研究生《小波理论及应用》复习题
小波分析考试题(附答案)
《小波分析》试题适用范围:硕士研究生时 间:2013年6月一、名词解释(30分)1、线性空间与线性子空间解释:线性空间是一个在标量域(实或复)F 上的非空矢量集合V ;设V1是数域K 上的线性空间V 的一个非空子集合,且对V 已有的线性运算满足以下条件 (1) 如果x 、y V1,则x +y V1; (2) 如果x V1,k K ,则kx V1, 则称V1是V 的一个线∈∈∈∈∈性子空间或子空间。
2、基与坐标解释:在 n 维线性空间 V 中,n 个线性无关的向量,称为 V 的一组n 21...εεε,,,基;设是中任一向量,于是 线性相关,因此可以被基αn 21...εεε,,,线性表出:,其中系数 αεεε,,,,n 21...n 21...εεε,,,n 2111an ...a a εεεα+++=是被向量和基唯一确定的,这组数就称为在基下的坐标,an ...a a 11,,,αn 21...εεε,,,记为 ()。
an ...a a 11,,,3、内积解释:内积也称为点积、点乘、数量积、标量积。
,()T n x x x x ,...,,21=,令,称为x 与y 的内积。
()T n y y y y ,...,,21=[]n n y x y x y x y x +++=...,2211[]y x ,4、希尔伯特空间解释:线性 完备的内积空间称为Hilbert 空间。
线性(linearity ):对任意f ,g ∈H ,a ,b ∈R ,a*f+b*g 仍然∈H 。
完备(completeness ):空间中的任何柯西序列都收敛在该空间之内。
内积(innerproduct ):<f ,g>,它满足:,()T n f f f f ,...,,21=时。
()T n g g g g ,...,,21=[]n n y x y x y x y x +++=...,22115、双尺度方程解释:所以都可以用空间的一个1010,V W t V V t ⊂∈⊂∈)()(ψϕ)()和(t t ψϕ1V从图可以明显看出,多分辨分析只是对低频部分进行进一步分解,而高以考虑。
小波变换理论及应用
2011-2012 学年第一学期2011级硕士研究生考试试卷课程名称:小波变换理论及应用任课教师:考试时间:分钟考核类型:A()闭卷考试(80%)+平时成绩(20%);B()闭卷考试(50%)+ 课程论文(50%);C(√)课程论文或课程设计(70%)+平时成绩(30%)。
一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。
(20分)二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。
(25分)三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。
(25分)四、平时成绩。
(30分)(一)连续小波变换(CWT )的运算过程及内涵将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为t a b t t f a b a f W d )(*)(||1),(⎰∞+∞--=ψψ ( 1.1)其中,a ∈R 且a ≠0。
式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸缩,b 为时间平移因子。
其中)(||1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。
从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。
① 选定一个小波,并与处在分析时段部分的信号相比较。
② 计算该时刻的连续小波变换系数C 。
如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。
C 愈大,表示两者的波形相似程度愈高。
小波变换系数依赖于所选择的小波。
因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。
图1.5 计算小波变换系数示意图③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。
浙江大学小波分析及其工程应用考试试卷
浙江大学小波分析及其工程应用考试试卷
1、简述傅里叶变换、短时傅里叶变换以及小波变换之间的异同,并
说明小波变换的必要性。
(10分)
2、小波变换堪称数学显微镜,且二维小波变换除了有显微能力之外,还有极化能力,请说明为什么?(10分)
3、说明小波变换的多分辨率分析和时-频局部化能力,请问该变换为
什么能够随着视野的变化自动调整分辨率以及如何调整?(10分)
4、请结合数学推导进行说明:当小波母函数满足正规性条件时,小
波变换能够凸显被分析的细节信息。
(10分)
5、为什么说小波变换的信息是冗余的?为减少其信息冗余度,可采
用离散栅格的方法予以改善,但会带来信息的失真的弊端,请问该如何尽
量避免这种失真?(10分)
6、请问利用函数空间剖分理论说明从第j-1级到j级分辨率的信号
分解过程,并建立同小波变换之间的关系。
(10分)
7、Mallat算法在小波变换中的地位,如同FFT算法在傅里叶变换中
的地位,具有十分重要的应用。
请结合论文说明信号分解时这种算法的基
本过程,以及如何在论文中实施应用,并列举应用时需要注意的事项。
(10分)
8、基于美林变换的算法,基于CZT的算法和Mallat算法分别适合什
么场合下应用?请结合基于CZT的算法和Mallat算法,谈谈任意尺度密
度下快速小波变换的策略。
(10分)
9、列举双通道多采样滤波器的理想重建条件,请问为什么?(10分)
10、小波变换是信号消噪处理的有效手段,请画出基于小波多分辨率
的信号消噪技术方案框图,并列举两类用于该方案的多尺度信噪分离规则。
