植物生理生化指标测定
植物生理生化指标测定
小黑豆相关生理指标测定1.表型变化:鲜重、株高、主根长和叶面积鲜重:取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测6个重复。
株高:取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。
主根长:取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。
叶面积:取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长,测叶片最窄处长度作为叶的宽,叶片长和宽的乘积即为叶表面积。
每个测6个重复。
2.总蛋白、可溶性糖、丙二醛(MDA)和H2O2含量测定样品处理:取0.5g样品(叶片要去除叶脉、根要先用清水清洗干净),速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入1.5ml的Tris-HCl(pH7.4)抽提,将抽提液转移到2ml的EP管中,于4℃,12000rpm离心15min,取上清,保存在-20℃下,上清液可用于总蛋白、丙二醛(MDA)、可溶性糖和H2O2含量测定。
总蛋白测定(Bradford法):样品反应体系(800ul H2O+200ul Bradford+5ul 样品),空白对照为(800ul H2O+200ul Bradford)。
测定后带入标准曲线Y=32.549X-0.224(Y代表蛋白含量,X代表OD595),计算得出蛋白含量。
可溶性糖测定:样品反应体系(1ml蒽酮+180ul ddH2O+20ul样品提取液);空白对照(1ml蒽酮+180ul ddH2O),测定OD625后带入标准曲线:Y=0.0345X+0.0204(Y代表OD625,X代表可溶性糖含量(ug))蒽酮配方:称取100mg蒽酮溶于100ml稀硫酸(76ml浓硫酸+30mlH2O).注意:浓硫酸加入水中时,一点一点递加,小心溅出受伤。
丙二醛(MDA)测定:在酸性和高温条件下,丙二醛可与硫代巴比妥(TBA)反应生成红棕色的3,5,5-三甲基恶唑2,4-二酮,在532nm处有最大吸收波长,但该反应受可溶性糖的极大干扰,糖与TBA的反应产物在532nm处也有吸收,但其最大吸收波长在450nm处。
植物生理学实验测试
植物生理学实验测试植物生理学是研究植物生长和发育等生理过程的科学学科,通过实验测试可以揭示植物对外界环境因素的响应和适应机制。
本文将介绍几种常见的植物生理学实验测试方法,包括植物生长实验、叶绿素测定实验和逆境胁迫实验等。
一、植物生长实验植物生长实验是研究植物对不同环境条件下的生长反应的一种常见方法。
可以通过改变光照、温度、水分等环境因素来观察植物生长的变化。
在实验中,选取相同种子并进行处理,如将一组种子暴露在高温环境下,另一组放置在低温环境中,然后记录植物的生长情况,并进行数据统计和分析。
通过这种实验方法可以了解植物对温度的适应性以及不同温度对植物生长的影响。
二、叶绿素测定实验叶绿素是植物中起着关键作用的色素,其含量可以反映植物光合作用的强弱。
叶绿素测定实验可以通过测量植物叶片中叶绿素的含量来评估光合作用的效率。
实验中,首先需要采集新鲜叶片样品,并将其研磨得到绿色叶汁,然后通过光度计等仪器测定叶绿素的吸光度值,并根据标准曲线计算叶绿素的含量。
通过叶绿素测定实验可以评估植物对不同环境因素(如光照强度、养分浓度)的响应和适应能力。
三、逆境胁迫实验逆境胁迫实验是模拟植物在环境恶劣条件下的生理反应,如盐胁迫、干旱胁迫、冷热胁迫等。
通过逆境胁迫实验,可以研究植物在逆境条件下的生理适应和耐受机制。
实验中,可以使用不同浓度的盐水浇灌植物或让植物在干旱条件下生长,然后观察植物的生长情况、生理指标的变化,并与正常生长的植物进行比较分析。
逆境胁迫实验可以揭示植物对逆境的敏感性和胁迫响应机制,为育种和改良耐逆植物品种提供理论依据。
总结:植物生理学实验测试是研究植物生理过程的重要手段,通过不同的实验方法可以揭示植物对环境因素的响应和适应机制。
植物生长实验、叶绿素测定实验和逆境胁迫实验是常见的植物生理学实验方法,分别用于研究植物生长、光合作用和逆境胁迫的情况。
通过这些实验测试的结果,可以进一步了解植物的适应性和耐受能力,为培育适应不同环境的优良植物品种提供理论基础。
植物生理生化指标测定
植物生理生化指标测定植物生理生化指标测定是研究植物生长发育和适应环境的重要手段之一、通过测定植物的生理生化指标,可以了解植物的代谢活动、光合作用强度、水分状况、营养状况等,从而为植物生长调控、抗逆性研究提供依据。
下面将从光合作用测定、水分状况测定和营养状况测定三个方面对植物生理生化指标测定进行详细介绍。
光合作用是植物生长发育的重要过程之一,也是植物蓄积养分和能量的主要途径。
常用的光合作用测定指标有净光合速率、光饱和点、光补偿点和光抑制。
