(教师版)九年级下册《二次函数》的应用培优提高

合集下载

九年级数学下册《二次函数》能力提升1 (含答案)

九年级数学下册《二次函数》能力提升1  (含答案)

第二章 二次函数能力提高一、选择题1.观察函数2y x =的图象,则下列判断中正确的是( )A.若,a b 互为相反数,财x a =与x b =的函数值相等。

B.对于同一个自变量x ,有两个函数值与其对应。

C.对任意实数x ,都有y >0。

D.对任意实数y ,都有两个x 与其对应。

2.已知h 关于t 的函数关系式为21(2h gt g =为常数,t 为时间),则函数图象为( )3.某工厂从国外进口了一套机器设备,现价值为50万元,但该套设备每年的折旧率为x ,那么两年之后这台机器的价值为y 万元,则y 与x 之间的函数关系式可以写为( )A.250(1)y x =-B.50(1)y x =-C.250y x =-D.230(1)y X =+4.如图,当ab >0时,抛物线2y ax =与直线y ax b =+的图象在同一坐标系内大致是( )二、填空题5. 把二次函数22y x =+的图象向下平移4个单位,得到的函数图象对应的解析式为 。

6.与二次函数2122y x =+的图象关于x 轴对称的图象对应的二次函数解析式为 。

7.抛物经①23y x =,②223y x =,③243y x =-中的开口从大到小顺序是 。

8.已知二次函数2(0)y ax c ac =+≠,当取1212,()x x x x ≠时,函数值相等,则当x 取12x x +时,函数值为 。

三、解答题9. 如图,某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8m ,两侧距地面4m 高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6m 。

求校门高(精确到0.1m ,水泥建筑物厚度忽略不计)。

10.已知抛物线2y x k =+与x 轴交于A ,B 两点,与y 轴交于点C ,且△ABC 为直角三角形,求抛物线2y x k =+的顶点坐标。

11.在同一平面直角坐标系内画出下列二次函数的图象①2112y x =-+ ②2122y x =-- 观察你所画的图象,并回答下列问题 (1) 两条抛物线的开口方向,顶点坐标和对称轴(2) 抛物线2112y x =-+通过怎样的平移可以得到抛物线2122y x =--,反之,抛物线2122y x =--通过怎样的平移可得到抛物线2112y x =-+? (3) 请你根据你所画的抛物线,说出2y ax k =+的开口方向,对称轴和顶点坐标。

九年级培优专题(三)二次函数整合提升

九年级培优专题(三)二次函数整合提升
九年级数学培优专题训练(三) 二次函数整合提升
知识网络
热点一:二次函数的图象与性质
二次函数的图象是抛物线,其性质主要体现在开口方向、 对称轴、顶点坐标、增减性、最值、对称性等方面,熟练掌握 这些性质是学好本章的前提和基础.
再者注意 y=a(x-h)2+k 的图象与函数 y=ax2 的图象的关
系,它们形状、开口方向均相同,只是位置不同,可以通过平 移得到.平移的规律是:“h 左加右减,k 上加下减”.二次函 数的一般形式 y=ax2+bx+c 可以转化为顶点式 y=a(x-h)2+k 加以分析.
解得 bБайду номын сангаас2,c=-3,
则抛物线解析式为=x2+2x-3.
(-3,0),
由题意, 点 A(-3,0), ∴AC= 9+9=3 2,AD= 4+16=2 5, 2, CD= 1+1=
(2)结合图形,抛物线 y=x2+2x-3,与 x 轴的交点为(1,0),
由 AC2+CD2=AD2,所以△ACD 为直角三角形.
∴三点纵坐标的大小关系为 y3>y2>y1. 答案:D
【跟踪训练】 1.二次函数 y=x2+2x-5 有( D ) A.最大值-5 C.最大值-6 B.最小值-5 D.最小值-6
2.抛物线 y=(x+2)2-3 可以由抛物线 y=x2 平移得到,则 下列平移过程正确的是( B ) A.先向左平移 2 个单位,再向上平移 3 个单位 B.先向左平移 2 个单位,再向下平移 3 个单位
将其代入 y=(x-1) 中,得
2
3- C 2
5 3- 5 , 2 (因点 C 在点 A 左

侧).抛物线与 y 轴的交点 D 的坐标为(0,1).
热点二:二次函数与一元二次方程的关系

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题1(附答案详解)

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题1(附答案详解)

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题1(附答案详解)1.抛物线2(1)y x =-与y 轴的交点坐标为()A .(1,0)B .(-1,0)C .(0,-1)D .(0,1)2.如图是二次函数2y ax bx c =++图像的一部分,其对称轴为x=-l ,且过点(-3,0).下列说法:①abc<0;②2a -b=O ;③4a+2b+c<0;④若(-5,y 1),25(,)2y 是抛物线上两点,则y 1>y 2,其中说法正确的有( )A .4个B .3个C .2个D .1个3.如下图,已知经过原点的抛物线y=ax 2+bx+c (a ≠0)的对称轴是直线x=-1,下列结论中①ab >0,②a +b +c >0,③当-2<x <0时,y <0.正确的个数是( )A .0个B .1个C .2个D .3个4.若二次函数y =x 2 +bx +5,配方后为y =(x -3)2+k ,则b 与k 的值分别为( ) A .-6,-4 B .-6,4 C .6,4 D .6,-45.如图,在Rt△ABC 中,∠C =90°,P 是BC 边上不同于B ,C 的一动点,过点P 作PQ ⊥AB ,垂足为Q ,连接AP .若AC =3,BC =4,则△AQP 的面积的最大值是( )A .254B .258C .7532D .75166.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t 2+2t ,则当t=4时,该物体所经过的路程为( )7.二次函数y=ax 2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2。

有下列结论:①4a+b=0;②16a+4b+c<0;③8a+7b+2c>0;④当x>-1时,y 的值随x 的增大而增大。

其中正确的结论有( )A .1个B .2个C .3个D .4个8.已知二次函数y =ax 2+bx +c (其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口向上;②图象的顶点一定在第四象限;③图象与x 轴的交点有一个在y 轴的右侧.以上正确的说法的个数是( )A .0个B .1个C .2个D .3个9.将抛物线y =2x 2向右平移1个单位,再向上平移5个单位,则平移后的抛物线的解析式为( )A .y =2(x +1)2+5B .y =2(x +1)2-5C .y =2(x -1)2+5D .y =2(x -1)2-510.将抛物线y =x 2向左平移3个单位,得到新抛物线的函数关系式是( )A .y =x 2+3B .y =x 2-3C .y =(x +3)2D .y =(x -3)2 11.抛物线y=5(x+3)2-2的顶点坐标是( )A .(-3,-2)B .(3,-2)C .(3,2)D .(-3,2)12.将抛物线y=2x 2平移后得到抛物线y=2x 2+1,则平移方式为( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位13.抛物线y=x 2﹣2x+1的顶点坐标是______.14.将y =x 2﹣2x +5化成y =a (x ﹣h )2+k 的形式,则y =__________.15.已知实数s ,t 满足21s t +=,则代数式2251s t s -++-的最大值等于________. 16.抛物线y =2x 2﹣bx +3的对称轴是直线x =1,则b 的值为_____.17.将二次函数y=x 2﹣2x ﹣5化为y=a (x ﹣h )2+k 的形式为y=______________. 18.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______.19.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图,建立平面直角坐标系,抛物线的函数表达式为y =-16x 2+13x +32(单位:m),绳子甩到最高处时刚好通过站在x =2点处跳绳的学生小明的头顶,则小明的身高为______m.20.抛物线22(3)5y x =--+的顶点坐标是______21.已知二次函数22(3)1y x =-+.当__________时,y 随x 的增大而减小.22.二次函数y=-2x 2+4x+7的顶点坐标__________.23.一男生在校运动会比赛中推铅球,铅球的行进高度()y m 与水平距离()x m 之间的函数关系式为21251233y x x =-++,则铅球被推出的水平距离为________m . 24.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)设每件商品降价x 元,则商场此商品可多售出 件,此商品每件盈利 元,此商品每天可销售 件.(2)每件商品降价多少元时,商场日盈利可达到2100元?25.直线y=-3x+3与x 轴、y 轴分别交于A 、B 两点,点A 关于直线x=-1的对称点为点C .(1)求点C 的坐标;(2)若抛物线23y mx nx m =+-(m≠0)经过A 、B 、C 三点,求抛物线的表达式;(3)若抛物线23y ax bx =++(a≠0)经过A ,B 两点,且顶点在第二象限.抛物线与线段AC 有两个公共点,求a 的取值范围.26. 已知函数y =(m 2-m )x 2+(m -1)x +2-2m .(1)若这个函数是二次函数,求m 的取值范围.(2)若这个函数是一次函数,求m 的值.(3)这个函数可能是正比例函数吗?为什么?27.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :2222y x mx m =-+-与直线x =-2交于点P .(1)当抛物线F 经过点C 时,求它的表达式;(2)抛物线F 上有两点M ()11,x y 、N ()22,x y ,若-2≤12x x <,1y <2y ,求m 的取值范围;(3)设点P 的纵坐标为P y ,求P y 的最小值,此时抛物线F 上有两点M ()11,x y 、N ()22,x y ,若12x x <≤-2,比较1y 与2y 的大小;(4)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.28.已知抛物线的顶点为(-1,-3),与y 轴的交点为(0,-5)求抛物线的解析式.29.已知:抛物线C 1:y =x 2-2a x +2a+2 顶点P 在另一个函数图象C 2上,(1)求证:抛物线C 1必过定点A (1,3);并用含的a 式子表示顶点P 的坐标;(2)当抛物线C 1的顶点P 达到最高位置时,求抛物线C 1解析式;并判断是否存在实数m 、n ,当m≤x≤n 时恰有3m≤y≤3n,若存在,求出求m 、n 的值;若不存在,说明理由;(3)抛物线C 1和图象C 2分别与y 轴交于B 、C 点,当△ABC 为等腰三角形,求a 的值. 30.已知二次函数y =x 2+mx +m ﹣5(m 是常数).(1)求证:不论m 为何值,该函数的图象与x 轴一定有两公共点;(2)若该二次函数的图象过点(0,﹣3),则将函数图象沿x 轴怎样平移能使抛物线过原点?31.某商场销售一种成本为每件30元的商品,销售过程中发现,每月销售量y (件)与销售单价x(元)之间的关系可近似看作一次函数y=-10x+600,商场销售该商品每月获得利润为w(元).(1)求w与x之间的函数关系式;(2)如果商场销售该商品每月想要获得2000元的利润,那么每月成本至少多少元?(3)为了保护环境,政府部门要求用更加环保的新产品替代该商品,商场销售新产品,每月的销量与销售价格之间的关系与原产品的销售情况相同,新产品的成本每件32元,若新产品每月的销售量不低于200件时,政府部门给予每件4元的补贴,试求定价多少元时,每月销售新产品的利润最大?求出最大的利润。

2023年中考数学复习《二次函数综合压轴题》培优提升专题训练(含解析)

2023年中考数学复习《二次函数综合压轴题》培优提升专题训练(含解析)