(10分)。
小波理论期末试题
我个人的理解:小波分析是傅立叶分析思想的发展与延拓,它自产生以来,就一直与傅立叶分析密切相关,他的存在性证明,小波基的构造以及结果分析都依赖于傅立叶分析,二者是相辅相成的,两者主要的不同点:1、傅立叶变换实质是把能量有限信号f(t)分解到以{exp(jωt)}为正交基的空间上去;小 波变换的实质是把能量有限信号f(t)分解到W-j 和V-j 所构成的空间上去的。
2、傅立叶变换用到的基本函数只有sin(ωt),cos(ωt),exp(jωt),具有唯一性;小波分 析用到的函数(即小波函数)则具有多样性,同一个工程问题用不同的小波函数进行分析有时结果相差甚远。
小波函数的选用是小波分析运用到实际中的一个难点问题(也是小波分析研究的一个热点问题),目前往往是通过经验或不断地试验(对结果进行对照分析)来选择小波函数。
3、在频域分析中,傅立叶变换具有良好的局部化能力,特别是对于那些频率成分比较简单的确定性信号,傅立叶变换很容易把信号表示成各频率成分的叠加和的形式,如sin(ω1t)+0.345sin(ω2t)+4.23cos(ω3t),但在时域中傅立叶变换没有局部化能力,即无法从f(t)的傅立叶变换中看出f(t)在任一时间点附近的性态。
事实上,F(w)dw 是关于频率为w 的谐波分量的振幅,在傅立叶展开式中,它是由f(t)的整体性态所决定的。
4、在小波分析中,尺度a 的值越大相当于傅立叶变换中w 的值越小。
5、在短时傅立叶变换中,变换系数S(ω,τ)主要依赖于信号在[τ-δ,τ+δ]片段中的情况,时间宽度是2δ(因为δ是由窗函数g(t)唯一确定的,所以2δ是一个定值)。
在小波变换中,变换系数Wf (a,b )主要依赖于信号在[b-aΔφ,b+aΔφ)片断中的情况,时间宽度是2aΔφ,该时间的宽度是随尺度a 变化而变化的,所以小波变换具有时间局部分析能力。
6、若用信号通过滤波器来解释,小波变换与短时傅立叶变换不容之处在于:对短时傅立叶变换来说,带通滤波器的带宽Δf 与中心频率f 无关;相反小波变换带通滤波器的带宽Δf 则正比于中心频率f 。
浙江大学小波变换及工程应用复习题
小波分析复习题1、简述傅里叶变换、短时傅里叶变换和以及小波变换之间的异同。
答:三者之间的异同见表2、小波变换堪称“数学显微镜”,为什么? 答:这主要因为小波变换具有以下特点:1)具有多分辨率,也叫多尺度的特点,可以由粗及精地逐步观察信号;2)也可以看成用基本频率特性为)(ωψ的带通滤波器在不同尺度a 下对信号作滤波;如果)(t ϕ的傅里叶变换是)(ωψ,则)(at ϕ的傅里叶变换为)(||aa ωψ,因此这组滤波器具有品质因数恒定,即相对带宽(带宽与中心频率之比)恒定的特点。
a 越大相当于频率越低。
3)适当的选择基本小波,使)(t ϕ在时域上位有限支撑,)(ωψ在频域上也比较集中,便可以使WT 在时、频两域都具有表征信号局部特征能力,因此有利于检测信号的瞬态或奇异点。
4)如)(t x 的CWT 是),(τa WT x ,则)(λtx 的CWT 是),(λτλλa WT x ;0>λ此定理表明:当信号)(t x 作某一倍数伸缩时,其小波变换将在τ,a 两轴上作同一比例的伸缩,但是不发生失真变形。
基于上述特性,小波变换被誉为分析信号的数学显微镜。
3、在小波变换的应用过程中,小波函数的选取是其应用成功与否的关键所在,请列举一些选择原则。
答:选择原则列举如下:(也即需满足的一些条件和特性) 1)容许条件当⎰∞+∞-∞<=ωωωψϕd c 2)(时才能由小波变换),(τa WT x 反演原函数)(t x ,ϕc 便是对)(t ϕ提出的容许条件,若∞→ϕc ,)(t x 不存在,由容许条件可以推论出:能用作基本小波)(t ϕ的函数至少必须满足0)(0==ωωψ,也就是说)(ωψ必须具有带通性质,且基本小波)(t ϕ必须是正负交替的振荡波形,使得其平均值为零。
2)能量的比例性小波变换幅度平方的积分和信号的能量成正比。
3)正规性条件为了在频域上有较好局域性,要求),(τa WT x 随a 的减小而迅速减小。
小波分析基础及应用期末习题
题1:设{},j V j Z ∈是依尺度函数()x φ的多分辨率分析,101()0x x φ≤<⎧=⎨⎩其它,请利用Haar 尺度关系式将信号()(4)2(41)2(42)(43)f x x x x x φφφφ=+-+---分解为10,0,w w v 分量。
题2:简述信号分解和重构的Mallat 算法(要求写出算法步骤并列出分解重构公式。
)题3:设{},,,φφψψ构成双正交多分辨分析:(1) 写出双正交条件;(2) 写出4个双尺度方程(尺度系数分别为,,,k k k k h h g g );(3) 写出尺度系数间的对应关系。
题4:设{},j V j Z ∈是依尺度函数()x φ的正交多分辨率分析,k p 是尺度系数,证明:(1)202k l k l k Z p p δ-∈=∑(2)2||2k k Zp ∈=∑(3)2k k Zp ∈=∑题5:令2C H =,),(),,(),1,0(21233212321-=--==e e e ,H v v v ∈=∀),(21 验证},,{321e e e 是一紧框架,指出其框架界并求出其对偶框架. 题6:列出二维可分离小波的4个变换基。
题3:0()k h k p =已知为低通分解滤波器,11()3.kk h k p -=为高通分解滤波器,写出个双倍平移正交关系等式题6:列出二维可分离小波的4个变换基。
题8:要得到“好”的小波,除要求滤波器0()h n 满足规范、双正交平移性、低通等最小条件外,还可以对0()h n 加消失矩条件来得到性能更优良的小波。
(1) 请写出小波函数()t ψ具有p 阶消失矩的定义条件:(2) 小波函数()t ψ具有p 阶消失矩,要求0()h n 满足等式:(3) 在长度为4的滤波器0()h n 设计中,将下面等式补充完整:222200000000(0)(1)(2)(3)1 (0)(2)(1)(3)0,1 2h h h h h h h h n ⎧+++=⎪⎪⎨+==⎪⎪⎩规范性低通双平移正交阶消失矩。
