.c y y x y v c x xy x u --+-=+--=23,232323,c i z z z f )1(2)(3-+-=. 习题2.41.(1 (2 (3)k )1(-)(Z k ∈; ((5(6(7)3ln 2i k e e π-)(Zk ∈; (9 ( (2.(1 (23.(1)正确; (2)正确; (3)正确.复习题二二、填空题2.0;3.c uv +2(c 为实常数);4.3,1,3-==-=n m l ;5.i +1;6.常数;8.ic ixy y x ++-222或ic z +2(c 为常数);9.i -; 10.πk e 2-),2,1,0( ±±=k .三、计算题1.(1(2(3(4(5(6z z z f cot csc )(-='.2.(1)在复平面内处处不可导,处处不解析;(2)在0=z 处可导,但在复平面内处处不解析,0)0(='f ;(3)在复平面内处处不可导,处处不解析;6.(1)4e -; (2))4sin 4(cos 3i e +; (3(4(6 (7。

第二章 复变函数钟玉泉版习题解答提示

第二章 复变函数钟玉泉版习题解答提示

第二章 习题解答提示(一)1.(定理)设连续曲线[]βα,),(:∈=t t z z C ,有[]),(0)(00βα∈≠'t t z ,则(试证)曲线C 在点)(0t z 有切线。

分析 1)在)(0t z 的某去心领域内能联结割线()(10t z t z ; 2)割线的极限位置就是切线。

证1),0>∃δ使}{\),(0001t t t t δδ+-∈∀,有)()(01t z t z ≠,即C 在)(0t z 的 对应去心领域内无重点,即能够连接割线()(10t z t z ,否则就存在数列{},01t t n →使)()(01t z t z n =。

于是0)()(lim )(0101001=--='→t t t z t z t z n n t t n ,这与假设矛盾。

2)01001),(t t t t t >⇒+∈δ,[],)()(arg )()(arg010101t z t z t t t z t z -=--[])()(arg lim 010t z t z t t -∴→(对)(0t z 割线)()(10t z t z 倾角的极限)⎥⎦⎤⎢⎣⎡--=--=→→01010101)()(lim arg )()(arglim 0101t t t z t z t t t z t z t t t t )(a r g0t z '=。