2023年春九年级数学中考复习《二次函数综合压轴题》培优提升专题训练(附答案)1.已知:抛物线y=x2+x+m交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.(1)如图1,求抛物线的解析式;(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D 的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.2.如图,在平面直角坐标系中,矩形ABCD的顶点B,C,D的坐标分别(1,0),(3,0),(3,4),以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,以每秒个单位的速度沿线段AD向点D匀速运动,过点P作PE⊥x轴,交对角线AC于点N.设点P运动的时间为t(秒).(1)求抛物线的解析式;(2)若PN分△ACD的面积为1:2的两部分,求t的值;(3)若动点P从A出发的同时,点Q从C出发,以每秒1个单位的速度沿线段CD向点D匀速运动,点H为线段PE上一点.若以C,Q,N,H为顶点的四边形为菱形,求t的值.3.如图1,过原点的抛物线与x轴交于另一点A,抛物线顶点C的坐标为,其对称轴交x轴于点B.(1)求抛物线的解析式;(2)如图2,点D为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点D的坐标;(3)在对称轴上是否存在点P,使得点A关于直线OP的对称点A'满足以点O、A、C、A'为顶点的四边形为菱形.若存在,请求出点P的坐标;若不存在,请说明理由.4.综合与探究如图,已知抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,对称轴为直线l,顶点为D.(1)求抛物线的解析式及点D坐标;(2)在直线l上是否存在一点M,使点M到点B的距离与到点C的距离之和最小?若存在,求出点M的坐标;若不存在,请说明理由.(3)在x轴上取一动点P(m,0),﹣3<m<﹣1,过点P作x轴的垂线,分别交抛物线,AD,AC于点E,F,G.①判断线段FP与FG的数量关系,并说明理由②连接EA,ED,CD,当m为何值时,四边形AEDC的面积最大?最大值为多少?5.如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A、B,已知点A坐标(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).(1)求实数a、b、k的值;(2)在该抛物线的对称轴上是否存在点P使得△POB为等腰三角形?若存在请求出所有的P点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M,恰使得MA=MB=MO,现要求在y轴上找出点Q使得△BQM的周长最小,请求出M的坐标和△BQM周长的最小值.6.如图,已知,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,过点A的直线y=kx+k与该抛物线交于点C,点P是该抛物线上不与A,B重合的动点,过点P作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)若k=﹣1,当PE=2DE时,求点P坐标;(3)当(2)中直线PD为x=1时,是否存在实数k,使△ADE与△PCE相似?若存在请求出k的值;若不存在,请说明你的理由.7.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?8.如图,已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上一动点,过点P作x轴的垂线l,交BC于点H.当点P 运动到何处时满足PC=CH?求出此时点P的坐标;(3)若m≤x≤m+1时,二次函数y=ax2+bx+3的最大值为m,求m的值.9.综合与探究如图,在平面直角坐标系中,点A,B的坐标分别为(﹣4,0),(2,0),点C在y轴上,其坐标为(0,﹣3),抛物线经过点A,B,C.P为第三象限内抛物线上一动点.(1)求该抛物线的解析式.(2)连接AC,过点P作PD⊥AC,PE∥y轴交AC于点E,当△PDE的周长最大时,求P点的坐标和△PDE周长的最大值.(3)若点M为x轴上一动点,点F为平面直角坐标系内一点.当点M,B,C,F构成菱形时,请直接写出点F的坐标.10.已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,CA=4,将∠ABC对折,使点C 的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系.(1)求过A,B,O三点的抛物线解析式;(2)若在线段AB上有一动点P,过点P作x轴的垂线,交抛物线于M,连接MB,MA,求△MAB的面积的最大值;(3)若点E在抛物线上,点F在对称轴上,且以O,A,E,F为顶点的四边形为平行四边形,求点E的坐标.11.如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.(1)求该抛物线的解析式;(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P 的坐标;如果不存在,请说明理由.12.如图抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3).(1)求抛物线的解析式,并指出抛物线的顶点坐标.(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC,若存在,请求出点M的坐标;若不存在,请说明理由.13.已知:抛物线y=ax2﹣3(a﹣1)x+2a﹣6(a>0).(1)求证:抛物线与x轴有两个交点.(2)设抛物线与x轴的两个交点的横坐标分别为x1,x2(其中x1>x2).若t是关于a的函数、且t=ax2﹣x1,求这个函数的表达式;(3)若a=1,将抛物线向上平移一个单位后与x轴交于点A、B.平移后如图所示,过A作直线AC,分别交y的正半轴于点P和抛物线于点C,且OP=1.M是线段AC上一动点,求2MB+MC的最小值.14.如图,在平面直角坐标系中,一次函数y=x﹣2的图象分别交x、y轴于点A、B,抛物线y=x2+bx+c经过点A、B,点P为第四象限内抛物线上的一个动点.(1)求此抛物线对应的函数表达式;(2)如图1所示,过点P作PM∥y轴,分别交直线AB、x轴于点C、D,若以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,求点P的坐标;(3)如图2所示,过点P作PQ⊥AB于点Q,连接PB,当△PBQ中有某个角的度数等于∠OAB度数的2倍时,请直接写出点P的横坐标.15.如图,已知直线y=﹣x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+3经过B、C两点并与x轴的另一个交点为A,且OC=3OA.(1)求抛物线的解析式;(2)点R为直线BC上方对称轴右侧抛物线上一点,当△RBC的面积为时,求R点的坐标;(3)在(2)的条件下,连接CR,作RH⊥x轴于H,连接CH、AC,点P为线段CR上一点,点Q为线段CH上一点,满足QH=CP,过点P作PE∥AC交x轴于点E,连接EQ,当∠PEQ=45°时,求CP的长.16.综合与探究如图,在平面直角坐标系中,直线y=x﹣4分别与x轴,y轴交于点A和点C,抛物线y =ax2﹣3x+c经过A,C两点,并且与x轴交于另一点B.点D为第四象限抛物线上一动点(不与点A,C重合),过点D作DF⊥x轴,垂足为F,交直线AC于点E,连接BE.设点D的横坐标为m.(1)求抛物线的解析式;(2)当∠ECD=∠EDC时,求出此时m的值;(3)点D在运动的过程中,△EBF的周长是否存在最小值?若存在,求出此时m的值;若不存在,请说明理由.17.如图,抛物线y=ax2+bx+3经过点A(1,0),B(4,0).(1)求抛物线的表达式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形P AOC的周长最小?若存在,求出四边形P AOC的周长最小值;若不存在,请说明理由;(3)如图②,点Q是OB上的一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.18.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(﹣3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠P A′O=90◦.求点C的坐标.19.如图,在直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0)、B(1,0),与y轴交于点C.(1)求抛物线的函数表达式.(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.20.如图,抛物线y=ax2+6x﹣5交x轴于A,B两点,交y轴于C点,点B的坐标为(5,0),直线y=x﹣5经过点B,C.(1)求抛物线的函数表达式;(2)点P是直线BC上方抛物线上的一动点,求△BCP面积S的最大值并求出此时点P 的坐标;(3)过点A的直线交直线BC于点M,连接AC当直线AM与直线BC的一个夹角等于∠ACB的3倍时,请直接写出点M的坐标.21.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式,并直接写出当x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),连接PC.当∠PCB=∠ACB时,求点P的坐标;(3)在(2)的条件下,将抛物线沿平行于y轴的方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.23.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(2,﹣3)和点B(5,0),顶点为C.(1)求这条抛物线的表达式和顶点C的坐标;(2)点A关于抛物线对称轴的对应点为点D,联结OD、BD,求∠ODB的正切值;(3)将抛物线y=x2+bx+c向上平移t(t>0)个单位,使顶点C落在点E处,点B落在点F处,如果BE=BF,求t的值.24.如图,直线y=﹣x+1与x轴,y轴分别交于A,B两点,抛物线y=ax2+bx+c过点B,并且顶点D的坐标为(﹣2,﹣1).(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ=2MN,直接写出点M的坐标.25.如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.26.在平面直角坐标系xOy中(如图),已知抛物线y=ax2+(a+)x+c(a≠0)经过点A (﹣3,﹣2),与y轴交于点B(0,﹣2),抛物线的顶点为点C,对称轴与x轴交于点D.(1)求抛物线的表达式及点C的坐标;(2)点E是x轴正半轴上的一点,如果∠AED=∠BCD,求点E的坐标;(3)在(2)的条件下,点P是位于y轴左侧抛物线上的一点,如果△P AE是以AE为直角边的直角三角形,求点P的坐标.27.如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求顶点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系式,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.28.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.点G是抛物线y =ax2+bx+c位于直线y=﹣x+3下方的任意一点,连接PB、GB、GC、AC.(1)求该抛物线的解析式;(2)求△GBC面积的最大值;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案1.(1)由y=x2+x+m,令y=0,则(x+2)(x﹣m)=0,∴AO=2,BO=m,∴A(﹣2,0),B(m,0),∵AB=7,∴m﹣(﹣2)=7,m=5,∴y=;(2)过点D作DK⊥x轴于点K,设∠DAB=α,则D(d,﹣),∴=.∴EO=AO•tanα=5﹣d,CE=5﹣(5﹣d)=d,∴;(3)过点E作CE的垂线,过C作∠OCP的平分线交DE于点J,交CE的垂线于点F,过点F作ED的平行线交HD于点N.∴∠ECF=∠HDE=α,HE=3k,CP=5k,CE=HD=d,∵CE=HD,∠CEF=∠CHD=90°,∴△CEF≌△DHE(ASA),∵EF∥DN,NF∥DE,∴四边形EDNF为平行四边形,∴EF=HE=DN=3k,CF=DE=FN,∴△CFN为等腰直角三角形,∴∠PCN=∠FNC=45°,∴∠PCN=∠PNC=45°﹣α,∴PC=PN=5k,∴PD=2k,∴CH=d﹣3k,PH=d﹣2k,∴(d﹣3k)2+(d﹣2k)2=(5k)2,∴(d﹣6k)(d+k)=0,∴d=6k,∴在Rt△DHE中,tan,由(2)知,∴.∴d=4,∴D(4,3),∴==8.2.解:(1)∵四边形ABCD为矩形,且B(1,0),C(3,0),D(3,4),∴A(1,4),设抛物线的解析式为y=a(x﹣1)2+4,将C(3,0)代入y=a(x﹣1)2+4,得0=4a+4,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)∵PE⊥x轴,DC⊥x轴,∴PE∥DC,∴△APN∽△ADC,∵PN分△ACD的面积为1:2的两部分,∴=或,当=时,==,∵AD=2,∴AP=,∴t的值为×2=;当=时,==,∵AD=2,∴AP=,∴t的值为×2=,综上所述,t的值为或;(3)如图2﹣1,当CN为菱形的对角线时,点P,N的横坐标均为,设直线AC的解析式为y=kx+b,将A(1,4),C(3,0)代入y=kx+b,得,解得,∴直线AC的表达式为y=﹣2x+6,将点N的横坐标代入y=﹣2x+6,得,即EN=4﹣t,由菱形CQNH可得,CQ=NH=t=CH,可得EH=(4﹣t)﹣t=4﹣2t,∵,∴,在Rt△CHE中,∵CE2+EH2=CH2,∴,解得,t1=,t2=4(舍);如图2﹣2,当CN为菱形的边时,由菱形CQHN可得,CQ=CN=t,在Rt△CNE中,∵NE2+CE2=CN2,∴(4﹣t)2+(2﹣t)2=t2,解得,t1=20﹣8,t2=20+8(舍);综上所述,t的值为或.3.解:(1)设抛物线解析式为y=a(x﹣h)2+k,(a≠0)∵顶点,∴,又∵图象过原点,∴,解出:,∴,即;(2)令y=0,即,解得:x1=0,x2=4,∴A(4,0),设直线AC的解析式为y=kx+b,将点A(4,0),代入,得,解得,∴直线AC的解析式为y=﹣x+4,过点D作DF∥y轴交AC于点F,设,则,∴,∴=,∴当m=3时,S△ACD有最大值,当m=3时,,∴;(3)∵∠CBO=∠CBA=90°,OB=AB=2,,∴,∴OA=OC=AC=4,∴△AOC为等边三角形,①如图3﹣1,当点P在C时,OA=AC=CA'=OA',∴四边形ACA'O是菱形,∴;②作点C关于x轴的对称点C',当点A'与点C'重合时,OC=AC=AA'=OA',∴四边形OCAA'是菱形,∴点P是∠AOA'的角平分线与对称轴的交点,记为P2,∴,∵∠OBP2=90°,OB=2,∴OP2=2BP2,设BP2=x,∴OP2=2x,又∵,∴(2x)2=22+x2,解得或,∴;综上所述,点P的坐标为或.4.解:(1)由抛物线y=ax2﹣2x+c与x轴交于A(﹣3,0),B(1,0)两点,得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;由y=﹣x2﹣2x+3=﹣(x+1)2+4,得,点D坐标为(﹣1,4);(2)在直线l上存在一点M,到点B的距离与到点C的距离之和最小,根据抛物线对称性MA=MB,∴MB+MC=MA+MC,∴使MB+MC的值最小的点M应为直线AC与对称轴l:x=﹣1的交点,当x=0时,y=3,∴C(0,3),设直线AC解析式为直线y=kx+b,把A(﹣3,0)、C(0,3)分别代入y=kx+b,得,,解得,,∴直线AC解析式为y=x+3,把x=﹣1代入y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)①PF=2FG,理由如下,设直线AD解析式为y=k'x+b',把A(﹣3,0)、D(﹣1,4)分别代入直线y=k'x+b',得,,解得,∴直线AD解析式为y=2x+6,则点F的坐标为(m,2m+6),同理G的坐标为(m,m+3),则FG=(2m+6)﹣(m+3)=m+3,FP=2m+6=2(m+3),∴FP=2FG;②根据题意得点E的坐标为(m,﹣m2﹣2m+3),设直线l与x轴交于点N,EF=(﹣m2﹣2m+3)﹣(2m+6)=﹣m2﹣4m﹣3=﹣(m+2)2+1∴S△AED=S△AEF+S△EFD==,∴当m为﹣2时,S△AED的最大值为1,如图,过点D作DH∥x轴,交y轴于点H,在△DHC中,∠DHC=180°﹣∠AOB=90°,,在Rt△AOC中,,在Rt△ADN中,,∵,∴DC2+AC2=AD2,∴∠ACD=90°,∴,∴,∴当m为﹣2时,四边形AEDC的面积最大,最大值为4.5.解:(1)将A(1,4)代入y=,得,k=4,∴双曲线解析式为y=,设B(m,)(m<0),连接AB,交x轴于点C,设直线AB的解析式为y=kx+b,将点A(1,4),B(m,)代入,得,解得,,∴直线AB的解析式为y=﹣x+,当y=0时,x=m+1,∴C(m+1,0),OC=﹣m﹣1,∴S△AOB=OC•(y A﹣y B)=(﹣m﹣1)(4﹣),∵△AOB的面积为3,∴(﹣m﹣1)(4﹣)=3,整理,得2m2+3m﹣2=0,解得,m1=(舍去),m2=﹣2,∴B(﹣2,﹣2),将A(1,4),B(﹣2,﹣2)代入y=ax2+bx,得,,解得,,∴抛物线的解析式为y=x2+3x,∴a=1,b=3,k=4;(2)在抛物线y=x2+3x中,对称轴为x=﹣,设P(﹣,y),∵O(0,0),B(﹣2,﹣2),∴PO2=+y2,OB2=8,PB2=+(y+2)2,∵△POB为等腰三角形,∴①PO2=OB2时,+y2=8,解得,y=±,∴P1(﹣,﹣),P2(﹣,);②PB2=OB2时,+(y+2)2=8,解得,y=﹣2±,∴P3(﹣,﹣2﹣),P4(﹣,﹣2+);③PB2=OP2时,+(y+2)2=+y2,解得,y=﹣,∴P5(﹣,﹣);综上所述,点P的坐标为P1(﹣,﹣),P2(﹣,),P3(﹣,﹣2﹣),P4(﹣,﹣2+),P5(﹣,﹣);(3)设M(x,y),∵A(1,4),B(﹣2,﹣2),O(0,0),∴MO2=x2+y2,MA2=(x﹣1)2+(y﹣4)2,MB2=(x+2)2+(y+2)2,又∵MO=MA=MB,∴,解得,,∴M(﹣,),作B关于y轴的对称点B'(2,﹣2),连接B'M交y轴于Q,则此时MQ+BQ的值最小,理由是两点之间,线段最短,又∵MB的长度为定值,∴此时△BQM的周长最小,C△BQM=MB+MQ+BQ=MB+MB'==,∴M的坐标为(﹣,),△BQM周长的最小值为.6.解:(1)将点A(﹣1,0),B(4,0)代入y=x2+bx+c,得,,解得,,∴抛物线的解析式为y=x2﹣3x﹣4;(2)当k=﹣1时,直线AC的解析式为y=﹣x﹣1,设P(x,x2﹣3x﹣4),则E(x,﹣x﹣1),D(x,0),则PE=|x2﹣3x﹣4﹣(﹣x﹣1)|=|x2﹣2x﹣3|,DE=|x+1|,∵PE=2ED,∴|x2﹣2x﹣3|=2|x+1|,当x2﹣2x﹣3=2(x+1)时,解得,x1=﹣1(舍去),x2=5,∴P(5,6);当x2﹣2x﹣3=﹣2(x+1)时,解得,x1=﹣1(舍去),x2=1,∴P(1,﹣6);综上所述,点P的坐标为(5,6)或(1,﹣6);(3)存在,理由如下;∵∠AED=∠PEC,∴要使△ADE与△PCE相似,必有∠EPC=∠ADE=90°或∠ECP=∠ADE=90°,①当∠EPC=∠ADE=90°时,如图1,CP∥x轴,∵P(1,﹣6),根据对称性可得C(2,﹣6),将C(2,﹣6),代入直线AC解析式中,得2k+k=﹣6,解得,k=﹣2;②当∠ECP=∠ADE=90°时,如图2,过C点作CF⊥PD于点F,则有∠FCP=∠PEC=∠AED,则△PCF∽△AED,∴=,在直线y=kx+k上,当x=1时,y=2k,∴E(1,2k),∴DE=﹣2k,由,得或,∴C(k+4,k2+5k),∴F(1,k2+5k),∴CF=k+3,FP=k2+5k+6,∴=,解得,k1=k2=﹣1,k3=﹣3(此时C与P重合,舍去),综上,当k=﹣2或﹣1时,△ADE与△PCE相似.7.(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(1,0),B(3,0)两点,∴,∴,∴抛物线解析式为;(2)如图1,过点A作AH∥y轴交BC于H,交BE于G,由(1),C(0,﹣2),将B(3,0),C(0,﹣2)代入y=kx+b,得,,解得,,∴直线BC的解析式为,∵H(1,y)在直线BC上,∴,∴,将点B(3,0),E(0,﹣1)代入y=kx+b,得,,解得,,∴直线BE的解析式为y=x﹣1,∴G(1,﹣),∴GH=,∵直线BE:y=x﹣1与抛物线y=﹣x2+x﹣2相交于F,B,∴F(,﹣),∴S△FHB=GH×(x B﹣x F)=××(3﹣)=;(3)如图2,由(1)y=﹣x2+x﹣2=﹣(x﹣2)2+,∴顶点D(2,),∵动点M从点D出发,以每秒1个单位的速度沿平行于y轴方向向上运动,∴设M(2,m),m>,∴OM2=m2+4,BM2=m2+1,OB2=9,∵∠OMB=90°,∴OM2+BM2=OB2,∴m2+4+m2+1=9,∴m1=,m2=﹣(舍),∴M(2,),∴MD=﹣,∴,∴当时,∠OMB=90°.8.解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx+3,得,解得,,∴抛物线的解析式为y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+3,将点B(3,0)代入y=kx+3,得,k=﹣1,∴直线BC的解析式为y=﹣x+3,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),过点C作CM⊥PH于点M,则CM=x,PH=﹣x2+3x,当CP=CH时,PM=MH,∠MCH=∠MCP,∵OB=OC,∴∠OBC=45°,∵CM∥OB,∴∠MCH=∠OBC=45°,∴∠PCH=90°,∴MC=PH=(﹣x2+3x),即x=(﹣x2+3x),解得,x1=0(舍去),x2=1,∴P(1,4);(3)在y=﹣x2+2x+3中,对称轴为x=1,若m+1≤1,即m≤0时,当x=m+1时,函数有最大值m,∴﹣(m+1)2+2(m+1)+3=m,解得,m1=(舍去),m2=;若m<1<m+1,即0<m<1时,当x=1时,函数有最大值为m=4(舍);若m>1,当x=m时,函数有最大值为m,∴﹣m2+2m+3=m,解得,m1=(舍去),m2=,综上所述,m的值为或.9.解:(1)∵抛物线经过点A,B,它们的坐标分别为(﹣4,0)、(2,0),∴设其解析式为y=a(x+4)(x﹣2),将点C(0,﹣3)代入y=a(x+4)(x﹣2),解得,,∴抛物线的解析式为;(2)∵OA=4,OC=3,∠AOC=90°,∴AC==5,∵PD⊥AC,∠PDE=∠AOC=90°,又∵PE∥y轴,∴∠PED=∠ACO,∴△PDE∽△AOC,∴PD:AO=DE:OC=PE:AC,即PD:4=DE:3=PE:5,∴,∴△PDE的周长=,则要使△PDE周长最大,PE取最大值即可,设直线AC的解析式为y=kx﹣3,将点A(﹣4,0)代入y=kx﹣3,得,k=﹣,∴直线AC的解析式为,设点,则,∴当a=﹣2时,取得最PE大值,最大值为,则,∴P(﹣2,﹣3),△PDE周长的最大值为;(3)如右图,①当BM为对角线时,显然,点F在y轴上,根据对称性得到点F的坐标为(0,3);②当BM为边时,∵,则有以下几种情况:(I)BC为边时,BM=BC=,点M在x轴负半轴上时,点M是点B向左平移个单位长度得到的,∴M(2﹣,0),∴点C(0,﹣3)向左平移个单位长度得到点F;点M在x轴正半轴上时,点M是点B向平右移个单位长度得到的,∴M(2+,0),∴点C(0,﹣3)向右平移个单位长度得到点F;(II)BC为对角线时,设OM=x,在直角三角形OMC中,由勾股定理可得OM2+OC2=MC2,即x2+32=(x+2)2,解得,x=,∴菱形的边长为2+=,∴CF=,∴F(,﹣3),综上所述,点F的坐标为(0,3)或或或.10.解:(1)在Rt△ABC中,AB===5,由翻折知,△BCO≌△BHO,∴BH=BC=3,∴AH=AB﹣BH=2,∵∠HAO=∠CAB,∠OHA=∠BCA=90°,∴△AHO∽△ACB,∴=,即=,∴AO=,∴A(,0),B(﹣,3),∵抛物线经过原点O,∴可设抛物线的解析式为y=ax2+bx,将点A(,0),B(﹣,3)代入,得,解得,,∴过A,B,O三点的抛物线解析式为y=x2﹣x;(2)设直线AB的解析式为y=kx+b,将点A(,0),B(﹣,3)代入,得,解得∴直线AB的解析式为y=﹣x+,∴可设P(x,﹣x+),则M(x,x2﹣x),∴PM=﹣x+﹣(x2﹣x)=﹣x2+x+,∴S△MAB=PM(x A﹣x B)=(﹣x2+x+)×4=﹣x2+x+=﹣(x﹣)2+4,∴当x=时,△MAB的面积取最大值4;(3)在y=x2﹣x中,对称轴为x=,①如图3﹣1,当OA为平行四边形的一边时,OA平行且等于EF,∵OA=,∴EF=,∵x F=,∴x E=±=或﹣,当x E=或﹣,时y E=,∴点E的坐标为(,)或(﹣,);②如图3﹣2,当OA为平行四边形的对角线时,OA与EF互相平分,则点E在抛物线顶点处,∵当x=时,y=﹣,∴点E的坐标为(,﹣),综上所述,点E的坐标为(,)或(﹣,)或(,﹣).11.解:(1)∵AE∥x轴,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴点C(4,2),设二次函数解析式为y=ax2+bx+2,∵C(4,2)和D(3,0)在该函数图象上,∴,得,∴该抛物线的解析式为y=x2﹣x+2;(2)作点A关于x轴的对称点A1,作点E关于直线BC的对称点E1,连接A1E1,交x 轴于点M,交线段BC于点N.根据对称与最短路径原理,此时,四边形AMNE周长最小.易知A1(0,﹣2),E1(6,2).设直线A1E1的解析式为y=kx+b,,得,∴直线A1E1的解析式为.当y=0时,x=3,∴点M的坐标为(3,0).∴由勾股定理得AM=,ME1=,∴四边形EAMN周长的最小值为AM+MN+NE+AE=AM+ME1+AE=;(3)不存在.理由:过点F作EH的平行线,交抛物线于点P.易得直线OE的解析式为y=x,∵抛物线的解析式为y=x2﹣x+2=,∴抛物线的顶点F的坐标为(2,﹣),设直线FP的解析式为y=x+b,将点F代入,得,∴直线FP的解析式为.,解得或,∴点P的坐标为(,),FP=×(﹣2)=,,解得,或,∵点H是直线y=x与抛物线左侧的交点,∴点H的坐标为(,),∴OH=×=,易得,OE=2,EH=OE﹣OH=2﹣=,∵EH≠FP,∴点P不符合要求,∴不存在点P,使得四边形EHFP为平行四边形.12.解:(1)∵抛物线y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),C(0,3),∴,得,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线的顶点坐标为(1,4),即该抛物线的解析式为y=﹣x2+2x+3,顶点坐标为(1,4);(2)点A关于对称轴的对称点是点B,连接CB与对称轴的交点为P,此时点P即为所求,设过点B(3,0),点C(0,3)的直线解析式为y=kx+m,,得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点P的坐标为(1,2),∵点A(﹣1,0),点C(0,3),点B(3,0),∴AC=,BC=3,∴△P AC的周长是:AC+CP+P A=AC+CB=,即点P的坐标为(1,2),△P AC的周长是;(3)存在点M(不与C点重合),使得S△P AM=S△P AC,∵S△P AM=S△P AC,∴当以P A为底边时,只要两个三角形等高即可,即点M和点C到P A的距离相等,当点M在点C的上方时,则CM∥P A时,点M和点C到P A的距离相等,设过点A(﹣1,0),点P(1,2)的直线l1解析式为:y=kx+m,,得,∴直线AP的解析式为y=x+1,∴直线CM的解析式为y=x+3,由得,,,∴点M的坐标为(1,4);当点M在点C的下方时,则点M所在的直线l2与AP平行,且直线l2与直线AP之间的距离与直线l1与直线AP 之间的距离相等,∴直线l2的的解析式为y=x﹣1,由得,,,∴M的坐标为(,)或(,);由上可得,点M的坐标为(1,4),(,)或(,).13.(1)证明:△=b2﹣4ac=[﹣3(a﹣1)]2﹣4a(2a﹣6)=a2+6a+9=(a+3)2,∵a>0,∴(a+3)2>0,∴抛物线与x轴有两个交点;(2)解:令y=0,则ax2﹣3(a﹣1)x+2a﹣6=0,∴或,∵a>0,∴且x1>x2,∴x1=2,,∴,∴t=a﹣5;(3)解:当a=1时,则y=x2﹣4,向上平移一个单位得y=x2﹣3,令y=0,则x2﹣3=0,得,∴,,∵OP=1,∴直线,联立:,解得,,,即,,∴AO=,在Rt△AOP中,AP==2,过C作CN⊥y轴,过M作MG⊥CN于G,过C作CH⊥x轴于H,∵CN∥x轴,∴∠GCM=∠P AO,又∵∠AOP=∠CGM=90°,∴△AOP∽△CGM,∴==,∴,∵B到CN最小距离为CH,∴MB+GM的最小值为CH的长度,∴2MB+MC的最小值为.14.解:(1)令x=0,得y=x﹣2=﹣2,则B(0,﹣2),令y=0,得0=x﹣2,解得x=4,则A(4,0),把A(4,0),B(0,﹣2)代入y=x2+bx+c(a≠0)中,得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;(2)∵PM∥y轴,∴∠ADC=90°,∵∠ACD=∠BCP,∴以点P、B、C为顶点的三角形与以点A、C、D为顶点的三角形相似,存在两种情况:①当∠CBP=90°时,如图1,过P作PN⊥y轴于N,设P(x,x2﹣x﹣2),则C(x,x﹣2),∵∠ABO+∠PBN=∠ABO+∠OAB=90°,∴∠PBN=∠OAB,∵∠AOB=∠BNP=90°,∴△AOB∽△BNP,∴,即=,解得:x1=0(舍),x2=,∴P(,﹣5);②当∠CPB=90°时,如图2,则B和P是对称点,当y=﹣2时,x2﹣x﹣2=﹣2,∴x1=0(舍),x2=,∴P(,﹣2);综上,点P的坐标是(,﹣5)或(,﹣2);(3)∵OA=4,OB=2,∠AOB=90°,∴∠BOA≠45°,∴∠BQP≠2∠BOA,∴分两种情况:①当∠PBQ=2∠OAB时,如图3,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,∴OE=AE,∴∠OAB=∠AOE,∴∠OEB=2∠OAB=∠PBQ,∵OB∥PG,∴∠OBE=∠PHB,∴△BOE∽△HPB,∴,由勾股定理得:AB==2,∴BE=,∵GH∥OB,∴,即,∴BH=x,设P(x,x2﹣x﹣2),则H(x,x﹣2),∴PH=x﹣2﹣(x2﹣x﹣2)=﹣x2+4x,∴,解得:x1=0,x2=3,∴点P的横坐标是3;②当∠BPQ=2∠OAB时,如图4,取AB的中点E,连接OE,过P作PG⊥x轴于G,交直线AB于H,过O作OF⊥AB于F,连接AP,则∠BPQ=∠OEF,设点P(t,t2﹣t﹣2),则H(t,t﹣2),∴PH=t﹣2﹣(t2﹣t﹣2)=﹣t2+4t,∵OB=2,OA=4,∴AB=2,∴OE=BE=AE=,OF===,∴EF===,S△ABP==,∴2PQ=4(﹣t2+4t),PQ=,∵∠OFE=∠PQB=90°,∴△PBQ∽△EOF,∴,即,∴BQ=,∵BQ2+PQ2=PB2,∴=,化简得,44t2﹣388t+803=0,即:(2t﹣11)(22t﹣73)=0,解得:t1=5.5(舍),t2=;综上,存在点P,使得△PBQ中有某个角的度数等于∠OAB度数的2倍时,其P点的横坐标为3或.15.解:(1)在直线y=﹣x+3中,当x=0时,y=3;当y=0时,x=4,∴C(0,3),B(4,0),∴OC=3,∵OC=3OA,∴OA=1,∴A(﹣1,0),把A(﹣1,0),B(4,0)代入y=ax2+bx+3,得,,解得,a=﹣,b=,∴抛物线的解析式为y=﹣x2+x+3;(2)如图1,连接RO,RC,RB,设R(t,﹣t2+t+3),则S△RBC=S△OCR+S△OBR﹣S△OBC=×3t+×4(﹣t2+t+3)﹣×3×4=﹣t2+6t,∵S△RBC=,∴﹣t2+6t=,解得,t1=1,t2=3,∵点R为直线BC上方对称轴右侧,∴R(3,3);(3)如图2﹣1,在RH上截取RM=OA,连接CM、AM,AM交PE于G,作QF⊥OB 于H,∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA(SAS),∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°,∵AC∥PE,∴∠CAM=∠AGE=45°,∴∠PEQ=45°,∴∠AGE=∠PEQ,∴AM∥QE,∴∠MAH=∠QEF,∵∠QFE=MHA=90°,∴△QEF∽△MAH,∴=,∴EF=2QF,设CP=m,∴QH=CP=m,∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=2m,∴EH=3m,∵四边形ACPE为平行四边形,∴AE=CP=m,∵EH=AH﹣AE=4﹣m,∴3m=4﹣m,∴m=1,∴CP=1;如图2﹣2,在RH上截取RM=OA,连接CM、AM,AM交PE于G,交QE于N,作QF ⊥OB于H,∵CR=CO,∠CRM=∠COA,∴△CRM≌△COA(SAS),∴CM=CA,∠RCM=∠OCA,∴∠ACM=∠OCR=90°,∴∠CAM=∠CMA=45°,∵AC∥PE,∴∠CAM=∠AGE=45°,∴∠PEQ=45°,∴∠AGE=∠PEQ=45°,∴∠ENG=∠ENA=90°,∵∠EQF+∠QEF=90°,∠EAN+∠QEF=90°,∴∠EQF=∠MAB,∵∠QFE=∠AHM=90°,∴△QEF∽△AMH,∴=,∴QF=2EF,设CP=m,∴QH=CP=m,∵OC=OH,∴∠OHC=45°,∴QF=FH=m,∴EF=m,∴EH=m,∵四边形ACPE为平行四边形,∴AE=CP=m,∵EH=AH﹣AE=4﹣m,∴4﹣m=m,∴m=,∴CP=,综上所述,CP的长度为1或.16.解:(1)在y=x﹣4中,当x=0时,y=﹣4;当y=0时,x=4.∴A(4,0),C(0,﹣4)把A(4,0),C(0,﹣4)代入y=ax2﹣3x+c中,得,解得,∴抛物线的解析式是y=x2﹣3x﹣4.(2)如图1,过点E作EH⊥y轴,垂足为H.∵OA=OC=4,∴∠OAC=∠ACO=45°,∴∠HEC=∠HCE=45°.∵点D(m,m2﹣3m﹣4),E(m,m﹣4),∴EH=HC=m,ED=(m﹣4)﹣(m2﹣3m﹣4)=﹣m2+4m.∴,∴当∠ECD=∠EDC时,EC=ED.∴,解得m=0(舍去)或;(3)存在.∴点D为第四象限抛物线上一动点(不与点A,C重合),∴0<m<4,在抛物线y=x2﹣3x﹣4中,当y=0时,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,∴点B坐标为(﹣1,0).∵∠F AE=∠FEA=45°,∴EF=AF.设△BFE的周长为n,则n=BF+FE+BE=BF+AF+BE=AB+BE,∵AB的值不变,∴当BE最小,即BE⊥AC时,△BFE的周长最小.∵当BE⊥AC时,∠EBA=∠BAE=45°,∴BE=AE,∴BF=AF=2.5.∴m=4﹣2.5=1.5时,△BEF的周长最小.17.解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)、B(4,0),∴,解得,∴该抛物线的解析式:y=x+3;(2)∵抛物线y=ax2+bx+3经过点A(1,0),B(4,0),∴A、B关于对称轴对称,。

