大学高等数学试题B(附答案)
2020年7月全国网络教育统考《高等数学B》试卷及参考答案(5套)
试卷1 一、一选择题1..A.正确B.不正确答案:B2.函数在点处可导.A.正确B.不正确答案:A3.函数在内连续.A.正确B.不正确答案:B4.函数的定义域为.A.正确B.不正确答案:A二、二选择题5.是有界函数.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7.设函数,则.A.正确B.不正确答案:B8..A.正确B.不正确答案:B9..A.正确B.不正确答案:A10.是微分方程的解.A.正确B.不正确答案:A三、三选择题11.极限().A.B.C.D.答案:B12.不定积分( ).A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:D14.定积分=().A.B.C.D.答案:A15.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:C16.设函数,则().A.B.C.D.答案:A四、四选择题17.曲线在点处切线的方程为().A.B.C.D.答案:B18.定积分=().A.B.C.D.答案:D19.微分方程的通解是().A.B.C.D.答案:A20.不定积分().A.B.C.D.答案:C试卷2 一、一选择题1.函数在处可导.A.正确B.不正确答案:A2.定积分.A.正确B.不正确答案:B3.函数在点处连续.A.正确B.不正确答案:A4.函数的定义域为.A.正确B.不正确答案:B二、二选择题5.是周期函数.A.正确B.不正确答案:A6..A.正确B.不正确答案:A7.设函数,则.A.正确B.不正确答案:B8.是微分方程的解.A.正确B.不正确答案:B9.设函数,则.A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:B三、三选择题11.极限().A.B.C.D.答案:A12.设函数,则().A.B.C.D.答案:B13.不定积分().A.B.C.D.答案:C14.定积分=().A.B.C.D.答案:C15.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:B16.设函数,则().A.B.C.D.答案:D四、四选择题17.微分方程的通解是().A.B.C.D.答案:D18.曲线在点处切线的方程为().A.B.C.D.答案:A19.不定积分().A.B.C.D.答案:D20.定积分=().A.B.C.D.答案:B试卷3 一、一选择题1.函数的定义域为.A.正确B.不正确答案:A2.函数在内连续.A.正确B.不正确答案:B3.定积分.A.正确B.不正确答案:A4.函数在点处可导.A.正确B.不正确答案:B二、二选择题5.不是一阶微分方程.A.正确B.不正确答案:B6.设函数, 则.A.正确B.不正确答案:B7.是奇函数.A.正确B.不正确答案:A8.设函数,则.A.正确B.不正确答案:A9..A.正确B.不正确答案:B10.是函数的一个原函数.A.正确B.不正确答案:A三、三选择题11.设函数,则().A.B.C.D.答案:B12.不定积分().A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:A14.定积分=().A.B.C.D.答案:B15.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:C16.极限().A.B.C.D.答案:D四、四选择题17.定积分=().A.B.C.D.答案:D18.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:A19.微分方程的通解是().A.B.C.D.答案:B20.曲线在点处切线的方程为().A.B.C.D.答案:C试卷4 一、一选择题1.函数的定义域为.A.正确B.不正确答案:A2.定积分.A.正确B.不正确答案:B3.函数在点处可导.A.正确B.不正确答案:B4.函数在点处连续.A.正确B.不正确答案:A二、二选择题5.设函数, 则.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7.是偶函数.A.正确B.不正确答案:B8.不是一阶微分方程.A.正确B.不正确答案:B9..A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:A三、三选择题11.不定积分().A.B.C.D.答案:C12.设函数,则().A.B.C.D.答案:A13.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:B14.定积分=().A.B.C.D.答案:D15.设函数,则().A.B.C.D.答案:A16.极限().A.B.C.D.答案:B四、四选择题17.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:B18.微分方程满足的特解是().A.B.C.D.答案:A19.定积分=().A.B.C.D.答案:D20.曲线在点处切线的方程为().A.B.C.D.答案:C试卷5 一、一选择题1.函数在点处连续.A.正确B.不正确答案:A2.函数在处可导.A.正确B.不正确答案:A3.函数的定义域为.A.正确B.不正确答案:B4.定积分.A.正确B.不正确答案:B二、二选择题5.是可分离变量微分方程.A.正确B.不正确答案:A6..A.正确B.不正确答案:B7.设函数,则.A.正确B.不正确答案:A8.设函数, 则.A.正确B.不正确答案:B9.不定积分,其中为任意常数.A.正确B.不正确答案:B10.是奇函数.A.正确B.不正确答案:A三、三选择题11.设函数,则().A.B.C.D.答案:A12.定积分=().A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:B14.极限().A.B.C.D.答案:B15.不定积分().A.B.C.D.答案:C16.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:C四、四选择题17.定积分=().A.B.C.D.答案:D18.曲线在点处切线的方程为().A.B.C.D.答案:B19.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:C20.微分方程满足的特解是().A.B.C.D.答案:A。
《高等数学B》答案
《高等数学B 》复习资料一、选择题:A 、奇函数;B 、偶函数;C 、非奇非偶函数;D 、既是奇函数又是偶函数;E 、不能确定。
若)(x f 为奇函数,)(x g 为偶函数,则下列函数是: 1、)]([x g f ( B ); 2、)]([x f g ( B );A.x y =; B 、1+-=x y ; C 、1+=x y ; D.5132+=x y ; E 、5132-=x y 。
3、 曲线x y ln 2+=在点1=x 的切线方程是( C );4、 曲线53)12()25(+=+x y 在点)51,0(-处的切线方程是( E ); A 、不存在; B 、1; C 、0; D 、-1; E 、2。
5、函数|sin |)(x x f =在点0=x 处的导数是( A ); 6、函数x x f sin )(=在点0=x 处的导数是( B );A 、 -1;B 、-3;C 、3;D 、-9;E 、-12。
若3)(0'-=x f ,则: 7、=--+→h h x f h x f h )2()(lim000( D );8、=-+→hx f h x f h )()(lim000( B );A.满足罗尔定理条件;B.满足拉格朗日中值定理条件;C.满足柯西定理条件;D.三个定理都不满足;E.不能确定。
9、652+-=x x y 在]3,2[上( A ); 10、)1ln(2x y +=在]3,0[上( B ); A 、c x f +)(; B 、)(x f ; C 、dx x f )(; D 、dx x f )('; E 、)('x f ;设)(x f 在],[b a 上可积,则: 11、=⎰dx x f d )('( D ); 12、=⎰dx x f dxd)('( E );A 、x y x x f y x f x ∆∆--→∆),(),(lim 00000;B 、xy x x f y x f x x x ∆∆--→∆),(),(lim 00'00'0;C 、y y x f y y x f y ∆-∆+→∆),(),(lim 00000;D 、y y x f y y x f y y y ∆-∆+→∆),(),(lim 00'00'0;E 、yy x f y y x f x x y ∆-∆+→∆),(),(lim 00'00'0。
福州大学至诚学院高等数学期末试卷B卷
福州⼤学⾄诚学院⾼等数学期末试卷B卷福州⼤学⾄诚学院期末考试试卷 2017—2018 学年第⼀学期考试⽇期: 2018 年 1 ⽉注意事项:答题前,考⽣在试卷及答题卡上务必⽤直径0.5毫⽶⿊⾊签字笔写上⾃⼰的姓名、准考证号等信息。
考⽣务必将答案抄到答题卡上,在试卷上作答⽆效。
考⽣务必在答题卡密封线内作答。
⼀、单项选择题(1-8题,每⼩题3分,共24分)1.设函数f(x)=xsinx,则f ′( π2)=( )A.1/2B. 1C.π/2D. 2π2. limx→∞(1+1x)2x=( )A. e?2B. e?1C. eD. e23.∫x2e x3dx=( )A.13x2e x3+C B. 3x2e x3+C C.13e x3+C D.3e x3+C4.设⼆元函数z=x2y+xsiny,则x=( )A.2xy+sinyB. x2+xcosyC.2xy+xsinyD.x2y+siny5.设球⾯⽅程(x?1)2+(y+2)2+(z+3)2=4,则该球⾯的球⼼坐标与半径分别为( )A.(-1,2,3);2B.(-1,2,-3);4C.(1,-2,-3);2 D(1,-2,3);36.已知f(x)在x0处可导,且f′(x0)= 2,则lim→0f(x0+2?)?f(x0)=( )A.2B. 1/2C.1D.47.⽅程(y ′)3+y ′′?y 4=x 是( )阶微分⽅程A.4B.3C.2D.1 8.设f(x)=x (x-1) (x-2) (x-3) (x-4) (x-5) ,则f ′(1)=( )A.24B.-24C.12D.-12⼆、填空题;(9-14 ⼩题,每⼩题4分,共24分) 9.设limx→0sin2x x=10.曲线y=√x 在点(1,1)处的切线⽅程是,法线⽅程是 11.设y= (2x 3+5)4,求y ′= 12. ∫sinx π0dx= 13.设z = x y ,则zx= ,z y ??=14.过点(1,0,1)且与平⾯x-y+2z+1=0 垂直的直线⽅程为三、解答题:15-21题,共52分15.(本题满分8分)设f (x )={ x 3 , x ≤1 ;ax +b, x >1 ;在x =1处连续且可导,求a ,b 的值16.(本题满分7分) 计算lim x→0x2e 1x 217(本题满分7分)求y=x cosx的导数18 (本题满分8分)求函数f(x)= x3?3x+2 的极值点与极值19(本题满分7分)计算∫(lnx)2xd x20.(本题满分7分)求微分⽅程y′′+2y′?3y=2e x的通解21(本题满分8分)dxdy其中,D是由直线 y=x、x=2与 y=0 所围成的区域。
