奥数解题方法:关于枚举法
小学四年级奥数枚举法解题
四年级奥数第五讲枚举法解应用题【知识要点和基本方法】一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的,这种分析问题、解决问题的方法,称之为枚举法,我们也可以通俗地称枚举法为举例子。
枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。
【例题精选】例1.用数字1,2,3可以组成多少个不同的数字?分别是哪几个数?分析:根据百位上数字的不同,我们可以把它们分为三类:第1类:百位上的数字为1,有123,132;第2类:百位上的数字为2,有213,231;第3类:百位上的数字为3,有312,321。
所以可以组成123,132,213,231,312,321,共6个三位数。
课堂练习题:用0、6、7、8、9这五个数字组成各个数位上数字不相同的两位数共有多少个?例2.小明有面值为5角、8角的邮票各两枚。
他用这些邮票能付多少种不同的邮资(寄信时,所需邮票的钱数)分析:我们可根据小明寄信时所用邮票枚数的多少,把它们分成四类——一枚、二枚、三枚、四枚。
一枚:5角二枚:10角,13角三枚:18角,21角四枚:26角课堂练习题:10元钱买6角邮票和8角邮票共14张,问两种邮票各多少张?例3.用一台天平和重1克、3克、9克的砝码各一个(不再用其他物体当砝码),当砝码只能放在一个盘内时,可称出不同的重量有多少种?分析:共有三个重量各不相同的砝码,可以取出其中的一个、两个或三个来称不同的重量,一一列举这三种情况。
1个:1克,3克,9克2个:4克,10克,12克3个:13克同学们可以思考一下:如果砝码可以放天平的两边,又能称出多少不同的重量?例4.课外小组组织30人做游戏,按1-30号排队报数。
第一次报数后,单号全部站出来;以后每次余下的人中第一个人开始站出来,隔一人站出来一人。
奥数解题方法大全
奥数解题方法总结
1、形象化画图法:解奥数题时,如果可以科学合理的、科学合理的、巧妙地依靠点、线、面、图、表将小学奥数难题形象化形象的展示出来,将抽象的数量关系具象化,可让学生们非常容易弄清数量关系,沟通交流“”与“”的联系,把握住问题的本质,快速答题
2、倒推法:从题目上述的最后结果考虑,运用标准一步一步向前反推,直至题目中难题及时解决。
3、枚举法:奥数题中常常出现一些数量关系十分特殊题目,用普通的办法难以列式解释,有时候压根列出不来对应的式子来。
人们用枚举法,依据题目的需求,一一列举压根符合要求的数据信息,随后从这当中筛出符合要求的回答。
4、正难那样反:有一些数学题目假如你从标准正脸考虑考虑到有困难,那么你可以更改思考的方位,从结论或问题的背面考虑来考虑事情,使难题及时解决。
5、恰当转化:在解奥数题时,经常要提醒自己,碰到的新问题能不能转化成旧解决问题,化新为旧,通过表面,把握住难题的实质,把问题转化成自身熟悉的难题去解释。
转化的种类有条件转化、难题转化、关联转化、图形转化等。
整体掌握:有一些奥数题,从细节上考虑到,很复杂,也没有必要,如果可以从整体上掌握,宏观上考虑到,根据研究问题的整体方式、整体结构、一部分与整体的相互关系,“只看见山林,看不到花草树木”,来求取问题的解决。
小学六年级奥数 计数方法之枚举法
【例1】(★★)计数方法之枚举法两个海盗分20枚金币。
请问:大海传功(1)如果每个海盗最少分到5枚金币,一共有多少种不同的分法?(2)如果每个海盗最多分到16枚金币,一共有多少种不同的分法?枚举法(1)分类枚举:有序枚举,不重不漏(2)树形图(3)标数法【例2】(★★★)【例2】(★★★)(1)刚开学时,甲、乙、丙、丁、戊五位同学的座位表如图所示。
一段时间后,他们觉得每天做同样的位置太无聊,每人都要换到与原来座位不相邻的位置上,那么有多少种换座位的方法?(2)甲、乙、丙、丁、戊、己六位同学的座位如图所示,如果每人都要换座位,而且每人都要换到与原来座位不相邻的位置上,那么有多少种换座位的方法?1【例3】(★★★)【例4】(★★★)一个三位数,若它的中间数字恰好是首尾数字的平均值,则称它是“好数”,则好数总共有多少个?称n个相同的数a相乘叫做a的n次方,记作a n,并规定a0=1。
如果某个自然数可以写成2的两个不同次方(包括零次方)的和,我们就称这样的数为“双子数”,如9=2+2,它们都是双子数。
那么小于1040的双子数有_____个。