哈工大硕士课程小波题库
1.从傅立叶变换到小波变换的三个阶段:*)信号加窗;**)基加窗;***)小波基;2.Shannon小波的计算:*)Shannon采样定理;**)采样定理与尺度函数;***)写出Shannon小波的时域和频域表达式;****)写出两个不同的Shannon小波,并说明它们都是正交小波;3.描述MRA;4.分析和说明MRA构造正交小波的关键步骤;5.说明Haar小波是正交小波(直接或MRA);6.Meyer小波的构造方法;7.构造Daubechies系列小波中的一个或两个;8.给出Malvar小波的构造方法(共有3种);9.说明正交小波包的思想(空间再分割);10.正交小波包的定义;11.小波包的频域表达形式;12.小波包的两种正交性;13.小波空间的小波包再分割;14.小波空间的小波包再分割;15.小波算法:分解和合成;矩阵形式;16.小波包算法:分解和合成;矩阵形式;17.MATLAB中的Wavelet Toolbox的使用和理解;18.Gabor变换的时-频分析特性;19.连续小波的时-频分析特性;20.二进小波的时-频分析特性;21.正交小波的时-频分析特性;22.小波包的时-频分析特性;23.Malvar小波的时-频分析特性;24.二维小波分析和图像处理;25.小波采样定理;26.小波与快速算法;27.分数傅立叶变换:*)经典分数傅立叶变换(旋转);**)加权分数傅立叶变换(置换);28.小波变换的数值含义分析;29.小波变换的工程含义分析;30.小波变换与局部分析和奇性分析。
1.从傅立叶变换到小波变换的三个阶段*)信号加窗;**)基加窗;***)小波基;傅里叶变换的局限性和Gabor 变换的提出傅里叶变换是一个强有力的数学工具,它具有重要的物理意义,即信号()f x 的傅里叶变换()()⎰+∞∞-ω-=ωx x f F x d e i表示信号的频谱。
正是傅里叶变换的这种重要的物理意义,决定了傅里叶变换在信号分析和信号处理中的独特地位,特别是作为平稳信号分析的最重要的工具。
研究生《小波理论及应用》复习题.doc
2005年研究生《小波理论及应用》复习题1.利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。
Shannon采样定理适合于频谱有限的信号o2.信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。
并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。
只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。
3.信号在一点的李氏指数表征了该点的奇异性大小,。
越大,该点的光滑性越小,。
越小,该点的奇异性越大。
光滑点(可导)时,它的cr >1 ;如果是脉冲函数,白噪声时« <0 o4.做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别?5.最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基一一最优基。
6・双通道多采样率滤波器组的传递函数为:[人人 1 A ArU) = y.U)+y2U) = - H(Z)H(Z)+G G)G G) H(Z)H(Z)+G(—Z)G(J X(-J请根据此式给出理想重建条件:为了消除映象X(-z)引起的混迭://(-Z)//(Z)+G(-Z)G(Z)=0为了使y(z)成为x(z)的延迟,要求:H(z)育(z) + G(z)G(z)= CZ・k(C,K为任一常数)7・正交镜像对称滤波器/z(77)的)与H(e jw)以“彳为轴左右对称。
如果知道QMF的/2(/7),能否确定gS)=(T)"〃S), 細=-(-1)乜(司g(“)=(-i)w)8・试列出几种常用的连续的小波基函数Morlet 小波,Marr 小波,Difference of Gaussian (DOG),紧支集样条小波9・试简述海森堡测不准原理,说明应用意义?10. 从连续小波变换到离散小波变换到离散小波框架一双正交小波变换一正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。
小波分析的基本理论
东北大学研究生考试试卷考试科目:状态监测与故障诊断课程编号:阅卷人:考试日期:2013.12*名:***学号:*******注意事项1.考前研究生将上述项目填写清楚2.字迹要清楚,保持卷面清洁3.交卷时请将本试卷和题签一起上交东北大学研究生院小波分析的基本理论小波分析是当前应用数学和工程学科中一个迅速发展的新领域,是分析和处理非平稳信号的一种有力工具。
经过大量学者不断探索研究,它是以局部化函数所形成的小波基作为基底而展开的。
小波分析在保留傅里叶分析优点的基础上,具有许多特殊的性能和优点。
而小波分析则是一种更合理的时频表示和子带多分辨分析方法。
所以理论基础渐已扎实,理论体系逐步完善,在工程领域已得到广泛应用。
1 小波变换理论1.1 连续小波变换定义1.1 小波函数的定义:设ψ(x )为一平方可积函数,也即ψ(x )∈ L 2(R ),若其傅里叶变换ψ(ω)满足条件:C ψ=∫|ψ̂(ω)||ω|d ω<+∞+∞−∞1-1则称ψ(x )是一个基本小波或小波母函数(Mother Wavelet ),并称上式为小波函数的容许性条件。
由定义1.1可知,小波函数具有两个特点:(1)小:它们在时域都具有紧支集或近似紧支集。
由定义的条件知道任何满足可容许性条件的L 2(R )空间的函数都可以作为小波母函数(包括实数函数或复数函数、紧支集或非紧支集函数等)。
但是在一般的情况下,常常选取紧支集或近似紧支集的同时具有时域和频域的局部性实数或复数函数作为小波母函,让小波母函数在时域和频域都具有较好的局部特性,这样可以更好的完成实验。