《高等数学(Ⅱ)》B类练习题答案
《高等数学(Ⅱ)》B 类练习题答案一、单项选择题1—5:CCCCC 6—10:BBCCA 11—15:AAABD二、填空题1、xy e yz x z z -=∂∂ ,xy e xz y z z -=∂∂ ;2、yzxy z y z z x z x z 2+=∂∂+=∂∂, ; 3、)()(,)()(xyz xysin 1xyz xzsin 1y z xyz xysin 1xyz yzsin 1x z -+=∂∂-+=∂∂ ; 4、dz x ylnx dy x zlnx dx yz.x du yz yz 1yz ⋅⋅+⋅⋅+=- ; 5、dy -dx dz -= ; 6、dy 12dx 41-2dz +-=),( 7、()⎰⎰313ydx y x f dy , ; 8、⎰⎰y-2y10dx y x f dy),( ;9、⎰⎰2x x1dy y x f dx ),( ; 10、)()(2yx 121e 1y +=+- ; 11、1x y 22+= ; 12、1y x 5y 325=-;三、判断题1--5:对 对 对 错 错 6—10:对 对 错 对 对 11—15:对 错 对 对 对四、计算题1、求下列函数的偏导数(1)、22232232()2 (2) (3)()2(2)(6)xy xy xy xy xy xy ze y x y e x xe yx y x ze x x y e y ye x xy y ∂=⋅⋅++⋅∂=++∂=⋅⋅++⋅∂=++分分(2)、(3)(6)x y x y x y x y x y x y z e e x e z e e y e ++++++∂=∂=∂=∂=分分(3)、222222222222222222212ln(12[ln()](3)2ln(2ln( (6)z x xx y x y y x y x x y y x y z x x y x y y y y x y x x x y x y y ∂=⋅+⋅∂+=++∂=-⋅+⋅∂+=-++)+)+分)+)分(4)22222212ln ()2ln(3)12ln(6)x y y z x x y x x y x yx x xy z y x y x y '=⋅+⋅-+=-'=⋅+⋅+()分+()分(5)22221[sin()]2 (3)1[sin()]22 (6)x y z x y z x y y'=-+='=-+⋅=分分(6)22221cos()22(3)1cos()2(6)xyz x y xz x y'=+⋅='=+=分分(7)2222221ln1(ln) (3)12ln1(2ln) (6) x y x yxx yx y x yyx yz e xy exe xyxz e xy eye xyy++++++'=⋅+⋅=+'=⋅⋅+⋅=+分分(8)22222222222222222ln()2[ln()] (3)2ln()2[ln()] (6) xy xyxxyxy xyyxyxz e y x y ex yxe y x yx yyz e x x y ex yye x x yx y'=⋅⋅++⋅+=+++'=⋅⋅++⋅+=+++分分(9)sin 2cos 22 22cos 2)(3)sin 2cos 22 22cos 2) (6x y z xy xy yxy y xy z xy xy xxy x xy '=+⋅=+'=+⋅⋅=+分)分(10)2222222222222222sin()cos()2 [sin()2cos()] (3)sin()cos()2 [sin()2cos()](xy xy x xy xy xy y xy z e y x y e x y x e y x y x x y z e x x y e x y y e x x y y x y '=⋅⋅++⋅+⋅=+++'=⋅⋅++⋅+⋅=+++分6)分2、求下列函数的全微分 (1)222222222222222 (2(3)2 (2(5)(2x y x y x y x y x y xy xy z e x e y x ez ey e x ye dz e +++++++∂=⋅∂=∂=⋅∂=∴=分分22(2(6)x y dx e dy ++分(2)2222222222242233()2 (2)(3)2()2 2()(5)xy xy xy xy x xy xy ze y x y e x xe x y y x z e xy x y e y ye x y xy y dz e ∂=⋅⋅++⋅∂=++∂=⋅⋅++⋅∂=++∴=分分2222433(2)2()(6)y xy x y y x dx e x y xy y dy +++++分(3)2221ln (1ln )(3)11 ln ()1 (ln 1)(5)1(1ln )(ln 1)z y x y x x y x xy xx y z x y y x y x yxx y y x xdz dx dy x y x y ∂=-⋅⋅∂=-∂=⋅⋅-∂=-∴=-+-+分+分(6)分(4)22211ln ()1 (ln 1)(3)1 ln (1ln )(5)1(ln 1)(1ln)z y x x y x y xyyx z x y xy y x y yx yy x y x ydz dx dy yx y x ∂=⋅⋅-∂=-∂=-⋅⋅∂=-∴=-+-+分+分(6)分(5)sin (3)sin 2(5)2)x y z z ydz dx ydy '=-='=-==+分分(6)分(6)2(3)(5)) (6) xyz xzdz xdx dy'=='===+分分分(7)1ln1) (3)1ln()1) (5)1)xyxzy xxy xxzy yxy yx xdz dxy x'=+⋅=+'=+⋅-=-=++分分1)(6)dyy y-分(8)221ln1(ln(3)()ln(5)1(x xy yxxyx xy yyxyx xy yz e eyeyxz e eyxeydz e dx ey'=⋅⋅='=⋅-⋅==+分分2ln(6xdyy-分(9)22221sin + cos ()(3)1(sin cos )1()sin + cos1(cos sin )(5)x xyy x x yx xyy y x yy y yz e e y x x x y y ye y x x xx y y z e e y x x x y x ye x x y xd '=⋅⋅⋅⋅-=-'=⋅-⋅⋅⋅=⋅-分分2211(sin cos )(cos sin )(6)x xyy y y y y x yz e dx e dy y x x x x x y x=-+⋅-分(10)3、计算下列二重积分 (1)解:D 的图形(略),{}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰--=--=xx D dy y x dx dxdy y x I 2)2(21)2(2110……2分⎰++-=1432)412147(x x x x 12011=……2分 (2)解: D 的图形为: (略){}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰==xx Dxydy dx xydxdy I 21……2分⎰-=153)(21dx x x ……1分241=……1分 (3) 解:D 的图形为: (略){}1,11),(≤≤≤≤-=y x x y x D ……2分⎰⎰-=Dd y x y I σ)(22⎰⎰-=-12211)(xdy y x y dx ……2分⎰---=1122)1(41dx x 154-=……2分(4)解:D 的图形为: (略)⎭⎬⎫⎩⎨⎧≤≤≤≤=y x y y y x D 1,21),(……2分 ⎰⎰Dd y x σ22⎰⎰=21122yydx y x dy ……2分 ⎰-=215)313(dy y y ……1分6427=……1分(5)解:⎰⎰⎰⎰-++==210222x y x D y x dy edxdxdy eI ……2分⎰-=22)(dx e e x ……2分2=……2分(6)解:⎭⎬⎫⎩⎨⎧≤≤≤≤=20,10),(πy x y x D ……2分 ⎰⎰⎰⎰=2212sin sin πσydy x dx yd xD……2分⎰=12dx x 31=……2分 (7) 解:⎭⎬⎫⎩⎨⎧-≤≤≤≤=x y x y x D 20,20),(ππ……2分⎰⎰⎰⎰-+=+xDdy y x dx d y x 22)sin()sin(ππσ……2分⎰=2cos πxdx ……1分1=……1分(8) 解:⎰⎰⎰⎰=11dx ye dy d ye xyDxyσ……2分 ⎰-=1)1(dy e y ……2分2-=e ……2分(9) 解:⎭⎬⎫⎩⎨⎧-≤≤≤≤=x y x y x D 20,20),(ππ……2分⎰⎰⎰⎰-+=+xDdy y x x dx d y x x 22)sin()sin(ππσ……1分⎰⎰=+-=-2220cos )cos(πππxdx x dx y x x x……1分12-=π……2分(10) 解:{}x y x x y x D ≤≤≤≤=2,10),(……2分⎰⎰⎰⎰+=+xx Ddy y x xy dx y x xy 2)()(10……2分⎰⎰+--=+=146710322)652131()3121(2dx x x x dx xy y x x x ……1分 563=……1分4、求下列微分方程的通解(1)解:方程变形为23)(3)(1xy x y dxdy +=令x y u =,则ux y =,dxdux u dx dy +=,代入方程中得2331u u dx du x u +=+……2分 分离变量得x dxdu u u =-32213……1分两边积分得13ln ln )12ln(21C x u +=--……2分 微分方程的解为:Cx x y =-332……1分(2)解:方程变形为1)(2-=xy x y dx dy令x y u =,则ux y =,dxdux u dx dy +=,代入方程中得12-=+u u dx du x u ……2分分离变量得xdxdu u =-)11(……1分 两边积分得1ln ln C x u u +=-……2分 微分方程的解为:C xyy +=ln ……1分(3)解:方程变形为)ln 1(xy x y dx dy += 令x y u =,则ux y =,dx dux u dx dy +=,代入方程中得)ln 1(u u dxdu x u +=+……2分分离变量得xdxu u du =ln ……1分 两边积分得1ln )ln(ln C x u +=……2分 微分方程的解为:Cx e xy=……1分(4)解:方程变形为3)(1xx ydx dy +=令x y u =,则ux y =,dx dux u dx dy +=,代入方程中得31u u dx du x u +=+……2分分离变量得xdxu du u =+-43)1(……1分 两边积分得143ln ln 31C x u u+=-……2分 微分方程的解为:333yx Ce y =……1分(5)解:原方程变为:1sin 1222+-=++x x y x x dx dy ()122+=x x x p ,()1sin 2+-=x xx q()()⎰⎰+=+=1ln 1222x dx x xdx x p()()()x dx x dx e x x dx e x q x dxx p cos sin 1sin 1ln 22=-=+-=⎰⎰⎰⎰+所以 ()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dxx p dx x p =()()()c x x c x ex ++=++-cos 11cos 21ln 2 (c 为任意常数) (6)解:原方程变为:x