【例5】(★★★★)【例6】(★★★★★)某工厂生产一批玩具,玩具为一条圆环上均匀安装着13个小球,其中3个是红球,10个是白球.如果2个圆环通过翻转,旋转后可以叠放在一起,使得红球对红球、白球对白球,这样的两个圆环就认为是相同的。
那么一共可以生产多少种不同的圆环?从1至9这9个数字中选出6个不同的数填在图中的6个圆圈内,使得任意相邻两个圆圈内的数字之和都是质数。
请问:共能找出多少种不同的选法?(所填的6个数字相同,只是排列次序不同,都算同一种选法。
)2【例7】(★★★)小新和关关两人进行围棋赛,谁先胜三局谁就会取得比赛的胜利。
如果最后小新获胜了,那么比赛的进程有多少种可能?大海点睛一、本讲重点知识回顾枚举法(1)分类枚举:有序枚举,不重不漏(2)树形图二、本讲经典例题例3,例4,例5,例63。
小学奥数知识点趣味学习--枚举法
小学奥数知识点趣味学习——枚举法运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。
【典型例题】【例1】:从小华家到学校有3条路可以走,从学校到岐江公园有4条路可以走,从小华家到岐江公园,有几种不同的走法?【试一试】1. 从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路可以直达,从甲地到丙地有多少种不同的走法?2. 新华书店有3种不同的英语书,4种不同的数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【例2】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?【试一试】1.把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2.把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【例3】从1~6这六个数字中,每次取2个数字,这两个数字的和都必须大于7,能有多少种取法?【试一试】1.从1~9这九个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?2.从1~19这十九个数字中,每次取2个数字,这两个数字的和都必须大于20,能有多少种取法?【例4】一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?【试一试】1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?【例5】有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【试一试】1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?2.有8位小朋友,要互通一次电话,他们一共打了多少次电话?。
六年级奥数专题:枚举法
六年级奥数专题:枚举法 我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果。
但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。
但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。
所谓枚举法,就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而解决问题的方法。
例1 小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
若两枚骰子的点数和为7,则小明胜;若点数和为8,则小红胜。
试判断他们两人谁获胜的可能性大。
分析与解:将两枚骰子的点数和分别为7与8的各种情况都列举出来,就可得到问题的结论。
用a+b表示第一枚骰子的点数为a,第二枚骰子的点数是b的情况。
出现7的情况共有6种,它们是: 1+6,2+5,3+4,4+3,5+2,6+1。
出现8的情况共有5种,它们是: 2+6,3+5,4+4,5+3,6+2。
所以,小明获胜的可能性大。
注意,本题中若认为出现7的情况有1+6,2+5,3+4三种,出现8的情况有2+6,3+5,4+4也是三种,从而得“两人获胜的可能性一样大”,那就错了。
例2 数一数,右图中有多少个三角形。
分析与解:图中的三角形形状、大小都不相同,位置也很凌乱,不好数清楚。
