靶向制剂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
靶向制剂:凡能将治疗药物专一性地导向所需发挥作用的部位(靶区),而对非靶组织没有或几乎没有相互作用的制剂统称为靶向制剂(targeting drug delivery system)。
简介:靶向制剂亦称靶向给药系统(Targeting drug delivery system,TDDS),是通过载体使药物选择性的浓集于病变部位的给药系统,病变部位常被形象的称为靶部位,它可以是靶组织、靶器官,也可以是靶细胞或细胞内的某靶点。靶向制剂不仅要求药物到达病变部位,而且要求具有一定浓度的药物在这些靶部位滞留一定的时间,以便发挥药效,成功的靶向制剂应具备定位、浓集、控释及无毒可生物降解等四个要素。由于靶向制剂可以提高药效、降低毒性,可以提高药品的安全性、有效性、可靠性和病人用药的顺应性,所以日益受到国内外医药界的广泛重视。
特点及要素:特点
① 可以提高药效;
② 降低毒性;
③ 可以提高药物的安全性,有效性;
④ 可以提高病人用药的顺应性。
要素
① 定位;
② 浓集;
③ 控释;
物的靶向从到达的部位讲可以分为三级,第一级指到达特定的靶组织或靶器官,第二级指到达特定的细胞,第三级指到达细胞内的特定部位。从方法上分类,靶向制剂大体可分为以下三类:
被动靶向制剂
被动靶向制剂(passive targeting preparation)即自然靶向制剂。载药微粒被单核-巨噬细胞系统的巨噬细胞(尤其是肝的kupffer细胞)摄取,通过正常生理过程运送至肝、脾等器官,若要求达到其他的靶部位就有困难。被动靶向的微粒经静脉注射后,在体内的分布首先取决于微粒的粒径大小。通常粒径在2.5~10 μm 时,大部分积集于巨噬细胞。小于7 μm 时一般被肝、脾中的巨噬细胞摄取,200~400 nm 的纳米粒集中于肝后迅速被肝清除,小于10 nm 的纳米粒则缓慢积集于骨髓。大于7 μm 的微粒通常被肺的最小毛细血管床以机械滤过方式截留,被单核白细胞摄取进入肺组织或肺气泡。除粒径外,微粒表面性质对分布也起着重要作用。
单核-巨噬细胞系统对微粒的摄取主要由微粒吸附血液中的调理素(opsonin,包括igg,补体c3b或纤维结合素fibronectin)和巨噬细胞上有关受体完成的:吸附调理素的微粒粘附在巨噬细胞表面,然后通过内在的生化作用(内吞、融合等)被巨噬细胞摄取。微粒的粒径及其表面性质决定了吸附哪种调理素成分及其吸附的程度,也就决定了吞噬的途径和机制。
被动靶向制剂的载药微粒包括:脂质体、乳剂、微囊和微球、纳米囊和纳米球。
① 脂质体
系指将药物包封于类脂质的双分子层内形成的微型泡囊,为类脂小球或液晶微囊。
② 靶向乳剂
乳剂的靶向性在于它对淋巴的亲和性。
油状药物或亲脂性药物制成的O/W或O/W/O静脉复乳,使得原药物浓集于肝、脾、肾等巨噬细胞丰富的组织器官。
③ 微囊和微球
指药物溶解或分散在辅料中形成的微小球状实体或囊泡。
④ 纳米囊和纳米球
纳米囊属药库膜壳型,纳米球属基质骨架型。粒径10~1000nm在水中形成近似胶囊的的溶液。可穿透细胞壁打靶点,不阻塞血管,可靶向肝、脾和骨髓。
主动靶向制剂
主动靶向
主动靶向制剂(active targeting preparation)是用修饰的药物载体作为"导弹",将药物定向地运送到靶区浓集发挥药效。如载药微粒经表面修饰后,不被巨噬细胞识别,或因连接有特定的配体可与靶细胞的受体结合,或连接单克隆抗体成为免疫微粒等原因,而能避免巨噬细胞的摄取,防止在肝内浓集,改变微粒在体内的自然分布而到达特定的靶部位;亦可将药物修饰成前体药物,即能在活性部位被激活的药理惰性物,在特定靶区被激活发挥作用。如果微粒要通过主动靶向到达靶部位而不被毛细血管(直径4~7 μm )截留,通常粒径不应大于4 μm。
物理化学靶向制剂
物理化学靶向制剂(physical and chemical targeting preparation)应用某些物理化学方法可使靶向制剂在特定部位发挥药效。如应用磁性材料与药物制成磁导向制剂,在足够强的体外磁场引导下,通过血管到达并定位于特定靶区;或使用对温度敏感的载体制成热敏感制剂,在热疗的局部作用下,使热敏感制剂在靶区释药;也可利用对ph敏感的载体制备ph敏感制剂,使药物在特定的ph靶区内释药。用栓塞制剂阻断靶区的血供和营养,起到栓塞和靶向化疗的双重作用,也可属于物理化学靶向。
中药靶向制剂的应用脂质体靶向给药系统
脂质体是指将药物包封于类脂双分子层形成的药膜中间所制成的超微型药物制剂。作为药物载体具有载药靶向运行、延长疗效、避免耐药性、减少给药剂量、降低不良反应、改变给药途径等优点。常规的脂质体
发展趋势
靶向制剂与靶细胞受的结合
基因治疗(gene therapy)是近年来发展起来的一种补充人体缺失基因或关闭异常基因的新疗法,对于恶性肿瘤、先天性遗传病、艾滋病、糖尿病及心血管疾病等的治疗具有重大价值。
研究携带治疗基因片段或杂合体重组DNA质粒,保持其不被核酸酶降解,顺利地转导入人体靶位的载体将是21世纪初靶向给药制剂研究领域的重要课题。
参考文献
[1] 梅景良;注射用药的靶向制剂[J];福建畜牧兽医;1998年03期.
[2] 温涛;微乳液在中药纳米载体药物合成和毒品分析中的应用研究[D];清华大学;2005年.
[3] 朱银燕,张高勇,洪昕林,杨恒权;胶体体系中合成纳米胶囊的研究进展[J];日用化学工业;2003年06期.
[4] 吴琼珠,王冬燕;靶向给药系统[J];南京军医学院学报;1995年02期.
[5] 苏秀琴,孟祥文;药物微球的基础研究与临床应用[J];山西医科大学学报;1999年03期.
[6] 张玉,王凯平,谭红艾,刘涛;肝靶向药物的研究进展[J];医药导报;2002年04期.
[7] 任百祥,周晓光;DNA靶向药物作用机制及发展趋势[J];医药导报;2003年09期.
[8] 唐晓荞,刘宏,杨祥良;双亲性环糊精纳米粒的制备和应用[J];中国医药工业杂志;2003年11期.