分数的加减法及简便运算.

合集下载

分数四则混合运算

分数四则混合运算

分数四则混合运算一、分数四则混合运算的运算法则:1.加减法:对于同分母的分数,直接将分子相加或相减,分母保持不变。

对于异分母的分数,需要先通分,然后再将分子相加或相减。

2.乘法:先进行约分,然后将分子相乘,分母相乘,得到的积即为结果。

3.除法:将被除数乘以除数的倒数即可得到结果。

二、分数四则混合运算的运算顺序:1.同级运算按从左往右的顺序进行计算。

2.如果既有加减法,又有乘除法,先进行乘除法的计算,然后再进行加减法的计算。

3.如果有括号,先计算括号内的表达式。

4.如果符合运算定律,可以利用运算定律进行简化计算。

三、分数四则混合运算的运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律。

四、分数四则混合运算的运算性质:减法的性质和除法的性质。

五、分数四则混合运算的简便计算:可以利用乘法分配律及其逆运算或者减法的性质进行简化计算。

举例:1.(-)×(÷)12÷(1+15/36)2.(1-21/49÷18/35)÷(7/9×13/10)3.XXX÷(xxxxxxx×(1+(÷)))4.(84×/)+(×)325.(×)xxxxxxxx41/(xxxxxxxx655+(×)-(÷)xxxxxxxx71)6.(×)+(÷)xxxxxxx/(×)+(÷)xxxxxxx7.(×)xxxxxxxx17/(-)+(÷)xxxxxxxx1318.解方程:X=18/21.X=574/35。

分数简便计算题60道

分数简便计算题60道

分数简便计算题60道一、同分母分数加减法1. (3)/(7)+(2)/(7)同分母分数相加,分母不变,分子相加就好啦。

3加2等于5,所以答案就是(5)/(7)。

2. (5)/(9)-(2)/(9)分母是9不变,分子5减2等于3,那结果就是(3)/(9),约分一下就是(1)/(3)。

3. (4)/(11)+(5)/(11)+(2)/(11)分母都是11,把分子4、5、2加起来,4 + 5+2 = 11,所以答案是(11)/(11)=1。

4. (7)/(13)-(3)/(13)-(1)/(13)分母13不变,分子7-3 - 1=3,答案就是(3)/(13)。

5. (2)/(15)+(8)/(15)-(4)/(15)分母15不变,分子2 + 8-4 = 6,结果是(6)/(15),约分后为(2)/(5)。

6. (9)/(17)+(3)/(17)+(5)/(17)分母17不动,分子相加9+3 + 5 = 17,答案就是1。

7. (11)/(21)-(5)/(21)+(8)/(21)分母21不变,分子11-5+8 = 14,结果是(14)/(21),约分后为(2)/(3)。

8. (13)/(23)-(7)/(23)-(3)/(23)分母23不变,分子13 - 7-3 = 3,答案为(3)/(23)。

9. (1)/(19)+(10)/(19)+(8)/(19)分母19不变,分子相加1+10 + 8 = 19,结果是1。

10. (15)/(29)-(9)/(29)-(4)/(29)分母29不变,分子15-9 - 4 = 2,答案是(2)/(29)。

11. (3)/(31)+(16)/(31)+(12)/(31)分母31不变,分子相加3+16+12 = 31,答案为1。

12. (17)/(35)-(8)/(35)+(10)/(35)分母35不变,分子17 - 8+10 = 19,结果是(19)/(35)。

13. (21)/(43)-(13)/(43)-(5)/(43)分母43不变,分子21-13 - 5 = 3,答案为(3)/(43)。

五年级期末复习之分数加减法及简便计算

五年级期末复习之分数加减法及简便计算

分数的加减法及其简便计算一、相关知识复习最大公因数、最小公倍数(列举法、短除法、切正方形法)练:1、求最大公因数和最小公倍数:24和18 12和36 18和512、填空。

(1)1和5的最大公因数是( ),最小公倍数是( )。

(2)4和6的最大公因数是( ),最小公倍数是( )。

(3)如果a ÷b=5(a 和b 都是大于0的自然数),那么a 与b 的最小公倍数是( ),最大 公因数是( )。

(4)两个数字A 、B ,并且A-B=1,那么A 、B 的最大公因数是( ),最小公倍数是( )。

(5)两个连续的偶数A 、B ,那么A 、B 的最大公因数是( ),最小公倍数是( )。

(6)甲、乙两个数的最大公因数是6,最小公倍数是90,甲数是18,乙数是( )。

二、分数的性质及其应用分数的性质:分子、分母同时乘以或除以一个不等于0的数,分数值不变。

最简分数:分子、分母互质的分数。

约分:分子、分母同时除以分子、分母的最大公约数,以得到最简分数。

通分:两个异分母分数利用分数性质变成分母相同的分数,一般通分后分母为两个原分母的最小公倍数。

1、约分: =4016 =4921 =125100 =1481442、通分 107和158 91和65 53和83 3315和1173、知识延伸分数利用分数性质进行变化时,分子、分母以及两者的和与差变化倍数是相同的。