为了避免数数过程中的遗漏或重复,我们将图形的各部分编上号(见右图),然后按照图形的组成规律,把三角形分成单个的、由两部分组成的、由3部分组成的……再一类一类地列举出来。
单个的三角形有6个:1 ,2,3,5,6,8。
由两部分组成的三角形有4个: (1,2),(2,6),(4,6),(5,7)。
由三部分组成的三角形有1个:(5,7,8)。
由四部分组成的三角形有2个: (1,3,4,5),(2,6,7,8)。
由八部分组成的三角形有1个: (1,2,3,4,5,6,7,8)。
总共有6+4+1+2+1=14(个)。
小学三年级奥数--第七讲--枚举法(一)(学生版)
第七讲枚举法(一)学习内容:用枚举法一一列举可能的情况学习目标:1、做到不重补漏,把复杂的问题简单化2、按照一定的规律,特点去枚举3、从思想上认识到枚举的重要性课题引入枚举法是一种常见的分析问题、解决问题的方法。
一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。
这种分析问题、解决问题的方法,称之为枚举法。
枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。
运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来.知识点拨在数学问题中,有些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难找到“正统”的方式解答,让人感到无从下手。
对此,我们可以先初步估计其数目的大小。
若数目不是太大,就按照一定的顺序,一一列举问题的可能情况;若数目过大,并且问题繁杂,我们就抓住对象的特征,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。
这就是枚举法,也叫做列举法或穷举法。
例题精讲例1、用数字1、3、4可以组成多少个不同的三位数?例2、用0,2,5,9可以组成多少个能被5整除的三位数?例3、从1数到100,一共数了多少个3?例4、有8张卡片,上面分别写着自然数1至8。
从中取出3张,要使这3张卡片上的数字之和为9。
问有多少种不同的取法?例5、现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?1、用数字0,2,5可以组成多少个不同的三位数?2、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?3、从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?4、妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?1、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?2、用数字3,8,9可以组成多少个不同的三位数 ?3、从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?4、用3张10元和2张50元一共可以组成多少面币值(组成的钱数)?家长签字:年月日。
小学奥数枚举法解题方法的介绍
小学奥数枚举法解题方法的介绍
有关小学奥数枚举法解题方法的介绍
甲、乙、丙、丁与小强五位同学一起比赛象棋,每两人都要比赛一盘。
到现在为止,甲赛了4盘,乙赛了3盘,丙赛了2盘,丁赛了1盘。
问小强赛了几盘?
解:作表3-2。
甲已经赛了4盘,就是甲与乙、丙、丁、小强各赛了一盘,在甲与乙、丙、丁、小强相交的那些格里都打上√;乙赛的盘数,就是除了与甲赛的那一盘,又与丙和小强各赛一盘,在乙与丙、小强相交的那两个格中都打上√;丙赛了两盘,就是丙与甲、乙各赛一盘,打上√;丁与甲赛的那一盘也打上√。
丁未与乙、丙、小强赛过,在丁与乙、丙与小强相交的格中都画上圈。
根据条件分析,填完表格以后,可明显地看出,小强与甲、乙各赛一盘,未与丙、丁赛,共赛2盘。
答:小强赛了2盘。
小学奥数知识点趣味学习——枚举法(1)
小学奥数知识点趣味学习——枚举法(1)例1:如下图所示,已知长方形的周长为20厘米,长和宽都是整厘米数,这个长方形有多少种可能形状?哪种形状的长方形面积最大?(边长为1厘米的正方形的面积叫做1平方厘米)。
解:由于长方形的周长是20厘米,可知它的长与宽之和为10厘米。
下面列举出符合这个条件的各种长方形。
(注意,正方形可以说成是长与宽相等的长方形)。
下面把5种长方形按实际尺寸大小一一画出来,见下面图(1)~(5)。