因此,割线确实有极限位置,即曲线C 在点)(0t z 的切线存在,其 倾角为)(arg 0t z '.3. 设 ⎪⎩⎪⎨⎧=≠+==+++-.0,0;0,)(223333)(z iy x z z f y x y x i y x试证)(z f 在原点满足..R C -条件,但却不可微. 证 1) 有公式(2.5)及(2.6)有;1)0()(lim0i z f z f iv u x y x x +=-=+→=.1)0()(lim0+=-=+-→=i zf z f v iu y x y y2) 但z 当沿直线0)0(→≠=m mx y 时,zf z f z )0()(lim-→随m 而变.4. 试证下列函数在z 平面上任何点都不解析: (1) z ; (2) y x +; (3) z Re ; (4)z1. 分析 由于孤立的可微点不是解析点,故只须证明各函数 个别点外处处不满足解析的必要条件:..R C -条件.证 (1) 当0≠z 时,即y x ,至少有一0≠时,或有,y x v u ≠ 或有.x x v u -≠故z 至多在原点可微;(2) 在上处处不满足..R C -条件;(3) 的结论同(2); (4),122y x iy x zz z z ++==除原点外,..R C -条件处处不成立. 5. 判断下列函数的可微性和解析性: (1) ;)(22y ix xy z f += (2) ;22iy x +(3) ;32)(33iy x z f += (4) ).3(33223y xy i xy x -+- 分析 如只在孤立点或只在直线上可微,都未形成由可微点构成的圆邻域,故都在其上不解析;利用推论2.3考查可微性,然后应用解析的定义.解 (1) .),(,),(22y x y x v xy y x u == 仅当0==y x 时,22,22xy v u xy x v u y x y y x -=-=====且此四偏导数在原点连续,故)(z f 只在原点可微,且.0)2()()0()0,0(2)0,0(===+='xyi x iv u f x x6. 若函数)(z f 在区域D 内解析,且满足下列条件之一,试 证)(z f 在D 内必为常数.(1) 在D 内;0)(='z f (2))(z f 在D 内解析; (3) )(z f 在D 内为常数;(4) )(Re z f 或)(Im z f 在D 内为常数. 分析 分别由各题设条件及..R C -条件得:在D 内,0====y x y x v v u u 从而v u ,在D 内为常数.引理* 在区域D 内0====y x y x v v u u(A)⇒在D 内v u ,为常数.事实上,1) 设000iy x z +=为D 内一定点.)(00y y i x x iy x z ∆++∆+=+=是D 内任一点.若这两点能用全含于D 内的直线段z z 0来联结, 则有:),(),(0000y x u y y x x u u -∆+∆+=∆ x y y x x u x ∆∆+∆+=),(00θθ).10(),(00<<∆∆+∆++θθθy y y x x u y )(B这是因为,”若令),10(,00≤≤∆+=∆+=t y t y y x t x x 则有),,()(00y t y x t x u t F ∆+∆+= x y t y x t x u t F x ∆∆+∆+='),()(00 .),(00y y t y x t x u y ∆∆+∆++而.,y dtdy x dt dx ∆=∆= 由数学分析中的微分中值定理得)()01)(()0()1(θθF F F F '=-'=-).10(<<θ于是)(B 式成立.”从而由)(A 知,0=∆u 即),(),(00y x u y x u =.即在D 内u 为常数.同理,在D 内v 为常数.2) 若联结两点0z 与z 的直线段不全含于D 内,由区域的连通性知,可用全含在D 内的折线段将0z 与z 连接.若111iy x z +=是折线上0z 后面的一个顶点,则在)1段中u ∆的表达式)(B 中, 令,1010,y y y x x x =∆+=∆+立即得).,(),(0011y x u y x u =如此逐步推算,由一顶点至另一顶点,最后可得()().,,00y x u y x u =即在D 内u 为常数. 同理,在D 内v 为常数.引理*证毕. 证(1)...)(0,y y x x iu v R C iv u z f D iy x z --+='=∈+=∀(2) 由题设条件iv u +及iv u -在D 内解析,再由..R C -条件可推得0====y x y x v v u u 最后有引理*可得证.(3) 由题设,在D 内=)(z f 常数C . 1) .0)(0≡⇒=z f C 2) .0)(0≠⇒≠z f C证一 )()()(2z f C z f C z f =⇒=在D 内解析,于是由题(2)得知D z f 在)(内为常数.证二 ,0222≠=+C v u 分别对y x ,微分,再应用..R C - 条件,讨论解二元一次方程组,即得在D 内.0====y x y x v v u u(4) 由..R C -条件推得,在D 内.0====y x y x v v u u 8. 试证下列函数在z 平面上解析,并分别求出其导函数. (1) ;33)(3223i y xy yi x x z f --+=(2) );sin cos ()sin cos ()(y x y y ie y y y x e z f xx ++-= (3) ;cos sin )(xshy i xchy z f += (4) ;sin cos )(xshy i xchy z f -= 证 应用定理2.5及求导公式(2.7).),2cos(2sin 21sin )cos()cos(cos nb a b bn nb a b a a ++=+++++ (1)及).2sin(2sin 21sin )sin()sin(sin nb a b bn nb a b a a ++=+++++ (2)证一 分别证明(1)和(2).按定义将正,余弦函数表成指数函数,再等比级数求和的公式简化.注 由于a 和b 是复数,不能从(1)+i (2)着手化简后,再比较实,虚部. 证二 先将(1)和(2)式两端各乘2sin b去分母后,再应用三角函数中积化和差的公式,代入左端化简.16. 试证:(1)ishz iz =)sin(;(2)chz iz =)cos(;(3)z i iz sh sin )(=;(4)z iz ch cos )(=; (5)ithz iz tg =)(;(6)itgz iz th =)(.证 (1)、(2)应用定义2.5及2.7;(3)由(1);(4)由(2);(5)、(6)由定义2.6、及2.7及(1)、(2). 17. 