x y x y 122+=-' ()x x p 2-= , ()xx x q 12+=()⎰⎰-=-=2ln 2x dx xdx x p ()()⎰⎰⎰-=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎰-23ln 2211112x x dx x dx e x x dx ex q x dxx p所以()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dx x p dx x p =2121232ln 2-+=⎪⎭⎫ ⎝⎛+-cx x c x x ex (c 为任意常数)(7)解:()xx p 1-= , ()x x q ln =()⎰⎰-=-=x dx x dx x p ln 1()()()()2ln ln ln 2ln x dx x x dx e x dx e x q x dx x p ===⎰⎰⎰⎰- 所以()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dx x p dx x p =()()⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+c x x c x e x2ln 2ln 22ln (c 为任意常数) (8)解:原方程变为:x e x y xy 32=-' ()xx p 2-= , ()x e x x q 3=()⎰⎰-=-=2ln 2x dx x dx x p()()⎰⎰⎰-===⎰-x x x x x dxx p e xe dx xe dx e e x dx e x q 2ln 3所以 ()()()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c dx e x q e y dxx p dx x p =()()c e xe x c e xe e x x x x x +-=+-2ln 2(c 为任意常数)(9)解:两边积分,得⎰+-=='12ln 2ln 2c x x x xdx y两边再积分,得()dx c x x x y ⎰+-=12ln 2212223ln c x c x x x ++-= (1c ,2c 为任意常数)(10)解:两边积分,得()11cos sin sin 1cos c x x x x c x x xd dx x x y +++=++=+='⎰⎰两边再积分,得()21212sin 2cos cos sin c x c x x x x dx c x x x x y ++++-=+++=⎰(1c ,2c 为任意常数)五、应用题1、 求下列函数的极值 (1)解: 解:⎩⎨⎧=-+==++=012012y x f y x f yx解得驻点(-1,1). ……………4分 又,2,1,2======yy xy xx f C f B f A ……………7分0032>>=-A B AC 且,故0)1,1(=-f 是极小值. ……………10分(2) 解:⎪⎩⎪⎨⎧=-==+-=01230622''y f x f y x 解得驻点(3,2),(3, -2). ……………4分又 y f f f yy xy xx 6,0,2''''''==-= ……………6分关于驻点(3,2)有,,12,0,2==-=C B A,0242<-=-B AC 故函数在点(3,2)没有极值。
(完整word版)高等数学B试卷及答案
高等数学试卷一、 单项选择题(本题共5小题,每小题4分,满分20分)1. 由[,]a b 上连续曲线y = g (x ),直线x a =,x b =()a b <和x 轴围成图形的面积S =( )。
(A )dx x g ba⎰)((B)dx x g ba⎰)((C )dx x g b a⎰)((D )2))](()([a b a g b g -+2. 下列级数中,绝对收敛的是( )(A )()∑∞=--11321n nn n (B )()∑∞=-+-11)1ln(311n n n(C )()∑∞=-+-12191n n n n (D )3.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数.则=∂∂22y z( )。
(A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂ (B )22y v v f ∂∂⋅∂∂ (C)22222)(y v v f y v v f ∂∂⋅∂∂+∂∂∂∂ (D)2222y vv f y v v f ∂∂⋅∂∂+∂∂⋅∂∂4.⎰-1121dx x ( )(A)2 (B )—2(C )0 (D )发散5. 求微分方程2x y =''的通解( )(A )21412c x c x y ++=(B)cx x y +=124 (C )c x y +=124 (D )221412c x c x y ++= 二、 填空(本题共5小题,每小题4分,满分20分)1. 若⎰=22sin 3)(x dt t x x f ,则()f x '=2. 设f (x ,y )是连续函数,交换积分次序:⎰⎰⎰⎰+21214141),(),(yy ydx y x f dy dx y x f dy =3.幂级数()()∑∞=--121!21n nn n x 的收敛半径是4. 已知5)2(,3)2(,1)0('===f f f ,则⎰=2'')(dx x xf通解为x ce y x +=的微分方程为三、 计算下列各题(本题共4小题,每小题5分,满分20分)1. x y z cos )(ln =,求。
2021年全国大学高等数学考试试题及解析B
2021年全国大学高等数学试题一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1) 设函数()y y x =由方程cos()0x yexy ++=确定,则dydx=____________. (2) 函数222ln()u x y z =++在点(1,2,2)M -处的梯度M gradu =____________. (3) 设21, <0,()1, 0<,x f x x x ππ--≤⎧=⎨+≤⎩则其以2π为周期的傅里叶级数在点x π=处收敛于____________.(4)设数量场u =则(grad )div u =______________.(5) 设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1n -,则线性方程组0Ax =的通解为______________.二、选择题(本题共5小题,每小题3分,满分15分,在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.) (1) 设sin 20()sin()xf x t dt =⎰,34()g x x x =+则当0x →时,()f x 是()g x 的 ( )(A) 等价无穷小 (B) 同阶但非等价无穷小 (C) 高阶无穷小 (D) 低阶无穷小(2) 双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为 ( )(A) 402cos 2d πθθ⎰ (B) 404cos 2d πθθ⎰(C) 2θ (D) 2401(cos 2)2d πθθ⎰(3) 设有直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩,则1L 与2L 的夹角为 ( ) (A)6π (B) 4π (C) 3π (D) 2π(4) 设32()3||f x x x x =+,则使(0)nf 存在的最高阶数n 为 ( )(A) 0 (B) 1 (C) 2 (D) 3(5) 要使121 00, 121ξξ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦都是线性方程组0Ax =的解,只要系数矩阵A 为 ( ) (A) ()2 1 1- (B) 2 0 1 0 1 1-⎛⎫⎪⎝⎭(C) 1 0 2 0 1 1-⎛⎫ ⎪-⎝⎭ (D) 011422011-⎛⎫⎪-- ⎪⎪⎝⎭三、(本题共3小题,每小题5分,满分15分.) (1) 求x x →.(2) 设22(sin ,)xz f e y x y =+,其中f 具有二阶连续偏导数,求2zx y∂∂∂.(3) 设21, 0,(), >0,x x x f x e x -⎧+≤⎪=⎨⎪⎩求31(2)f x dx -⎰.四、(本题满分6分)计算22xzdydz yzdzdx z dxdy ∑+-⎰⎰,其中∑是由曲面z =与z =所围立体的表面外侧.五、(本题满分8分)计算曲面积分323232()()()x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰,其中∑为上半球面z =.六、(本题共2小题,每小题5分,满分10分.)(1) 设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,+)∞内有且仅有一个零点.(2) 设b a e >>,证明b a a b >.七、(本题满分8分)在变力F yz zx xy i j k =++的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c ++=上第一卦限的点(,,)M ξηζ,问当,,ξηζ取何值时,力F 所做的功W 最大?并求出W 的最大值.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中n m <,E 是n 阶单位矩阵,若AB E =,证明B 的列向量组线性无关.九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3λλλ===,对应的特征向量依次为1231111,2,3149ξξξ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,又向量123β⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1) 将β用123,,ξξξ线性表出. (2) 求nA β(n 为自然数).十、填空题(本题共2小题,每小题3分,满分6分,把答案填在题中横线上.)(1) 一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为_______.(2) 设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =_______.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,)N μσ,Y 服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数()x φ表示,其中22()t xx e dt φ--∞=).2021年全国大学高等数学考试题解析一、填空题(本题共5个小题,每小题3分,满分15分.)(1)【答案】sin()sin()x y x y e y xy e x xy ++---【解析】函数()y y x =是一个隐函数,即它是由一个方程确定,写不出具体的解析式. 方程两边对x 求导,将y 看做x 的函数,得(1)sin()()0x yey xy xy y +''+++=.解出y ',即sin()sin()x y x y dy e y xy y dx e x xy ++-'==--. 