例2:如右图所示,ABCD是一个正方形,边长为2厘米,沿着图中线段从A到C的最短长度为4厘米。
问这样的最短路线共有多少条?请一一画出来。
解:将各种路线一一列出,可知共6条,见下图。
注意,如果题中不要求将路径一一画出,可采用如右图所示方法较为便捷。
图中交点处的数字表示到达该点的路线条数,如O点处的数字2,表示由A到O有2条不同的路径,见上图中的(1)和(2);又H点处的数字3的意义也如此,见上图中的(1)、(2)、(3)可知有3条路径可由A到H。
仔细观察,可发现各交点处的数字之间的关系,如O点的2等于F点和E点的数字相加之和,即1+1=2,又如,C点的6等于G点和H点的数字相加之和,即3+3=6。
例3:在10和31之间有多少个数是3的倍数?解:由尝试法可求出答案:3×4=12 3×5=15 3×6=18 3×7=213×8=24 3×9=27 3×10=30可知满足条件的数是 12、15、18、21、24、27和30共7个。
注意,倘若问10和1000之间有多少个数是3的倍数,则用上述一一列举的方法就显得太繁琐了,此时可采用下述方法:10÷3=3余1,可知10以内有3个数是3的倍数;1000÷3=333余1,可知1000以内有333个数是3的倍数;333-3=330,则知10~1000之内有330个数是3的倍数。
枚举法的四种方法
枚举法的四种方法
枚举法是一种通过一一列举所有可能的情况来解决问题的方法。
以下是四种常用的枚举方法:
1. 穷举法:这是最直接、最基础的一种枚举方法,它简单地将问题中所有可能的答案一一列举出来,然后根据题目要求进行筛选。
2. 递增枚举:对于那些没有明确范围限制的问题,我们可以从某个起点开始,试探性地增加一个量,然后对每个量进行操作与判别,如果满足条件,则输出结果。
3. 二进制枚举:在二进制加法中,需要用到数组来帮忙。
具体操作是将1置为1,然后从最高位开始找不为0的位置。
4. 基于约束条件的枚举:在枚举过程中,可以根据问题的具体要求确定筛选条件,然后根据筛选条件进行枚举。
以上就是四种常用的枚举方法,每种方法都有其适用范围和特点,应根据具体情况选择使用。
六年级下册奥数讲义-奥数方法:枚举法
有这么一类数学问题,当题中的部分条件出现的可能情况为有限个时,我们可以把这些可能情况一一列举出来,再根据另一部分条件进行验证,这种解题的思维方法叫做枚举法。
运用枚举法解题的关键是要在列举过程中,保证既不重复,也不遗漏。
这时常常要对可能情况进行恰当的分类。
而这种正确的分类也有助手暴露问题的本质,降低问题的难度。
常用的分类方法有按数量的大小分类、按奇偶性分类等。
枚举法解题的一般步骤:(1)列出问题的可能答案;(2)逐一检验;(3)找到正确答案。
[例1] 有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,如257,1459等等,这类数共有个。
分析与解答先枚举最高位是l,且满足条件的数,共9个:10112358,112358,123581347 ,1459 ,156167 ,178 ,189再看最高位是2且满足条件的数,共8个:202246 ,21347,2246,2358 ,246 ,257268 .279最高位是9且满足条件的数有1个:909所以,这类数共有9+8+7+…+2+1=45个。
[例2]哥德巴赫猜想说:每个大于或等于6的偶数,都可以表示成两个素(质)数之和。
问:168是哪两个两位数的质数之和,并且其中一个的个位数是17思路剖析本题可从“其中一个的个位数是1”人手。
对符合条件的两位数进行枚举,找到本题的答案。
解答要把168表示成两个两位数的质数之和,则这两个质数均大于68。
满足大于68和个位是l这两个条件的两位数是:71、81、91,其中只有71 是质数,所以另一个质数是168-71=97。
故本题所求的两个两位数的质数分别是71、97。
[例3] 从两位的自然数中,每次取两个不同的数,要使这两个数的和是三位数,有多少种取法?思Jg.剖析我们可以采用枚举的方法,按两位自然数由小到大的顺序逐个考虑, 先从最小的两位自然数10想起,它与哪些两位数的和是三位数,直到最大的两位自然数99止,然后统计一下共有多少种。
小学奥数知识点趣味学习——枚举法
小学奥数知识点趣味学习——枚举法例题1:电工买回一批日光灯,在灯座上逐一试一遍,结果全部日光灯都是好的。
像这样将事物一个一个全部列举出来的方法就是枚举法。