试证:(1)122=-z sh z ch ;(2)1sec 22=+z th z h ;(3)212121)(shz shz chz chz z z ch +=+.证 (1)由16题(1)、(2);(2)由本题(1);(3)由16题(1)、(2). 18. 若,iy x z +=试证:(1)xshy i xchy z cos sin sin +=; (2)xshy i chy z sin cos cos -=;(3)y sh x z 222sin sin +=; (4)y sh x z222cos cos +=.证 (1)、(2)应用16题(1)、(2);(3)、(4)分别应用本题(1)、(2)及17题(1). 20. 试解方程:(4)0sin cos =+z z ;(5)i tgz 21+=. 解 (4).0)sin 21cos 21(2=+z zππk z +-=4(k 为整数).(5)Arc z =)21(1)21(121)21(i i i i Lni i tg +-++=+=+-=5221i Ln i⎥⎦⎤⎢⎣⎡-+=21)12(21arctg k z π +).,1,0(5ln 4±=k i21. 设θi re z =,试证[])cos 21ln(21)1ln(Re 2θr r z -+=-. 证 设ϕρi e z =-1,则[]ρln )1ln(Re =-z .22. 设3z w =确定在从原点0=z 起沿正实轴割破了的z 平面上,并且i i w -=)(,试求)(i w -之值.解一 32)(3)()(πθk z ik ez r z w +=,(G z ∈:πθ2)(0<<z ;2,1,0=k )1) 利用i i w -=)(定)2;2,=k k 求)(2i w -. 解二 作图2.0.13)(z z f =3arg 31)(arg π=∆=∆⇒z z f c c .再由公式(2.25)计算).)((6i ei f π-=-23. 设3z w =确定在从原点0=z 起沿负实轴割破了的z 平面上,并且32)2(-=-w (这是边界上岸点对应的函数值),试求)(i w 之值.解一 .,222ππii e i e ==-由32)2(-=-w 定,1,=k k 从而.)(651i ei w π=解二 作图2.0.2.3)(z z f =,而[].arg )2(arg 3π=-=-z f又∆ .6arg 31)(arg ,2arg ππ-=∆=∆-=z z f z c c 再应用公式(2.25)计算))((65i e i f π=.24. 已知1)(4+=z z f 在ox 轴上A 点(1>=R OA )的初值为14++R ,令z 由A 起沿正向再以原点为中心的圆周上走41圆周而至oy 轴的B 点,问)(z f 在B 点的终值为何?分析 题设的函数1)(4+=z z f 是具有四个有限支点的二值函数,讨论起来比较繁难,而经过变数代换4z w =后,就简化成具有单有限支点-1的二值函数1+=w w .解 z 在z 平面上沿以0=z 为心,1>R 为半径的圆周c 从A 走到B ,经过变换4z w =,其象点w 在w 平面上w=0为心,14>R 为半径的象圆周Γ从'A 走到B ',刚好绕1+=w w 的交点-1转一整周.故它在B '的值为1+-w .因此1|)(|)(4+-=-=R z f z f A B . 25. 试证:在将z 平面适当割开后,函数32)1()(z z z f -=能分出三个单值解析分支.并求出在点2=z 取负值的那个分支在i z =的值.分析 仿例2.3.14,2.3.15及2.3.16解之.证 )(z f 的支点是,1,0=z 在沿]1,0[割开的z 平面的区域D 内,)(z f 能分出三个单值解析分支.证一 令11r z =-1θi e ,2r z = 2θi e当2=z 时,2,1,0,2121====r r θπθ.由已知π)(arg z f k 定1,=k k .然后计算i ei f 127612)(π-=32232121)]()[()(πθθk ik ez r z r z f ++=证二 作图2.0.4.由2到i ,取路线1C .,127)(arg 1π=∆z f c 再按公式(2.25)计算)(i f 证三 作图2.0.4.由2到I ,取路线2C ,π1217)(arg 2-=∆z f c .再按(2.25)计算)(i f .(二)1.设21)(z z z f -=,试证().1,0)()(Re <>⎥⎦⎤⎢⎣⎡'z z f z f z证2224221I m (2111)()(zz i z z z z f z f z -=-=-+='.2.设zzz f -=1)(,试证 ().1,0)()(1Re <>⎥⎦⎤⎢⎣⎡'''+z z f z f z 证3.若函数在上半平面内解析,试证函数在下半平面内解析. 证一设z z 、0分别为下半z 平面内的定点及动点,可证)()()(lim0000z f z z z f z f z z '=--→.由0z 的任意性及解析的定义得证.证二),(),()(y x iv y x u z f +=在上半平面)0(>y 内解析⇒1)),(),,(y x v y x u 在0>y 可微,且2)yy x v x y x u ∂∂=∂∂),(),(, )0(),(),(>∂∂-=∂∂y xy x v y y x u ()* 考查)0)(,(),()(<--=y y x iv y x u z f ,则可证:1)),(),,(y x v y x u ---在0<y 内可微,且由()*式有 2)[][]yy x v x y x u y ∂--∂*∂-∂>-),()(,)0(, [][]xy x v y y x u ∂--∂-=∂-∂),()(,. 4.(形式导数)(1)设二元函数),(y x u 有偏导数.此函数可以写成iy x z +=及z 的函数).2,2(izz z z u u -+= 试证(形式地)⎪⎪⎭⎫⎝⎛∂∂+∂∂=∂∂⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂y u i x u z u y u i x u z u 21,21 (2)设复变函数),(),()(y x iv y x u z f +=,且),(y x u 和),(y x v 都有偏导数.试证(形式地):对于)(z f ,柯西—黎曼(Cauchy-Riemann)条件可以写成0=∂∂+∂∂=∂∂zvi z u z f (由此可见,解析函数是以条件0=∂∂zf为其特征的.因此,我们不妨说,一个解析函数与z 无关,而是z 一数的函数.)证 (形式地)(1)由于)(21),(21z z iy z z x -=+=. 这里视z z ,为两个独立变量.根据复合函数求偏导的法则,即可形式地得证。