2020-2021初中数学二次函数的应用培优提升训练题2(附答案详解)

2020-2021初中数学二次函数的应用培优提升训练题2(附答案详解)

2020-2021初中数学二次函数的应用培优提升训练题2(附答案详解) 一、单选题 1.小明研究二次函数2221y x mx m =-+-+(m 为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x 轴的直线上;②该二次函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③当12x -<<时,y 随x 的增大而增大,则m 的取值范围为2m ≥;④点()11,A x y 与点()22,B x y 在函数图象上,若12x x <,122x x m +>,则12y y >.其中正确结论的个数为( )A .1B .2C .3D .42.如图,二次函数y 1=x 2-mx 的图象与反比例函数22y x=的图象交于(a ,1)点,则y 1>y 2时,x 的取值范围是( ) A .x >2 B .0<x <2 C .x >2或x <0 D .x <03.如图,分别过点P i (i ,0)(i =1、2、…、n )作x 轴的垂线,交212y x =的图象于点A i ,交直线12y x =-于点B i .则111A B +121A B +1n nA B +的值为( ) A .21n n + B .2 C .2(1)n n + D .2n 1+ 4.方程227(13)20x k x k k -++--=(k 是实数)有两个实根α、β,且01α<<,12β<<,那么k 的取值范围是( )A .34k <<B .21k -<<-C .34k <<或21k -<<-D .无解 5.如图,在四边形ABCD 中,AB ∥CD ,∠A=90°,AB=1,AD=3,DC=5.点S 沿A→B→C 运动到C 点停止,以S 为圆心,SD 为半径作弧交射线DC 于T 点,设S 点运动的路径长为x ,等腰△DST 的面积为y ,则y 与x 的函数图象应为( )A .B .C .D .6.如图,在四边形ABCD 中,AB CD ∥,90BCD ∠=,10AB AD cm ==,8BC cm =,点P 从点A 出发,以每秒3cm 的速度沿折线A B C D ---方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动、已知动点P ,Q 同时出发,当点Q 运动到点C 时,点P ,Q 停止运动,设运动时间为t 秒,在这个运动过程中,若BPQ ∆的面积为220cm ,则满足条件的t 的值有( )A .1个B .2个C .3个D .4个7.如图,在矩形ABCD 中,8,4,AB AD E ==为CD 的中点,连接AE BE 、,点M 从点A 出发沿AE 方向向点E 匀速运动,同时点N 从点E 出发沿EB 方向向点B 匀速运动,点M N 、运动速度均为每秒1个单位长度,运动时间为t ,连接MN ,设EMN ∆的面积为S ,则S 关于t 的函数图像为( )A .B .C .D . 8.如图,正方形ABCD 的边长为2m ,点P ,点Q 同时从点A 出发,速度均2cm/s ,点P 沿A D C --向点C 运动,点Q 沿A B C --向点C 运动,则△APQ 的面积()2cm S 与运动时间()s t 之间函数关系的大致图象是( ) A .B .C .D .9.如图,在平面直角坐标系中,抛物线()()y x 1x 3=+-与x 轴相交于A 、B 两点.若在抛物线上有且只有三个不同的点1C 、2C 、3C ,使得1ΔABC 、2ΔABC 、3ΔABC 的面积都等于m ,则m 的值是( )A .6B .8C .12D .16 二、填空题 10.已知函数()2(x 1)1,x 32y (x 5)1,(x 3)--≤⎧⎪=-->⎨⎪⎩,若使y k =成立的x 值恰好有2个,则k 的值为______.11.如图,抛物线y=-x 2+2x+3与x 轴交于A 、B 两点,与y 轴交于点C ,点D 为抛物线的顶点,点P 为第一象限抛物线上一点,且∠DAP=45°,则点P 的坐标为______.12.如图,在第一象限内作射线OC ,与x 轴的夹角为30,在射线OC 上取点A ,过点A 作AH x ⊥轴于点H .在抛物线2(0)y x x =>上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点,且以点Q 为直角顶点的三角形与AOH 全等,则符合条件的点A 的坐标是________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数表达式为y =-18x 2+12x +32,那么铅球运动过程中最高点离地面的距离为_____米.14.如图,将抛物线y=−x 2+2x+8的图象x 轴上方的部分沿x 轴折到x 轴下方,图象的其余部分不变,得到一个新图象(实线部分);点P(a ,ka-1)在该函数上,若这样的点P 恰好有3个,则k 的值为_____.15.已知抛物线242y x x c =++,且当11x -<<时,抛物线与x 轴有且只有一个公共点,则c 的取值范围是________.16.边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE ⊥DC ,DE =DC .以直线AB 为对称轴的抛物线过C ,E 两点.点M 为直线AB 上一动点,点N 为抛物线上一动点,当以点M ,N ,D ,E 为顶点的四边形是平行四边形时点N 的坐标为___________.17.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在x 轴上,P ()1,x m ,Q ()2,x m (12x x <)是此抛物线上的两点.若存在实数c ,使得13x c ≤-,且23x c ≥+成立,则m 的取值范围是__________.18.如图,已知抛物线y=49-(x-1)(x-7)与x 轴交于两点,对称轴与抛物线交于点C ,与x 轴交于点D ,⊙C 的半径为2,G 为⊙C 上的一动点,P 为AG 的中点,则DP 的最大值为_________.三、解答题19.如图,抛物线y=ax 2-4n+4经过点P (2,4),与x 轴交于A 、B 两点,过点P 作直线l ∥x 轴,点C 为第二象限内直线l 上方,抛物线上一个动点,其横坐标为m 。

初三中考二次函数培优

初三中考二次函数培优

初三数学培优卷:二次函数考点分析培优★★★二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)一般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴 顶点坐标(-,). 顶点坐标(h ,k )★★★a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-<0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=->0,即对称轴在yc•的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2对称轴为221x x h +=2b a 244ac b a-2b a 2b a1.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2相同,这个函数解析式为________。

3.如果函数1)3(232++-=+-kx x k y k k是二次函数,则k 的值是______★6.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。