问题:小明有1个5分币,4个2分币,8个1分币,要拿出8分钱,你能找出几种拿法?【分析】为了不重复、不遗漏地找出所有可能的拿法,“找”就要按照一定的规则进行。
先找只拿一种硬币的拿法,有两种:①1+1+1+1+1+1+1+1=8(分);②2+2+2+2=8(分)。
再找拿两种不同硬币的拿法,有四种:①1+1+1+1+1+1+2=8(分);②1+1+1+1+2+2=8(分);③1+1+2+2+2=8(分);④1+1+1+5=8(分)。
最后找拿三种不同硬币的拿法,只有一种:①1+2+5=8(分)。
由此可见,共有7种不同的拿法。
在上面用枚举法寻找可能拿法的过程中,我们对全部拿法作了适当分类。
合理分类是枚举法解题中力求又快又省的技巧。
例2:是否存在自然数n,使得n2+n+2能被3整除?分析与解:枚举法通常是对有限种情况进行枚举,但是本题讨论的对象是所有自然数,自然数有无限多个,那么能否用枚举法呢?我们将自然数按照除以3的余数分类,有整除、余1和余2三类,这样只要按类一一枚举就可以了。
当n能被3整除时,因为n2,n都能被3整除,所以(n2+n+2)÷3余2;当n除以3余1时,因为n2,n除以3都余1,所以(n2+n+2)÷3余1;当n除以3余2时,因为n2÷3余1,n÷3余2,所以(n2+n+2)÷3余2。
因为所有的自然数都在这三类之中,所以对所有的自然数n,(n2+n+2)都不能被3整除。
练习1.将6拆成两个或两个以上的自然数之和,共有多少种不同拆法?2.小明有10块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?3.用五个1×2的小矩形纸片覆盖右图的2×5的大矩形,共有多少种不同盖法?4.15个球分成数量不同的四堆,数量最多的一堆至少有多少个球?5.数数右图中共有多少个三角形?6.甲、乙比赛乒乓球,五局三胜。
奥数题之枚举法问题
奥数题之枚举法问题引言奥数(奥林匹克数学竞赛)是指奥地利国内的初中生、高中生之间进行的一种数学竞赛,旨在培养学生的创新思维、解决问题的能力和团队合作精神。
在奥数竞赛中,有一类常见的问题是利用枚举法进行求解。
枚举法是一种通过遍历所有可能的情况来寻找问题解的方法。
在本文中,我们将探讨奥数题中的枚举法问题。
问题描述给定一个正整数n,找出所有满足以下条件的三个正整数x、y、z:1.x、y、z 的和等于 n;2.x、y、z 满足 x < y < z。
解题思路对于该问题,我们可以使用枚举法来解决。
枚举法的思路是通过遍历所有可能的情况,并检查每个情况是否满足问题要求。
我们可以设置三个循环来遍历x、y、z的可能取值。
在每一次循环中,检查当前取值是否满足条件,如果满足,则将其添加至结果集中。
result = []for x in range(1, n-1):for y in range(x+1, n):z = n - x - yif z > y:result.append((x, y, z))以上代码片段展示了基于Python语言的解题思路。
我们使用两个嵌套的循环来遍历x、y的可能取值。
在每次循环中,我们通过计算z的值,并检查z是否满足条件。
如果满足条件,则将x、y、z添加至结果集合。
示例以n = 10为例,我们将使用枚举法找出满足条件的x、y、z的取值。
第一次循环:x = 1当x = 1时,y的取值范围为2到9。
我们依次计算z的值:•当y = 2时,z = 10 - 1 - 2 = 7;•当y = 3时,z = 10 - 1 - 3 = 6;•当y = 4时,z = 10 - 1 - 4 = 5;•当y = 5时,z = 10 - 1 - 5 = 4;•当y = 6时,z = 10 - 1 - 6 = 3;•当y = 7时,z = 10 - 1 - 7 = 2;•当y = 8时,z = 10 - 1 - 8 = 1;•当y = 9时,z = 10 - 1 - 9 = 0;根据题意,x、y、z都应该是正整数,所以我们只需要考虑当z为正整数时的情况。
奥数-08枚举法+答案
枚举法我们在课堂上遇到的数学问题,一般都可以列出算式,然后求出结果,但在数学竞赛或生活中却经常会遇到一些有趣的题目,由于找不到计算它们的算式,似乎无从下手。
但是,如果题目所述的情况或满足题目要求的对象能够被一一列举出来,或能被分类列举出来,那么问题就可以通过枚举法获得解决。
所谓枚举法(或称穷举法),就是根据题目要求,将符合要求的结果不重复、不遗漏地一一列举出来,从而找到解决问题的方法。
当可能的结果较少时,可以直接枚举,即将所有结果一一列举出来;当可能的结果较多时,就需要分类枚举。