练习:1、保持分数值不变,72的分子变成6时,分母应变成( ); 72的分子扩大2倍时,分母需增加( ); 72的分子增加了4时,分母扩大( )倍; 想一想,上述变化中它们分子、分母的差是怎么变化的? 2、分数19871985的分子、分母同时加上同一个数后,所得的分数等于19901989,加上的数是多少?3、有一个分数,将它的分母加上2,得到97;如果将它的分母加上3,则得到43。

那么这个分数是_____________.三、分数的大小及加、减法计算 1、分数的大小比较①分母相同时,分子越大,分数值越大。

五年级下册分数加减法的简便计算题

五年级下册分数加减法的简便计算题

5年级下册分数加减法的简便计算题一、概述1. 本文将介绍针对五年级下册学生的分数加减法的简便计算方法,帮助学生更好地掌握这一部分的知识。

2. 分数加减法是数学学习中的重要内容,对于学生来说也是一个较为困难的部分,因此需要采用简便的方法进行计算。

二、分数的加法1. 分子相同的分数相加:只需将分子相加,分母保持不变。

2. 例如:1/4 + 2/4 = (1+2)/4 = 3/43. 分母不同的分数相加:先通分,然后将分子相加,分母保持不变。

4. 例如:1/3 + 1/6 = (2/6) + (1/6) = 3/6 = 1/2三、分数的减法1. 分子相同的分数相减:只需将分子相减,分母保持不变。

2. 例如:5/8 - 2/8 = (5-2)/8 = 3/83. 分母不同的分数相减:先通分,然后将分子相减,分母保持不变。

4. 例如:3/5 - 1/4 = (12/20) - (5/20) = 7/20四、分数的混合运算1. 分数的混合运算即包括加法和减法,需要按照顺序进行计算。

2. 例如:2/3 + 1/6 - 1/4 = (8/12) + (2/12) - (3/12) = 7/12五、应用题1. 小明有1/3块巧克力,小红有1/4块巧克力,他们俩共有多少块巧克力?2. 解答:1/3 + 1/4 = (4/12) + (3/12) = 7/12,所以他们俩共有7/12块巧克力。

3. 小华有5/6块巧克力,小明比小华少1/3块巧克力,小明有多少块巧克力?4. 解答:5/6 - 1/3 = (5/6) - (2/6) = 3/6 = 1/2,所以小明有1/2块巧克力。

六、结语1. 通过本文的介绍,相信大家对于五年级下册分数加减法的简便计算方法有了更深入的了解。

2. 分数加减法是数学学习中的重要内容,掌握简便的计算方法可以帮助学生更好地应对这一部分的知识。

七、带有分数的实际问题1. 分数加减法在日常生活中也经常会出现,例如在烘培中需要按照食谱中的分数配料,或者在出游时需要计算运输时间等等。

带分数相加减的简便方法

带分数相加减的简便方法

带分数相加减的简便方法带分数相加减是小学数学中的重要内容,为了让学生更好地理解和掌握这个知识点,我们提供十条关于带分数相加减的简便方法,并进行详细描述。

1. 手写计算方法在计算带分数相加减时,可以采用手写计算的方法,即将带分数转化为假分数,再进行相应的运算。

将3 5/6转化为23/6,然后与另一个假分数相加减。

2. 统一分母为了方便计算,我们可以先将所有的带分数都转化为假分数,再将所有的假分数的分母统一起来。

这样,我们就可以直接将分子相加减,而无需再转化为带分数。

3. 带分数拆分法将带分数拆分为整数和真分数,再进行运算,最后将得到的结果合并为带分数。

3 5/6 + 1 1/2可以拆分为(3 + 1) + (5/6 + 1/2),然后再进行相应的运算。

4. 取整数法如果只需要估算带分数相加减的结果,可以采用取整数法。

即将每个带分数的整数部分加减,再将每个带分数的分数部分相加减,最后再将整数和分数部分合并。

5. 取公因数法如果需要将两个带分数的分数部分相加减,可以采用取公因数法。

即找到分数部分的最小公倍数,然后将分数部分分别乘上相应的倍数,使得分母相同,最后再进行相应的运算。

6. 纵向计算法在计算多个带分数相加减时,可以采用纵向计算法。

即将所有的带分数排成一列,然后按照位数一位一位地进行相应的运算,最后得到的结果即为带分数相加减的结果。

7. 脱分数法如果需要将带分数相加减的结果转化为带分数形式,可以采用脱分数法。

即将分数部分除以分母,然后将商加上整数部分,最后得到的结果即为带分数形式。

8. 分母分数相加减法在计算带分数相加减时,如果分数部分的分母相同,则可以将分数部分相加减,整数部分不变。

3 1/4 + 2 3/4 = (3 + 2) 1/4 + 3/4 = 5 1/4。

9. 合并同类项法如果多个带分数的整数部分相同,可以采用合并同类项法。

即将相同的整数部分合并起来,然后对每个带分数的分数部分进行相应的运算。

分数四则混合运算法则口诀(3篇)

分数四则混合运算法则口诀(3篇)

第1篇一、分数加法口诀分数加法,看似复杂,其实简单。

先通分,再相加,结果是关键。

以下口诀助你轻松掌握:同分母,直接加,分母不变,分子相加;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。