M =7.二次函数52-+=a ax y 的图象顶点在Y 轴负半轴上。

且函数值有最小值,则m 的取值范围是9.抛物线2)13(-=x y 当x 时,Y 随X 的增大而增大★11.已知二次函数2)3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为18.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( )(A )8 (B )14(C )8或14 (D )-8或-1419.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )(A )12 (B )11 (C )10 (D )920.若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( A )(A )第一象限(B )第二象限(C )第三象限(D )第四象限21.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A.a>0,△>0B.a>0, △<0C.a<0, △<0D.a<0, △<0★22.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为24. 二次函数y=2(x+3)(x-1)的x 轴的交点的个数有__个,交点坐标为_______25.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是26.二次函数y=(x-1)(x+2)的顶点为___,对称轴为 _。

初三《二次函数的应用》培优专题练习含答案

初三《二次函数的应用》培优专题练习含答案

于都中学初三《二次函数的应用》培优专题练习 ____________ ____________ ____________1、有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正确水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过6.76米米时,就会影响过往船只的顺利航行。

2、如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB =36m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7m ,则DE 的长为_________m . [答案]483、如图,AB 是自动喷灌设备的水管,点A 在地面,点B 高出地面1.5米.在B 处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B 与水流最高点C 的连线与水平线成45°角,水流的最高点C 与喷头B 高出2米,在如图的坐标系中,水流的落地点D 到点A 的距离是_________米.解析式为22113y -(2) 3.5-2222x x x =-+=++,水流落点D 到A 点的距离为:米72+ 4、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. 降价后,应将售价定为________元,才能使所获销售利润最大,为____________元。

5、科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况〔如下表〕:温度x /℃ …… -4 -2 0 2 4 4.5 ……植物每天高度增长量y /mm …… 41 49 49 41 25 19.75 ……由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.〔1〕请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;〔2〕温度为多少时,这种植物每天高度的增长量最大?〔3〕如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个X 围内选择?请直接写出结果.解:〔1〕y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点〔0,49〕不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点〔-4,41〕,〔-2,49〕,〔2,41〕不在同一直线上,所以y 不是x 的一次函数.〔2〕由〔1〕,得4922+--=x x y ,∴()5012++-=x y , 即当温度为-1℃时,这种植物每天高度增长量最大.〔3〕46<<-x .6、某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万。

培优12.二次函数的应用

培优12.二次函数的应用

培优《二次函数的应用》 一、知识要点1.二次函数的应用主要体现在:(1)与一次函数或反比例函数的综合应用;(2)与方程、不等式知识的综合应用;(2)与三角函数、几何知识的综合应用;(4)与其他学科知识的综合应用;(5)生产、生活实际应用题2.解决实际问题的具体步骤:(1)建立数学模型,即把实际问题中的有关变量关系用函数关系式表达;(2)应用函数的性质解决实际问题. 二、典型例题例 1. 某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为()x m ,花园的面积为2()y m . (1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?例 2. 某瓜果基地市场部为指导某地某种蔬菜的生产和销售,在对历年市场行情和生产情况进行了调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息.如图10(1)(2)两图.注:两图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本,生产成本6 月份最低;图10(1)的图象是线段,图10(2)的图象是抛物线段. (1)在3月份出售这种蔬菜,每千克的收益是多少元?(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由.例3.已知抛物线线2y ax bx c=++与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程210160x x-+=的两个根,且抛物线的对称轴是直线2x=-.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC 于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.三、能力测试1.周长为8m最大透光面积是222.38.34.2564.DmCmBmA2.已知某商品涨价x成(1成即10%)后,销量将减少x65成,若要获得最大的营业额,则需涨价A. 1成B. 2成C. 3成D. 4成3.一人乘雪橇沿如图所示的斜坡笔直滑下,滑下的距离S(米)与时间t(秒)间的关系式为210S t t=+,若滑到坡底的时间为2秒,则此人下滑的高度为()A.24米B.12米C.D.6米4.二次函数2y ax bx c=++图象上部分点的对应值如下表:则使y的取值范围为.5.某机械租赁公司有同一型号的机械设备40套,经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出。

初三《二次函数的应用》培优专题练习含答案

初三《二次函数的应用》培优专题练习含答案

《二次函数的应用》专题练习 1、有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正确水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过 米时,就会影响过往船只的顺利航行。

2、如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB =36m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7m ,则DE 的长为_________m .3、如图,AB 是自动喷灌设备的水管,点A 在地面,点B 高出地面1.5米.在B 处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B 与水流最高点C 的连线与水平线成45°角,水流的最高点C 与喷头B 高出2米,在如图的坐标系中,水流的落地点D 到点A 的距离是_________ 米.4、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. 降价后,应将售价定为________元,才能使所获销售利润最大,为____________元。

5、科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.6、某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万。

该生产线投产后,从第1年到第x 年的维修、保养费用累计为y (万元),且2y ax bx =+,若第1年的维修、保养费用为2万元,到第2年为4万元。

(教师版)九年级下册《二次函数》的应用培优提高

(教师版)九年级下册《二次函数》的应用培优提高

九年级下册《二次函数》的应用培优提高【基础知识回顾】一、二次函数与一元二次方程:二次函数y= ax2+bx+c的同象与x轴的交点的横坐标对应着一元二次方程ax2+bx+c=0的实数根,它们都由根的判别式决定抛物线x轴有个交点<=b2-4ac>0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac=0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac<0=>一元二次方程有实数根【教师提醒:若抛物线与x轴有两交点为A(x1,0)B(x2,0)则抛物线对称轴式x= 两交点间距离AB 】二、二次函数解析式的确定:1、设顶点式,即:设当知道抛物线的顶点坐标或对称轴方程与函数最值时,除代入这一点外,再知道一个点的坐标即可求函数解析式2、设一般式,即:设知道一般的三个点坐标或自变量与函数的三组对应数值可设为一般式,从而列三元一次方程组求的函数解析式【教师提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设以y轴为对称轴,可设顶点在x轴上,可设抛物线过原点等】三、二次函数的应用1、实际问题中解决最值问题:步骤:1、分析数量关系建立模型2、设自变量建立函数关系3、确定自变量的取值范围4、根据顶点坐标公式或配法结合自变量的取值范围求出函数最值2、与一次函数或直线形图形结合的综合性问题一般步骤:1、求一些特殊点的坐标2、将点的坐标代入函数关系式求出函数的解析式3、结合图像根据自变量取值讨论点的存在性或图形的形状等问题【教师提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题】【重点考点例析】考点一:二次函数的最值例1.已知:M,N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A.有最大值,最大值为92- B.有最大值,最大值为92C.有最小值,最小值为92D.有最小值,最小值为92-思路分析:先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特征求出其最值即可.解:∵M,N两点关于y轴对称,点M的坐标为(a,b),∴N点的坐标为(-a,b),又∵点M在反比例函数12yx=的图象上,点N在一次函数y=x+3的图象上,∴123bab a⎧=⎪⎨⎪=-+⎩,整理得123aba b⎧=⎪⎨⎪+=⎩,故二次函数y=-abx2+(a+b)x为y=12-x2+3x,∴二次项系数为12-<0,故函数有最大值,最大值为y=239124()2-=⨯-,故选:B.对应训练1.(2012?兰州)已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a,b的大小关系为()A .a >bB .a <bC .a=bD .不能确定解:∵二次函数y=a (x+1)2-b (a≠0)有最小值,∴抛物线开口方向向上,即a >0; 又最小值为1,即-b=1,∴b=-1,∴a>b .故选A .考点二:确定二次函数关系式例2 (2012?珠海)如图,二次函数y=(x-2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m 的x思路分析:(1)将点A (1,0)代入y=(x-2)2+m 求出m 的值,根据点的对称性,将y=3代入二次函数解析式求出B 的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A 、B 的交点坐标可直接求出kx+b≥(x-2)2+m 的x 的取值范围. 解:(1)将点A (1,0)代入y=(x-2)2+m 得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C 点坐标为(0,3),由于C 和B 关于对称轴对称,在设B 点坐标为(x ,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B 点坐标为(4,3).设一次函数解析式为y=kx+b ,将A (1,0)、B (4,3)代入y=kx+b 得, 0 43k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,则一次函数解析式为y=x-1; (2)∵A、B 坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m 时,1≤x≤4.对应训练2.(2012?佳木斯)如图,抛物线y=x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.分析:(1)直接把(0,0),(2,0)代入y=x2+bx+c中,列方程组求b、c的值即可;(2)将二次函数解析式写成顶点式,可求顶点坐标及对称轴;(3)设点B的坐标为(a,b),根据三角形的面积公式求b的值,再将纵坐标b代入抛物线解析式求a的值,确定B点坐标.解:(1)把(0,0),(2,0)代入y=x2+bx+c得420cb=⎧⎨+=⎩,解得2bc=-⎧⎨=⎩,所以解析式为y=x2-2x。

二次函数的应用:拱桥喷水与投球问题大题专练(重难点培优)九年级数学下册尖子生培优题典【苏科版】

二次函数的应用:拱桥喷水与投球问题大题专练(重难点培优)九年级数学下册尖子生培优题典【苏科版】

2021-2022学年九年级数学下册尖子生培优题典【苏科版】专题5.6二次函数的应用:拱桥喷水与投球问题大题专练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________一、解答题(共24题)1.(2022·江苏泰州·九年级期末)校园景观设计:如图1,学校计划在流经校园的小河上建造一座桥孔为抛物线的小桥,桥孔的跨径为8m,拱高为6m.(1)把该桥孔看作一个二次函数的图像,建立适当的平面直角坐标系,写出这个二次函数的表达式;(2)施工时,工人师傅先要制作如图2的桥孔模型,图中每个立柱之间距离相等,请你计算模型中左侧第二根立柱(AB)的高.2.(2022·江苏·九年级专题练习)如图1,是抛物线形的拱桥,当拱顶高水面2米时,水面宽4米.如图建立平面直角坐标系,解答下列问题:(1)如图2,求该抛物线的函数解析式.(2)当水面AB下降1米,到CD处时,水面宽度增加多少米?(保留根号)(3)当水面AB上升1米时,水面宽度减少多少米?(保留根号)3.(2022·江苏宿迁·二模)如图,正常水位时,抛物线形拱桥下的水面宽AB为20m,此时拱桥的最高点到水面的距离为4m.(1)把拱桥看作一个二次函数的图象,建立恰当的平面直角坐标系,求出这个二次函数的表达式;(2)当水面宽10m时,达到警戒水位,如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?4.(2022·江苏连云港·九年级期末)如图,某公路隧道横截面为抛物线,其最大高度6米,底部宽度OM为12米,现以O点为原点,OM所在的直线为x轴建立直角坐标系.(1)求这条抛物线的解析式;(2)若要搭建一个由AD﹣DC﹣CB组成的矩形“支撑架”,已知支架的高度为4米,则这个“支撑架”总长是多少米?5.(2021·江苏·南通市启秀中学九年级阶段练习)为促进经济发展,方便居民出行,某施工队要修建一个横断面为抛物线的公路隧道,隧道最高点P离路面OM的距离为6米,宽度OM为12米,隧道内设双向行车道,并且中间有一条宽为1米的隔离带.如果一货运汽车装载某大型设备后高为4米,宽为3.5米,按如图所示的平面直角坐标系这辆货车能否安全通过?为什么?6.(2022·江苏·苏州工业园区金鸡湖学校二模)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.7.(2021·江苏·昆山市城北中学九年级阶段练习)河上有一座桥孔为抛物线形的拱桥,水面宽6m时,水面离桥孔顶部3m.因降暴雨水位上升lm.(1)如图①,若以桥孔的最高点为原点,建立平面直角坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面的高为0.5m、宽为4m(横断面如图②).暴雨后这艘船能从这座拱桥下通过吗?请说明理由.8.(2021·江苏·九年级专题练习)如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB=6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?9.(2022·江苏·九年级专题练习)从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是ℎ=30t−5t2.(1)小球从抛出到落地经过了多少秒?(2)当小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?10.(2022·江苏扬州·二模)图,某体育休闲中心的一处山坡OA的坡度为1∶2,山坡上A处的水平距离OE= 10m,A处有一根与OE垂直的立杆AB=3m.这是投掷沙球的比赛场地,要求人站在立杆正前方的山坡下点O处投掷沙球,沙球超过立杆AB的高度即为获胜.在一次比赛中,小林投出的沙球运动路线看作一条抛物线,沙球出手时离地面2m,当飞行的最大高度为12m 时,它的水平飞行距离为6m;(1)求该抛物线的表达式,并在网格图中,以O为原点建立平面直角坐标系,画出这条抛物线的大致图像;(2)小林这一次投掷沙球能否获胜?请说明理由.11.(2021·江苏·九年级专题练习)如图,以60米/秒的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:秒)之间有下列函数关系:h=30t﹣5t2.依据所给信息,解决下列问题:(1)小球的飞行高度是否能达到25米?如果能,需要飞行的时间是多少?(2)小球的飞行高度是否能达到45米?如果能,需要飞行的时间是多少?请直接写出答案:.(3)小球从飞出到落地要用多少时间(设地面是水平的)?12.(2021·江苏·无锡市太湖格致中学九年级阶段练习)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A′(如图3),请直接写出m 的取值范围.13.(2022·江苏·西安交大苏州附中九年级阶段练习)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?14.(2021·江苏南京·二模)如图①,小明和小亮分别站在平地上的C、D两地先后竖直向上抛小球A、B(抛出前两小球在同一水平面上),小球到达最高点后会自由竖直下落到地面.A、B两球到地面的距离y1(m)和y2(m)与小球A离开小明手掌后运动的时间x(s)之间的函数图像分别是图②中的抛物线C1、C2.已知抛物线C1经过点P(0,2),顶点是Q(1,7),抛物线C2经过M(1,2)和N(2,5)两点,两抛物线的开口大小相同.(1)分别求出y1、y2与x之间的函数表达式.(2)在小球B离开小亮手掌到小球A落到地面的过程中.①当x的值为__________时,两小球到地面的距离相等;②当x为何值时,两小球到地面的距离之差最大?最大是多少?15.(2021·江苏·盐城市初级中学二模)小明为了能在4月份的体育加试中取得好成绩,每天进行掷实心球训练:当投掷实心球时会产生竖直向上的速度和水平向前的速度,研究表明:当这两个速度相等时,投掷距离最远.实心球在投掷的过程中的高度y与实心球出手后的时间t满足:y=-5t2+bt+2,水平距离x=at,a是出手后实心球水平向前的速度,b为出手后竖直向上的速度.(1)当a=b=4√2m/s时,①写出x与t的函数表达式为,y与t的函数表达式为;②结合所给的平面直角坐标系,求出y与x的函数表达式及此时投掷距离.(2)当a=b时,点O为投掷点,实心球落在圆心角为45°的∠AOB区域内时成绩有效,以实心球的落地点与投掷点O的距离为学生的投掷距离,已知落地点P在∠AOB区域内且到边界的距离PM=√2m,PN=6m,求出小明投掷的距离及实心球在此次投掷中的最高高度.m,16.(2021·江苏·九年级专题练习)在一次篮球比赛中,如图,队员甲正在投篮.已知球出手时离地面209与篮圈中心的水平距离为7m,球出手后水平距离为4m时达到最大高度4m,设篮球运行轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)此时球能否准确投中?(3)此时,对方队员乙在甲面前1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?17.(2022·江苏·如皋市石庄镇初级中学九年级阶段练习)如图①,一个可调节高度的喷灌架喷射出的水流可以近似地看成抛物线.图②是喷射出的水流在平面直角坐标系中的示意图,其中喷灌架置于点O处,喷水头的高度(喷水头距喷灌架底部的距离)设置的是1米,当喷射出的水流距离喷水头水平距离为8米时,达到最大高度5米.(1)求水流运行轨迹的函数解析式;(2)若在距喷灌架12米处有一棵3.5米高的果树,问:水流是否会碰到这棵果树?请通过计算说明.18.(2022·江苏·九年级专题练习)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x−ℎ)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.19.(2022·江苏·九年级专题练习)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同。

2025年北师大版九年级下册数学第2章培优拔高练 二次函数的综合应用

2025年北师大版九年级下册数学第2章培优拔高练 二次函数的综合应用

当 C2 的顶点坐标为 Q(-h,10+k)时, y2=a(x+h)2+10+k,
将点 A(-h-2,8+k)的坐标代入上式,得 4a+10+k=8+k,
解得 a=-12;
当 C2 的顶点坐标为 Q(-h,6+k)时,y2=a(x+h)2+6+k,将
点 A(-h-2,8+k)的坐标代入上式,得 4a+6+k=8+k,解
【点拨】
由题意,设抛物线 L2 的表达式为 y=54(x-h)2+k,由题意得 D921,-10.∴易知抛物线 L2 的对称轴是直线 x=4+912- 2 4=247.∴抛物线 L2 的表达式为 y=54x-2472+k. 将点 B(4,-10)的坐标代入上式,得-10=544-2472+k, 解得 k=-1 62445,∴顶点 C 的坐标为247,-1 62445. ∴最低点 C 离水面的距离为1 62445-10=66045(m).
(1)
x023456
y 0 1 2.25 4 6.25 9 请用平滑的曲线在图②将上述点连接,并求出y与x的
关系式;
解:描点,连线,函数图象如图所示.
观察图象知,函数为二次函数,
设抛物线的表达式为
c=0,
a=14,
y=ax2+bx+c,由题意得4a+2b+c=1,
解得b=0,
16a+4b+c=4,
得 a=21.
综上,a 的值为12或-12.
返回
第二章 二次函数 培优拔高练 二次函数的Leabharlann 合应用温馨提示:点击 进入讲评
1 2
1. [2024 陕西师大附中八模改编]如图,在平面直 角坐标系中,某跳水运动员站在跳台上的 O 处 进行 10 m 跳台跳水训练,水面平行于 x 轴, 水面边缘点 E 的坐标为-32,-10.运动员(将 运动员看成一点)在空中运动的路线是经过原 点 O、最高点 A、入水点 B 的抛物线 L1,最高 点 A 的坐标为1,54.