分类一定要包括所有可能的结果,这样才能不遗漏,并且类与类之间不重叠,这样才能做到不重复。
枚举法的分类:简单枚举法——将各种可能的情况或对象一一列举出来。
字典枚举法——对象已经确定,把对象按顺序进行不同的排列组合。
图形计数枚举法——先按不同的类型进行分类,再进行统计。
数字拆分枚举法——先将对象拆分成若干份,再进行排列组合。
画枚举树枚举法——将各种可能的情况画成树状图形,再进行统计。
【例 1】有一天,丽丽去天天家,而从丽丽家到天天家不能直接到达,必须要经过公园或丁丁家(如右图),找一找,从丽丽家到天天家共有几条路可以走?(简单枚举法)解析:为了便于统计,我们先给每一条线路编号。
采用简单枚举方法——将各种可能的线路一一列举出来,再进行计数。
1+8 2+8 3+5 3+63+7 4+5 4+6 4+7从丽丽家到天天家共有8条路可走。
练习一1、某人要去日本旅游,从家到上海去可以选择的交通工具有地铁、公交和自驾,从上海到日本既可以乘游轮也可以坐飞机,那么他到日本去有几种方案可以选择?2、用0、2、3、4、7、8组成不同的两个三位数,每个数字只能用一次,使它们的和最小。
【例 2】用分别写着7、8、9、0的卡片各一张,可以组成多少个不同的四位数?(字典枚举法)解析:对象已经确定是数字7、8、0、9,然后按顺序进行不同的排列组合,先确定千位上的数字,再确定百位上的数字,以此类推。
五年级奥数—简单枚举
五年级奥数—简单枚举引言本文档旨在介绍五年级学生在奥数竞赛中遇到的简单枚举问题。
通过研究和练简单枚举方法,学生可以提高数学思维能力,并在奥数竞赛中取得更好的成绩。
什么是简单枚举?简单枚举是一种通过列举所有可能的情况来解决问题的数学方法。
它适用于问题的解空间相对较小的情况。
解决问题的步骤使用简单枚举方法解决问题可以遵循以下步骤:1. 确定问题的范围和条件。
2. 理解问题的要求和目标。
3. 列举所有可能的情况。
4. 对每种情况进行分析和计算。
5. 找出满足问题要求的解决方案。
示例问题以下是几个适合五年级学生练的简单枚举问题:1. 某个班级有15名男生和10名女生,请问从班级中选择3名同学组成一个小组,有多少种不同的选择方案?2. 有一组5个相邻的整数,求其中的奇数有多少个?3. 某个班级举行一次足球比赛,共有3支球队参赛,请问一共有多少种不同的对阵情况?解答示例1. 解决问题1的步骤如下:- 确定问题的范围和条件:15名男生和10名女生,选择3人组成一个小组。
- 理解问题的要求和目标:求不同的选择方案。
- 列举所有可能的情况:根据组合计算公式,从25人中选择3人的组合数是C(25, 3) = 2300。
- 对每种情况进行分析和计算:根据组合计算公式,计算C(15, 3) = 455。
- 找出满足问题要求的解决方案:不同的选择方案数为2300-455 = 1845种。
2. 解决问题2的步骤如下:- 确定问题的范围和条件:一组5个相邻的整数。
- 理解问题的要求和目标:求奇数的个数。
- 列举所有可能的情况:5个相邻的整数可以是{1,2,3,4,5}或者{2,3,4,5,6}等。
- 对每种情况进行分析和计算:在{1,2,3,4,5}中有3个奇数,在{2,3,4,5,6}中也有3个奇数。
- 找出满足问题要求的解决方案:奇数的个数为3个。
3. 解决问题3的步骤如下:- 确定问题的范围和条件:一共有3支球队参赛。
小升初奥数常用的六种解题方法介绍
关于小升初奥数常用的六种解题方法介绍
关于小升初奥数常用的六种解题方法介绍
1、直观画图法
解奥数题时,假如能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通与未知的联络,抓住问题的'本质,迅速解题。
2、倒推法
从题目所述的最后结果出发,利用条件一步一步向前倒推,直到题目中问题得到解决。
3、枚举法
奥数题中常常出现一些数量关系非常特殊的题目,用普通的方法很难列式解答,有时根本列不出相应的算式来。
我们可以用枚举法,根据题目的要求,一一列举根本符合要求的数据,然后从中挑选出符合要求的答案。
4、正难那么反
有些数学问题假如你从条件正面出发考虑有困难,那么你可以改变考虑的方向,从结果或问题的反面出发来考虑问题,使问题得到解决。
5、巧妙转化
在解奥数题时,经常要提醒自己,遇到的新问题能否转化成旧问题解决,化新为旧,透过外表,抓住问题的本质,将问题转化成自己熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