二、分数减法口诀分数减法,方法类似,注意细节,操作简便。

以下口诀助你一臂之力:同分母,直接减,分母不变,分子相减;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。

三、分数乘法口诀分数乘法,简单易行。

相乘分子,相乘分母,结果约分,最简为止。

以下口诀助你轻松掌握:分子相乘,分母相乘,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。

四、分数除法口诀分数除法,关键是倒数。

相乘倒数,结果是分数,约分求最简。

以下口诀助你轻松应对:除以一个数,等于乘以它的倒数;相乘分子,相乘分母,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。

五、分数四则混合运算口诀分数四则混合运算,先乘除,后加减,注意括号。

以下口诀助你一臂之力:先乘除,后加减,注意括号,顺序别乱;加减乘除,混合运算,先算括号,再算乘除;约分求最简,确保结果,正确无误。

六、特殊情况口诀特殊情况,注意处理,以下口诀助你应对:分母为零,无意义,运算不能继续;分子为零,结果是零,分母为零,无意义;分母相等,结果相等,分子相等,结果相等;分子分母同时乘以或除以相同的数(不为零),分数大小不变。

七、总结分数四则混合运算,看似复杂,实则简单。

只要掌握好以上口诀,运用得当,分数运算轻松自如。

在学习过程中,不断练习,提高计算速度和准确性,为以后的学习打下坚实基础。

祝你学习进步,早日成为数学小达人!第2篇在数学学习中,分数的四则混合运算是一个非常重要的内容。

为了帮助同学们更好地掌握分数的加减乘除运算,以下是一份详细的分数四则混合运算法则口诀,希望能对大家的学习有所帮助。

一、分数加减法口诀1. 分子分母同加减,加减符号要跟上。

五年级分数简便计算

五年级分数简便计算

一、分数的加减法:1.相同分母的分数相加或相减,只需保持分母不变,将分子相加或相减即可。

例如:2/3+1/3=3/3=12.不同分母的分数相加或相减,需要找到一个最小公倍数作为公共分母,然后分别将分子按比例转换为公共分母的等分数,最后再进行加减运算。

例如:1/4+3/5=(1×5)/(4×5)+(3×4)/(5×4)=5/20+12/20=17/203.分数相减和分数相加的原理相同,只是将分子进行相减。

例如:2/3-1/6=(2×2)/(3×2)-(1×3)/(6×3)=4/6-3/6=1/6二、分数的乘法:将两个分数的分子相乘,分母相乘即可。

例如:2/3×3/4=(2×3)/(3×4)=6/12=1/2三、分数的除法:将第一个分数的分子乘以第二个分数的倒数,即将除法转换为乘法。

例如:2/3÷3/4=(2×4)/(3×3)=8/9四、分数的化简:化简一个分数的方法是寻找分子和分母的最大公约数,然后将分子和分母同时除以该公约数。

例如:8/12=2/3(最大公约数是4,同时除以4得到2/3)五、分数的比较:比较分数的大小可以通过将两个分数的分母相等化,然后比较分子的大小。

也可以直接比较两个分数的分子相乘的结果。

例如:2/3>1/2(通过找到最小公倍数,将两个分数的分母都化为6分之后,比较分子大小)六、分数的转换:将一个分数转换为小数,只需将分子除以分母即可。

例如:2/3=2÷3=0.666...将一个小数转换为分数,可以根据小数位数的不同,找到相应的分子和分母。

例如:0.75=3/4(分子是小数点后的数字,分母是10的位数)。

分数加减法简便算法

分数加减法简便算法

分数加减法简便算法在数学中,分数的加减法是基本运算之一、虽然在初等教育中,我们学习了分数的运算规则,但是有时候我们还是希望能够有一种简便的方法来进行分数的加减法运算。

下面我将介绍一些简便算法,帮助你更快地进行分数的加减法运算。

一、相同分母的分数的加减法运算当两个分数的分母相同时,我们可以直接在分子上进行加减运算,而保持分母不变。

例如,我们要计算以下分数的和:1/5+3/5由于分母相同,我们直接将分子相加,保持分母为5:1/5+3/5=(1+3)/5=4/5同样的方法,我们可以计算分数的差。

例如:3/4-1/4=(3-1)/4=2/4=1/2二、分母为公倍数的分数的加减法运算当两个分数的分母不同,但它们的分母存在一个公倍数时,我们可以通过找到一个公倍数,将两个分数的分母同时转化为这个公倍数的倍数,然后进行运算。

例如,我们要计算以下分数的和:3/4+2/5由于4和5的公倍数是20,我们可以将两个分数的分母都转换为20的倍数:3/4×5/5+2/5×4/4=15/20+8/20=23/20同样的方法,我们可以计算分数的差。

例如:3/4-2/5=15/20-8/20=7/20三、使用通分的方法进行分数的加减法运算当两个分数的分母不同且没有公倍数时,我们可以使用通分的方法进行运算。

通分就是将两个分数的分母都取相同的分数,然后按照相同分母的加减法运算进行计算。

例如,我们要计算以下分数的和:2/3+1/4由于3和4没有公倍数,我们可以通过将两个分数的分子和分母都乘以对方的分母来实现通分:2/3×4/4+1/4×3/3=8/12+3/12=11/12同样的方法,我们可以计算分数的差。