2022--2023学年北师大版九年级数学下册《2-4二次函数的应用》同步提升训练(附答案)

2022--2023学年北师大版九年级数学下册《2-4二次函数的应用》同步提升训练(附答案)

2022--2023学年北师大版九年级数学下册《2.4二次函数的应用》同步提升训练(附答案)一.选择题1.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为50m,门宽为2m.这个矩形花圃的最大面积是()A.169m2B.288m2C.338m2D.312.5m22.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2,小球运动到最高点所需的时间是()A.2s B.3s C.4s D.5s3.小明用一根长40cm的铁丝围成一个矩形(如图),他发现矩形邻边的长度a,b及面积S 是三个变量.有下面三个结论:①b是a的一次函数;②S是a的一次函数;③S是a的二次函数.其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③4.向空中发射一枚炮弹,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c(a ≠0),若此炮弹在第6秒与第16秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第11秒D.第16秒5.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.②③B.②③④C.①②④D.①③④二.填空题6.如图,在四边形ABCD中,∠A=∠D=120°,AB=6、AD=4,点E、F分别在线段AD、DC上(点E与点A、D不重合),若∠BEF=120°,AE=x、DF=y,则y关于x 的函数关系式为.7.如图,Rt△ABC中,∠ACB=90°,AC=BC=8,D为AB中点,E、F是边AC、BC上的动点,E从A出发向C运动,同时F以相同的速度从C出发向B运动,F运动到B停止,当AE为时,△ECF的面积最大.8.小燕去参观一个蔬菜大棚,大棚横截面为抛物线,有关数据如图所示,已知小燕的身高1.40米,在她不弯腰的情况下,横向活动范围有米.9.如图,规格为60cm×60cm的正方形地砖在运输过程中受损,断去一角,量得AF=30cm,CE=45cm.现准备从五边形地砖ABCEF上截出一个面积为S的矩形地砖PMBN,则S 最大值是.10.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的序号是.11.为了在校运会中取得更好的成绩,小丁积极训练,在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是1.68米,当铅球运行的水平距离为2米时,达到最大高度2米的B处,则小丁此次投掷的成绩是米.12.如图,有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.若洪水到来时,水位以每小时0.2米的速度上升,则再持续小时水位才能到拱桥顶.13.如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是m.14.斜抛小球,小球触地后呈抛物线反弹,每次反弹后保持相同的抛物线形状(开口方向与开口大小前后一致),第一次反弹后的最大高度为h1,第二次反弹后的最大高度为h2.第二次反弹后,小球越过最高点落在垂直于地面的挡板C处,且离地高度BC=h1,若OB=90dm,OA=2AB.则为.15.某产品进货单价为90元,按100元一件出售时,能售500件,如果这种商品每涨价1元,其销售量就减少10件,为了获得最大利润,其单价应定为元.16.“水晶晶南浔”的美食文化中以特有的双交画出名,盛面的瓷碗截面图如图1所示,碗体DEC呈抛物线状(碗体厚度不计),点E是抛物线的顶点,碗底高EF=1cm,碗底宽AB=2cm,当瓷碗中装满面汤时,液面宽CD=8cm,此时面汤最大深度EG=6cm,将瓷碗绕点B缓缓倾斜倒出部分面汤,如图2,当∠ABK=30°时停止,此时液面CH宽cm;碗内面汤的最大深度是cm.三.解答题17.如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD的一边AB 的长为x(m),矩形苗圃ABCD面积为y(m2).(1)求y与x的函数关系式;(2)求所围矩形苗圃ABCD的面积最大值.18.某景区超市销售一种纪念品,这种商品的成本价15元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于24元/件,市场调查发现,该商品每天的销售量y(件)与销售单价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售单价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?19.如图,在一次足球比赛中,守门员在地面O处将球踢出,一运动员在离守门员8米的A 处发现球在自己头上的正上方4米处达到最高点M,球落地后又一次弹起.据实验测算,足球在空中运行的路线是一条抛物线,在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球第一次落地之前的运动路线的函数表达式及第一次落地点B和守门员(点O)的距离;(2)运动员(点A)要抢到第二个落点C,他应再向前跑多少米?(假设点O、A、B、C在同一条直线上,结果保留根号)20.如图,一小球M从斜坡OA上的O点处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数y=x刻画.若小球到达的最高的点坐标为(4,8),解答下列问题:(1)求抛物线的表达式;(2)在斜坡OA上的B点有一棵树,B点的横坐标为2,树高为4,小球M能否飞过这棵树?通过计算说明理由;(3)求小球M在飞行的过程中离斜坡OA的最大高度.21.二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点,连接BP、AC,交于点Q,过点P作PD⊥x轴于点D.(1)求二次函数的表达式;(2)连接P A,PC,求S△P AC的最大值;(3)连接BC,当∠DPB=2∠BCO时,求直线BP的表达式.22.如图(1),直线y=﹣x+3与x轴、y轴分别交于点B(3,0)、点C(0,3),经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式与点P的坐标;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值;(3)连接AC,点N在x轴上,点M在对称轴上,①是否存在使以B、P、N为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由;②是否存在点M,N,使以C、P、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.(图(2)、图(3)供画图探究)参考答案一.选择题1.解:设花圃的长为x,面积为y,则y关于x的函数表达式为:y=(50+2﹣x)x=﹣x2+26x=﹣(x﹣26)2+338,∵,∴2≤x<52.∴当x=26时,面积最大为338m2.2.解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,∴当t=3时,h有最大值,最大值为45.故选:B.3.解:①由题意得:a+b=×40=20,b=20﹣a,则b是a的一次函数,故①正确,符合题意;②S=ab=a(20﹣a)=﹣a2+20a,则S是a的二次函数,故②错误,不符合题意;③S是a的二次函数,由②知S是a的二次函数,故③正确,符合题意.故选:B.4.解:∵此炮弹在第6秒与第18秒时的高度相等,∴抛物线的对称轴直线是:x==11,∴x=11时,函数值最大,即第11秒炮弹所在高度最高,故选:C.5.解:①由图象知小球在空中经过的路程是40×2=80m;故①错误;②当t=6时,高度为0,则运动时间是6s,或由图象可知,小球6s时落地,故小球运动的时间为6s,故②正确;③小球抛出3秒时达到最高点即速度为0,故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O点(0,0)代入得0=a(0﹣3)2+40,解得:,∴,当t=1.5时,,解得:h=30米,故④正确;综上,正确的有②③④.故选:B.二.填空题6.解:∵∠A=∠D=120°,∴∠ABE+∠AEB=60°,∵∠BEF=120°,∴∠AEB+∠DEF=60°,∴∠ABE=∠DEF,∴△ABE∽△DEF,∴=,∵AE=x、DF=y,AB=6、AD=4,∴,∴,故答案为:.7.解:设点E运动的距离为a,则点F运动的距离也为a,S△ECF==,∴当a=4时,△ECF的面积最大,故答案为:4.8.解:如图建立坐标系,设抛物线的解析式为y=ax2+3.2,将点B(4,0)代入得:16a+3.2=0,解得:a=﹣,则抛物线的解析式为y=﹣x2+3.2,当y=1.4时,﹣x2+3.2=1.4,解得:x=3或x=﹣3,所以横向活动的范围为3﹣(﹣3)=6米,故答案为:6.9.解:延长MP交CD与点G,设MP为x,PN为y,则EG=y﹣45,PG=60﹣x.∵PG∥FD,∴△EPG∽△EFD,∴y=﹣x+75(30≤x≤60),∴S=xy=(﹣x+75)x=﹣x2+75x=﹣(x﹣75)2+,∵﹣<0,∴当x<75时,S随x的增大而增大,∵30≤x≤60,∴当x=60时,S最大,最大值为2700cm2.故答案为:2700cm2.10.解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,存在函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;故答案为:①②③④.11.解:建立坐标系,如图所示:由题意得:A(0,1.68),B(2,2),点B为抛物线的顶点,设抛物线的解析式为y=a(x﹣2)2+2,把A(0,1.68)代入得:4a+2=1.68,解得a=﹣0.08,∴y=﹣0.08(x﹣2)2+2,令y=0,得﹣0.08(x﹣2)2+2=0,解得x1=7,x2=﹣3(舍),∴小丁此次投掷的成绩是7米.故答案为:7.12.解:设抛物线的解析式为y=ax2,设D(5,b),则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得,∴y=﹣x2;∵b=﹣1,∴拱桥顶O到CD的距离为1,1÷0.2=5(小时).所以再持续5小时到达拱桥顶.故答案为:5.13.解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.14.解:∵OB=90,OA=2AB,∴OA=60,AB=30,设第一次反弹后的抛物线解析式为y=a(0﹣30)2+h1,∵抛物线过原点O,∴a(x﹣30)2+h1=0,解得:h1=﹣900a,∵每次反弹后保持相同的抛物线形状(开口方向与开口大小前后一致),∴两个抛物线的a是相同的,设二次反弹后的抛物线解析式为y=a(x﹣m)2+h2,∵BC=h1,h1=﹣900a,∴BC=﹣600a,∵抛物线过A,C两点,∴,解得:,∴==.故答案为:.15.解:设单价定为x,总利润为W,则可得销量为:500﹣10(x﹣100),单件利润为:(x﹣90),由题意得,W=(x﹣90)[500﹣10(x﹣100)]=﹣10x2+2400x﹣135000=﹣10(x﹣120)2+9000,故可得,当x=120时,W取得最大,即为了获得最大利润,其单价应定为120元.故答案为:120.16.解:以F为原点,直线AB为x轴,直线EF为y轴,建立平面直角坐标系,如图:由题意知:F(0,0),E(0,1),C(4,7),D(﹣4,7),设抛物线的解析式为:y=ax2+1,把点C(4,7)代入得,7=a+1,解得:a=,∴y=x2+1,将瓷碗绕点B缓缓倾斜倒出部分面汤,当∠ABK=30°时停止,所以旋转前CH与水平方向的夹角为30°,即∠DCH=30°,设直线CH的解析式为y=kx+b,与y轴交于点G,如图:由题意知:点C(4,7),∵∠DCH=30°,CK=4,∴KG=4tan30°=4,即点G(0,3),∴,解得:,∴直线CH的解析式为:y=x+3,由,解得或,∴H(﹣,),∴CH==.把直线CH:y=x+3,向下平移m个单位得到直线l1:y=x﹣m,当直线l1与抛物线只有一个交点l时,两平行线之间的距离最大,过G作GJ⊥l1,交l1于点J,与y 轴交于点M,GJ的长即为碗内面汤的最大深度,联立,整理为:x2﹣x+1+m=0,∵只要一个交点,∴Δ=0,即b2﹣4ac=﹣4××(1+m)=0,解得:m=﹣,∴直线l1的解析式为:y=x+,∴点M(0,),GM=3﹣=,∵CH与水平面的夹角为30°,∴直线l1与水平面的夹角为30°,即∠MGJ=30°,∴在Rt△GMJ中,GJ=GM cos30°=×=,即碗内面汤的最大深度为:,故答案为:,.三.解答题17.解:(1)设AB=xm,则有BC=(18﹣2x)m,根据题意得:y=x(18﹣2x)=﹣2x2+18x,∴y与x的函数关系式y=﹣2x2+18x;(2)二次函数y=﹣2x2+18x=﹣2(x﹣)2+,∵﹣2<0,∴二次函数图象开口向下,∴当x=时,y有最大值,最大值为,答:围矩形苗圃ABCD的面积最大值为m2.18.解:(1)设y与x的函数解析式为y=kx+b,将(15,45)、(24,36)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+60(15≤x≤24);(2)根据题意知,W=(x﹣15)y=(x﹣15)(﹣x+60)=﹣x2+75x﹣900,∵a=﹣1<0,∴当x<时,W随x的增大而增大,∵15≤x≤24,∴当x=24时,W取得最大值,最大值为324,答:每件销售价为24元时,每天的销售利润最大,最大利润是324元.19.解:(1)设足球第一次落地之前的运动路线的函数表达式为y=a(x﹣8)2+4,根据其顶点为(8,4),过点O(0,0)得0=64a+4,解得:a=﹣,∴y=﹣(x﹣8)2+4.当y=0时,﹣(﹣8)2+4=0,解得:x=0(舍去)或x=16,答:足球第一次落地之前的运动路线的函数表达式为y=﹣(x﹣8)2+4,第一次落地点B和守门员(点O)的距离为16米;(2)设第一次落地之后的运动路线的函数表达式为y=﹣(x﹣m)2+2,由题意,得0=﹣(16﹣m)2+2,解得m=16+4或m=16﹣4(舍去),∴y=﹣(x﹣16﹣4)2+2.当y=0时,0=﹣(x﹣16﹣4)2+2.解得:x=16+8或x=16.∴他应从A点再往前的距离为:16+8﹣8=(8+8)米.答:他应再向前跑(8+8)米.20.解:(1)∵小球到达的最高的点坐标为(4,8),∴设抛物线的表达式为y=a(x﹣4)2+8,把(0,0)代入得,0=a(0﹣4)2+8,解得:a=﹣,∴抛物线的表达式为y=﹣(x﹣4)2+8;(2)当x=2时,y1=x=1,y2=﹣(x﹣4)2+8=6,∵6﹣1>4,∴小球M能飞过这棵树;(3)小球M在飞行的过程中离斜坡OA的高度h=﹣(x﹣4)2+8﹣x=﹣(x﹣)2+,∴小球M在飞行的过程中离斜坡OA的最大高度为.21.解:(1)∵二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),∴,解得:,∴二次函数的表达式为y=﹣x2﹣3x+4.(2)将x=0代入y=﹣x2﹣3x+4得,y=4,∴点C(0,4),设直线AC所在直线的表达式为y=k1x+b1,则,解得:,∴直线AC的表达式为y=x+4,如图,设PD与线段AC交于点N,设P(t,﹣t2﹣3t+4),∵PD⊥x轴交AC于点N,∴N(t,t+4),∴PN=y P﹣y N=﹣t2﹣4t,过点C作CH⊥PD,则CH=﹣t,AD=t+4,∴S△APC=S△APN+S△PCN====﹣2t2﹣8t,∵a=﹣2<0,∴当t=﹣2时,S△APC有最大值,△P AC面积的最大值为8.(3)如图,设BP与y轴交于点E,∵PD∥y轴,∴∠DPB=∠OEB,∵∠DPB=2∠BCO,∴∠OEB=2∠BCO,∴∠ECB=∠EBC,∴BE=CE,∵C(0,4),B(1,0),∴OC=4,OB=1,设OE=a,则CE=BE=4﹣a,在Rt△BOE中,BE2=OE2+OB2,∴(4﹣a)2=a2+12,解得:a=,∴E(0,),设BP所在直线表达式为y=kx+b(k≠0),∴,解得:,∴直线BP的表达式为y=﹣x+.22.解:(1)将点B(3,0)、点C(0,3)代入y=x2+bx+c,得,解得:,∴抛物线的解析式为y=x2﹣4x+3,∵y=(x﹣2)2﹣1,∴顶点P的坐标为(2,﹣1).(2)设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=﹣x+3,如图(1),过点E作y轴的平行线交直线BC于点F,设点E(x,x2﹣4x+3),则点F(x,﹣x+3),∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE====﹣x2+x,∵S△CBE=﹣(x﹣)2+,∴当x=时,△EBC的面积最大值为;∴E(,﹣).(3)①对y=x2﹣4x+3,当y=0时,x2﹣4x+3=0,解得:x=1或x=3,∴A(1,0),∵B(3,0),C(0,3),∴OC=OB=3,AB=2,BC=3,AC=,∴∠ABC=45°,∵B(3,0),P(2,﹣1),∴∠PBN=45°,PB=,∴∠PBN=∠ABC,如图(2),当△ABC∽△PBN时,,∴,∴BN=3,∴N1(0,0);当△ABC∽△NBP时,,∴,∴NB=,∴N2(,0);综上所述,当点N的坐标为(0,0)或(,0)时,以点B、P、N为顶点的三角形与△ABC相似.②如图(3),C(0,3),P(2,﹣1),设M(2,y),N(x,0),(i)以CN为对角线时,,解得:,∴M1(2,4),N1(4,0);(ii)以CP为对角线时,,解得:,∴M2(2,2),N2(0,0);(iii)以CM为对角线时,,解得:,∴M3(2,﹣4),N3(0,0);综上所述,当点M的坐标为(2,4)或(2,2)或(2,﹣4)时,存在以C、P、M、N 为顶点的四边形是平行四边形.。

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题2(附答案详解)

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题2(附答案详解)