(2)波动性:若设ψ̂(ω)在点ω=0连续,则由容许性条件得:∫ψ(x )dx =ψ̂(0)=0+∞−∞ 1-2也即直流分量为零,同时也就说明ψ(x )必是具有正负交替的波动性,这也是其 称为小波的原因。
定义1.2 连续小波基函数的定义:将小波母函数ψ(x )进行伸缩和平移,设其收缩因子(即尺度因子)为a,平移因子为b,使其平移伸缩后的函数为ψa,b (x ),则有:ψa ,b (x )=|a |−12ψ(x−b a),a >0,b ∈R 1-3称ψa,b (x )为依赖于参数a,b 的小波基函数。
小波考试复习
1.检测异常点程序清单:t=0 : pi/125:4*pis1=sin(t); %设置一正常信号s2=sin(10*t); %设置一故障信号,表现在频率的突变s3=sin(t); %设置一正常信号s=[s1,s2,s3];%整个信号subplot(421);plot(s);title('原始信号');ylabel('s');[c,l]=wavedec(s,6,'db3');%采用db3小波并对信号进行六层分解apcmp=wrcoef('a',c,l,'db3',6);subplot(422);plot(apcmp);ylabel('ca6');for i =1 : 6decmp = wrcoef('d',c,l,'db3',7-i);subplot(4,2,i+2);plot(decmp);ylabel(['d',num2str(7-i)]);end检测第二类型的间断点程序清单:t=1:0.01:2;s1=exp(t);s2=exp(4*t);s=[s1,s2];%设置由不同指数函数组成的信号subplot(6,1,1);plot(s);title('原始信号');ds=diff(s); % 计算信号的一阶微分%显示信号的一阶微分结果subplot(6,1,2);plot(ds);ylabel('s 微分');[c,l]=wavedec(s,2,'db1');%采用db1小波分解信号到第 2 层%对分解结构[c,l]的第 2 层低频部分进行重构a2=wrcoef('a',c,l,'db1',2);%显示重构结果subplot(6,1,3);plot(a2);ylabel('a2');%对分解结构[c,l]中的各层高频部分进行重构并显示结果d2=wrcoef('d',c,l,'db1',2);subplot(614);plot(d2);ylabel('d2');d1=wrcoef('d',c,l,'db1',1);subplot(615);plot(d1);ylabel('d1');2.图像重构对图像单尺度分解重构程序代码如下:load xxxx;sX = size(X);%使用小波函数db4进行信号的单层分解[cA1,cH1,cV1,cD1] = dwt2(X,'db4');图6.8 单尺度二维小波重构 %进行小波函数的重构A0 = idwt2(cA1,cH1,cV1,cD1,'db4',sX);%检查重构误差ans = max(max(abs(X-A0)))nbc = size(map,1);colormap(pink(nbc));subplot(121);image(wcodemat(X,nbc));title('原始图像');subplot(122);image(wcodemat(A0,nbc));title('重构图像');ii.对图像的多尺度小波分解重构低频或高频信号load xxxxx;%对信号用小波函数sym5进行二尺度分解[c,s] = wavedec2(X,2,'sym5');%对小波分解结构[c,s]的低频系数进行尺度1和尺度2上的重构a1 = wrcoef2('a',c,s,'sym5',1);a2 = wrcoef2('a',c,s,'sym5',2);%对分解结构[c,s]的高频系数进行'h'、'v'、'd'三个方向上尺度2上的重构hd2 = wrcoef2('h',c,s,'sym5',2);vd2 = wrcoef2('v',c,s,'sym5',2);dd2 = wrcoef2('d',c,s,'sym5',2);%所有的图像都有相同的大小sX = size(X)sa1 = size(a1)shd2 = size(hd2)nbc = size(map,1);colormap(pink(nbc));subplot(3,2,1);image(wcodemat(X,nbc));title('原始图像');subplot(3,2,2);image(wcodemat(a1,nbc));title('尺度1的低频图像');subplot(3,2,3);image(wcodemat(a2,nbc));title('尺度2的低频图像');subplot(3,2,4);image(wcodemat(hd2,nbc));title('尺度2的水平高频图像');subplot(3,2,5);image(wcodemat(vd2,nbc));title('尺度2的垂直高频图像');subplot(3,2,6);image(wcodemat(dd2,nbc));title('尺度2的斜线高频图像'); iii.