复变函数课后习题答案 (2)

复变函数课后习题答案 (2)

习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cos sin22ii i eπππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k iz i e iπ=-=-,(0,1,2,3,4)k=(2)z==11[cos(2)sin(2)]44a k i kππππ=+++,当0,1,2,3k=时,对应的4(1),1),1),)i i i i+-+---6.证明下列各题:(1)设,z x iy=+z x y≤≤+证明:首先,显然有z x y=≤+;其次,因222,x y x y+≥固此有2222()(),x y x y+≥+从而z=≥。

复变函数第二章习题解答

复变函数第二章习题解答

习题二解答1、解:1)连续 令iyx z zy x iv y x u z f +=+=+=,11),(),()(2则由222222222212111111zxy izy x zz z+-++-+=++=+显然,),(),,(y x v y x u 在1<z 内连续2)不一致连续 因为取⎪⎭⎫ ⎝⎛>-=+=>∀=δδεδδ11'',1',0,51n inn z i n n z 取显然,()δδδ<+=--+=-1111'''n n nn n n z z但()()()()222222111111''11'11nn n n z z ---⎪⎪⎭⎫⎝⎛+-=+-+δδ()()ε>=->--=-+-=41421412121212222222nn n n n n n n2、()iyx z y x zz f +=+==,222则,0),(,),(22=+=y x v y x y x u0,2,2====y x y x v v y u x u显然上述四个偏导在整个复平面上连续 由R C-条件⎩⎨⎧==⇒⎩⎨⎧==00202y x y x22222222)2()1(2),(,)2()1(1),(xy y x xyy x v xy y x yx y x u +-+-=+-+-+=∴()2zz f =∴只在0=z 处可导,而处处不解析3、证明:()yy x xziUV R C iV U z f D iy x V--+='=∈+=0,0====∴y x yx V V UU),(),,(y x V y x U 在D 内为常数 故)(z f 在D 内为常数 4、证明(1)令()),(),(y x iv y x u z f +=若),(y x u 在D 内为常数,则在D 内,0==y xu u由C-R 条件知,对),(y x v 有在D 内0==y xv v∴),(),,(y x v y x u 在D 内为常数 )(z f在D 内为常数对),(y x v 于D 内为常数时,同理可证得结论 (2)由()222v u z f +=在D 内为常数设()*22cv u =+若0=c 知()0=z f 于D若0≠c ,此时:对()*求偏微分得22022=+=+y y x x vv uu vv uu再由C-R 条件,并讨论二元一次方程组的解,可解出====y x y x v v u u ,由此可得)(z f 在D 内为常数5、证明:若∈z 上半平面,则∈z 下半平面 设()),(),(y x iv y x u z f +=,则()),(),(),(),(y x i y x y x iv y x u z f ψϕ+∆---=)(z f 在上半平面解析),(),,(y x v y x u ⇔在上半平面解析且满足RC -方程x y y x v u v u -==,又()()),(,),,(,y x v y x y x u y x --=-=ψϕ()()()()yy x v y x y x v x yy x u y x y x u x x ∂-∂=∂∂∂-∂-=∂∂∂-∂-=∂∂∂-∂=∂∂,,,,,,ψψϕϕ∴当)(z f 在半平面解析时,),(,,y x y )(x ψϕ在下半平面可微,且满足R C -方程xyy x2222,2222ψϕψϕ-==)(z f ∴在下半平面解析6、证明:(1)xyi y x iy )(x z 2.2222+-=+=xv y v y uy x ux xy y x v y x y x u y x 2,2,2,22),(,),(22==-===-=显然y x y xv v u u,,,在整个复平面连续,且xy x v uy v u -==,2z ∴在复平面解析 (2)yie y e ee xx iyx zsin cos +==-ye v y e v y e u y e u yie y x v y e y x u xy xx xy xx xxcos ,sin ,sin ,cos sin ),(,cos ),(==-====显然,yx y xv v u u,,,在整个复平面上解析,且x y y xv v v u-==,满足C-R 方程z e ∴在整个复平面上解析()()()()[]()xee y x v x ee y x u xeei x e e xe ei x eeieei z yyyyyyyyy yyyizizcos 2),(,sin 2),(cos 2sin 2sin cos 2121sin3--------=+=--+=++-=-=xee u x ee u yyy yyx sin 2,cos 2---=+=x eev x ee v yyy yyx cos 2,sin 2++=--=--yx y x v v u u ,,,在复平面上连续,且满足x y y xv u v u-==,zsin ∴在整个复平面上解析(4)同理z cos 在整个复平面上解析 (5)()xyi y x iy x z 222--=+=xv y v y u x u xy y x v y x y x u y x y x 2,2,2,22),(,),(22-=-=-==-=-=yx y x v v u u ,,,在复平面上连续由得xy y x v u v u ⎪⎩⎪⎨⎧-==⎩⎨⎧==⇒⎩⎨⎧+=--=02222y x y y x x所以2z 只在0=z 处可导,而在整个复平面上均不解析 同理可证z z e z cos ,sin ,在复平面上不解析、7、证明()θθθθθθθθθθθθ∂∂⋅=∂∂∴⎪⎪⎭⎫⎝⎛∂∂+∂∂-∂∂+⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂-===vr ru x uy u r R C r yv r xv y y vxx v v y u x u r yy u r x x u ru r y r x y x iv y x u z f 1cos sin cos sin 22sin cos sin ,cos ),,(),(条件则设()()rv ru y u xu y v x v r yy v r x x v rv x u y u r r yu r xu y yu x x u u ∂∂-=∂∂∴⋅∂∂-⋅∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⎥⎦⎤⎢⎣⎡∂∂-∂∂=∂∂+-⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂θθθθθθθθθθθθcos sin sin cos sin cos cos sinrv ru vr ru :∂∂-=∂∂∂∂⋅=∂∂∴θθ,1条件是极坐标下的柯西一黎曼8、证明:(1)如同证明)(z f 存在则),(),,(y x v y x u 的偏导数也存在一样归纳可证明:)(z f 的实部和虚部在D 内也有任意阶导数 而xy y xv u u u-==,xy yy xy xxv u v u -==∴,=+∴yy xxv u,同理0=+yy xxv v(2)设()()),(,y x iv y x u z f +=,则()222vu z f +=()()⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂⋅+⎪⎪⎭⎫⎝⎛∂∂=∂∂⎥⎥⎦⎤⎢⎢⎣⎡∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂∴22222222222222222222y v vy v y u u y uyz f x v v x v x u u x u xz f又0,022222222=∂∂+∂∂=∂∂+∂∂yv xv yu xu且,,xv yu yv xu ∂∂-=∂∂∂∂=∂∂代入整理得:()()()22222222244z f x v x u yz f xz f '=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂+∂∂9、()()()()()[]()[]()()()()()()()()()()()()()()(),1,0,122sin122cos 2122sin 122cos2,1,022ln 22cos 1,1,0,,2,1,0,242ln 2121arg 1ln 11sin 1cos 2122ln 222arg 2ln 2222222221arg 1ln 2122222202arg ln 222ln 2±=+++=+++====-±=+=====±=====+±+⎪⎭⎫⎝⎛++=++++=++==+++-+--++⎪⎭⎫⎝⎛+-⎥⎦⎤⎢⎣⎡++++k k i k k i k e e e e k k is k e eeek e eee i k k i k i i i i Ln i ee e ek i k i Ln k i k i k i i Ln k k i i k i i i i iLnii i ziπππππππππππππππππππ10、()()()()()1111221cos 22222-+-=-+=∴-+==+-+==-z z iLn w z z Ln iw z z ezee eez w ziwiwiwiwiw即故11、证明:()()()()()zz eeiz ee z iz i z e e ieeiee i iz ee z zzzzzzzziz i izi zzcosh cosh 21cos 2cosh sin sinh 212121sin 2sinh =∴+=+=-=∴-⋅-=-=-=-=---+---()()()()()()()222221ln 1ln 11ln 101221sin 1z iz i iiz i w iiz iw iiz eizee eeiz w ziwiwiwiwiw-+-=-+=-+=∴-+==---==-即故()()()()212112212121222222sinh cosh cosh sinh cos sin cos sin )sin()(1sin cos sin cos sinhcoshz z z z iz iz i iz iz i iz iz i z z son iz iz z i iz z z +=--=+-=+=+=--=-212121212121212121sinh sinh coshcosh )sin )(sin (cos cos sin sin cos cos )cos()(cos )cosh(z z z z iz i iz i z iz z iz iz iz iz iz z z i z z +=--+=-=+=+=+yz i y z z siyiy i i iy z ziy iy z iy x sinh cos cosh cos cos )(cos sin cos sin cos sin )sin(+=-+=+=+yx i y x iy i x i iy z iyx iy z iy x sinh sin cosh cos sin )(sin cos cos sin sin cos cos )cos(-=--=-=+ziz i iz dzd z dzd z iz iz i i iz i dz d z dz d sinh sin )(cos cosh cosh cos cos )sin (sinh =-====⋅-=-=12、证明()()⎪⎪⎭⎫⎝⎛∂∂+∂∂=∂∂⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛-⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⎪⎪⎭⎫⎝⎛∂∂-∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂-+=-=∂∂=∂∂=∂∂=∂∂-=+=-=+=y u i x u zv y u i xui zux u zy y u zx xu z u y u i x u i y u x u z y y u y x x u z u i zz z z u y x u izy zx izy zx z z iy ,z z x iy x z iy x z 21212121212121)2,2(),(21,21,21,21,2121,同理于是得由),(0,2121212121=∂∂+∂∂=∂∂∴=∂∂+∂∂=∂∂∂∂-=∂∂∂∂=∂∂⎪⎪⎭⎫⎝⎛∂∂+∂∂⋅+∂∂⋅-∂∂⋅=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+∂∂=∂∂+=zv iz u zf z f zv izu zf y ux v y v x u:x v y u i y v x u y v i x v i y u i x u zv i z u zf ivu f 成柯西一黎曼条件可以写对于得由柯西一黎曼条件13、解:()()()⎪⎭⎫ ⎝⎛-+=⎪⎪⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+====z z Ln z z Ln z f z z Ln z f ,z e zf e z f z z111111)11(20)1(,)(11从而不解析点无定义在。