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题2(附答案详解)1.如图,在直角梯形ABCD 中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E 由B 沿折线BCD 向点D 移动,EM⊥AB 于M ,EN⊥AD 于N ,设BM=x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D . 2.已知抛物线y=x 2-8x+c 的顶点在x 轴上,则c 的值是( )A .16B .-4C .4D .83.如图,二次函数2y ax bx c =++的最大值为3,一元二次方程20ax bx c m ++-=有实数根,则m 的取值范围是A .m ≥3B .m ≥-3C .m ≤3D .m ≤-34.用长度为12cm 的铁丝围成一个矩形,矩形的最大面积是( )A .92 c mB .102 c mC .122 c mD .162 c m 5.将抛物线y=x 2-2x+3先向左平移2个单位,再向上平移1个单位,得到的抛物线的解析式为( )A .y=(x-3)2+4B .y=(x+1)2+4C .y=(x+1)2+3D .y=(x-1)2+2 6.把函数23y x =-的图象沿x 轴向右平移5个单位,得到的图象的解析式为( ) A .235y x =-+ B .235y x =-- C .23(5)y x =-+ D .23(5)y x =-- 7.已知二次函数y =ax 2+bx +c (a ≠0)与x 轴一个交点在﹣1,﹣2之间,对称轴为直线x =1,图象如图,给出以下结论:①b 2﹣4ac >0;②abc >0;③2a ﹣b =0;④8a +c <0;⑤11039a b c ++<.其中结论正确的个数有( )A .1B .2C .3D .48.若y=(a ﹣1)x 2﹣ax+6是关于x 的二次函数,则a 的取值范围是( ) A .a≠1 B .a≠0 C .无法确定 D .a≠1且a≠09.二次函数23y x mx =-+,当x <2时,y 随x 的增大而减小;当x >2时,y 随x 的增大而增大,则当x=1时,y 的值为( )A .8B .3C .2D .010.把抛物线y =x 2先向左平移3个单位长度,再向下平移4个单位长度,所得的抛物线为( )A .y =(x +3)2-4B .y =(x +3)2+4C .y =(x -3)2+4D .y =(x -3)2-411.抛物线y =-(x +2)2-5的顶点坐标是( )A .(-2,5)B .(-2,-5)C .(2,5)D .(2,-5) 12.已知二次函数y =x 2-2x +m(m 为常数)的图象与x 轴的一个交点为(-1,0),则关于x 的一元二次方程x 2-2x +m =0的两个实数根是( )A .x 1=1,x 2=2B .x 1=1,x 2=3C .x 1=-1,x 2=2D .x 1=-1,x 2=313.小明准备在院子里修一个矩形花圃,花圃的一边利用墙另三边用总长为16米的篱笆恰好围成,已知墙的最大可利用长度为5米,则围成的矩形花圃的最大面积为_____平方米.14.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______15.有下列函数:①y=x 2;②y=-12x ;③y=x+1.其中图象关于原点成中心对称的为_____________(填序号). 16.抛物线y=﹣3(x+4)2+1中,当x=________时,y 有最________值是________. 17.二次函数y =2x 2﹣2x+m(0<m <12),若当x =a 时,y <0,则当x =a ﹣1时,函数值y 的取值范围为______18.函数263y kx x =-+的图象与x 轴只有一个交点,则k 的取值为________. 19.若抛物线2y ax bx c =++与x 轴的两个交点坐标是(-1,0)和(2,0),则此抛物线的对称轴是直线_____.20.抛物线2(0)y ax bx c a =++>与x 轴有两个交点()2,0A 、()1,0B -,则不等式20ax bx c ++<的解集为________.21.如图,是某座抛物线型桥的示意图,已知抛物线的函数表达式为211036y x =-+,为保护桥的安全,在该抛物线上距水面AB 高为8.5米的点E 、F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是________米(结果保留根号).22.给出下列命题及函数y=x ,y=x 2和y=1x 的图象.(如图所示) ①如果1a>a >a 2,那么0<a <1; ②如果a 2>a >1a,那么a >1; ③如果a >a 2>1a ,那么﹣1<a <0; ④如果a 2>1a>a ,那么a <﹣1, 则正确的是_____(填序号)23.已知点11(,)A x y 和22(,)B x y 是抛物线22(3)5y x =-+上的两点,如果124x x >>,那么1y ______2y .(填“>”、“=”或“<”)24.如果抛物线y=(a +2)x 2+x ﹣1的开口向下,那么a 的取值范围是_____.25.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C(5,4).(1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的表达式.26.如图,隧道的截面由抛物线ADC 和矩形AOBC 构成,矩形的长OB 是12m ,宽OA 是4m .拱顶D 到地面OB 的距离是10m .若以O 原点,OB 所在的直线为x 轴,OA 所在的直线为y 轴,建立直角坐标系.(1)画出直角坐标系xOy ,并求出抛物线ADC 的函数表达式;(2)在抛物线型拱壁E 、F 处安装两盏灯,它们离地面OB 的高度都是8m ,则这两盏灯的水平距离EF 是多少米?27.在平面直角坐标系中,平行四边形ABOC 如图放置,点A 、C 的坐标分别是(0,4),(−1,0),将此平行四边形绕点O 顺时针旋转90°,得到平行四边形A ′B ′OC ′. (1)若抛物线经过点C 、A 、A ′,求此抛物线的解析式;(2)点M 是第一象限内抛物线上的一动点,问点M 在何处时,△AMA ′的面积最大?最大面积是多少?并求出此时点M 的坐标.28.已知二次函数 y=x2+bx+c 的图象如图所示,它与 x 轴的一个交点坐标为(1,0),与 y轴的交点坐标为(0,-3).(1)求出 b,c 的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值 y 为正数时,自变量 x 的取值范围.29.原来公园有一个半径为1 m 的苗圃,现在准备扩大面积,设当扩大后的半径为x m 时,则增加的环形的面积为y m 2 .(1)写出y与x的函数关系式;(2)当半径增大到多少时面积增大1倍;(3)试猜测半径是多少时,面积是原来的3、4、5、…倍.30.如图,已知抛物线与直线交于A(a,8)B两点,点P是抛物线上A、B之间的一个动点,过点P分别作轴、轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C 为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.31.已知关于x的二次函数y=x2﹣(2m+3)x+m2+2(1)若二次函数y的图象与x轴有两个交点,求实数m的取值范围.(2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且满足x12+x22=31+|x1x2|,求实数m的值.32.如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x 轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.(1)求抛物线的解析式;(2)若S△APO=32,求矩形ABCD的面积.33.如图,抛物线经过原点O(0,0),点A(1,1),点B(72,0).(1)求抛物线解析式;(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积;(3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.34.解下列方程:(1)解方程: x 2﹣6x ﹣5=0; (2)解方程:2(x ﹣1)2=3x ﹣3;(3)求抛物线243y x x =-+-的顶点坐标、对称轴和它与坐标轴的交点坐标. 35.某地特色农产品在国际市场上颇具竞争力,其中绿色蔬菜远销日本和韩国等地.上市时,若按市场价格10元/千克在新区收购了2000千克绿色蔬菜存放入冷库中.据预测,绿色蔬菜的市场价格每天每千克将上涨0.5元,但冷库存放这批绿色蔬菜时每天需要支出各种费用合计340元,而且绿色蔬菜在冷库中最多保存110天,同时,平均每天有6千克的绿色蔬菜损坏不能出售. ()1若存放x 天后,将这批绿色蔬菜一次性出售,设这批绿色蔬菜的销售总金额为y 元,试写出y 与x 之间的函数关系式.()2这批绿色蔬菜存放多少天后出售可获得最大利润;最大利润是多少.36.某商店将每件进价为80元的某种商店按每件110元出售,每天可售出100件.该商店想通过降低售价、增加销售量的方法来提高利润.经市场调查,发现这种商品每件每降价5元,每天的销售量可增加50件.设商品降价x 元,每天销售该商品获得的利润为y 元.(1)求y (元)关于x (元)的函数关系式,并写出x 的取值范围.(2)求当x 取何值时y 最大?并求出y 的最大值.(3)若要是每天销售利润为3750元,且尽可能最大的向顾客让利,应将该商品降价多少元?37.在Rt ABC 中,90C ∠=,P 是BC 边上不同于B 、C 的一动点,过P 作PQ AB ⊥,垂足为Q ,连接AP .() 1试说明不论点P 在BC 边上何处时,都有PBQ 与ABC 相似;()2若3AC =,4BC =,当BP 为何值时,AQP 面积最大,并求出最大值; ()3在Rt ABC 中,两条直角边BC 、AC 满足关系式BC AC λ=,是否存在一个λ的值,使Rt AQP 既与Rt ACP 全等,也与Rt BQP 全等.38.北方某水果商店从南方购进一种水果,其进货成本是每吨0.4万元,根据市场调查这种水果在北方市场上的销售量y (吨)与每吨的销售价x (万元)之间的函数关系如下图所示:(1)求出销售量y 与每吨销售价x 之间的函数关系式;(2)如果销售利润为w (万元),请写出w 与x 之间的函数关系式;(3)当每吨销售价为多少万元时,销售利润最大?最大利润是多少?39.已知抛物线243y x x =-+-经过()1,0A ,()0,3B -两点,点P 是抛物线的对称轴上的一点,连接PA ,将线段PA 绕着点A 旋转90得到线段'P A ,若点'P 恰好落在抛物线上,求点P 的坐标.40.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半轴交于点A .(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x 的取值范围; (2)在第二象限内的抛物线上有一点P ,当PA ⊥BA 时,求△PAB 的面积.41.红府超市准备代销一款运动鞋,每双的成本是110元,为了合理定价,投放市场进行试销.据市场调查,销售单价是130元时,每天的销售量是30双,而销售单价每降低1元,每天就可多售出10双(售价不得低于110元/双),设每双降低售价x 元(x 为正整数),每天的销售利润为y 元(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少? 42.对于自变量x 的不同的取值范围,有着不同的对应关系,这样的函数通常叫做分段函数.它是一个函数,而不是几个函数. 分段函数在自变量x 的不同的取值范围内,函数的表达式也不同.例如:()()2200x x x y x x ⎧+≤⎪=⎨->⎪⎩,是分段函数. 当0x ≤时,它是二次函数2+2y x x =;当0x >时,它是正比例函数y x =-. (1)请在平面直角坐标系中画出函数()()2200x x x y x x ⎧+≤⎪=⎨->⎪⎩,的图象; (2)求出y 轴左侧图象的最低点的坐标;(3)当1y =-时,求自变量x 的值.43.已知函数263y mx x m =-++(m 是常数),当函数与坐标轴有且仅有2个交点时,求m 的值.44.已知y 关于x 的二次函数()2226y x k x =-+-+,当1x ≥时,y 随着x 的增大而减小,当1x ≤时,y 随着x 的增大而增大.(1)求k 的值;(2)求出这个函数的最大值或最小值,并说出取得最大值或最小值时相应的自变量的值;(3)写出当0y >时相应的x 的取值范围.45.如图,已知二次函数1L :223y ax ax a =-++(0a >)和二次函数2L :2(1)1y a x =-++(0a >)图象的顶点分别为M ,N ,与y 轴分别交于点E ,F .(1)函数223y ax ax a =-++(0a >)的最小值为 ,当二次函数1L ,2L 的y值同时随着x 的增大而减小时,x 的取值范围是 ;(2)当EF=MN 时,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明);(3)若二次函数2L 的图象与x 轴的右交点为A (m ,0),当△AMN 为等腰三角形时,求方程2(1)10a x -++=的解.参考答案1.A【解析】【分析】利用面积列出二次函数和一次函数解析式,利用面积的变化选择答案.【详解】根据已知可得:点E 在未到达C 之前,y=x (5-x )=5x-x 2;且x≤3,当x 从0变化到2.5时,y 逐渐变大,当x=2.5时,y 有最大值,当x 从2.5变化到3时,y 逐渐变小,到达C 之后,y=3(5-x )=15-3x ,x >3,根据二次函数和一次函数的性质.故选A .【点睛】利用一次函数和二次函数的性质,结合实际问题于图象解决问题.2.A【解析】【分析】顶点在x 轴上,所以顶点的纵坐标是0.据此作答.【详解】∵二次函数y=2x -8x+c 的顶点的横坐标为x=-2b a = -82=4, ∵顶点在x 轴上,∴顶点的坐标是(4,0),把(4,0)代入y=2x -8x+c 中,得:16-32+c=0,解得:c=16,故答案为A【点睛】本题考查求抛物线顶点纵坐标的公式,比较简单.3.C【解析】【分析】方程ax2+bx+c-m=0有实数相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,结合图象可得出m的范围.【详解】方程ax2+bx+c-m=0有实数根,相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,又∵图象最高点y=3,∴二次函数最多可以向下平移三个单位,∴m≤3,故选:C.【点睛】本题主要考查二次函数图象与一元二次方程的关系,掌握二次函数图象与x轴交点的个数与一元二次方程根的个数的关系是解题的关键.4.A【解析】【分析】设矩形面积为S cm2,长为x cm,则宽为(6-x)cm,面积S=x(6-x),利用二次函数的性质即可求得矩形的最大面积.【详解】设矩形面积为S cm2,长为x cm,则宽为(6-x)cm,由题意得,S=x(6-x)=-(x-3)2+9.∴当x=3时,S取得最大值9.故选A.【点睛】本题考查了二次函数的应用及一般式与顶点式的转化,熟练掌握配方法是解答本题的关键. 5.C【解析】分析:先将抛物线223y x x =-+的解析式配方,再根据“抛物线的平移法则”进行分析判断即可.详解:∵2223(1)2y x x x =-+=-+,∴将抛物线223y x x =-+先向左平移2个单位,再向上平移1个单位,得到的新抛物线的解析式为:2(1)3y x =++.故选C.点睛:熟记:抛物线的平移法则“将抛物线2()y a x h k =-+向左(或右)平移m 个单位长度,再向上(或向下)平移n 个单位长度所得新抛物线的解析式为:2()y a x h m k n =-±+±,(即左右平移时:左加、右减;上下平移时:上加、下减).”是解答本题的关键.6.D【解析】【详解】解:原抛物线的顶点为()0,0,向右平移5个单位,那么新抛物线的顶点为()5,0.可设新抛物线的解析式为23()y x h k =--+,代入得:23(5)y x =--. 故选D .【点睛】考查二次函数图形的平移,平移不改变a 的大小,解题的关键是通过点的平移规律得到新抛物线的顶点坐标.7.C【解析】【分析】根据题意抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断即可.【详解】∵抛物线与x 轴有两个交点,∴b 2-4ac >0,①正确;∵抛物线开口向上,∴a >0,∵对称轴在y 轴的右侧,∴b <0,∵抛物线与y 轴交于负半轴,∴c <0,∴abc >0,②正确;∵-2b a=1,∴2a+b=0,③错误; ∵x=-2时,y >0,∴4a-2b+c >0,即8a+c >0,④错误;根据抛物线的对称性可知,当x=3时,y <0,∴9a+3b+c <0,∴a+13b+19c <0,⑤正确. 综上所述,正确的结论是:①②⑤.故选C .【点睛】本题了二次函数图象与系数的关系,掌握二次函数y=ax²+bx+c 系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.8.A【解析】【分析】根据二次函数的定义进行解答即可.【详解】∵y=(a ﹣1)x 2﹣ax+6是关于x 的二次函数,∴a-1≠0,∴a≠1,故选A.【点睛】本题考查了二次函数的定义,熟练掌握二次函数的解析式中二次项系数不为0是解题的关键. 9.D【解析】∵二次函数23y x mx =-+,当x<2时,y 随x 的增大而减小;当x>2时,y 随x 的增大而增大, ∴对称轴为x=221m --=⨯, 计算得出:m=4, ∴二次函数为23y x mx =-+,当x=1时,y=0,故选D.点睛:本题考查了二次函数的性质,能够根据其增减性确定其对称轴是解答本题的关键,难度不大.10.A【解析】【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】原抛物线的顶点为(0,0),向左平移3个单位,再向下平移4个单位,那么新抛物线的顶点为(−3,−4);可设新抛物线的解析式为代入得: 故选:A.【点睛】考查二次函数图象的平移规律,掌握左加右减,上加下减是解题的关键.11.B【解析】【分析】【详解】试题分析:当x=-2时,y 取最大值,y=-5,故顶点坐标为(-2,-5),故选B.12.D【解析】【分析】将(-1,0)代入y =x 2-2x +m 即可求出m 的值,将m 的值代入得x 2-2x-3=0,再求出方程的两个根即可.【详解】将(-1,0)代入y =x 2-2x +m 得, 012m =++,解得3m =-,则得方程为: x 2-2x-3=0,解得()()130x x +-=,11x =-,23x =.所以D 选项是正确的.故选:D.【点睛】本题考核知识点:本题考查了抛物线与x 轴的交点,要知道,抛物线上的点符合函数的解析式,同时要知道一元二次方程的解法.13.27.5.【解析】【分析】设AB 边的长为x 米,则BC 边的长为(16-2x )米,由矩形的面积公式得y=x (16-2x )=-2x 2+16x=-2(x-4)2+32,根据x 的取值范围和二次函数的性质可得函数的最值.【详解】解:设AB 边的长为x 米,则BC 边的长为(16-2x )米,∴矩形花圃的面积y=x (16-2x ),=-2x 2+16x,=-2(x-4)2+32,∵16-2x ≤5,∴x≥5.5,又当x >4时,y 随x 的增大而减小,∴当x=5.5时,y 取得最大值,最大值为27.5,故答案为27.5.【点睛】本题主要考查的是二次函数的应用,掌握二次函数的性质是解题的关键.14.①②③⑤【解析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图象可知:抛物线开口方向向下,则a 0<,对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>,抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为b x 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误; ⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定. 15.②【解析】【分析】根据题目中所给函数图像的特征判断即可.【详解】解:正比例函数的图象关于原点成中心对称.故答案为②.【点睛】本题主要考查了函数图象,熟知正比例函数的图象关于原点成中心对称是解题的关键. 16.-4 大 1【解析】根据二次函数顶点式解析式解答即可.【详解】抛物线y=﹣3(x+4)2+1中,当x=﹣4时,y有最大值是1.故答案为:﹣4;大;1.【点睛】本题考查了二次函数的最值,熟练掌握顶点式解析式与最值问题是解题的关键.17.m<y<m+4【解析】【分析】易求得抛物线对称轴,可以找出a的大小区间,即可确定a-1的大小区间,即可解题.【详解】解:∵0<m<12,∴△=4-8m>0,∵对称轴为x=12,x=0或1时,y=m>0,∴当y<0时,0<a<1,∴-1<a-1<0,∵当x=-1时,y=2+2+m=m+4,当x=0时,y=0-0+m=m,∴当x=a-1时,函数值y的取值范围为m<y<m+4.故答案为m<y<m+4.【点睛】本题考查了抛物线上点的特性,考查了抛物线开口向上时,对称轴右侧点依次增大的特性,本题中确定a的取值范围是解题的关键.18.0或3【解析】【分析】注意分类讨论:若k=0,函数为一次函数;若k≠0,函数为二次函数,根据其△=0求解即可.【详解】若k =0,则263y kx x =-+是一次函数,与x 轴只有一个交点,满足条件;若k ≠0,则263y kx x =-+ (k ≠0)是二次函数,由2436120b ac k =-=-=,得k =3. ∴k =0或3.故答案为:0或3.【点睛】考查抛物线与x 轴的交点问题,得出24b ac ∆=-的符号与x 轴交点个数之间的关系是解题的关键.19.12x = 【解析】试题解析:∵2y ax bx c =++与x 轴的两个交点坐标是(−1,0)和(2,0), ∴抛物线的对称轴为直线121.22x -+== 故答案为1.2x = 20.12x -<<【解析】【分析】将解不等式转化为y <0的问题进行求解.【详解】解:由抛物线开口方向及与x 轴的交点可判断,当-1<x <2时,20y ax bx c =++<,故不等式的解集为:12x -<<.【点睛】本题考察了数形结合的思想解决问题,将解不等式的问题转化为运用图像判定二次函数值小于0的问题.21.【解析】【分析】由抛物线的解析式为y =−136x 2+10,令y=8.5,求得E 、F 两点的横坐标作差即可. 【详解】 点E 、F 距离AB 高为8.5米,所以点E 、F 的纵坐标都是8.5,把y=8.5代入函数表达式得出:8.5=−136x 2+10, 136x 2=10−8.5, x 2=1.5×36=54,x =±;∵EF 大于0,∴根据抛物线关于对称轴的轴对称性质,则有:EF=2x =米.【点睛】本题考查了二次函数在实际生活中的运用,代入点的纵坐标求横坐标,较为简单. 22.①④【解析】【分析】【详解】由图象可知,当反比例函数图象在最上面,二次函数图象在最下面时,自变量的取值范围是0<x <1,则①正确;当二次函数图象在最上面,反比例函数图象在最下面时,自变量的取值范围是x >1和﹣1<a <0,则②错误;没有一次函数图象在最上面,反比例函数图象在最下面的可以性,则③错误;当二次函数图象在最上面,一次函数图象在最下面时,自变量的取值范围是x <-1,则④正确,故答案为①④.23.>【解析】【详解】由抛物线()2235y x =-+得,a=2>0,∴抛物线开口向上,∵抛物线y=2(x-3)2+5对称轴为直线x=3, ∴当x >3时,y 随x 的增大而增大. ∵124x x >>, ∴y 1 >y 2. 故填>. 【点睛】二次函数y=ax 2+bx+c (a≠0)的图象为抛物线,则抛物线上的点的坐标满足其解析式;当a >0,抛物线开口向上;对称轴为直线x=-2ba,在对称轴左侧,y 随x 的增大而减小,在对称轴右侧,y 随x 的增大而增大. 24.a <﹣2 【解析】 【分析】根据抛物线y =(a +2)x 2+x ﹣1的开口向下,可得a +2<0,从而可以得到a 的取值范围. 【详解】∵抛物线y =(a +2)x 2+x ﹣1的开口向下, ∴a +2<0,解得:a <﹣2. 故答案为a <﹣2. 【点睛】本题考查了二次函数的性质和定义,解题的关键是明确二次函数的开口向下,则二次项系数就小于0. 25.(1) (52,-94);(2)答案不唯一,合理即可,y =x 2+x +2.【解析】试题分析:将点c 坐标代入函数表达式即可求出a 的值,a=1,将函数表达式转换为顶点式y=x 2-5x +4=(x -52)2-94,所以顶点坐标是(52,-94);将抛物线平移后顶点在第二象限,答案不唯一,可通过平移顶点,例如先向左平移3个单位长度,则变为y = (x -532)2-94,再向上平移4个单位,得到y=(x-532+)2-94+4= (x+12)2+74= x2+x+2.解:(1)把点C(5,4)代入抛物线y=ax2-5ax+4a,得25a-25a+4a=4.解得a=1. ∴二次函数的表达式为y=x2-5x+4.∵y=x2-5x+4=(x-52)2-94,∴顶点P的坐标为(52,-94).(2)答案不唯一,合理即可,如:先向左平移3个单位长度,再向上平移4个单位长度,得到的二次函数表达式为y=(x-52+3)2-94+4=(x+12)2+74,即y=x2+x+2.26.(1)画直角坐标系xOy见解析,抛物线ADC的函数表达式为:y=﹣16(x﹣6)2+10;(2)两盏灯的水平距离EF是43米.【解析】试题分析:(1)按照题中要求画出对应的坐标系;则由题意可得抛物线ADC的顶点坐标为(6,10),A 点坐标为(0,4),由此即可用“待定系数法”求出抛物线的解析式;(2)在(1)中所求的抛物线的解析式中,由8y=可得对应的一元二次方程,解方程即可得到点E、F的横坐标,由此即可求得EF的长;试题解析:解:(1)画出直角坐标系xOy,如图:由题意可知,抛物线ADC的顶点坐标为(6,10),A点坐标为(0,4),可设抛物线ADC的函数表达式为y=a(x﹣6)2+10,将x=0,y=4代入得:a=16 -,∴抛物线ADC的函数表达式为:y=16-(x﹣6)2+10.(2)由y=8得:16-(x﹣6)2+10=8,解得:x1=6+23,x2=6﹣23,则EF=x1﹣x2=43,即两盏灯的水平距离EF是43米.27.(1)y=﹣x2+3x+4;(2)M的坐标为(2,6).【解析】【分析】(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+b,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,-x2+3x+4),继而可得△AMA′的面积,继而求得答案. 【详解】(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(﹣1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴41640a b cca b c-+⎧⎪⎨⎪++⎩===,解得:14abc=-⎧⎪=⎨⎪=⎩,∴此抛物线的解析式为:y=﹣x2+3x+4;(2)连接AA′,设直线AA′的解析式为:y=kx+b,∴440bk b=⎧⎨+=⎩,解得:41bk=⎧⎨=-⎩,∴直线AA′的解析式为:y=﹣x+4,设点M的坐标为:(x,﹣x2+3x+4),则S△AMA′=12×4×[﹣x2+3x+4﹣(﹣x+4)]=﹣2x2+8x=﹣2(x﹣2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);【点睛】此题考查了待定系数法求函数解析式的知识、平行四边形的性质以及三角形面积问题,解题的关键是学会构建二次函数解决最值问题,属于中考常考题型.28.(1)y=x2+2x-3;(2)当x<-3 或x>1 时,y>0.【解析】【分析】(1)将(1,0)和0,-3)两点代入二次函数y=x2+b+c,求得b和c;从而得出抛物线的解析式;(2)由图象得当x<-3或>1时,y>0.【详解】(1)将点(1,0)、(0,-3)代入y=x2+bx+c,得:103b cc++=⎧⎨=-⎩,解得:23 bc=⎧⎨=-⎩,∴抛物线的解析式为y=x2+2x-3;(2)当y=0 时,x2+2x-3=0,解得:x=1 或x=-3,所以抛物线与x 轴的交点坐标为(-3,0)和(1,0),结合函数图象知,当x<-3 或x>1 时,y>0.【点睛】本题考查了二次函数与x轴的交点问题以及用待定系数法求二次函数的解析式. 29.(1)y=πx2 -π;(2) 2m;(3) 3、4、5….【解析】试题分析:(1)利用圆的面积公式分别表示出原来苗圃的面积以及扩大后苗圃的面积,差即为增加的面积,由此即可得函数关系式;(2)面积增大1倍即差与原面积相等,列方程进行求解即可;(3)根据题意列方程进行求解,即可得.试题解析:(1)y=πx2-π×12=πx2-π;(2)由题意得:πx2-π=π,解得:x=2;(3)面积是原来的3倍时,πx2-π=2π,解得:x=3,面积是原来的4倍时,πx2-π=3π,解得:x=2=4,面积是原来的5倍时,πx2-π=4π,解得:x=5,……面积是原来的n倍时,半径是n.30.(1)y=+2x;(2)-1;(3)-4n-8m-16=0【解析】试题分析:(1)首先根据点A在一次函数上求出点A的坐标,然后代入二次函数得出解析式;(2)根据一次函数和二次函数得出点B的坐标,根据中点的性质得出点C的坐标,根据点P在抛物线上得出点P的坐标,从而得出PC的长度;(3)根据点D的坐标从而得出点C、点E和点P的坐标,根据DE=CP得出m和n之间的关系式.试题解析:(1)∵A(a,8)在直线上∴8=2a+4 解得:a="2"将A(2,8)代入二次函数可得:8=4+2b 解得:b=2 ∴抛物线的解析式为:y=+2x (2)由可得点B的坐标为(-2,0)根据中点坐标公式可得:C(0,4)∵点P 在抛物线上且纵坐标与C 相同 ∴P (-1,4) ∴PC=-1-0=-1. (3)∵D (m ,n ) ∴C (m ,2m+4),E (,n ),P (,2m+4)由DE=CP 可得:-m=-m 化简得:-4n-8m-16=0考点:(1)二次函数的性质;(2)一元二次方程的求解 31.(1)m>-112(2)m =2 【解析】分析:(1)利用一元二次方程根的判别式计算;(2)利用一元二次方程根与系数的关系列出方程,解方程即可. 详解:(1)由题意得:[﹣(2m +3)]2﹣4×1×(m 2+2)>0,解得:m >﹣112; (2)由根与系数的关系可知,x 1+x 2=2m +3,x 1x 2=m 2+2,x 12+x 22=31+|x 1x 2|,(x 1+x 2)2﹣2x 1x 2=31+|x 1x 2|,(2m +3)2﹣2×(m 2+2)=31+m 2+2,整理得:m 2+12m ﹣28=0,解得:m 1=2,m 2=﹣14(舍去),当m =2时,满足x 12+x 22=31+|x 1x 2|.点睛:本题考查的是抛物线与x 轴的关系、一元二次方程根的判别式,掌握一元二次方程根的判别式、根与系数的关系是解题的关键. 32.(1)y=x 2-4x+4(2)24 【解析】 【分析】(1)已知了A 点坐标和AB 的长,即可得出B 点坐标,然后将A 、B 两点的坐标代入抛物线中,即可求出抛物线的解析式.(2)根据三角形APO 的面积可求出P 点的横坐标,将其代入抛物线的解析式中即可求得P 点的坐标.过P 作PE ⊥OA 于E ,通过构建的相似三角形DPE 和DBA ,可求出AD 的长,有了长和宽即可求出矩形的面积.(也可通过求直线BP 的解析式得出D 点坐标来求出AD 的长) 【详解】(1)由题意得,B 点坐标为(4,2)将点A (0,2),B (4,2)代入二次函数解析式得:22244cb c⎧⎨++⎩==,解得:42 bc=-⎧⎨=⎩,∴抛物线的解析式为y=x2−4x+2;(2)由S△APO=32可得:12OA•|x p|=32,即12×2×|x p|=32,∴x p=32(负舍)将x p=32代入抛物线解析式得:y P=−74,过P点作垂直于y轴的垂线,垂足为E,∵△DEP∽△DAB,∴372244ADAD--=,解得:AD=6,∴S矩形ABCD=24.【点睛】本题主要考查了矩形的性质、二次函数解析式的确定、图形面积的求法等知识点.33.(1)22755y x x=-+;(2)4;(3)(272,﹣54)或(238,2332)或(338,﹣3332)【解析】【分析】(1)设交点式y=ax(x-72),然后把A点坐标代入求出a即可得到抛物线解析式;(2)延长CA交y轴于D,如图1,易得2,∠DOA=45°,则可判断△AOD为等腰直角三角形,所以2OA=2,则D(0,2),利用待定系数法求出直线AD的解析式为。