通过小波系数进行小波重构load woman;%使用小波函数db4对信号进行二层分解[c,s] = wavedec2(X,2,'db4');siz = s(size(s,1),:);%提取尺度1的低频系数ca1 = appcoef2(c,s,'db4',1);%对尺度1的低频部分进行重构a1 = upcoef2('a',ca1,'db4',1,siz);%提取尺度1的水平方向高频系数chd1 = detcoef2('h',c,s,1);%对尺度1的水平方向高频部分进行重构hd1 = upcoef2('h',chd1,'db4',1,siz);%提取尺度1的垂直方向高频系数cvd1 = detcoef2('v',c,s,1);%对尺度1的斜线方向高频部分进行重构dd1 = upcoef2('d',cdd1,'db4',1,siz);nbc = size(map,1);colormap(pink(nbc));subplot(321);image(wcodemat(X,nbc)); title('原始图像'); subplot(323);image(wcodemat(a1,nbc));title('尺度1的低频系数重构图像');subplot(324);image(wcodemat(hd1,nbc));title('尺度1的水平高频系数重构图像'); subplot(325);image(wcodemat(vd1,nbc));title('尺度1的垂直高频系数重构图像'); subplot(326);image(wcodemat(dd1,nbc));title('尺度1的斜线高频系数重构图像');3去噪%加载原始信号load woman;%产生含噪图像init = 2055615866;randn('seed',init);[c,s] = wavedec2(x,3,'sym4');%设置尺度向量n = [1,2,3];%设置阈值向量p = [150,120,60];%对高频系数进行阈值处理nc = wthcoef2('d',c,s,n,p,'s');%对新的分解结构进行重构rx = waverec2(nc,s,'sym4');nbc = size(map,1);colormap(pink(nbc));subplot(2,2,1);image(wcodemat(X,nbc));title('原始信号');subplot(2,2,2);image(wcodemat(x,nbc))title('含噪信号');subplot(2,2,3)image(wcodemat(rx,nbc))title('去噪后的信号');去噪后的讨论:目前,小波去噪的方法大概可以分为三大类:第一类方法(小波变换模极大值去噪法)是利用小波变换模极大值原理去噪,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号;第二类方法(小波系数相关性去噪法)是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性,根据相关性的大小区别小波系数的类型,从而进行取舍,然后直接重构信号;第三类方法(小波变换阈值去造法)是小波阈值去噪方法,该方法认为信号对应的小波系数包含有信号的重要信息,其幅值较大,但数目较少,而噪声对应的小波系数是一致分布的,个数较多,但幅值小。
小波分析考试题(附答案)
定义:空间 L2 ( R) 中的多分辨分析是指 L2 ( R) 满足如下性质的一个空间序列Z ∈j j }{V :
(1)单调性: ⊂⊂⊂⊂-101V V V ;(2)逼近性:)(},0{2R L V V j Z
j j Z
j ==∈∈ ;(3)伸缩性:1)2()(+∈⇔∈j j V t f V t f ;(4)平移不变性:j j V t f V t f ∈-⇒∈)1()(,
Z k ∈∀;(5)存在函数0)(V t g ∈,使得Z k k)}-{g(t ∈构成0V 的Riesz 基。
满足上述个条件
的函数空间集合成为一个多分辨分析, 如果)(t g 生成一个多 分辨分析,那么称)(t g 为一个尺度函数。
关于多分辨分析的理解,我们在这里以一个三层的分解进行说明,其小波分解树如图所示。
从图可以明显看出,多分辨分析只是对低频部分进行进一步分解,而高 频部分则不予以考虑。
分解的关系为 112}0{)(+-+++++=j j j V V V R L 。
另外强调一点这 里只是以一个层分解进行说明,如果要进行进一步的分解,则可以把低频部分分解成低频部分和高频部分,以下再分解以此类推。
在理解多分解分析时,我们必须牢牢把握一点:其分解的最终目的是力求构造一个在频率上高度逼近)(2R L 空间的正交小波基,这些频率分辨率不 同的正交小波基相当于带宽各异的带通滤波器。
从上面的多分辨分析树型结 构图可以看出,多分辨分析只对低频空间进行进一步的分解,使频率的分辨率变得越来越高。
Mallat 算法:通过下面公式(1)和(2),可以很快计算出尺度系数和小波系数{cj,k,dj,k},。
《水文小波分析原理及其应用》带答案
《水文小波分析原理及其应用》考试试题课程编号:7.637 学分:3.0 任课教师:刘东考试形式:开卷(1)小波分析:wavelet analysis ;(2)小波变换:wavelet transformation ;(3)小波函数:wavelet function ;(4)小波消噪:Wavelet denoising;(5)小波方差:Wavelet varianee ;(6)连续小波变换:Continuous wavelet transform(7)离散小波变换:Discrete wavelet tran sform ;(8)小波人工神经网络模型:Wavelet artificial neural network model;(9)小波随机耦合模型:Wavelet stochastic coupling model(10)快速小波变换算法:Fast wavelet tra nsform algorithm。
答:水文学是研究地球上水分分布、循环、运动等变化规律及水-环境相互作用的一门科学,属于地球科学的一个分支。
水文时间序列在各种因素影响下具有确定性成分、随机成分)。
水文学的一个重要研究途径就是利用现有分析技术对水文时间序列进行描述,探讨水文系统的演变规律。
小波变换克服了Fourier变换的不足,能够反映出水文时间序列在时频域上的总体特征以及时频局部化信息,被誉为数学显微镜”。
利用小波分析的多分辨率功能,可以充分挖掘水文时间序列所包含的信息,展现水文时间序列的精细结构,从而使我们更好地掌握水文时间序列的多时间尺度变化特征及突变特征。