例如:2/3-1/4=8/12-3/12=5/12综上所述,对于分数的加减法运算,我们可以根据分母是否相同,分母是否存在公倍数,以及分母是否无公倍数来选择不同的简便算法。

通过运用这些算法,我们可以更快地进行分数的加减法运算。

分数加减法简便计算口诀

分数加减法简便计算口诀

分数加减法简便计算口诀
分数加减法是数学中常见的运算,但对于一些学生来说可能较为复杂和困难。

为了简化这些运算,我们可以使用一些口诀来帮助记忆和计算。

首先,对于分数的加法,我们可以使用以下口诀:
分子相加,分母不变,约分最后不落单。

这个口诀的意思是,当我们进行分数的加法运算时,只需要将两个分数的分子相加,分母保持不变。

最后,如果可能的话,对结果进行约分。

例如,我们需要计算1/3 + 2/3,根据口诀,我们只需要将分子相加,得到3/3,然后对结果进行约分,得到1。

接下来是分数的减法口诀:
分子相减,分母不变,约分最后不留残。

这个口诀与分数的加法口诀类似,只需要将分子相减,分母保持不变。

最后,如果可能的话,对结果进行约分。

例如,我们需要计算5/6 - 1/6,根据口诀,我们只需要将分子相减,
得到4/6,然后对结果进行约分,得到2/3。

通过这些口诀,我们可以简化分数的加减法运算,帮助我们更快地计算。

当然,对于更复杂的分数运算,我们还需要掌握更多的方法和技巧。

但这些口诀可以为初学者提供一个很好的起点,帮助他们建立对分数运算的基本理解和计算能力。

分数加减法简便计算大全

分数加减法简便计算大全

分数加减法简便计算大全分数的加法和减法是数学中常见且重要的运算,我们通过简便计算的方法可以更快速地完成这些运算。

下面是一些分数加减法简便计算的方法:一、同分母分数的加减法当分数的分母相同时,我们可以直接对分子进行加减操作,然后保持分母不变。

例如:1.加法:若需要计算1/3+2/3,则可以直接将分子相加,得到3/3,即12.减法:若需要计算5/6-3/6,则可以直接将分子相减,得到2/6,然后化简为1/3二、分数的通分当分数的分母不同时,我们需要先将分数化为相同分母的分数,这样才能进行加减运算。

通常情况下,我们可以通过两种方法实现通分:1.找最小公倍数:找到这两个分数的分母的最小公倍数,然后将分子和分母同时乘以一个数,使得两个分数的分母相同。

例如:计算3/4+1/6,最小公倍数为12,分别将3/4×3/3和1/6×2/2化简为9/12和2/12,然后直接相加即可得到11/122.通分公式:若分数的分母分别为a和b,要使得这两个分数通分,可以将它们的分子和分母同时乘以b和a的最小公倍数。

例如:计算2/5+3/8,最小公倍数为40,将2/5×8/8和3/8×5/5化简为16/40和15/40,然后相加即可得到31/40。

三、带分数的加减法对于带分数,我们可以将其转化为假分数,然后进行通分、加减运算,最后再还原回带分数的形式。

例如:1.加法:若需要计算11/2+31/4,先将它们都转化为假分数,得到3/2+13/4,然后通分,得到6/4+13/4=19/4、最后将19/4转化为带分数,得到43/42.减法:若需要计算52/3-21/5,先将它们都转化为假分数,得到17/3-11/5,然后通分,得到85/15-33/15=52/15、最后将52/15转化为带分数,得到37/15四、分数的约分和略算在进行分数的加减法运算时,可以先对分数进行约分,然后再进行计算,这样可以简化计算过程。

分数加减法混合运算简便计算

分数加减法混合运算简便计算

分数加减法混合运算简便计算分数的加减法混合运算是数学中的一项基础运算,它要求对分数的加法和减法进行合理的组合和运算。

下面我将详细介绍分数的加减法混合运算的简便计算方法。

一、分数的加法分数的加法可以通过以下步骤进行简便计算:1.确定被加数和加数的分子和分母。

2.寻找它们的最小公倍数(即分母的最小公倍数)。

3.将两个分数的分子分别乘以分子的最小公倍数除以分母,并将结果相加,得到新的分子。

4.将两个分数的分母乘以分子的最小公倍数除以分母,得到新的分母。

5.化简所得的分数,如果分子能被分母整除,就进行约分。

例如:计算3/4+2/3步骤1:分母为4和分母为3,最小公倍数为12步骤2:3×3/4×3+2×4/3×4=9/12+8/12步骤3:9+8/12=17/12步骤4:分子为17,分母为12,不能约分,所以结果为17/12二、分数的减法分数的减法与加法类似,也可以通过以下步骤进行简便计算:1.确定被减数和减数的分子和分母。

2.寻找它们的最小公倍数(即分母的最小公倍数)。

3.将两个分数的分子分别乘以分子的最小公倍数除以分母,并将结果相减,得到新的分子。

4.将两个分数的分母乘以分子的最小公倍数除以分母,得到新的分母。

5.化简所得的分数,如果分子能被分母整除,就进行约分。

例如:计算3/4-2/3步骤1:分母为4和分母为3,最小公倍数为12步骤2:3×3/4×3-2×4/3×4=9/12-8/12步骤3:9-8/12=1/12步骤4:分子为1,分母为12,不能约分,所以结果为1/12三、分数的加减法混合运算分数的加减法混合运算需要根据具体的题目要求进行相应的计算顺序和合并运算。