九年级数学下册 24 二次函数的应用第2课时能力提升 北师大版

九年级数学下册 24 二次函数的应用第2课时能力提升 北师大版

二次函数的应用能力提升1、已知原点是抛物线y=(m+1)x2的最高点,则m的取值范围是()A、m<—1B、m〈1C、m>—1D、m>—22、某旅店有100张床位,每床每晚收费10元时,床位可全部租出、若每床每晚收费每提高2元,则租出的床位减少10张、以每次提高2元的这种方法变化下去,该旅店为投资最少而获利最大,每床每晚收费应提高()A、4元或6元B、4元C、6元D、8元3、每年六、七月份某市荔枝大量上市,今年某水果商以5元/kg的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0、7元/kg,假设不计其他费用、(1)水果商要把荔枝售价至少定为才不会亏本;(2)在销售过程中,水果商发现每天荔枝的销售量m(kg)与销售单价x(元/kg)之间满足关系:m=-10x+120,那么当销售单价定为时,每天获得的利润w最大、4、出售某种手工艺品,若每个获利x元,一天可售出(8—x)个,则当x=时,一天出售该种手工艺品的总利润y最大、5、某市政府大力扶持大学生创业、李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯、销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数y=-10x+500、(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)6、北京市某研究所对某种新型产品的产销情况进行了调研,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(t)时,所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地的售价p甲,p乙(万元)均与x满足一次函数关系、(注:年利润=销售总额-全部费用)(1)成果表明,在甲地生产并销售x(t)时,p甲=—x+14,请用含x的代数式表示甲地当年的年销售额,并求年利润w甲(万元)与x之间的函数关系式;(2)成果表明,在乙地生产并销售x(t)时,p乙=-x+n(n为常数),且乙地当年的最大年利润为35万元、试确定n的值;(3)受资金、生产能力等多种因素的影响,投资商计划第一年生产并销售该产品18 t,根据(1)(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润、创新应用7、善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好、某一天小迪有20 min时间可用于学习、假设小迪用于解题的时间x(min)与学习收益量y的关系如图①,用于回顾反思的时间x(min)与学习收益量y的关系如图②(其中OA是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间、(1)求小迪解题的学习收益量y与用于解题的时间x之间的函数关系式;(2)求小迪回顾反思的学习收益量y与用于回顾反思的时间x的函数关系式;(3)问小迪如何分配解题和回顾反思的时间,才能使这20 min的学习收益总量最大?参考答案1、A原点是最高点,图象开口向下,所以m+1〈0,即m<-1、2、C设每床每晚收费提高x元时,获利为y元,则y=(10+x)=—5x2+50x+1 000=—5(x-5)2+1 125,即当提高5元时,可获得最大利润,为1 125元,但题目要求提高的价格为2的倍数,因而选取与5接近的4元或6元可获得较大利润,而题意想投资少获利大,即想床位租出少而获较大利润,此时床位价格提高6元最合适,故选C、3、(1)6元(2)9元/kg(1)设荔枝售价定为y元/kg时,水果商才不会亏本、由题意得y(1—5%)≥5+0、7,解得y≥6、所以,水果商把荔枝售价至少定为6元/kg才不会亏本、(2)由(1)可知,每千克荔枝的平均成本为6元,由题意得w=(x—6)m=(x—6)(-10x+120)=—10(x-9)2+90、因此,当x=9时,w有最大值、所以,当销售单价定为9元/kg时,每天获得的利润w最大、4、4元由题意,得y=(8-x)x=-x2+8x,当x=-=4时,y最大值=16、5、解:(1)由题意,得w=(x—20)·y=(x—20)·(-10x+500)=-10x2+700x-10 000、x=—=35、答:当销售单价定为35元时,每月可获得最大利润、(2)由题意,得-10x2+700x-10 000=2 000、解得x1=30,x2=40、答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元、(3)方法一:∵a=-10〈0,∴抛物线开口向下、∴当30≤x≤40时,w≥2 000、∵x≤32,∴当30≤x≤32时,w≥2 000、设成本为P(元),由题意,得P=20(—10x+500)=-200x+10 000、∵k=—200〈0,∴P随x的增大而减小、∴当x=32时,P最小=3 600、方法二:∵a=-10<0,∴抛物线开口向下、∴当30≤x≤40时,w≥2 000、∵x≤32,∴30≤x≤32时,w≥2 000、∵y=-10x+500,k=-10〈0,∴y随x的增大而减小、∴当x=32时,y最小=180、∵当进价一定时,销售量越小,成本越小,∴20×180=3 600(元)、答:想要每月获得的利润不低于2 000元,每月的成本最少为3 600元、6、解:(1)甲地当年的年销售额为万元;w甲=-x2+9x—90、(2)在乙地区生产并销售时,年利润w乙=-x2+nx—=-x2+(n—5)x-90、由=35,解得n=15或—5、经检验,n=-5不合题意,舍去,故n=15、(3)在乙地区生产并销售时,年利润w乙=—x2+10x-90,将x=18代入上式,得w乙=25、2(万元);将x=18代入w甲=-x2+9x—90,得w甲=23、4(万元),∵w乙〉w甲,∴应选乙地、7、解:(1)由题图①,设y=kx、当x=1时,y=2,解得k=2,∴y=2x(0≤x≤20)、(2)由题图②,当0≤x〈4时,设y=a(x—4)2+16、当x=0时,y=0,∴0=16a+16,∴a=—1、∴y=—(x-4)2+16,即y=—x2+8x、当4≤x≤10时,y=16、因此y=(3)设小迪用于回顾反思的时间为x(0≤x≤10)min,学习收益总量为y,则她用于解题的时间为(20—x)min、当0≤x<4时,y=—x2+8x+2(20-x)=—x2+6x+40=-(x—3)2+49、当x=3时,y最大=49、当4≤x≤10时,y=16+2(20—x)=56-2x、y随x的增大而减小,因此当x=4时,y最大=48、综上可知,当x=3时,y最大=49,此时20—x=17、故小迪用于回顾反思的时间为3 min,用于解题的时间为17 min时,学习收益总量最大、。