复变函数习题二解答.docx

复变函数习题二解答.docx

第二章部分习题解答1 •试证下列函数在7平面上任何点都不解析。

(2) /(z ) = Rez o色=1色=0空=o 勿’金 >,知1爪)在刁平面上任何点都不解析。

2.下列函数何处可导?何处解析?(1)旳“+的解 (1)由于OXf(z) = xy 2+ix 2y 仅在点“0处可导,在?平面处处不解析。

3•证明:如果函数/(z )=w + /v在区域D 内解析,并满足下列条件之一,那么/⑴ 是常数。

仃)在。

内广^ =°; ⑵雨在D 内解析。

⑶"(z)l 在D 内是一个常数。

解(1)的证明由于/⑵P+必丸,故由引理得纵"=°,根据C.R 条件 即有亏9 = 于是讥乙刃、风兀丿)恒为常数,即/⑵在D 内恒为常数。

(2)若7U) = ^ = u-iv 在区域D 内解析,贝I 」du _ d(- v) _ dv _ d(— v) _ Sudx dy dy ? dy dx dx又f(z) = u^iv 在区域D 内解析,贝IJdu du __dx , 5y dx dy知/(z)在z 平面上任何点都不解析。

du dx(1)在Z 平面上处处连续,且当且仅当 沪0时,6 才满足C~R 条件,故du dv du dv—=— —— --------- dx dy, dy dx结合(1)、(2)两式,有du _ du _dv _dv dx dy dx vy故以在〃内均为常数,分別记之为均=C 19u 2=C 2(C l9C 2为实常数), 则 /(Z ) = M+ ,V =C] +iC 2 =C 为一复常数。

(3)若1%)1在D 内为一常数,记为G,则两边分别对于x 和y 求 偏导,得由于/C)在〃内解析,满足C-R 条件du dv dudv II■I■,dx dy ?dx代入上式又可写得duu---- dx du v ——+ dxSv dv c——=——=U同理,可解得% 巧 故均为常数,分别记为U = C^V = C 29 则 /(z) = u + iv=C {+iC 2=C 为一复常数。