一般的计算顺序是从左到右按照加减法的次序进行运算。

例如:计算1/2+3/4-2/3步骤1:计算1/2+3/4分母为2和分母为4,最小公倍数为4(1×2+3×1)/2×2=5/4步骤2:计算5/4-2/3分母为4和分母为3,最小公倍数为12(5×3-2×4)/4×3=(15-8)/12=7/12所以,1/2+3/4-2/3=7/12分数的加减法混合运算的简便计算方法就是先计算每一个加法或减法运算,然后按照加法减法的次序进行计算,最后得出结果。

北师大版五年级数学下册分数加减法及简便运算(全面)

北师大版五年级数学下册分数加减法及简便运算(全面)

北师大版五年级数学下册分数加减法及简便运算(全面)五年级数学下册第一单元:分数加减法一、同分母的分数加减法在计算同分母的分数加减法中,分母不变,直接用分子相加减。

需要注意的是,如果得数不是最简分数,必须将其约分,使其成为最简分数。

例如,464/5 + 6/5 = 10/5 = 2.因为10/5不是最简分数,所以我们需要约分。

10和5的最大公因数是5,所以将分子和分母同时除以5,得到2.又如,959/10 - 542/10 = 417/10.因为417/10不是最简分数,必须约分。

4和10的最大公因数是2,所以将分子和分母同时除以2,得到209/5.回顾:如何将一个非最简分数化为最简?将一个非最简分数化为最简,需要进行约分,一直约到分子和分母互质为止。

因此,我们需要找到分子和分母的最大公因数,然后用分子和分母同时除以最大公因数。

练:1、计算7271/997 + 1/15 - 1515/1212 - 1611/1133 +1333/3333 = 8866/14442、连线:7314/997 + 2/7941 = 5588/4631/45 + 1/99 = 777/1793、判断对错,并改正:1) 4375/7714 += 6/7 - 47/7,应为4375/7714 - 6/7 + 47/72) 753/23 = 5 - 7/7,应为753/23 = 5 + 7/234、应用题:1) 一根铁丝长73米,比另一根铁丝长1212米,长了1010米;另一根铁丝长多少米?答案:2199米2) 一条路长73米,需要3天修完。

第一天修了15/73,第二天修了12/73,第三天修了1/2.问第三天修了多少米?答案:23/73米二、异分母的分数加减法在异分母的分数加减法中,可分为三种情况:分母互质关系、分母是倍数关系、分母是一般关系(既非互质也非倍数)。

例如,当分母互质且分子都为1时,可以使用以下公式进行计算:1/A + 1/B = (A+B)/AB当分母是倍数关系且分子都为1时,可以使用以下公式进行计算:1/A + 1/B = (B+A)/AB当分母是一般关系时,需要先找到分母的最小公倍数,进行通分,再进行加减。

《分数加减法的简便计算》分数加减法PPT课件

《分数加减法的简便计算》分数加减法PPT课件

进行加法运算:$frac{3}{6} + frac{2}{6} = frac{5}{6}$

01
02
03
04
05
学生练习与互动
练习
01
计算 $frac{2}{5} + frac{1}{3}$。
提示
02
LCM(5, 3) = 15,通分母为15。
互动
03
邀请学生上台演示他们的计算过程,其他同学可以提出问题和
2. 将每个分数转化为以LCM为分母的形 式,同时调整分子以保持分数的值不变 。
实例演示与讲解
例子:计算 $frac{1}{2} + frac{1}{3}$。
LCM(2, 3) = 6,因此通分 母为6。
将 $frac{1}{2}$ 转化为 $frac{3}{6}$,将
$frac{1}{3}$ 转化为 $frac{2}{6}$。
分数加减法解决实际问题
01
02
03
计算折扣后的价格
在购物时,可以通过分数 加减法快速计算出商品打 折后的实际价格,从而做 出更明智的购物决策。
调配食材比例
在烹饪中,通过分数加减 法可以准确计量出各种食 材的比例,从而制作出更 美味的佳肴。
规划时间分配
通过分数加减法,可以将 时间合理分配给不同的活 动,从而提高时间的利用 效率。
(3/18) = (1/6)
学生练习与互动
练习1
计算 (7/8) + (3/4)
练习2
计算 (5/6) - (1/2)
练习3
计算 (9/10) + (4/5) - (3/4)
互动环节
邀请学生上台演示计算过程,其他同学 观察并指出问题,共同讨论解决。