【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.两函数乘积的求导公式:[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅.(2)【答案】{}21,2,29- 【解析】对函数u 求各个分量的偏导数,有2222u x x x y z ∂=∂++;2222u y y x y z ∂=∂++;2222u z z x y z∂=∂++. 由函数的梯度(向量)的定义,有{}2221,,2,2,2u u u gradu x y z x y z x y z ⎧⎫∂∂∂==⎨⎬∂∂∂++⎩⎭, 所以 {}{}222122,4,41,2,212(2)9Mgradu=-=-++-.【相关知识点】复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. (3)【答案】212π【解析】x π=是[,]ππ-区间的端点,由收敛性定理—狄利克雷充分条件知,该傅氏级数在x π=处收敛于22111[(0)(0)][11]222f f ππππ-++-=-++=. 【相关知识点】收敛性定理—狄利克雷充分条件:函数()f x 在区间[,]l l -上满足:(i) 连续,或只有有限个第一类间断点;(ⅱ) 只有有限个极值点.则()f x 在[,]l l -上的傅里叶级数收敛,而且01(cos sin )2n n n a n n a x b x l lππ∞=++∑ [][] (), (,)()1(0)(0), (,)()21(0)(0), .2f x x l l f x f x f x x l l f x f l f l x l ⎧⎪∈-⎪⎪=++-∈-⎨⎪⎪-++-=±⎪⎩若为的连续点,若为的第一类间断点,若 (4)【答案】2221x y z++ 【解析】先计算u 的梯度,再计算该梯度的散度. 因为 grad u u u u i j k x y z∂∂∂=++∂∂∂, 所以 222222(grad ),,u u u u u udiv u div x y z x y z ⎧⎫∂∂∂∂∂∂==++⎨⎬∂∂∂∂∂∂⎩⎭.数量场u =,,x y z 求偏导数,得222uxxx y z ∂==∂++, 由对称性知222u y y x y z ∂=∂++, 222u z z x y z ∂=∂++,将,,u u ux y z∂∂∂∂∂∂分别对,,x y z 求偏导,得 2222222222222222()2()()u x y z x x y z x x x y z x y z ∂++-⋅+-==∂++++, 222222222()u z x y y x y z ∂+-=∂++, 222222222()u x y z z x y z ∂+-=∂++, 因此, 2222222221(grad )u u u div u x y z x y z∂∂∂=++=∂∂∂++. (5)【答案】(1,1,,1)T k【解析】因为()1r A n =-,由()1n r A -=知,齐次方程组的基础解系为一个向量,故0Ax =的通解形式为k η.下面根据已知条件“A 的各行元素之和均为零”来分析推导0Ax =的一个非零解,它就是0Ax =的基础解系.各行元素的和均为0,即111212122212000n n n n nn a a a a a a a a a ++=⎧⎪++=⎪⎨⎪⎪++=⎩,而齐次方程组0Ax =为111122121122221122000n n n nn n nn n a x a x a x a x a x a x a x a x a x +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩. 两者比较,可知121n x x x ====是0Ax =的解.所以应填(1,1,,1)T k .二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(B) 【解析】0()lim()x f x g x →为“0”型的极限未定式,又分子分母在点0处导数都存在, 运用洛必达法则,有sin 222034232300000sin()()sin(sin )cos sin(sin )lim lim lim lim lim cos ()3434xx x x x x t dt f x x x x x g x x x x x x x →→→→→===⋅+++⎰洛2230sin(sin )lim 34x x x x →=+.因为当0x →,sin 0,x →所以222sin(sin )sin x x x ,所以222323000sin(sin )11lim lim lim 3434343x x x x x x x x x x →→→===+++, 所以()f x 与()g x 是同阶但非等价的无穷小量.应选(B). 【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (2)【答案】(A)【解析】由方程可以看出双纽线关于x 轴、y 轴对称,(如草图) 只需计算所围图形在第一象限部分的面积; 双纽线的直角坐标方程复杂,而极坐标方程 较为简单:2cos 2ρθ=.显然,在第一象限部分θ的变化范围是[0,]4πθ∈.再由对称性得2441001442cos 22S S d d ππρθθθ==⋅=⎰⎰,应选(A). (3)【答案】(C)【解析】这实质上是求两个向量的夹角问题,1L 与2L 的方向向量分别是12(1,2,1),110(1,1,2)021i j k l l =- =-=--,1L 与2L 的夹角ϕ的余弦为121212||31cos |cos(,)|2||||6l l l l l l ϕ⋅====,所以3πϕ=,应选(C).(4)【答案】(C)【解析】因33x 处处任意阶可导,只需考查2||()x x x ϕ,它是分段函数,0x =是连接点. 所以,写成分段函数的形式,有33,0,(), 0,x x x x x ϕ⎧-<⎪=⎨≥⎪⎩ 对分段函数在对应区间上求微分,223,0,()3, 0,x x x x x ϕ⎧-<⎪'⇒=⎨>⎪⎩ 再考查()x ϕ在连接点0x =处的导数是否存在,需要根据左导数和右导数的定义进行讨论.30(0)()0x x ϕ++=''==,3(0)()0(0)0x x ϕϕ--='''=-=⇒=,即 223,0,()3, 0.x x x x x ϕ⎧-≤⎪'=⎨>⎪⎩同理可得 6,0,()6, 0,x x x x x ϕ-<⎧''=⎨ >⎩ (0)0ϕ''=,即 6,0()6||6, 0x x x x x x ϕ-≤⎧''==⎨>⎩.对于y x =有(0)1,(0) 1.y y +-''==- 所以y x =在0x =不可导,(0)ϕ'''⇒不存在,应选(C). (5)【答案】(A)【解析】1ξ,2ξ向量对应的分量不成比例,所以1ξ,2ξ是0Ax =两个线性无关的解,故()2n r A -≥.由3n =知()1r A ≤.再看(A)选项秩为1;(B)和(C)选项秩为2;而(D)选项秩为3.故本题选(A). 【相关知识点】对齐次线性方程组0Ax =,有定理如下:对矩阵A 按列分块,有()12n A ,,,ααα=,则0Ax =的向量形式为11220n n x x x .ααα+++=那么, 0Ax =有非零解 12n ,,,ααα⇔线性相关()12n r ,,,n ααα⇔< ()r A n.⇔<三、(本题共3小题,每小题5分,满分15分.) (1)【解析】由等价无穷小有0x →时,22111()22x x --=, 原式=0021sin lim 12x x x x e xx →→--=, 上式为“”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式00cos sin lim lim 1x x x x e x e x x →→-+洛必达洛必达1011+==.(2)【解析】这是带抽象函数记号的复合函数的二阶混合偏导数,重要的是要分清函数是如何复合的.由于混合偏导数在连续条件下与求导次序无关,所以本题可以先求zx∂∂,再求()z y x ∂∂∂∂. 由复合函数求导法则得221212(sin )()sin 2x x z f e y f x y f e y f x x x x∂∂∂''''=++=⋅+⋅∂∂∂, 212(sin 2)x z f e y f x x y y∂∂''=+∂∂∂ 111212122(cos 2)sin cos (cos 2)2x x x x f e y f y e y f e y f e y f y x '''''''''=++++ 21112221sin cos 2(sin cos )4cos x x x f e y y f e y y x y f xy f e y '''''''=⋅+⋅++⋅+⋅. 【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (3)【解析】分段函数的积分应根据积分可加性分段分别求积分.另外,被积函数的中间变量非积分变量,若先作变量代换,往往会简化计算.令2x t -=,则.dx dt =当1x =时,1t =-;当3x =时,1t =,于是()31121110(2)()1tf x dx f t dt t dt e dt ----=++⎰⎰⎰⎰分段01301171.33t t t e e --⎛⎫=+-=- ⎪⎝⎭四、(本题满分6分) 【解析】将I 表成I Pdydz Qdzdx Rdxdy ∑=++⎰⎰,则22P Q R z z z z x y z∂∂∂++=+-=∂∂∂. 又∑是封闭曲面,可直接用高斯公式计算.记∑围成区域Ω,见草图,∑取外侧,由高斯公式得P Q R I dV zdV x y z ΩΩ⎛⎫∂∂∂=++= ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰⎰.用球坐标变换求这个三重积分.在球坐标变换下,Ω为:02,0,024πθπϕρ≤≤≤≤≤≤,于是22240cos sin I zdV d d d ππθϕρϕρϕρΩ==⎰⎰⎰⎰⎰⎰23402sin sin d d ππϕϕρρ=⋅⎰⎰242401112sin 212442πππϕρπ⎡⎤⎡⎤=⋅⋅=⋅⋅=⎢⎥⎢⎥⎣⎦⎣⎦.五、(本题满分8分) 【解析】将原式表成I Pdydz Qdzdx Rdxdy ∑=++⎰⎰,则2223()P Q R x y z x y z∂∂∂++=++∂∂∂. 以考虑用高斯公式来求解,但曲面∑不是封闭的,要添加辅助面.如果本题采用投影法计算是比较复杂的,故不采用.添加辅助面222:0()S z x y a =+≤,法向量朝下,S 与∑围成区域Ω,S 与∑取Ω的外法向量.在Ω上用高斯公式得323232222()()()3()SI x az dydz y ax dzdx z ay dxdy x y z dV Ω++++++=++⎰⎰⎰⎰⎰.用球坐标变换求右端的三重积分得222222203()3sin ax y z dV d d d ππθϕϕρρρΩ++=⋅⎰⎰⎰⎰⎰⎰4552001632sin 32155a d d a a ππϕϕρρππ=⨯=⨯⨯⨯=⎰⎰.注意S 垂直于平面yOz 与平面xOz ,将积分投影到xOy 平面上,所以左端S 上的曲面积分为SPdydzdx Qdzdx Rdxdy ++⎰⎰2200(,,0)xySSD R x y dxdy ay dxdy a y dxdy =++==-⎰⎰⎰⎰⎰⎰2220sin a a d r rdr πθθ=-⋅⎰⎰ (极坐标变换)422350sin 44aa a d r dr a a ππθθπ=-=-⨯⨯=-⎰⎰.