可以说,在水文学领域引入小波分析,为揭示水文时间序列变化规律提供了一条新的研究途径,极大地丰富了水文学的内容。
由此可见,小波分析技术受到了国内外多数学者的青睐。
我们作为农业水土工程专业的研究生,如果能够成功地将小波分析技术与我们的研究内容相结合,必然会使我们的毕业论文增色不少,而且也会发表一批高水平的学术论文。
MATLAB小波分析复习题(第一章)
第一章FOURIER 变换与MATLAB 实现1. 设()f x 为定义在[,](0)T T T ->上的周期函数,则()f x 的Fourier 级数为01()cos sin ,2n n n a f x a nx b nx ∞==++∑ 其中,n n a b ==。
2. 设11,[0,)2()11,[,1]2x f x x ⎧∈⎪⎪=⎨⎪-∈⎪⎩,求()f x 的Fourier 级数。
3. 写出()f x 的傅里叶变换()F w 及逆变换()F w 的定义。
4. 写出2||1()()2x f x e heaviside x -=的傅里叶变换与逆变换2()1w F w w=+逆变换()f x 的MATLAB 程序实现清单。
5. 写出时限信号,带限信号,带宽,采样频率,奈圭斯特采样频率的定义。
6. 写出奈圭斯特采样定理。
7. ()f t 的频谱密度函数是什么?()f t 的振幅频谱是什么?()f t 的相位频谱是什么?8. 用MA TLAB 绘出2||1()()2x f x e heaviside x -=的振幅频谱图(幅频谱图)与相位频谱图。
9. 写出周期序列()x n 的离散Fourier 变换()c k 及其()c k 的离散Fourier 逆变换的定义。
10. 利用定义手工计算(4)(1,2,3,4)x =的离散Fourier 变换()X k 。
再使用MA TLAB 命令DFS 与IDFS 进行验证。
11. 已知信号()0.5sin()sin(/2)f t t t =+,今采样间隔为0.01t ∆=从而得到一个离散 信号()(),099x n f n t n =∆≤≤。
对()x n 使用离散Fourier 变换的MATLAB 命令DFS 得到()x n 的幅频谱图与相位频谱图。
12.证明并验证Fourier 变换的线性性:[()()][()][()]F x n y n F x n F y n αβαβ+=+。
《小波分析与应用》试题
《小波分析与应用》试题学院:信息科学与工程学姓名:钱宏学号:20064249 院1、[10’]小波变化俗称“数字显微镜”,试从尺度因子的变化对时频窗的中心和半径的影响,阐述其时频局部化功能。
尺度因子变大时,相应小波分量表现了某个子频带信号,其频率中心变高且频带变宽,时频窗呈“廋窄”的变化趋势,即时窗变窄,频窗变宽,正好适应于更高频信号时频局部化的需要。
相反,尺度因子变小时,同样相应小波分量表现了某个子频带信号,其频率中心变低且频带变窄,时频窗呈“扁平”的变化趋势,即时窗变宽,频窗变窄,正好适应于低频信号时频局部化的需要。
2、[10’]简述HHT变换的原理和简要实现过程。
HHT 方法包含两个主要步骤:1) 对原始数据进行预处理,即先通过经验模态分解方法, 把数据分解为满足希尔伯特变换要求的n 阶本征模式函数(IMF)和残余函数r n(t)之和;2)对分解出的每一阶IMF 做希尔伯特变换, 得出各自的瞬时频率,做出时频图。
其中经验模态分解(EMD)方法能把非平稳、非线性信号分解成一组稳态和线性的序列集, 即本征模式函数。
且每一阶的IMF 应满足两个条件: 1)数据的极值点和过零点交替出现, 且数目相等或最多相差一个任何点上;2)在任何点上,有局部最大值和局部最小值定义的包络的均值必须是零。
下面以时间序列X(t)介绍经验模态分解的一般过程。
首先, 找出X(t)所有极大和极小值点, 并用三次样条函数对极大值点和极小值点分别进行拟合得到X (t) 的上下包络线;然后将原始数据序列减去上下包络线的均值m1(t) , 就可以得到一个去掉低频的新数据序列:h1(t)=X(t)- m1(t),通常h1(t)不满足IMF 的条件, 还需对h1(t)重复上述处理过程。
经过k次筛分后将产生第1个IMF分量C1(t), 即h1k(t)=h1(k- 1)(t)- m1k(t),C1(t)=h1k(t)。
第1个IMF分量代表原始数据序列中最高频的成分,将原始数据序列X(t)减去第1个分量C1(t)。
小波分析考试题及答案
一、叙述小波分析理论发展的历史和研究现状答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。
这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。
这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。
在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。
如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。
这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。
为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。
其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。
短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。
但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。
小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。
小波分析硕士试题及答案