分数的简便运算

分数的简便运算

分数的简便运算在数学运算中,分数是一个重要的概念,常常涉及到分数的加减乘除等运算。

为了方便计算和简化表达,我们可以采用一些技巧和规则来简便分数的运算。

本文将介绍一些常用的分数运算的简便方法。

一、分数的加法和减法1. 相同分母的分数相加减:当分数的分母相同时,可直接将分子相加减,并保持分母不变。

例如,对于两个分别为1/4和3/4的分数相加,我们可以直接将分子相加得到4/4,再转化为1。

2. 不同分母的分数相加减:若分数的分母不同,我们需要将它们转化为相同分母的分数后再进行运算。

最简单的方法是求两个分母的最小公倍数,然后将分数转化为相应的形式进行计算。

例如,对于1/3和1/4的分数相加,我们可以将1/3转化为4等分之后的四分之一,然后与1/4相加,得到5/12。

二、分数的乘法和除法1. 分数的乘法:将两个分数相乘,只需将它们的分子相乘,分母相乘。

例如,1/2乘以2/3,我们直接将1乘以2得到2,将2乘以3得到6,再将结果写成分数形式即2/6。

通常我们还可以对结果进行约分,将其化简为最简分数形式,即1/3。

2. 分数的除法:将一个分数除以另一个分数,只需将第一个分数的分子乘以第二个分数的倒数。

例如,1/3除以2/5,我们将1乘以5得到5,将3乘以2得到6,再将结果写成分数形式即5/6。

三、分数的整数运算1. 分数与整数相加减:当一个分数与一个整数相加减时,我们可以将整数转化为与分数相同的分数形式,然后按照相同分母的分数加减法进行运算。

例如,对于1/4加上2,我们可以将2转化为4等分之后的八分之二,然后与1/4相加,最后得到10/4,化简为最简分数形式即5/2。

2. 分数与整数相乘除:当一个分数与一个整数相乘除时,我们可以将整数转化为带分子为这个整数、分母为1的分数形式,然后按照相应的运算法则进行计算。

例如,1/2乘以3,我们可以将3转化为带分子为3、分母为1的分数3/1,然后按照分数的乘法规则得到3/2。

分数加减法的简便方法

分数加减法的简便方法

分数加减法是高中数学中的基础知识,它是运用加减法来解决分数的简单运算。

学习分数加减法的正确方法对于正确理解分数的概念和运用,促进学生的数学思维能力的发展至关重要。

一、分数加减法的基本原理
分数加减法的基本原理是将不同分数的加减法视为相同分母的加减法,根据这个原理,可以将不同分数进行加减法运算。

二、分数加减法的简便方法
1、分子分母分别相加减
当分母相同时,可以将分子分别相加减,得到结果的分子,不变的分母,就可以得到最终的结果。

2、分母分别相乘
当分子相同时,可以将分母分别相乘,得到结果的分母,不变的分子,就可以得到最终的结果。

3、求最大公约数
当一个分数加上另一个分数时,可以先求出它们的最大公约数,将它们都除以最大公约数,然后根据上面的方法进行加减法运算,最后再乘以最大公约数,就可以得到最终的结果。

4、将分数化为最简分数
最后,当计算出的结果分子分母都不是最简分数时,可以将它们化为最简分数,也就是用最大公约数将它们都除以最大公约数,得到最简分数的结果。

总的来说,分数加减法的简便方法有四种:分子分母分别相加减法、分母分别相乘法、求最大公约数法、将分数化为最简分数法。

分数加减法简便计算题50道

分数加减法简便计算题50道

分数加减法简便计算题50道一、同分母分数加减法(较为简单,先热热身)1. (1)/(5)+(2)/(5)同分母分数相加,分母不变,分子相加就行啦。

1加2等于3,所以答案是(3)/(5)。

2. (3)/(7)-(1)/(7)分母7不变,3减1等于2,答案就是(2)/(7),是不是像吃小饼干一样简单呢?3. (2)/(9)+(5)/(9)分母9照抄,分子2加5得7,结果是(7)/(9)。