复变函数习题答案第2章习题详解

复变函数习题答案第2章习题详解

第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()zz z z z n n z nz z zz z z znn n n n z nn z n ∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→ 2210121limlim'()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆ lim2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim'2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂x v ,1-=∂∂y v 都是连续函数。

只有12-=x ,即21-=x 时才满足柯西—黎曼方程。

()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。

2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂x v ,29y yv =∂∂都是连续函数。

只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。

()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。

3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy yu 2=∂∂,xy x v 2=∂∂,2x y v =∂∂都是连续函数。

只有22x y =且xy xy 22-=,即0==y x 时才满足柯西—黎曼方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()z z z z z n n z nz z z z z z z nn n n n z n n z n∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→ 22100121limlim '()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆ lim 2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫ ⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim '2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂xv,1-=∂∂y v 都是连续函数。

只有12-=x ,即21-=x 时才满足柯西—黎曼方程。

()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。

2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂xv ,29y y v =∂∂都是连续函数。

只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。

()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。

3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy y u 2=∂∂,xy xv 2=∂∂,2x y v =∂∂都是连续函数。

只有22x y =且xy xy 22-=,即0==y x 时才满足柯西—黎曼方程。

()iy x z f -=∴2在点()00,处可导,在复平面内处处不解析。

4)()xshy i xchy z f cos sin +=解:设()iv u z f +=,则xchy u sin =,xshy v cos =xchy x u cos =∂∂,xshy y u sin =∂∂,xshy xvsin -=∂∂,xchy y v cos =∂∂都是连续函数。

完全满足柯西—黎曼方程。

()iy x z f -=∴2在复平面内处处可导,在复平面内处处解析。

3. 指出下列函数()z f 的解析性区域,并求出其导数。

1)()51-z解:()()415-=z z f',()z f 在复平面内处处解析。

2) z i z 23+ 解:()i z z f232+=',()z f 在复平面内处处解析。

3)112-z 解:()()2212--=zzz f',1±≠z ,()z f 在复平面内除点1±≠z 外处处解析。

4)dcz baz ++(c ,d 中至少有一个不为0)解:()()()22d cz bcad d cz b az c d cz a z f+-=++-+='当0≠c ,则当c d z -≠时,()()2d cz bc ad z f +-=',()z f 在复平面内除点c d z -≠外处处解析。

当0=c 时,则0≠d ,()daz f =',()z f 在复平面内处处解析。

4. 求下列函数的奇点:1)()112++z z z 解:令()012=+z z ,解得0=z ,i z ±=。

故()()112++=z z z z f 有0、i 、i -三个奇点。

2)()()11222++-z z z 解:令()()01122=++z z ,解得1-=z ,i z ±=。

故()()()11222++-=z z z z f 有1-、i 、i -三个奇点。

5. 复变函数的可导性与解析性有什么不同?判断函数的解析性有哪些方法?解:复变函数的可导性是函数在某一点的局部性质,而解析性是函数在一个区域内的整体性质。

判断函数的解析性有两种法。

一是用定义,利用函数的可导性判断解析性;二是用定理:函数()()()y x iv y x u z f ,,+=在其定义域D 内解析⇔()y x u ,和()y x v ,在D 内点iy x z +=可微,并且满足柯西—黎曼方程。