因此 5556295420I a a a πππ=+=. 【相关知识点】1.高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式. 2.对于球面坐标与直角坐标的关系为:sin cos ,sin sin ,cos ,x r y r z r ϕθϕθϕ=⎧⎪=⎨⎪=⎩其中ϕ为向量与z 轴正向的夹角,0ϕπ≤≤;θ为从正z 轴来看自x 轴按逆时针方向转到向量在xOy 平面上投影线段的角,02θπ≤≤;r 为向量的模长,0r ≤<+∞.球面坐标系中的体积元素为2sin ,dv r drd d ϕϕθ=则三重积分的变量从直角坐标变换为球面坐标的公式是:2(,,)(sin cos ,sin sin ,cos )sin .f x y z dxdydz f r r r rdrd d ϕθϕθϕϕϕθΩΩ=⎰⎰⎰⎰⎰⎰六、(本题共2小题,每小题5分,满分10分.)(1)【解析】证法一:由拉格朗日中值定理可知,在(0,)x 存在一点ξ,使得()(0)()(0)()f x f f x xf ξξ''-=-=,即 ()()(0)f x xf f ξ'=+.因为()0f k ξ'≥>,所以当x →+∞时,()xf ξ'→+∞,故()f x →+∞. 由(0)0f <,所以在(0,)x 上由介值定理可知,必有一点(0,)x η∈使得()0f η=.又因为()0f k ξ'≥>,故()f x 为严格单调增函数,故η值唯一. 证法二:用牛顿-莱布尼兹公式,由于()(0)()(0)(0)xxf x f f t dt f kdt f kx '=+≥+=+⎰⎰,以下同方法1.(2)【解析】先将不等式做恒等变形:因为b a e >>,故原不等式等价于ln ln b a a b >或ln ln a ba b>. 证法一:令()ln ln ,()f x x a a x x a e =- >>,则 ()ln af x a x'=-.因为x a e >>,所以ln 1,1a a x ><,故()ln 0af x a x'=->. 从而()f x 在x a e >>时为严格的单调递增函数,故 ()()0,()f x f a x a e >= >>. 由此 ()ln ln 0f b b a a b =->,即 b a a b >. 证法二:令ln ()()x f x x e x =>,则 21ln ()xf x x -'=. 当(,)x e ∈+∞时,()0f x '<,所以()f x 为严格的单调递减函数,故存在b a e >>使得ln ln ()()b af b f a b a=<=成立.即b a a b >.七、(本题满分8分)【解析】(1)先求出在变力F 的作用下质点由原点沿直线运动到点(,,)M ξηζ时所作的功W 的表达式.点O 到点M 的线段记为L ,则LLW F ds yzdx zxdy xydz =⋅=++⎰⎰.(2)计算曲线积分:L 的参数方程是 ,,,x t y t z t ξηζ===t 从0到1,1122220()3W t t t dt t dt ηζξξζηξηζξηζξηζ⇒=⋅+⋅+⋅==⎰⎰.化为最值问题并求解:问题变成求W ξηζ=在条件2222221(0,0,0)a b c ξηζξηζ++=≥≥≥下的最大值与最大值点.用拉格朗日乘子法求解.拉格朗日函数为222222(,,,)1F a b c ξηζξηζλξηζλ⎛⎫=+++- ⎪⎝⎭,则有22222222220,20,20,10.Fa Fb F cF a b c ξηζλξηξζληζξηλγξηζλ∂⎧=+=⎪∂⎪∂⎪=+=⎪∂⎪⎨∂⎪=+=⎪∂⎪∂⎪=++-=⎪∂⎩解此方程组:对前三个方程,分别乘以,,ξηζ得222222,a b c ξηζ==(0λ≠时)代入第四个方程得,,ξηζ===. 相应的9W ==.当0λ=时相应的,,ξηζ得 0W =. 因为实际问题存在最大值,所以当(,,)a ξηγ=时W. 【相关知识点】拉格朗日乘子法:要找函数(,)z f x y =在附加条件(,)0x y ϕ=下的可能极值点,可以先作拉格朗日函数(,)(,)(,),L x y f x y x y λϕ=+其中λ为参数.求其对x 与y 的一阶偏导数,并使之为零,然后与附加条件联立起来:(,)(,)0,(,)(,)0,(,)0.x x y y f x y x y f x y x y x y λϕλϕϕ⎧+=⎪+=⎨⎪=⎩ 由这方程组解出,x y 及λ,这样得到的(,)x y 就是函数(,)f x y 在附加条件(,)0x y ϕ=下的可能极值点.八、(本题满分6分)【解析】证法一:对B 按列分块,记12(,,)n B βββ=,若11220n n k k k βββ+++=,即 1212(,,,)0n n k kk βββ⎛⎫⎪ ⎪= ⎪⎪⎝⎭, 亦即 120n k k B k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.两边左乘A ,得 120n k k AB k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,即 120n k k E k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,亦即 120n k k k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.所以12,,n βββ线性无关.证法二:因为B 是m n ⨯矩阵,n m <,所以()r B n ≤. 又因()()()r B r AB r E n ≥==,故()r B n =.所以12,,n βββ线性无关.【相关知识点】1. 向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k ,使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.2. 矩阵乘积秩的结论:乘积的秩小于等于单个矩阵的秩九、(本题满分7分)【解析】(1)设112233x x x βξξξ=++,即是求此方程组的解.对增广矩阵123(,,,)ξξξβ作初等行变换,第一行乘以()1-分别加到第二行和第三行上,再第二行乘以()3-加到第三行上,第三行自乘12,有 111111111111123101200120149303820011 ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 第三行乘以()2-、()1-分别加到第二行和第一行上,再第二行乘以()1-加到第一行上,有增广矩阵10020102001 1 ⎛⎫ ⎪→- ⎪ ⎪⎝⎭.解出31x =,22x =-,12x =,故12322βξξξ=-+.(2) 由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘A ,得22()()A A A A A ααλαλαλα====,再一直这样操作下去,有n n A αλα=.因为0α≠,故0λ≠.按特征值定义知nλ是nA 的特征值,且α为相应的特征向量.所以有,(1,2,3)n ni i i i i i A A i ξλξξλξ===,据(1)结论12322βξξξ=-+,有123123(22)22A A A A A βξξξξξξ=-+=-+,于是 123123112233(22)2222n n n n n n n nA A A A A βξξξξξξλξλξλξ=-+=-+=-+121322231112122233223149223n nn n n n n n +++++⎡⎤-+⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-⋅+=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+⎣⎦⎣⎦⎣⎦⎣⎦.【相关知识点】矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.十、填空题(本题共2小题,每小题3分,满分6分,把答案填在题中横线上.) (1)【解析】可以用古典概型,也可以用抽签原理.方法一:从直观上看,第二次抽出次品的可能性与第一次抽到正品还是次品有关,所以考虑用全概率公式计算.设事件i B =“第i 次抽出次品”1,2,i =由已知得11210(),(),1212P B P B == 121212(|),(|)1111P B B P B B ==.应用全概率公式 1121212211021()()(|)()(|)121112116P B P B P B B P B P B B =+=⨯+⨯=. 方法二:对填空题和选择题可直接用抽签原理得到结果.由抽签原理(抽签与先后次序无关),不放回抽样中第二次抽得次品的概率与第一次抽得次品的概率相同,都是21126=. (2)【解析】方法一:可以用分布函数法,即先求出分布函数,再求导得到概率密度函数.由已知条件,X 在区间(0,2)上服从均匀分布,得X 的概率密度函数为1,02()20,X x F x ⎧ <<⎪=⎨⎪ ⎩其它. 先求F 的分布函数2()()()Y F y P Y y P X y =≤=≤.当0y ≤时,()0Y F y =;当4y ≥时,()1Y F y =;当04y <<时,{}{}{2()Y F y P Y y P X y P X =≤=≤=≤≤1()2X x dx dx dx ==+=⎰. 即0,0()04,1, 4.Y y F y y y ≤ ,⎧=<<⎪≥⎪⎩于是,对分布函数求导得密度函数04()()0,Y Y y f y F y <<'== ⎩其他.故随机变量2Y X =在(0,4)内的概率分布密度()Y f y =方法二:也可以应用单调函数公式法.由于2y x =在(0,4)内单调,反函数()x h y ==(0,2)内可导,且导数()h y '=恒不为零,因此,由连续型随机变量函数的密度公式,得到随机变量Y 的概率密度为[]1,04,04,()(),042()0,0,0,X Y y y h y f h y y f y << <<'⎧ <<⎪===⎨ ⎪⎩ ⎩⎩其他其他,其他.故随机变量2Y X =在(0,4)内的概率分布密度()Y f y =十一、(本题满分6分)【解析】方法一:利用分布函数求密度函数:首先,因2(,)XN μσ,所以X的密度函数为22()()x X f x μσ--=,因Y 服从[,]ππ-上的均匀分布,故Y 的密度函数为11()()2Y f y πππ==--.因为随机变量X 与Y 相互独立,所以二维随机变量(,)X Y 的联合概率密度为(,)()()X Y f x y f x f y =.要求Z 的密度函数,先求Z 的分布函数()()()Z F z P Z z P X Y z =≤=+≤(,)x y zf x y dxdy +≤=⎰⎰()()X Y x y zf x f y dxdy +≤=⎰⎰22()12x x y zdxdy μσπ--+≤=⎰⎰.2222()()1122x x z yz ydy dx dy dx μμππσσππππ--------∞--∞==⎰⎰⎰⎰12z y dy ππμπσ---⎛⎫=Φ ⎪⎝⎭⎰(由标准正态分布来表示一般正态分布) 求出Z 的分布函数,因此,对分布函数求导得密度函数,Z 的密度函数为11()()2Z Z z y f z F z dy ππμϕπσσ---⎛⎫'==⎪⎝⎭⎰ 其中()x ϕ 是标准正态分布的概率分布密度.由于()x ϕ 是偶函数,故有z y y z μμϕϕσσ--+-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭于是 111()22Z y z z z f z dy ππμπμπμϕπσσπσσ-+-⎡+--+-⎤⎛⎫⎛⎫⎛⎫==Φ-Φ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰. 最终用标准正态分布函数()x Φ表示出来Z X Y =+的概率分布密度. 方法二:用卷积公式直接计算:直接应用相互独立随机变量之和密度的卷积公式,求()Z f z 更为简单. 因为随机变量X 与Y 相互独立,由卷积公式1()()()2Z X Y f z f z y f y dy π+∞-∞=-⎰2222()()1122z y z y dy dy μμππσσππππ--------==⎰⎰22()12y z dy μπσππ+---=⎰12y z dy ππμπσ-+-⎛⎫=Φ ⎪⎝⎭⎰ 112y z dy ππμϕπσσ-+-⎛⎫=⎪⎝⎭⎰ 12z z πμπμπσσ⎡+--+-⎤⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 最终用标准正态分布函数()x Φ表示出来Z X Y =+的概率分布密度.。