4. (4)/(11)-(2)/(11)分母11不变,4减2是2,那答案就是(2)/(11)喽。

5. (5)/(13)+(3)/(13)分母13不动,5加3等于8,所以是(8)/(13)。

6. (7)/(15)-(4)/(15)15不变,7减4得3,答案为(3)/(15),约分一下就是(1)/(5)哦。

7. (3)/(8)+(1)/(8)8不变,3加1得4,答案是(4)/(8),也就是(1)/(2)啦。

8. (6)/(17)-(3)/(17)17不变,6减3等于3,答案为(3)/(17)。

9. (4)/(21)+(7)/(21)分母21照旧,4加7等于11,结果是(11)/(21)。

10. (9)/(23)-(5)/(23)23不变,9减5得4,答案是(4)/(23)。

二、异分母分数加减法(稍微有点挑战性咯)11. (1)/(2)+(1)/(3)先找分母2和3的最小公倍数,是6哦。

把(1)/(2)变成(3)/(6),(1)/(3)变成(2)/(6),然后3加2等于5,答案就是(5)/(6)。

12. (1)/(3)-(1)/(4)3和4的最小公倍数是12。

(1)/(3)变成(4)/(12),(1)/(4)变成(3)/(12),4减3等于1,答案是(1)/(12)。

13. (2)/(3)+(1)/(6)6是3和6的最小公倍数。

(2)/(3)变成(4)/(6),4加1等于5,结果是(5)/(6)。

14. (3)/(4)-(1)/(8)4和8的最小公倍数是8。

(完整版)分数的加减法和简便运算

(完整版)分数的加减法和简便运算

分数的加减法一、同分母的分数加减法知识点:在计算同分母的分数加减法中,分母不变,直接用分子相加减。

注意:在计算同分母的分数加减法中,得数如果不是最简分数,我们必须将得数约分,使它成为最简分数。

例题一5654+=510564=+=2 注意:因为510不是最简分数,所以得约分,10和5的最大公因数是5,所以分子和分母同时除以5,最后得数是2. 例题二1059105109=-=-注意:因为104不是最简分数,必须约分,因为4和10的最大公因数是2,所以分子和分母同时除以2,最后的数是52知识点回顾:如何将一个不是最简的分数化为最简?(将一个非最简分数化为最简,我们就是将这个分数进行约分,一直约到分子和分母互质为止。

所以要将一个分数进行约分,我们必须找到分子和分母的最大公因数,然后用分子和分母同时除以他们的最大公因数。

)专项练习一:同分母的分数加减法的专项练习 一、计算715 - 215 712 - 112 1 - 916 911 - 71138 + 38 16 + 16 314 +314 34 + 34二、连线19 + 49 2 7377+145 +15 1 8987+47 + 67 137 11511141+ 18 +78 2911 9392+2411 +511 59 2121+三、判断对错,并改正(1)47 +37 = 714 (2)6 - 57- 37=577 -57 -37=527 -37=517四、应用题 (1)一根铁丝长710 米,比另一根铁丝长310米,了;另一根铁丝长多少米?ABA B AB B A B A ±±=±或11(2)3天修一条路,第一天修了全长的112 ,第二天修了全长的512,第三天修了全长的几分之几?二、异分母的分数加减法。

在异分母的分数加减法中,可分为三种情况。

分别是分母是互质关系、分母是倍数关系、分母是一般关系(即非互质也非倍数) 例:A 代表一个分数的分母,B 代表另一个分数的分母,分母是倍数关系)(即分子都为的倍数)是或的倍数)是(、,分母互质)即分子都为或、1(1111)2(1(11)1(AB A B A B A B A B B A ABAB AB B A B A ±±=±±±=±)3(、A 和B 是一般关系,就找到A 和B 的最小公倍数,进行通分,再加减。

分数加减法简便计算大全

分数加减法简便计算大全

分数加减法简便计算大全一、同分母分数的加法和减法1.分子相加、分母不变:当两个分数的分母相同时,加减法可以直接将分子相加或相减,分母保持不变即可。

例如:3/5+2/5=5/5=1(已经是最简分数)4/7-2/7=2/72.扩分后相加、分母相同:当两个分数的分母不同但可以通过扩分使得分母相同时,我们可以先将分数扩分,使得分母相同后再相加。

例如:1/3+1/4=4/12+3/12=7/123.通分后相加:当两个分数的分母不同而且无法通过扩分使得分母相同时,我们需要将它们通分后再相加。

通分的方法是找到它们最小公倍数作为新的分母,并将两个分数的分子按比例乘以扩大后的倍数。

例如:2/3+1/4=8/12+3/12=11/122/5-1/3=6/15-5/15=1/15二、分数的加法和减法1.整数和分数相加减:将整数看作分母为1的分数,然后用上述方法进行计算。

例如:2+1/3=6/3+1/3=7/32.带分数的加法和减法:将带分数转换为假分数,再用上述方法进行计算。

例如:11/2+22/3=3/2+8/3=9/6+16/6=25/631/4-13/8=13/4-11/8=26/8-11/8=15/8三、分数的合并与分解1.分数的合并:当有多个分数需要相加时,可以先合并同类项,再进行后续计算。

例如:1/2+1/4+1/8=4/8+2/8+1/8=7/82.分数的分解:当需要减去一个分数时,我们可以将减法转化为加法,先找到减数的相反数,再进行相加。

例如:2/3-5/12=2/3+(-5/12)=8/12+(-5/12)=3/12四、分数的简化1.分子分母同时除以最大公约数:将分子和分母都除以它们的最大公约数,将分数化简为最简分数。

8/12=(8÷4)/(12÷4)=2/3五、分数的加减混合运算1.先化为同分母:将分数、整数和带分数统一化为假分数或带分数,再按照对应的加减法进行计算。

例如:21/3-1/4+3/8=7/3-1/4+3/8=56/24-6/24+9/24=59/242.先计算乘除法:将分数和整数按照乘除法的优先级先进行计算,再进行加减法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的加减法
一、同分母的分数加减法
知识点:在计算同分母的分数加减法中,分母不变,直接用分子相加减。

公因数。


专项练习一:同分母的分数加减法的专项练习
一、计算
7 15- 2
15
7
12-
1
12 1 -
9
16
9
11-
7
11
3
8+ 3
8
1
6+
1
6
3
14+
3
14
3
4+
3
4
二、连线

(1)一根铁丝长
7
10
米,比另一根铁丝长
3
10
米,了;另一根铁丝长多少米?
(2)3天修一条路,第一天修了全长的
1
12
,第二天修了全长的
5
12
,第三天修
了全长的几分之几?
二、异分母的分数加减法。