01()2()(2)()2()(2)n Z n Zt g n t n t g n t n ϕϕψϕ∈∈⎨=-⎪⎪=-∑∑小波函数:()(2)nt h t n φφ=-∑ 5、Mallat 算法答: 1989年,Mallat 在小波变换多分辨率分析理论与图像处理的应用研究中受到塔式算法的启发,提出了信号的塔式多分辨率分析与重构的快速算法称为马拉特(Mallat )算法。
Mallat分解算法:,1,2(1)j k n j n k n Zc h c ++∈=∑,,1,2(2)j k n j n k n Z d g c ++∈=∑ Mallat 重构算法:1,2,2,(3)j n n k j k n k j k n Z n Zc h c gd +--∈∈=+∑ 6、双尺度方程答:双尺度方程,本质就是将j V 的基函数表示成1j V +的基函数的线性和。
因为0101(),()t V V t W V ϕψ∈⊂∈⊂,所以()t ϕ和()t ψ都可以用1V 空间的一个基(2)n Z t n φ∈-线性表示: ()(2)()(2)n n t h t n t g t n φφϕφ⎧=-⎪⎨=-⎪⎩∑∑,即为双尺度方程。
一、简述小波的定义及其主要性质。
(10分)答:小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。
所谓“小”是指它 具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。
与傅里叶 变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运 算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了傅里叶变换的困难问题,成为继傅里叶变换以来在科学方法上的重大突破。
小波性能除了正交性以外还有光滑性、紧支性、衰减性、对称性以及消失矩和时频窗面积。
二、阐述Fourier 变换和小波变换的各自的特点,并比较它们之间的优缺点。
小波基本理论及应用
c
刻画函数的局部性质。
2、小波理论的基础知识
小波分析则克服了短时傅立叶变换在单分辨率上的缺 陷,具有多分辨率分析的特点,在时域和频域都有表征信 号局部信息的能力,时间窗和频率窗都可以根据信号的具 体形态动态调整,在一般情况下,在低频部分(信号较平 稳)可以采用较低的时间分辨率,而提高频率的分辨率, 在高频情况下(频率变化不大)可以用较低的频率分辨率 来换取精确的时间定位。因为这些特定,小波分析可以探 测正常信号中的瞬态,并展示其频率成分,被称为数学显 微镜,广泛应用于各个时频分析领域。
3、基于matlab的小波应用
在原图基础上进行加密
3、基于matlab的小波应用
wavemenu
3、基于matlab的小波应用
3、基于matlab的小波应用
4、论文分析
4、论文分析
参考文献
[1] 小波十讲(美)多布 著,李建平,杨万年 译 [2] 崔锦泰:《小波分析导论》 西安交通大学出版社;
2、小波理论的基础知识
小波包分析
短时傅立叶变换对信号的频带划分是线性等间隔的。 多分辨分析可以对信号进行有效的时频分解,但由于其 尺度是按二进制变化的,所以在高频频段其频率分辨率 较差,而在低频频段其时间分辨率较差,即对信号的频 带进行指数等间隔划分(具有等Q结构)。小波包分析能 够为信号提供一种更精细的分析方法,它将频带进行多 层次划分,对多分辨率分析没有细分的高频部分进一步 分解,并能够根据被分析信号的特征,自适应地选择相 应频带,使之与信号频谱相匹配,从而提高了时-频分辨 率,因此小波包具有更广泛的应用价值。
平移
3、基于matlab的小波应用
多层压缩
3、基于matlab的小波应用
利用matlab 自带的leleccum信号函数,采用db1小波 对此信号进行一维小波分解,然后对近似分量和细节 分量进行重构。
小波应用与算法期末试题湖大研究生
1.什么是一维小波变换?相对于传统信号处理方法它有什么特点?为什么要对信号或图像作多尺度分析?小波变换是信号处理、图像压缩和模式识别等诸多领域中一个非常有效的数学分析工具,它是一种信号的时间—尺度(时间—频率)分析方法,它具有多分辨率分析的特点,而且与傅里叶变换不同,它具有时频两域都具有表征信号局部特征的能力。
在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬变反常信号。
小波应用于信号去噪已取得了极大的成功。
但是在小波阈值去噪中信号边缘处出现的振荡现象一直困扰着小波去噪的应用。
小波阈值去噪方法在边缘处产生振荡的原因是由于阈值去噪所采用的小波变换算法没有平移不变性,并且去噪结果依赖于小波基函数、尺度基函数与信号的空间结构的匹配程度,多尺度边缘检测方法能减轻阈值对边缘检测的负面影响,用强度阈值来提取重要边缘并剔出噪声。
2.编程实现信号的多尺度分解与重构的快速算法(不使用函数dwt和idwt)。
一维小波分解的程序:function [cA,cD] = mydwt(x,lpd,hpd,dim);% 函数[cA,cD]=MYDWT(X,LPD,HPD,DIM) 对输入序列x进行一维离散小波分解,输出分解序列[cA,cD]% 输入参数:x——输入序列;% lpd——低通滤波器;% hpd——高通滤波器;% dim——小波分解级数。
% 输出参数:cA——平均部分的小波分解系数;% cD——细节部分的小波分解系数。
cA=x; % 初始化cA,cDcD=[];for i=1:dimcvl=conv(cA,lpd); % 低通滤波,为了提高运行速度,调用MATLAB提供的卷积函数conv()dnl=downspl(cvl); % 通过下抽样求出平均部分的分解系数cvh=conv(cA,hpd); % 高通滤波dnh=downspl(cvh); % 通过下抽样求出本层分解后的细节部分系数cA=dnl; % 下抽样后的平均部分系数进入下一层分解cD=[cD,dnh]; % 将本层分解所得的细节部分系数存入序列cDendfunction y=downspl(x);% 函数Y=DOWMSPL(X) 对输入序列进行下抽样,输出序列Y。