第一学期《高等数学B》期末考试试题及答案
武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算n →∞2、计算0ln(1)lim cos 1x x xx →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算d x xe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。
7、已知2200d cos d y x te t t t =⎰⎰,求x y d d8、设11x y x-=+,求()n y二、(15分)已知函数32(1)x y x =-求: 1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。
三、(10分)设()g x 是[1,2]上的连续函数,0()()d x f x g t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续;四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x轴旋转一周所形成的立体体积; 2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。
五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0,)f b f f bb ξξ'-=∈对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院 B 卷2007—2008第一学期《高等数学B 》期末考试试题一、(86'⨯)试解下列各题:1、计算30arctan lim ln(12)x x x x →-+2、计算120ln(1)d (2)x x x +-⎰ 3、计算积分:21arctanxd x x +∞⎰ 4、已知两曲线()y f x =与1x yxy e++=所确定,在点(0,0)处的切线相同,写出此切线方程,并求极限2lim ()n nf n→∞5、设,2221cos cos t x t udu y t t ⎧=⎪⎨=-⎪⎩,试求:d d y x,22d |d t y x 的值。
高等数学习题B答案
一、填空题1. ()(22,0,0lim x y →= ______. 2 2. 若2sin z x y =,则2,6z y π⎛⎫ ⎪⎝⎭∂=∂ ______.3. 函数()122x z e x y =+的极值点坐标为______. ()2,0-4.曲线()221,42z x y x ⎧=+⎪⎨⎪=⎩ 在点(2,4,5)处的切线对于y 轴的斜率为______.2 5.点(2,3,1)在直线722123x y z +++==上的投影点为______. ()5,2,4- 6.若函数xy ze =,则()2,1dz =________________. 222e dx e dy + 7.若函数()()()222sin ln x z y x y ex =-++,则()1,2z x ∂=∂____. 2 8.若L 是圆周221x y +=,则()3L x y ds +=⎰ ____. 0二、解答题1.判断级数()221sin 2n nn n π∞=⋅∑的敛散性. 解: ()22sin 22n nn n n π⋅≤ 而12n n n ∞=∑满足11lim 2n n nu u +→∞=,因此它收敛, 故原级数收敛.2.计算()2,D x y dxdy +⎰⎰其中D 是由1,y x y x==及2y =所围成的闭区域.解:令cos ,sin x r y r θθ==原式122002ln 212r d dr r ππθ==+⎰⎰3.计算221,1D xy dxdy x y +++⎰⎰其中(){}22|1,0D x y x y x =+≤≥,. 解:根据重积分性质可知220,1D xydxdy x y =++⎰⎰令cos ,sin x r y r θθ==原式122002ln 212r d dr r ππθ==+⎰⎰4.设 2sin x y xy e =+,求dydx .解:令()2,sin x F x y xy e y =+-则cos ,cos 2,xx y F y xy e F x xy y =+=- 所以cos cos 2xdy y xy e dx x xy y +=--5.求幂级数1112nn x n ∞=-⎛⎫⎪⎝⎭∑的收敛域.解:令1t x =-,幂级数变为112nn t n ∞=⎛⎫⎪⎝⎭∑11lim ,2n n na a ρ+→∞==所以收敛半径为2,R =收敛区间为13x -<<当3x =时级数变为11n n ∞=∑发散,当1x =-时级数变为()11nn n ∞=-∑收敛,因此原级数的收敛域为[)1,3.-6.画出由曲线22x y =及211y x =+所围成平面图形的的草图并求其面积. 解:求得交点的横坐标1x =±则2121112x S dx x -⎛⎫=- ⎪+⎝⎭⎰123π=- 三、求微分方程dy x ydx x y -=+的通解. 解:令yu x =, 得()2121du u u dx u x --=+,分离变量、积分得2221u u Cx -+-=从而原微分方程的通解为222y xy x C +-=或()222x y x C +=+。
高等数学B试卷及答案
高等数学试卷一、 单项选择题(本题共5小题,每小题4分,满分20分)1. 由[,]a b 上连续曲线y = g (x ),直线x a =,x b =()a b <和x 轴围成图形的面积S =( ).(A)dx x g ba⎰)((B)dx x g ba⎰)((C) dx x g ba⎰)((D)2))](()([a b a g b g -+2.下列级数中,绝对收敛的是( )(A )()∑∞=--11321n nn n (B )()∑∞=-+-11)1ln(311n n n(C )()∑∞=-+-12191n n n n (D )3.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数.则=∂∂22y z( ).(A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂ (B)22y v v f ∂∂⋅∂∂(C)22222)(y v v f y v v f ∂∂⋅∂∂+∂∂∂∂ (D)2222yv v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂4.⎰-1121dx x ( )(A )2 (B )-2(C )0 (D )发散5. 求微分方程2x y =''的通解( )(A )21412c x c x y ++= (B)cx x y +=124 (C )c x y +=124 (D )221412c x c x y ++= 二、 填空(本题共5小题,每小题4分,满分20分)1. 若⎰=22sin 3)(x dt t x x f ,则()f x '=2. 设f (x ,y )是连续函数,交换积分次序:⎰⎰⎰⎰+212141410),(),(yy ydx y x f dy dx y x f dy =3.幂级数()()∑∞=--121!21n nn n x 的收敛半径是4. 已知5)2(,3)2(,1)0('===f f f ,则⎰=2'')(dx x xf通解为x ce y x+=的微分方程为三、 计算下列各题(本题共4小题,每小题5分,满分20分)1. x y z cos )(ln =,求。
高等数学b试题及答案
高等数学b试题及答案一、选择题(每题5分,共30分)1. 设函数f(x)=x^3-3x+1,求f'(x)的值。
A. 3x^2-3B. 3x^2+3C. x^3-3D. x^3+3答案:A2. 计算定积分∫(0,1) (2x+1)dx的值。
A. 3/2B. 5/2C. 2D. 1答案:B3. 求极限lim(x→0) [sin(x)/x]。
A. 1B. 0C. -1D. 2答案:A4. 判断级数∑(n=1,∞) (1/n^2)的收敛性。
A. 收敛B. 发散C. 条件收敛D. 交错收敛答案:A5. 设矩阵A=(aij)为3阶方阵,且|A|=-2,求A的行列式。
A. -2B. 2C. 4D. -4答案:A6. 判断函数y=x^2-6x+8在区间[2,4]上的单调性。
A. 单调递增B. 单调递减C. 先减后增D. 先增后减答案:C二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-4x+c,若f(x)在x=2处取得最小值,则c的值为________。
答案:42. 设函数f(x)=ln(x),求f'(x)的值。
答案:1/x3. 计算二重积分∬(D) xy dxdy,其中D为区域x^2+y^2≤4。
答案:8/34. 设数列{an}满足a1=1,an+1=2an+1,求数列的通项公式。
答案:an=2^(n-1)三、解答题(每题10分,共50分)1. 求函数f(x)=x^3-3x+1的极值点。
解:首先求导f'(x)=3x^2-3,令f'(x)=0,解得x=±1。
经检验,x=1为极小值点,x=-1为极大值点。
2. 计算定积分∫(0,2) (3x^2-2x+1)dx。
解:∫(0,2) (3x^2-2x+1)dx = [x^3-x^2+x](0,2) = (8-4+2) - (0-0+0) = 6。
3. 求极限lim(x→∞) [(x^2+3x+2)/(x^2-x+1)]。
高数B(上)试题及答案1
高数B(上)试题及答案1第一篇:高数B(上)试题及答案1高等数学B(上)试题1答案一、判断题(每题2分,共16分)(在括号里填写“√”或“×”分别表示“对”或“错”)(× )1. 两个无穷大量之和必定是无穷大量. (× )2. 闭区间上的间断函数必无界. (√ )3. 若f(x)在某点处连续,则f(x)在该点处必有极限. (× )4. 单调函数的导函数也是单调函数. (√ )5. 无穷小量与有界变量之积为无穷小量.(× )6. y f(x)在点x0连续,则y f(x)在点x0必定可导. (× )7. 若x0点为y f(x)的极值点,则必有f(x0)0. (× )8. 若f(x)g(x),则f(x)g(x).二、填空题(每题3分,共24分) 1. 设f(x1)x,则f(3)16. 2.limxsinx21=x1。