在异分母的分数加减法中,可分为三种情况。

分别是分母是互质关系、分母是倍数关系、分母是一般关系(即非互质也非倍数) 例:A 代表一个分数的分母,
B 代表另一个分数的分母
2(1(3(
41的基本性质可知道,在通分之后这两个分数的分子分别是为是4
1加5
1,所以得数就是20
9。


的倍数)是(的倍数)或是A B B
A B
B A A B A B A 1
(111±±=±例题二:分母是互质关系、且分子都为1的分数减法
20
1
54455141=
⨯-=- (讲解:因为4和5分别是上面两个分数的分母,且为互质关系,所以他们的公分母就为20.因为原来两个分数的分子都是1,通过分数
(二)分母是倍数关系、且分子都为1的分数加减法。

知识点:如果分母是倍数关系,且分子都为1,那么这两个分数相加
减后的得数的分母就是这两个分母中较大的那一个,分子就为这两个分母的倍数加减1。

例题一:分母是倍数关系、且分子都为1的分数加法。

10
3101210151=+=+ 1
1
51
12121
220
12012401201=-=-
121
2121111211111=+=+
(三)分子和分母是一般关系的分数加减法。

知识点:分子和分母是一般关系的分数加减法,我们在计算的时候必
4334
1787586+ 5164+ 8495+ 91166
+
2,判断对错,并改正
31214102010
-==
71731421425
868364242448
⨯⨯+=+=+=
⨯⨯ (四)分子不为1的异分母加减法
知识点:在计算分子不为1的异分母加减法中,我们一般得通过以下几个步骤:
23 1126
+ (1)找最小公倍数:2和6的最小公倍数是6
(2)通分:1133223611116616
⨯==
⨯⨯==⨯
(3)相加:314666+=
(4)约分4422
6623
÷==÷
3,填空
(1)异分母分数相加减,先( ),然后按照( )法则进行计算.

(2)分数的分母不同,就是( )不相同,不能直接相加减,要先( ),化成( )分数再加减.
(3)分数加减法的验算方法与整数加减法的验算方法( ).
(4)
4、列式计算.
(1)27 与4
5
的和是多少?
(2)511 减去4
13 的差是多少?
(五)分数加减法的简便运算 加法运算定律有哪些: (1)加法交换律:a+b=b+a (2)加法结合律:a+b+c=a+(b+c) 减法运算定律有哪些: 连减的性质:a-b-c=a-(b+c) a-(b+c)=a-b-c 其他:a-b+c=a+c-b a-(b-c)=a-b+c
7218
=-7
18
= a-b+c-d=(a+c)-(b+d)
这些运算定律在分数的加减法简便运算中同样适用,因此,分数的加减法简便运算和整数的加减法简便运算一样。

一、加法结合律:a+b+c=a+(b+c) 25
练习
24312544
-- 9111688-- 712633--
31414
=-
=练习:
1313757-+ 114111412512-+ 11175761276
-+
3 4
例题:
1 4
64 44 2
4
1
2
=-=-=
=
练习:
172111183183-+- 51116262-+- 841619595
-+-
518198这个分数是( ) ,它与7
2
1的差是( ).
(6)有三个分母是21的最简真分数,它们的和是21
20,这三个真分
数可能是( )、( )、( )。

三、选择。

(把正确答案的字母序号填在括号里) 1、下面各题计算正确的是( )。

A 、5
2
30121528575==++ B 、1101011102120==- C 、021*********=--
异分母分数加减法混合运算练习题
一、计算下面各题。

314165+- 15
415751++
看?剩下的比已经看的多几分之几?
2、修一条路,第一天修了全长的52,第二天修了全长的72
,第三
天要把剩下的全修完。

第三天修了全长的几分之几?
3
4
[3] -的差的分数单位是( ),差里含有( )个这样的分数单位。

[4] 分母是5的所有最简真分数有( ),它们的和是( )。

[5] 一条2米长的绳子,剪去,还剩下( ),剪去米,还剩下( )米。

[6] 修一条路12天完成,8天完成这项工程的( ),还剩下这项工程的( )。

[2] 两根绳子一样长,第一根用去4
1
,第二根用去4
1米,余下的相比较( )。

A.第一根长
B.第二根长
C.一样长
D.都有可能
[3] 打印一份稿件,3分钟完成了8
1,照这样计算,还要( )分钟才能完成任务。

A.3 B.21 C.24
[4] 一份稿件,甲用3小时打完,乙用4小时打完,甲乙合打1小时
=-=+=+=+61658
1812
1417
5
72
1394671111414111112627
57514135
11212
1212
99
88
-=+=-=-=+=-=-=+-=
[1]甲数是4
3,乙数是20
1
,它们的和是多少?差又是多少?
[2]比5
3
多1.5的数,减去10
1
8
3与的差,差是多少?
[3]17.28减去5
243与的和,差是多少?
[4]的差与加上4
1225.1281,和是多少?
10
6
[6]小兰身高5
8
米,比小红矮
251米,小军的身高比小红矮50
3
米。

小军和小兰比,谁高?高多少米?
1,第二周比[7]东方砂轮厂加工一批砂轮,第一周完成总任务的
5
1,还剩下多少没有完成?
第一周多完成总任务的
6。

相关文档
最新文档