6. 判断下列命题的真假,若真,请给以证明;若假,请举例说明。

1) 如果()z f 在0z 连续,那末()0z f '存在;解:假命题。

例如,()yi x z f 2+=在复平面内任意一点0z 都连续,但不满足柯西—黎曼方程,故()z f '不存在。

2) 如果()z f'存在,那末()z f 在0z 解析;解:假命题。

例如,()y ix xy z f 22+=,()z f 在点00=z 可导,但()yi x z f 2+=在0z 点不解析。

3) 如果0z 是()z f 的奇点,那末()z f 在0z 不可导;解:假命题。

例如,()i y x z f 33+=在复平面内处处不解析,因此处处是奇点,但()z f 在0=±y x 上的点均可导。

4) 如果0z 是()z f 和()z g 的一个奇点,那末0z 也是()()z g z f +和()()z g z f 的奇点;解:假命题。

例如,()z z f =与()z z g -=在复平面内处处不解析,即复平面内任意一点0z 都是()z f 与()z g 的奇点。

但()()()0=-+=+z z z g z f 在复平面内处处解析,即()()z g z f +在复平面内没有奇点。

5) 如果()y x u ,和()y x v ,可导(指偏导数存在),那末()iv u z f +=亦可导;解:假命题。

例如,设()yi x z f 2+=,则()x y x u =,,()y z v 2=均可导,但不满足柯西—黎曼方程,因此()z f 不可导。

6) 设()iv u z f +=在区域D 内是解析的。

如果u 是实常数,那末()z f 在整个D 内是常数;如果v 是实常数,那末()z f 在D 内也是常数。

解:真命题。

下面证明:因为()iv u z f +=在区域D 内解析,即满足柯西—黎曼方程:y v x u ∂∂=∂∂,x v yu ∂∂-=∂∂如果u 是实常数,则0=∂∂=∂∂yvx u ,0=∂∂-=∂∂x v y u ,即v 为实常数,故()z f 在D 内为常数。

如果v 是实常数,则0=∂∂=∂∂yvx u ,0=∂∂-=∂∂x v y u ,即u 为实常数,故()z f 在D 内为常数。

7. 如果()iv u z f +=是z 的解析函数,证明:()()()222z f z f y z f x '=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂。

证明:()iv u z f += ()22v u z f +=∴()22222221222⎪⎭⎫ ⎝⎛∂∂+∂∂+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂x v v xuuv u v u x v v x uu z f x ()22222221222⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+∂∂+∂∂=⎪⎪⎭⎫ ⎝⎛∂∂y v v y u u v u v u y v v y uu z f y ()iv u z f += 在点z 处解析,y v x u ∂∂=∂∂∴,xvy u ∂∂-=∂∂ ()()2222222211⎪⎪⎭⎫ ⎝⎛∂∂+∂∂++⎪⎭⎫ ⎝⎛∂∂+∂∂+=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂y v v y u u v u x v v x u u v u z f y z f x⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+∂∂-+⎪⎭⎫ ⎝⎛∂∂+∂∂+=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+=2222222211x u v x v u x v v x u u v u y v v y u u x v v x u u v u ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂+=2222222222221x u v x v x u uv x v u x v v x v x u uv x u u v u 2222222222221⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=x v x u x u v x v u x v v x u u v u()x v i x u z f ∂∂+∂∂=' ()222⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∴x v x u z f ' ⇒()()()222z f z f y z f x '=⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂8. 设()2323lxyx i y nx my +++为解析函数,试确定l 、m 、n 的值。

解:设()y nx my y x u 23+=,,()23lxy x y x v +=,,则nxy x u 2=∂∂,223nx my y u +=∂∂,223ly x x v +=∂∂,lxy y v 2=∂∂ yvx u ∂∂=∂∂lxy nxy 22=∴ ⇒ l n = xv y u ∂∂-=∂∂()222233ly x nx my +-=+∴ ⇒ ⎩⎨⎧-=-=lm n 333-==∴l n ,1=m ,()2323lxy x i y nx my +++为解析函数9. 证明柯西—黎曼方程的极坐标形式是:ϑ∂∂=∂∂v r r u 1,ϑ∂∂=∂∂vr r u 1 证明:直角坐标与极坐标的转换公式为⎩⎨⎧==ϑϑsin cos r y r x ,于是由复合函数求导得:ϑϑsin cos y u x u r y y u r x x u r u ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂()()ϑθϑϑϑcos sin r y u r x uy y u x x u u ∂∂+-∂∂=∂∂∂∂+∂∂∂∂=∂∂ϑϑsin cos y v x v r y y v r x x v r v ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂()ϑϑϑϑϑcos sin r y v r x vy y v x x v v ∂∂+-∂∂=∂∂∂∂+∂∂∂∂=∂∂ y v x u ∂∂=∂∂,xvy u ∂∂-=∂∂ϑϑϑϑsin cos sin cos xu y u y v x v r v ∂∂+∂∂-=∂∂+∂∂=∂∂()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=∂∂+-∂∂=∂∂ϑϑϑϑϑcos sin cos sin x uy u r r y v r x v v ()()ϑϑϑ∂∂=-∂∂+∂∂=∂∂-u r xu r yu rv r sin cos ru x u y u v r ∂∂=∂∂+∂∂=∂∂ϑϑϑcos sin 1即:ϑ∂∂=∂∂v r r u 1,ϑ∂∂=∂∂vr r u 110. 证明:如果函数()iv u z f +=在区域D 内解析,并满足下列条件之一,那末()z f 是常数。

相关文档
最新文档