x112x 3.lim xsin sinx x xx x1e2. 4. 曲线x6y y在(2,2)点切线的斜率为2323. 5.设f(x0)A,则limh0f(x02h)f(x03h)=h05A. 6. 设f(x)sinxcos31,(x0),当f(0)x1处有极大值.时,f(x)在x0点连续. 7. 函数y x3x在x8. 设f(x)为可导函数,f(1)1,F(x)f三、计算题(每题6分,共42分)12f(x),则F(1)x 1. (n2)(n3)(n4) . 3n5n(n2)(n3)(n4)解: limn5n31.求极限lim234lim111(3分) n n n n1(3分)x xcosx2. 求极限 lim. x0x sinxx xcosx解:limx0x sinx1cosx xsinx(2分)limx01cosx2sinx xcosx(2分)limx0sinx33. 求y(x1)(x2)2(x3)3在(0,)内的导数. 解:lny ln(x1)2ln(x2)3ln(x3),y123y x1x2x3,故y(x1)(x2)2(x3)3123x1x2x34. 求不定积分2x11x2dx. 解:2x11x2dx11x2d(1x2)11x2dxln(1x2)arctanx C5. 求不定积分xsinx2dx. 解:xsinx2dx12sinx2d x212cosx2 C6.求不定积分xsin2xdx. 解:xsin2xdx12xsin2xd(2x)12xdcos2x12xcos2x cos2xdx2分)(2分)(2分)(2分)(3分)(3分)(3分)(3分)(2分)(2分)(11xcos2x sin2x C(2分)247. 求函数y sinx cosx的导数. 解:lny cosxlnsinx (3分)y sinx cosx1cot2x lnsinx(3分)四、解答题(共9分)某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌2022的墙壁,问应围成的长方形的长,宽各为多少才能使这间小屋面积最大. 解:设垂直于墙壁的边为x,所以平行于墙壁的边为2022x,所以,面积为S x(2022x)2x2022(3分)由S4x2022,知(3分)当宽x5时,长y2022x10,(3分)面积最大S51050(平方米)。
高数B(上)试题及答案
高等数学B (上)试题1答案一、判断题(每题2分,共16分)(在括号里填写“√”或“×”分别表示“对”或“错”) ( × )1. 两个无穷大量之和必定是无穷大量. ( × )2. 闭区间上的间断函数必无界.( √ )3. 若)(x f 在某点处连续,则)(x f 在该点处必有极限. ( × )4. 单调函数的导函数也是单调函数.( √ )5. 无穷小量与有界变量之积为无穷小量.( × )6. ()y f x =在点0x 连续,则()y f x =在点0x 必定可导. ( × )7. 若0x 点为()y f x =的极值点,则必有0()0f x '=. ( × )8. 若()()f x g x ''≡,则()()f x g x ≡.二、填空题(每题3分,共24分) 1. 设2)1(x x f =-,则(3)f =16. 2.1lim sinx x x→∞=1。
3.112lim sin sin xx x x x x x x →∞⎡⎤+⎛⎫++=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦21e +.4. 曲线326y y x -=在(2,2)-点切线的斜率为23.5.设0()f x A '=,则000(2)(3)limh f x h f x h h→+--=5A.6. 设1()sin cos,(0)f x x x x=≠,当(0)f =0时,)(x f 在0=x 点连续.7. 函数33y x x =-在x =1-处有极大值.8. 设)(x f 为可导函数,(1)1f '=,21()()F x f f x x ⎛⎫=+ ⎪⎝⎭,则=')1(F 1.三、计算题(每题6分,共42分)1.求极限 3(2)(3)(4)lim5n n n n n→+∞+++ . 解: 3(2)(3)(4)lim 5n n n n n →+∞+++234lim 111n n n n →+∞⎛⎫⎛⎫⎛⎫=+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭(3分)1= (3分)2. 求极限 0cos lim sin x x x xx x →--.解:0cos lim sin x x x xx x→--01cos sin lim1cos x x x xx →-+=- (2分) 02sin cos limsin x x x xx→+= (2分) 3= (2分)3. 求23(1)(2)(3)y x x x =+++在(0,)+∞内的导数.解:ln ln(1)2ln(2)3ln(3)y x x x =+++++, (2分)123123y y x x x '=+++++, (2分) 故23123(1)(2)(3)123y x x x x x x ⎛⎫'=+++++ ⎪+++⎝⎭(2分) 4. 求不定积分221d 1x x x ++⎰.解:221d 1x x x ++⎰22211d(1)d 11x x x x=++++⎰⎰ (3分) 2ln(1)arctan x x C =+++ (3分)5. 求不定积分2sin d x x x ⎰.解:2sin d x x x ⎰()221sin d 2x x =⎰ (3分) 21cos 2x C =-+ (3分)6.求不定积分sin 2d x x x ⎰. 解:sin 2d x x x ⎰11sin 2d(2)dcos222x x x x x ==-⎰⎰ (2分) ()1cos 2cos2d 2x x x x =--⎰ (2分)11cos 2sin 224x x x C =-++ (2分)7. 求函数()cos sin xy x =的导数.解:ln cos ln sin y x x = (3分)()()cos 12sin cotlnsin x y x x x +'=- (3分)四、解答题(共9分)某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成的长方形的长,宽各为多少才能使这间小屋面积最大.解:设垂直于墙壁的边为x ,所以平行于墙壁的边为202x -,所以,面积为2(202)220S x x x x =-=-+, (3分)由4200S x '=-+=,知 (3分) 当宽5x =时,长20210y x =-=, (3分) 面积最大51050S =⨯=(平方米)。
《高等数学》试卷B及答案
《高等数学》工科(上)试题(姓名 学号 专业 班级 本试题一共 4 道大题(21)小题,共 4页,满分100分.考试时间120分钟.2.试卷若有雷同以零分记.一、 选择填空(每小题3分,共18分) 1、当0x +→时,()(ln 1ln 1x +--( )A 、高阶无穷小B 、低阶无穷小C 、同阶无穷小D 、等价无穷小2、函数⎪⎩⎪⎨⎧=≠=0001sin)(2x x xx x f 在0=x 是 ( )A 、连续可导B 、不连续不可导C 、不连续但可导D 、连续不可导 3、设函数30(21)xy t dt =+⎰则y 在16x =-有 ( )A 、极小值B 、极大值C 、 无极值D 、有极小值也有极大值 4、已知当0x ≠时,'()f x 连续,则23()(13)()2xxf x x f x dx x e'-+=⎰ ( )A 、3()2xf x x eB 、3()2xf x C x e+ C 、3()2xf x C x e-+ D 、3()xf x C x e+5、如果a 、b 是方程()0f x =的两个根,()f x 在[,]a b 上连续,在(,)a b 内可导,那么方程()0f x '=在(,)a b 内 ( ) A 、只有一个根 B 、至少有一个根 C 、没有根 D 、以上结论都不对 6、222y x z +=在空间直角坐标系中表示 ( ) A 、旋转抛物面 B 、顶点在坐标原点、开口向下的圆锥面 C 、顶点在坐标原点、开口向上的圆锥面 D 、抛物柱面二、 填空题(每小题4分,共36分): 7、232lim43→-+=-x x x k x ,则k =( );8、)(x f 一个原函数为arctan x ,则()d f x dx '=⎰( ); 9、=+-++→→yx y x y x 24)(lim( ); 10、设()()x ax f t dtF x x a=-⎰,其中)(x f 为连续函数,则=→)(lim x F ax ( );11、)1ln(4222y x yx z ---=的定义域为( );12、过点(2,3,-1)且与平面2530x y z -++=垂直的直线方程为( ); 13、221xdx x+∞=+⎰( );14、曲线221x xy -=在点(1,1)处的曲率K =( ); 15、设32),,(z y x z y x f ++=,则grad (2,1,1)f -=( );三、 计算题(每小题7分,共28分): 16、1234lim ()3→++x x x x x17、设21sin ()xt f x dt t=⎰,求1()⎰xf x dx18、设()23,w f x y z xyz =++,f 具有二阶连续偏导数,求2,wwx x y∂∂∂∂∂19、求摆线⎩⎨⎧≤≤--=-=)(,cos 1sin πϑπϑϑϑy x 的弧长L 。
《高等数学》期末考试B卷(附答案)
《高等数学》期末考试B卷(附答案)【编号】ZSWD2023B0089一、填空题 (每空2分,共20分) 1、]1sin sin 1[lim x x x x x 【答案】12、设)(x f 的定义域是]1,0[,那么函数)2(x f 的定义域是 【答案】]0,(3、设函数1,121,211)(1x x x x x x x f x a, 当 a ______________时使)(lim 1x f x 存在 【答案】2ln4、设42sin x y ,则dydx=__________________。
【答案】3448sin cos x x x5、已知成本函数为5002)(2 x x x C ,当产量为1000时,边际成本为______ _. 【答案】20026、若 C x dx xx f sin )(ln ',则 )(x f【答案】C e x )sin(7、已知2111x y dt t,求dy dx【答案】221xx8、函数21()(1)x e f x x x 的可去间断点是0x =__0___, 补充定义0()f x =_____ , 则函数()f x 在0x 处连续。