6、整体把握
有些奥数题,假如从细节上考虑,很繁杂,也没有必要,假如能从整体上把握,宏观上考虑,通过研究问题的整体形式、整体构造、部分与整体的内在联络,只见森林,不见树木,来求得问题的解决。
小学三年级奥数题枚举法、填算式
小学三年级奥数题枚举法、填算式1.小学三年级奥数题枚举法1、一本书共100页,在排页码时要用多少个数字是6的铅字?解:把个位是6和十位是6的数一个一个地列举出来,数一数。
个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。
十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。
10+10=20(个)答:在排页码时要用20个数字是6的铅字。
2、印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?解:(1)数码一共有10个:0、1、2……8、9。
0不能用于表示页码,所以页码是一位数的页有9页,用数码9个。
(2)页码是两位数的从第10页到第99页。
因为99-9=90,所以,页码是两位数的页有90页,用数码:2×90=180(个)(3)还剩下的数码:1890-9-180=1701(个)(4)因为页码是三位数的页,每页用3个数码,100页到999页,999-99=900,而剩下的1701个数码除以3时,商不足600,即商小于900。
所以页码最高是3位数,不必考虑是4位数了。
往下要看1701个数码可以排多少页。
1701÷3=567(页)(5)这本书的页数:9+90+567=666(页)2.小学三年级奥数题枚举法1、15个球分成数量不同的四堆,数量最多的一堆至少有多少个球?2、经理有4封信先后交给打字员,要求打字员总是先打最近接到的信,比如打完第3封信时第4封信还未到,此时如果第2封信还未打完,那么就应先打第2封信而不能打第1封信。
打字员打完这4封信的先后顺序有多少种可能?3、甲、乙比赛乒乓球,五局三胜。
已知甲胜了第一盘,并最终获胜。
问:各盘的胜负情况有多少种可能?4、现在1元、2元和5元的硬币各4枚,用其中的一些硬币支付23元钱,一共有多少种不同的支付方法?5、小明和小红玩掷骰子的游戏,共有两枚骰子,一起掷出。
二年级奥数题及答案-枚举法-钱币组合
二年级奥数题及答案-枚举法-钱币组合
二年级奥数题及答案:枚举法-钱币组合。在日常生活中,很多地方都需要钱,解决有关钱的趣味问题,常用的方法是枚举法,根据题中的条件,一一列举,最后总结出正确的答案。
用1元、2元和5元币中的两张,一共可以组成几种不同的钱数?
解题思路:只有1元、2元和5元,要求每次拿2张,可以有1元和2元,1元和5元,2元和5元三种不同的钱数。
解答:1元+2元=3元
1元+5元=6元
2元+5元=7元
小学教育,5068小学教育推荐:
六年级奥数题及答案-求数
六年级奥数题及答案-级奥数题及答案-长度单位换算
四年级奥数题及答案-个位数字
四年级奥数题及答案-四位数
三年级奥数题及答案-兰花数量
苏教版二年级语文上册期末测试卷在线看
一年级奥数题及答案-枚举法-游乐园
奥数解题方法:关于枚举法
奥数解题方法:关于枚举法在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法.1. 在研究问题时,把所有可能发生的情况一一列举加以研究的方法叫做枚举法(也叫穷举法)。
2. 用枚举法解题时,常常需要把讨论的对象进行恰当的分类,否那么就无法枚举,或解答过程变得冗长、繁琐、当讨论的对象很多,甚至是无穷多个时,更是必须如此。
3. 枚举时不能有遗漏。
当然分类也就不能有遗漏,也就是说,要使研究的每一个对象都在某一类中。
分类时,一般最好不重复,但有时重复没有引起错误,没有使解法变复杂,就不必苛求。
4. 缩小枚举范围的方法叫做筛选法,筛选法遵循的原那么是:确定范围,逐个试验,淘汰非解,寻求解答。
例题:甲、乙、丙三个数的乘积是10,试问甲、乙、丙三数分别可能是几?分析:在寻找问题的答案时,应该严格遵循不重不漏的枚举原那么,由于10的因子有1、2、5、10,因此甲、乙、丙仅可取这四个自然数,先令甲数=1、2、5、10,做到不重不漏,再考虑乙、丙的取法。
解:因为10的因子有:1、2、5、10,故甲、乙、丙三数的取法可列下表:甲=1 乙=1 丙=10乙=2 丙=5乙=5 丙=2乙=10 丙=1甲=2 乙=1 丙=5乙=5 丙=2甲=5 乙=1 丙=2乙=2 丙=1甲=10 乙=1 丙=1总共得到问题的九组解答。