九年级 二次函数(提升篇)(Word版 含解析)

九年级 二次函数(提升篇)(Word版 含解析)

九年级 二次函数(提升篇)(Word 版 含解析)一、初三数学 二次函数易错题压轴题(难)1.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b=221a a ≤+a∴0<﹣b≤4,∴﹣4≤b <0, 即bb <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.2.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小. 【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫ ⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得2a ≤<,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-;综上:1a ≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:a >综上:若使得函数与矩形ABCD 无交点,则3a <--或1a ≤<-或a > 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.3.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④.(探究)(1)证明:OBC≌OED;(2)若AB=8,设BC为x,OB2为y,是否存在x使得y有最小值,若存在求出x的值并求出y的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16【解析】【分析】(1)连接EF,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS证明OBC≌OED即可;(2)连接EF、BE,再证明△OBE是直角三角形,然后再根据勾股定理得到y与x的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC ≌△OED (SAS );(2)连接EF 、BE . ∵四边形ABCD 是矩形, ∴CD =AB =8. 由(1)知,BC =DE ∵BC =x , ∴DE =x ∴CE =8-x由(1)知△OBC ≌△OED ∴OB =OE ,∠OED =∠OBC . ∵∠OED +∠OEC =180°, ∴∠OBC +∠OEC =180°.在四边形OBCE 中,∠BCE =90°,∠BCE +∠OBC +∠OEC +∠BOE =360°, ∴∠BOE =90°.在Rt △OBE 中,OB 2+OE 2=BE 2.在Rt △BCE 中,BC 2+EC 2=BE 2.∴OB 2+OE 2=BC 2+CE 2. ∵OB 2=y ,∴y +y =x 2+(8-x)2. ∴y =x 2-8x +32∴当x=4时,y 有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.4.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标; (2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD . ①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4. 【解析】 【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m my x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可;(3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可. 【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m mb a a m =-+, 即:2263m mb m a a -=- ∵0b m ->, ∴2263m m a a ->0, ∵m >0,∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m my x x m =-+, ∴顶点P (2,3m), 当x=0时,y=m , ∴点A (0,m ), ∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0), 把点A (0,m ),点P (2,3m)代入,得:23m b mk b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m-x+m , 当y=0时,x=3, ∴点B (3,0); ∴OB=3;∵四边形ABCD 是正方形, ∴AD=AB ,∠DAF+∠FAB=90°, 且∠OAB+∠FAB =90°, ∴∠DAF=∠OAB , 在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3, ∴点D 的坐标为:(m ,m+3); ②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m mm m -+≤+,化简得:32418m m -≤.∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4;当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥,∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4. 【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.5.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)251|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式;(2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,q n <-得21n q -<,则当()2maxB C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()max B C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1,则21:1C y x =+,(2)设(),0B q ,则()2,0C q -,∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦ 2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <- 21n q -<∴,∴()2max B C ''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-, 即()22220(21)20(1)B C n n ''=--=-,∴()max 1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+ ⎪⎝⎭,∴222218OM m m ⎛⎫=++ ⎪⎝⎭, ∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-,∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴, ∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解), 故14m =-或12m =-. 【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.6.如图,在平面直角坐标系x O y 中,抛物线y = ax 2+ bx + c 经过A 、B 、C 三点,已知点A (-3,0),B (0,3),C (1,0).(1)求此抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点,(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为F ,交直线AB 于点E ,作PD ⊥AB 于点D .动点P 在什么位置时,△PDE 的周长最大,求出此时P 点的坐标;(3)在直线x = -2上是否存在点M ,使得∠MAC = 2∠MCA ,若存在,求出M 点坐标.若不存在,说明理由.【答案】(1)y=-x 2-2x+3;(2)点(-32,154),△PDE 的周长最大;(3)点M (-2,3)或(-2,3【解析】【分析】(1)将A 、B 、C 三点代入,利用待定系数法求解析式;(2)根据坐标发现,△AOB 是等腰直角三角形,故只需使得PD 越大,则△PDE 的周长越大.联立直线AB 与抛物线的解析式可得交点P 坐标;(3)作点A 关于直线x=-2的对称点D ,利用∠MAC = 2∠MCA 可推导得MD=CD ,进而求得ME 的长度,从而得出M 坐标【详解】解:(1)∵抛物线y=ax 2+bx+c 经过点A (-3,0),B (0,3),C (1,0),∴93030a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,所以,抛物线的解析式为y=-x 2-2x+3;(2)∵A (-3,0),B (0,3),∴OA=OB=3,∴△AOB 是等腰直角三角形,∴∠BAO=45°,∵PF ⊥x 轴,∴∠AEF=90°-45°=45°,又∵PD ⊥AB ,∴△PDE 是等腰直角三角形,∴PD 越大,△PDE 的周长越大,易得直线AB 的解析式为y=x+3,设与AB 平行的直线解析式为y=x+m ,联立223y x m y x x =+⎧⎨=--+⎩,消掉y 得,x 2+3x+m-3=0, 当△=9-4(m-3)=0,即m=214时,直线与抛物线只有一个交点,PD 最长,此时x=-32,y=154,∴点(-32,154),△PDE的周长最大;(3)设直线x=-2与x轴交于点E,作点A关于直线x=-2的对称点D,则D(-1,0),连接MA,MD,MC.∴MA=MD,∠MAC=∠MDA=2∠MCA ,∴∠CMD=∠DCM∴MD=CD=2 ,∴ME=3∴点M(-2,3)或(-2,-3).【点睛】本题是动点和最值的考查,在解决动点问题时,寻找出不变量来分析是解题关键,最值问题,通常利用对称来简化分析7.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=6x(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?【答案】(1)y=﹣x2+2x+3;(2)N(57,0),F(0,53);(3)t=9﹣215.【解析】【分析】(1)由已知求出D点坐标,将点A(-1,0)和D(2,3)代入y=ax2+bx+3即可;(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【详解】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3.∵D在y=6x上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣73x+53,∴N(57,0),F(0,53);(3)设P(0,t).∵△PBO和△CDP都是直角三角形,tan∠CDP=32t-,tan∠PBO=3t,令y=tan∠BPD=3233123t tt t-+--,∴yt2+t﹣3yt+6y﹣9=0,△=﹣15y2+30y+1=0时,y=15415-+舍)或y15415+,∴t=32﹣12×1y,∴t=9﹣15∴P(0,9﹣15.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,利用轴对称求最短距离,学会利用辅助圆解决问题,属于中考压轴题.8.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或2(舍去0和2),故x =3﹣2,则x 2﹣2x ﹣3=2﹣42,故点P (3﹣2,2﹣42).综上,点P 的坐标为:(2,﹣3)或(3﹣2,2﹣42).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.9.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求2FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+ 则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3yx 将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM =∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.10.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32); (2)由题意得:AB=5,AD=10,BD=35,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BD AM AN =,即3535AN =, 解得:AN=94, 故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -),则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下册《二次函数》的应用培优提高2013.12.7【基础知识回顾】一、二次函数与一元二次方程:二次函数y= ax2+bx+c的同象与x轴的交点的横坐标对应着一元二次方程ax2+bx+c=0的实数根,它们都由根的判别式决定抛物线x轴有个交点<=b2-4ac>0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac=0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac<0=>一元二次方程有实数根【教师提醒:若抛物线与x轴有两交点为A(x1,0)B(x2,0)则抛物线对称轴式x= 两交点间距离AB 】二、二次函数解析式的确定:1、设顶点式,即:设当知道抛物线的顶点坐标或对称轴方程与函数最值时,除代入这一点外,再知道一个点的坐标即可求函数解析式2、设一般式,即:设知道一般的三个点坐标或自变量与函数的三组对应数值可设为一般式,从而列三元一次方程组求的函数解析式【教师提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设以y轴为对称轴,可设顶点在x轴上,可设抛物线过原点等】三、二次函数的应用1、实际问题中解决最值问题:步骤:1、分析数量关系建立模型2、设自变量建立函数关系3、确定自变量的取值范围4、根据顶点坐标公式或配法结合自变量的取值范围求出函数最值2、与一次函数或直线形图形结合的综合性问题一般步骤:1、求一些特殊点的坐标2、将点的坐标代入函数关系式求出函数的解析式3、结合图像根据自变量取值讨论点的存在性或图形的形状等问题【教师提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题】【重点考点例析】考点一:二次函数的最值例1.已知:M,N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A.有最大值,最大值为92-B.有最大值,最大值为92C .有最小值,最小值为92D .有最小值,最小值为92- 思路分析:先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特征求出其最值即可.解:∵M ,N 两点关于y 轴对称,点M 的坐标为(a ,b ),∴N 点的坐标为(-a ,b ), 又∵点M 在反比例函数12y x=的图象上,点N 在一次函数y=x+3的图象上, ∴123b a b a ⎧=⎪⎨⎪=-+⎩,整理得123 ab a b ⎧=⎪⎨⎪+=⎩,故二次函数y=-abx 2+(a+b )x 为y=12-x 2+3x , ∴二次项系数为12-<0,故函数有最大值,最大值为y=239124()2-=⨯-, 故选:B .对应训练1.(2012•兰州)已知二次函数y=a (x+1)2-b (a≠0)有最小值1,则a ,b 的大小关系为( )A .a >bB .a <bC .a=bD .不能确定解:∵二次函数y=a (x+1)2-b (a≠0)有最小值,∴抛物线开口方向向上,即a >0; 又最小值为1,即-b=1,∴b=-1,∴a >b .故选A .考点二:确定二次函数关系式例2 (2012•珠海)如图,二次函数y=(x-2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m 的x思路分析:(1)将点A (1,0)代入y=(x-2)2+m 求出m 的值,根据点的对称性,将y=3代入二次函数解析式求出B 的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A 、B 的交点坐标可直接求出kx+b≥(x-2)2+m 的x 的取值范围. 解:(1)将点A (1,0)代入y=(x-2)2+m 得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C 点坐标为(0,3),由于C 和B 关于对称轴对称,在设B 点坐标为(x ,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B 点坐标为(4,3). 设一次函数解析式为y=kx+b ,将A (1,0)、B (4,3)代入y=kx+b 得,0 43k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,则一次函数解析式为y=x-1;(2)∵A、B坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m时,1≤x≤4.对应训练2.(2012•佳木斯)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.分析:(1)直接把(0,0),(2,0)代入y=x2+bx+c中,列方程组求b、c的值即可;(2)将二次函数解析式写成顶点式,可求顶点坐标及对称轴;(3)设点B的坐标为(a,b),根据三角形的面积公式求b的值,再将纵坐标b代入抛物线解析式求a的值,确定B点坐标.解:(1)把(0,0),(2,0)代入y=x2+bx+c得420cb=⎧⎨+=⎩,解得2bc=-⎧⎨=⎩,所以解析式为y=x2-2x。

(2)∵y=x2-2x=(x-1)2-1,∴顶点为(1,-1),对称轴为:直线x=1 。

(3)设点B的坐标为(a,b),则12×2|b|=3,解得b=3或b=-3,∵顶点纵坐标为-1,-3<-1 (或x2-2x=-3中,x无解)∴b=3,∴x2-2x=3,解得x1=3,x2=-1。

所以点B的坐标为(3,3)或(-1,3)。

考点三:二次函数与x轴的交点问题例3 (2012•天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>14-;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1 C.2 D.3思路分析:将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项②进行判断;再利用根与系数的关系求出两根之积为6-m,这只有在m=0时才能成立,故选项①错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.解:一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,∵方程有两个不相等的实数根x1、x2,∴b2-4ac=(-5)2-4(6-m)=4m+1>0,解得:m>14-,故选项②正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=5,x1x2=6-m,而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),令y=0,可得(x-2)(x-3)=0,解得:x=2或3,∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.综上所述,正确的结论有2个:②③.故选C.对应训练3.(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A.(-3,0)B.(-2,0)C.x=-3 D.x=-2解:抛物线与x轴的另一个交点为B(b,0),∵抛物线与x轴的一个交点A(1,0),对称轴是x=-1,∴12b=-1,解得b=-3,∴B(-3,0).故选A.考点四:二次函数的实际应用例4 (2012•绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-112(x-4)2+3,由此可知铅球推出的距离是m.思路分析:根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.解:令函数式y=-112(x-4)2+3中,y=0,0=-112(x-4)2+3,解得x1=10,x2=-2(舍去),即铅球推出的距离是10m.故答案为:10.例 5 (2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=12x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=34x-112x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y 1,y 2与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a 的整数值.(参考数据: , )思路分析:(1)利用表格中数据可以得出xy=定值,则y 1与x 之间的函数关系为反比例函数关系求出即可,再利用函数图象得出:图象过(7,10049),(12,10144)点,求出解析式即可;(2)利用当1≤x≤6时,以及当7≤x≤12时,分别求出处理污水的费用,即可得出答案;(3)利用今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a 一30)%,得出等式12000(1+a%)×1.5×[1+(a-30)%]×(1-50%)=18000,进而求出即可.解:(1)根据表格中数据可以得出xy=定值,则y 1与x 之间的函数关系为反比例函数关系: y 1=k x ,将(1,12000)代入得:k=1×12000=12000,故y 1=2000x(1≤x≤6,且x 取整数); 根据图象可以得出:图象过(7,10049),(12,10144)点,代入y 2=ax 2+c(a≠0)得:1004949 10144144 a c a c =+⎧⎨=+⎩,解得: 1 10000a c =⎧⎨=⎩,故y 2=x 2+10000(7≤x≤12,且x 取整数); (2)当1≤x≤6,且x 取整数时:W=y 1•z 1+(12000-y 1)•z 2=1200012x x +(12000-12000x )•(34x-112x 2), =-1000x 2+10000x-3000,∵a=-1000<0,x=2b a-=5,1≤x≤6,∴当x=5时,W 最大=22000(元), 当7≤x≤12时,且x 取整数时, W=2×(12000-y 2)+1.5y 2=2×(12000-x 2-10000)+1.5(x 2+10000),=-12x 2+1900, ∵a=-12<0,x=2b a-=0,当7≤x≤12,W 随x 增大而减小,∴当x=7时,W 最大=18975.5(元),∵22000>18975.5,∴去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)×1.5×[1+(a-30)%]×(1-50%)=18000,设t=a%,整理得:10t2+17t-13=0,解得:,∴t1≈0.57,t2≈-2.27(舍去),∴a≈57,答:a的值是57.对应训练4.(2012•襄阳)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=60x-1.5x2,该型号飞机着陆后滑行m才能停下来.解:∵-1.5<0,∴函数有最大值.∴s最大值=260600 4( 1.5)-=⨯-,即飞机着陆后滑行600米才能停止.故答案为:600.5.(2012•益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比12(约等于0.618).请你计算这个“W”≈2.236,≈2.449,结果可保留根号)考点:二次函数的应用.分析:(1)利用P与P′(1,3)关于x轴对称,得出P点坐标,利用待定系数法求出二次函数的解析式即可;(2)根据已知得出C,D两点坐标,进而得出“W”图案的高与宽(CD)的比.解:(1)∵P与P′(1,3)关于x轴对称,∴P点坐标为(1,-3);∵抛物线y=a(x-1)2+c过点A(,0),顶点是P(1,-3),∴22(11)0(11) 3a ca c⎧+=⎪⎨-+=-⎪⎩;解得13ac=⎧⎨=-⎩;则抛物线的解析式为y=(x-1)2-3,即y=x2-2x-2.(2)∵CD平行x轴,P′(1,3)在CD上,∴C、D两点纵坐标为3;由(x-1)2-3=3,解得:x1,x2,∴C、D两点的坐标分别为(,3),(,3)∴。

相关文档
最新文档