小波习题解答ab
June 16, 2011
一、对双尺度方程
ϕ(t) =
n
hn ϕ(2t − n) 1 2
两边做Fourier变换
ω ω ϕ ˆ(ω ) = H ( )ϕ ˆ( ) 2 2
H (ω ) =
hn e−inω
n
继续分解,有极限式
∞ ϕ ˆ(ω ) = Π+ j =1 H (
∴ 取ω=0得
ω )ϕ ˆ(0) 2j ϕ ˆ(0) = 0
n m n n (−1) hn
=0 h2n+1 = 1
h2 n =
hm eimω e−ikω
hn hn−k
K n
|H (ω + π )|2 = =
1 4 1 4
hn (−1)n e−inω
n m
hm (−1)m eimω e−ikω
(−1)k
K n
hn hn−k
1
两边相加,注意对于奇数的 k ,对应项相消 1 2 上式为一个Fourier 级数 ⇒ 也可这样做: hn hn−2k
k n
e−i2kω ≡ 1
n hn hn−2k
= 2 δ 0k
ϕ(t − k ), ϕ(t − l) = δkl hn ϕ(2t − 2k − n),
n n
hn ϕ(2t − 2l − n) hp−2l ϕ(2t − p)
p
= δkl = δkl
hs−2k ϕ(2t − s),
s
1 2 即
hs−2k hp−2l = δkl
1 7 f 的信号向量是 f (t) 在 t = 0 8 , 8 , · · · , 8 的抽样 (2)VM 有8个系数 db4 滤波器有8个非0系数,推算得 VM −1 和 WM −1 都有7个非0系数. 周期性: C M 以 2M 为周期 ⇔ Ck = Ck+2M ∀k ∈ Z M −1 Ck = n M h(n − 2k )Cn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2005年研究生《小波理论及应用》复习题
1. 利用正交小波基建立的采样定理适合于:紧支集且有奇性(函数本身或其导数不连续)的函数(频谱无限的函数)。
Shannon 采样定理适合于频谱有限的信号。
2. 信号的突变点在小波变换域常对于小波变换系数模极值点或过零点。
并且信号奇异性大小同小波变换的极值随尺度的变化规律相对立。
只有在适当尺度下各突变点引起的小波变化才能避免交迭干扰,可以用于信号的去噪、奇异性检测、图象也缘提取、数据压缩等。
3. 信号在一点的李氏指数表征了该点的奇异性大小,α越大,该点的光滑性越小,α越小,该点的奇异性越大。
光滑点(可导)时,它的1≥α;如果是脉冲函数,1-=α;白噪声时0≤α。
4. 做出三级尺度下正交小波包变换的二进数图,小波包分解过程?说明小波基与小波包基的区别?
5. 最优小波包基的概念:给定一个序列的代价函数,然后在小波包基中寻找使代价函数最小的基――最优基。
6.
双通道多采样率滤波器组的传递函数为:
()()()()()()()()()()()()()z X z G z G z H z H z X z G z G z H z H z Y z Y z Y -⎥⎦⎤⎢⎣⎡-++⎥⎦⎤⎢⎣⎡+=+=∧∧∧∧212121请根据此式给出理想重建条件:
为了消除映象()z X -引起的混迭:()()()()0=-+-∧
∧z G z G z H z H
为了使()z Y 成为()z X 的延迟,要求:()()()()k CZ z G z G z H z H -∧∧=+ (C,K 为任一常数)
7. 正交镜像对称滤波器()()n h n g ,的()jw e G 与()jw e H 以2π=w 为轴左右对称。
如果知道QMF 的()n h ,能否确定()()()n h n g n g ∧
∧,,? ()()()n h n g n 1-= ,()()()n g n h n 1--=∧
,
()()()n h n g n 1-=∧
8. 试列出几种常用的连续的小波基函数
Morlet 小波,Marr 小波,Difference of Gaussian (DOG ),紧支集样条小波
9. 试简述海森堡测不准原理,说明应用意义?
10. 从连续小波变换到离散小波变换到离散小波框架-双正交小波变换-正交变换、紧支集正交小波变换,其最大的特点是追求变换系数的信息冗余小,含有的信息量越集中。
11. 解释紧支集、双正交、正交小波、紧支集正交小波、光滑性、奇异性。
12. 已知共轭正交滤波器组(CQF )()n h 请列出()()()n g n h n g ∧
∧,,。
()()()
()()()()()()⎪⎪⎩⎪⎪⎨⎧-=--=-=---=∧∧n h n N g n g n N h n h n N h n g n n 11
13. 共轭正交滤波器()()n g n h ,的()jw e G 与()jw e H 的关系与QMF 情况
一样,但相频特性多了一个共轭关系。
14.正交滤波器()n h 的设计?由CQF 的基本方程()()C z P z P =-+其中()()()z H z H z P -=,即找一个()()()()()111--==++=∏Z H z H Z Z Z Z C z P m m N
m
在每对零点中任取一个组成()z H ,其余值属于()1-Z H ,因而()()
m N i Z Z C z H +∏=-=11 15.请解释小波变换的“变焦距”的特性。
16.写出连续小波变换的定义公式,说明各参数的含义。
写出连续小波反变换的公式。
17.写出小波允许条件,说明物理意义。
18.小波变换与加窗傅立叶变换的本质区别?
19.小波分析中的框架理论及小波框架的意义?将所有离散的小波变换统一起来。
20.在小波理论应用中,如果以提取波形特征信息为出发点,应该选用具有光滑、对称、紧支性好的小波,如果以压缩数据为目的,应该选具有正交、紧支撑性的小波。
21.请作图说明图象压缩中的两维小波变换过程。