【答案】0,-2二、单项选择题(每小题2分,共10分)1、当0x 时,与31000x x 等价无穷小的是( )AB C x D 3x【答案】C2、以下结论正确的是( )A 函数)(x f 在),(b a 内单调增加且在),(b a 内可导,则必有0)(' x f ;B 函数)(x f 在),(b a 内的极大值必大于极小值;C 函数)(x f 极值点不一定是驻点;D 函数)(x f 在0x 的导数不存在,则0x 一定不是)(x f 的极值点.【答案】C3、设()x y f e , 则 dy ( ).A. '()x x f e deB. '()()x f e d xC. '()x x f e e dxD.'()x x f e de【答案】D4、设函数()f x 在区间(,)a b 内可导, 1x 和2x 是(,)a b 内的任意两点, 且 12x x , 则至少存在一点 , 使( )成立.A '()()()() (,)f b f a f b a a bB '212112 ()()()() (,)f x f x f x x x xC '111()()()() (,)f b f x f b x x bD '222 ()()()() (,)f x f a f x a a x 【答案】B5、在开区间),(b a 内,)(x f 和)(x g 满足)()(''x g x f ,则一定有( )A. )()(x g x fB. 1)()( x g x fC. ''[()][()]f x dx g x dxD. )()(x dg x df【答案】D【编号】ZSWD2023B0089三、计算题(每小题5分,共35分) 1、求极限20sin tan sin limxx xx x 2200222200sin tan tan (cos 1)limlimsin sin 10,sin ,cos 1,tan 21()sin tan 12 lim lim sin 2x x x x x x x x x x x x x x x x x x x x x x x x x x x Q :解2、已知)(u f 可导,))(1ln(2x e f y ,求'y .解: 令u ex2, ))(1ln())(1ln(2u f e f y x利用复合函数求导法得''')(1)(u u f u f y x)(1)(222'2x x x e f e f e .3、讨论函数221,0(), 0x e x f x x x的连续性和可导性;解:当0x 和0x 时,函数()f x 对应的都是定义区间内的初等函数,故均连续和可导。
高等数学B1答案(含综合练习)
高等数学(B )(1)作业答案高等数学(B )(1)作业1初等数学知识一、名词解释:邻域——设δ和a 是两个实数,且0>δ,满足不等式δ<-a x 的实数x 的全体,称为点a 的δ邻域。
绝对值——数轴上表示数a 的点到原点之间的距离称为数a 的绝对值。
记为a 。
区间——数轴上的一段实数。
分为开区间、闭区间、半开半闭区间、无穷区间。
数轴——规定了原点、正方向和长度单位的直线。
实数——有理数和无理数统称为实数。
二、填空题1.绝对值的性质有0≥a 、b a ab =、)0(≠=b ba b a 、a a a ≤≤-、b a b a +≤+、b a b a -≥-。
2.开区间的表示有),(b a 、。
3.闭区间的表示有][b a ,、。
4.无穷大的记号为∞。
5.)(∞+-∞,表示全体实数,或记为+∞<<∞-x 。
6.)(b ,-∞表示小于b 的实数,或记为b x <<∞-。
7.)(∞+,a 表示大于a 的实数,或记为+∞<<x a 。
8.去心邻域是指)()(εε+-a a a a ,, 的全体。
用数轴表示即为9.MANZU9.满足不等式112-<≤-x 的数x 用区间可表示为]211(--,。
三、回答题 1.答:(1)发展符号意识,实现从具体数学的运算到抽象符号运算的转变。
(2)培养严密的思维能力,实现从具体描述到严格证明的转变。
(3)培养抽象思维能力,实现从具体数学到概念化数学的转变。
(4)树立发展变化意识,实现从常量数学到变量数学的转变。
2.答:包括整数与分数。
3.答:不对,可能有无理数。
4.答:等价于]51(,。
5.答:)2321(,。
四、计算题1.解:12020102010)2)(1(<>⇒⎩⎨⎧<-<-⎩⎨⎧>->-⇒>--x x x x x x x x 或或。
),2()1,(+∞-∞∴ 解集为。
高等数学b试题及答案
高等数学b试题及答案1. 解析几何试题:一座高楼的顶端A和底端B相距240米,从A点观察到地面上某点C的角BAC为60°,从B点观察到地面上同一点C的角ABC为45°。
已知楼的高度为h米,求h的值。
答案:设AC为x米,则BC为(240-x)米。
由正弦定理可得:sin60° = h / xsin45° = h / (240-x)化简上述两个方程得:x = 2h√3240 - x = h√2将第一个等式代入第二个等式,得:240 - 2h√3 = h√2化简得:2h√3 + h√2 = 240(2√3 + √2)h = 240解得:h ≈ 80.24所以楼的高度约为80.24米。
2. 平面向量试题:已知向量A = (3, 2)B = (-1, 4)求向量C,使得 A + B + C = 0。
答案:由题意得:A +B +C = 0即:(3, 2) + (-1, 4) + (x, y) = (0, 0)化简得:(3 - 1 + x, 2 + 4 + y) = (0, 0)(x + 2, y + 6) = (0, 0)解得:x = -2y = -6所以向量C为(-2, -6)。
3. 微分试题:已知函数y = ln(x^2 + 1),求y的导数dy/dx。
答案:将y = ln(x^2 + 1) 进行求导,得:dy/dx = d/dx(ln(x^2 + 1))根据链式法则,有:dy/dx = 1 / (x^2 + 1) * d/dx(x^2 + 1)化简得:dy/dx = 2x / (x^2 + 1)所以y的导数dy/dx为2x / (x^2 + 1)。
4. 微分方程解微分方程 dy/dx + 2y = 4x,给出y的表达式。
答案:首先写出齐次方程对应的解:dy/dx + 2y = 0将上述方程移项得:dy/y = -2dx对两边同时积分得:ln|y| = -2x + C1 (C1为常数)化简得:|y| = e^(-2x + C1)移项得:|y| = e^C1 * e^(-2x)设A = e^C1,则上述表达式可化简为:|y| = A * e^(-2x)当y≠0时,可进一步得到:y = ± A * e^(-2x)所以y的表达式为y = ± A * e^(-2x)。
2019年高等数学B期末考试题及答案
2019年高等数学B期末考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。
A. 0B. 1C. 2D. 3答案:C2. 极限lim(x→0) (sin x)/x的值是()。
A. 0B. 1C. -1D. 2答案:B3. 以下哪个函数是偶函数()。
A. f(x) = x^3B. f(x) = x^2C. f(x) = x^2 + xD. f(x) = x^2 - x答案:B4. 以下哪个积分是发散的()。
A. ∫(0,1) 1/x dxB. ∫(0,1) x^2 dxC. ∫(0,1) e^x dxD. ∫(0,1) 1/(1+x^2) dx答案:A5. 以下哪个级数是收敛的()。
A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/4 - 1/8 + ...C. 1 + 1/2 + 1/3 + 1/4 + ...D. 1/2 + 1/4 + 1/8 + 1/16 + ...答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^3-3x的导数是_________。
答案:3x^2-37. 函数y=ln(x)的不定积分是_________。
答案:xln(x)-x+C8. 曲线y=x^2在x=1处的切线斜率是_________。
答案:29. 函数f(x)=e^x的原函数是_________。
答案:e^x+C10. 极限lim(x→∞) (1+1/x)^x的值是_________。
答案:e三、计算题(每题10分,共30分)11. 计算定积分∫(0,2) x^2 dx。
答案:[1/3x^3](0,2) = 8/312. 求函数f(x)=x^3-6x^2+9x的极值点。
答案:极值点为x=0和x=3。
13. 证明函数f(x)=x^2在区间(-∞,+∞)上是凸函数。
答案:证明略。
四、解答题(每题15分,共30分)14. 给定函数f(x)=x^3-3x,求其在区间[-2,2]上的最大值和最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…………………………(5分)
于是 …………………………(7分)
即 ……………………(8分)
五、(8分)应用格林公式计算曲线积分: ,
为由 到 经过圆 上半部的路线 。
解:连接两点 ,构成封闭路径 ,从而
(2分)
记 ,(3分)
由格林公式: (6分)
线段 : ,
(7分)
从而 (8分)
评分说明:
写出 得1分,
两边对 求导左端: …………………………(3分)
右端: …………………………(理得 ………………………………(8分)
(方法二)
因为
所以 ………………(3分)
………………(5分)
从而 …………………(7分)
即 …………………(8分)
(方法三)
因为
………………(3分)
(2)求级数的和函数及数项级数的和(5分)
设级数的和函数为 ,
则 …………………(6分)
而级数 (或 )……………(8分)
则级数的和函数为 ……………………(9分)
幂级数中取 得数项级数 …………………(10分)
(注:求级数的和函数有多种解法,得分标准参上执行)
对于实际问题,由于驻点是唯一的,则该点就是所求的最大值点。所以当长方体的长、宽、高分别为4,4,2的时候,可以使无盖的长方体表面积最大。…………(8分)
注:如果出现目标函数与条件函数颠倒,酌情扣4分;
如果目标函数多了盖子,按错误函数求解的,酌情扣4分。
四、(8分)设函数 可微,且满足 , ,求 。
解:(方法一)
求出 得2分
没有考虑积分曲线的封闭性而直接用格林公式且计算出结果得4分.
六、(10分)设 为连续函数,且 ,其中 是由直线 围成的区域,求 。
解:设 ……………………(1分)
则 ……………………(3分)
或
……………………(5分)
= ……………………(6分)
= ……………………(7分)
……………………(9分)
解:设长方体的长、宽、高分别为 ,则由题意:
目标函数为: …………………………………………………(1分)
条件函数为: …………………………………………………………(2分)
根据题目要求,利用拉格郎日数乘法,构造函数为:
……………………………(3分)
则有: ……………………………………………(6分)
解之:
解法二:因级数只含偶数项,故采用前后通项之比求其收敛域:
由 ……………………(1分)
根据比值判别法,由 时级数收敛可知:当 时原级数收敛……(3分)
当 时,级数 发散,…………………(4分)
所以原级数的收敛域为 …………………(5分)
(注:直接由级数的系数之比得收敛半径 得2分;写出前后通项之比公式得1分;因前后通项之比的极限值求错引起的结果错误得3分)
2.利用级数收敛的必要条件,证明: 。
证明考虑正项级数 ,……………………(2分)
由比值判别法 …………………(4分)
…………………………………………(6分)
从而级 收敛,由收敛级数的必要条件得 ……………(8分)
3.用拉格朗日乘数法求:设计一个容量为32立方米的长方形开口水箱,问水箱的长,宽和高各等于多少米时,其表面积最小?
由于 ,
所以 .……………………(10分)
七(10分)求级数 的收敛域及和函数,并求 。
(1)求级数的收敛域(5分)
解法一:设 ,则级数 ,……………………(1分)
由 ,知收敛半径 ……………………(3分)
当 ,级数 发散;当 ,级数 也发散,……………(4分)
则其收敛域为 ,可知原级数的收敛域为 ……………………(5分)