甲=1 、1、1、1 、2、2、5、5、10乙=1 、2、5、10、1、5、1、2、1丙=10、5、2、1 、5、1、2、1、1说明如果没有枚举的思想,只是盲目地猜试,既费时间,又有可能重复或漏掉解答。
苏教版五年级上册数学奥数 第九讲 解决问题的策略——枚举法
第九讲解决问题的策略——枚举法【知识概述】枚举是一种常见的分析问题、解决问题的方法。
一般地,要根据问题要求,一一列举问题解答。
运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。
运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。
【例题精学】例1用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?【分析与解答】要使信号不同,要求每一种信号灯颜色的顺序不同,我们可以把这些信号进行列举。
可以看出,红色信号灯排在第一个位置时,有两种不同的信号,绿色信号灯排在第一个位置时,也有两种不同的信号,黄色信号灯排在第一个位置时,也有两种不同的信号,因而共有3个2种不同的排列方法,即2x3=6种。
【同步精练】1.用数字1,2,3可以组成多少个不同的三位数?分别是哪几个数?2.用2,3,5,7四个数字,可以组成多少个不同的四位数?例2有4位小朋友,寒假中互相通一次电话,他们一共打了多少次话?【分析与解答】把4个小朋友分别编号:A,B,C,D,A与其他小朋友打电话,应该打3次,同样B小朋友也应打3次电话,同样C,D应该各打3次电话。
4个小朋友,共打了3×4=12次。
但题目要求两个小朋友之间只要通一次电话,那么A打电话给B时,A,B两人已经通过话了,所以B没有必要再打电话给A,照这样计算,12次电话中,有一半是重复计算的,所以实际打电话的次数是3×4➗2=6次。
【同步精练】1.有8位小朋友,要互通一次电话,他们一共打了多少次电话?2.小芳出席由19人参加的联欢会,散会后,每两人都要握一次手,他们一共握了多少次手?例3例3:一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?【分析与解答】我们可以利用列举的方法:如果起点站是1,那么终点站只能是7,8,9或10;如果起点站是2,那么终点站只能是8,9或10;如果起点站是3,那么终点站只能是9或10;如果起点站是4,终点站只能是10;电如果起点站是5,6时,就找不到与它至少相隔5站的终点站了;如果起点站是7,终点站只能是1;如果起点站是8,那么终点站是2或1;如果起点电站是9,那么终点站是3,2或1;如果起点站是10,那么终点站是4,3,2或1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥数解题方法:关于枚举法
在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法.
1. 在研究问题时,把所有可能发生的情况一一列举加以研究的方法叫做枚举法(也叫穷举法)。
2. 用枚举法解题时,常常需要把讨论的对象进行恰当的分类,否则就无法枚举,或解答过程变得冗长、繁琐、当讨论的对象很多,甚至是无穷多个时,更是必须如此。
3. 枚举时不能有遗漏。
当然分类也就不能有遗漏,也就是说,要使研究的每一个对象都在某一类中。
分类时,一般最好不重复,但有时重复没有引起错误,没有使解法变复杂,就不必苛求。
4. 缩小枚举范围的方法叫做筛选法,筛选法遵循的原则是:确定范围,逐个试验,淘汰非解,寻求解答。
例题:已知甲、乙、丙三个数的乘积是10,试问甲、乙、丙三数分别可能是几?
分析:在寻找问题的答案时,应该严格遵循不重不漏的枚举原则,由于10的因子有1、2、5、10,因此甲、乙、丙仅可取这四个自然数,先令甲数=1、2、5、10,做到不重不漏,再考虑乙、丙的取法。
解:
因为10的因子有:1、2、5、10,故甲、乙、丙三数的取法可列下表:
甲=1 乙=1 丙=10
乙=2 丙=5
乙=5 丙=2
乙=10 丙=1
甲=2 乙=1 丙=5
乙=5 丙=2
甲=5 乙=1 丙=2
乙=2 丙=1
甲=10 乙=1 丙=1
总共得到问题的九组解答。
甲=1 、1、1、1 、2、2、5、5、10
乙=1 、2、5、10、1、5、1、2、1
丙=10、5、2、1 、5、1、2、1、1
说明
如果没有枚举的思想,只是盲目地猜试,既费时间,又有可能重复或漏掉解答。