净光合速率是指单位时间内单位叶面积净光合产物的量,可以通过测定二氧化碳吸收量和氧气释放量来计算。
光饱和点是指植物的净光合速率达到最大值时的光强度,可以通过测定不同光强下的净光合速率来得出。
光补偿点是指净光合速率和呼吸速率相等的光强度,可以通过测定不同光强下的净光合速率和呼吸速率来确定。
光抑制是指过高或过低的光强度对植物光合作用的影响,可以通过测定光强对净光合速率的影响来评价。
水分状况是植物生理生化指标测定的重要方面之一,也是植物生长发育和适应环境的关键因素之一、常用的水分状况测定指标有相对含水量、蒸腾速率和水分利用效率。
相对含水量是指植物组织中的相对含水量与干重的比值,可以通过称量植物组织的湿重和干重来计算。
蒸腾速率是指单位时间内单位叶面积水分蒸腾的量,可以通过测定植物的蒸腾量和叶面积来计算。
水分利用效率是指植物单位干物质产量所需要的水分量,可以通过测定植物的干物质产量和水分消耗量来计算。
营养状况是植物生理生化指标测定的另一个重要方面,也是植物生长发育和代谢活动的基础。
常用的营养状况测定指标有叶绿素含量、叶绿素荧光参数和土壤养分含量。
叶绿素含量是评价植物叶绿素合成和叶绿素降解的指标之一,可以通过植物叶片中叶绿素的提取和测定来得出。
叶绿素荧光参数是评价光能利用效率和光能转化效率的重要指标之一,可以通过叶绿素荧光仪来测定。
土壤养分含量是评价土壤中不同营养元素含量的指标之一,可以通过土壤样品的提取和测定来得出。
《植物生理生化》实验指导
令狐采学《植物生理生化》实验指导(适用专业:农学类相关专业)黑龙江八一农垦大学植物科技学院生理生化教研室目录生物化学实验部分:实验一、氨基酸的纸层析 (1)实验二、蛋白质含量测定(设计性实验) (5)实验三、酶的基本性质 (7)实验四、维生素C含量的测定 (12)实验五、还原糖和总糖的测定 (14)实验六、淀粉酶活性的测定 (17)实验七、脂肪浸提——索氏脂肪浸提法 (20)实验八、一种简单实用的提取植物DNA的方法 (22)实验九、聚丙烯酰胺电泳法测定大麦、小麦种子纯度 (24)实验十、淀粉酶的诱导、提取和活性测定(综合性实验) (26)植物生理学实验部分:实验一、植物组织水势的测定(小液流法) (28)实验二、植物伤流量的测定 (30)实验三、根系活力的测定 (31)实验四、蒸腾强度的测定 (35)实验五、叶绿体色素的提取、分离、性质和定量测定(综合性实验) (37)实验六、光合强度的测定(改良半叶法) (39)实验七、呼吸强度的测定 (41)实验八、植物抗逆性的鉴定(电导仪法) (43)实验九、植物缺水程度的测定(脯氨酸法) (45)生物化学实验部分实验一氨基酸的纸层析一、目的:层析分析法已广泛用于氨基酸、核酸、激素、维生素、糖类的分离与分析。
其优点是能够分离与分析在组成、结构及性质上极为相似的物质;设备简单,操作容易,样品用量很少,结果也较明确。
本实验的目的在于要求学生掌握纸层析法的一般原理和操作技术。
二、原理:纸层析法是以滤纸作为支持物的分配层析法。
分配层析法是利用物质在两种不同混合溶剂中的分配系数不同,而达到分离的目的。
通常用α表示分配系数。
在一定条件下,一种物质在某溶剂系统中的分配系数是一个常数。
)溶质在流动相的浓度()溶质在静止相的浓度(l s C C =α 层析溶剂是选用有机溶剂和水组成的。
由于滤纸纤维素对水有较强的亲和力(纸上有很多-OH 基与水以氢键相连),吸附很多水分子,一般达滤纸重的22%左右(其中约有6%的水与纤维素结合成复合物),因此使这一部分水扩散作用降低形成静止相;而有机溶剂与滤纸的亲和力很弱,可以在滤纸的毛细管中自由流动,便形成流动相。
(整理)植物生理指标测定方法
A600—在600nm波长下测得的吸光度值
﹡—1.55×105为摩尔比吸收系数
C糖、CMDA分别是反应混合液中可溶性糖、MDA的浓度。
1.按下式计算提取液中MDA浓度
反应液体积(ml)
CMDA×—————————
1000
提取液中MDA浓度(μmol·ml-1)= ———————————————
四、实验步骤
1、脯氨酸标准曲线的制作
1.1取6支试管,编号,按下表配制每管含量为0~12μg的脯氨酸标准液。加入表中试剂后,置于沸水浴中加热30min。取出冷却。以去离子水溶液为空白对照,在520mm波长处测定吸光度(A)值。
试剂
管号
0
1
2
3
4
5
10μg·ml-1脯氨酸标准液(ml)
蒸馏水(ml)
冰醋酸(ml)
【3】无水酒精和80%丙酮等体积混合提取
实验二、
一、原理
植物组织在受到各种不利的环境条件(如干旱、低温、高温、盐渍和大气污染)危害时,细胞膜的结构和功能首先受到伤害,细胞膜透性增大。若将受伤害的组织浸入无离子水中,其外渗液中电解质的含量比正常组织外渗液中含量增加,组织受伤害越严重,电解质含量增加越多。用电导仪测定外渗液电导率的变化,可反映出质膜受伤害的程度。在电解质外渗透的同时,细胞内可溶性有机物也随之渗出,引起外渗液可溶性糖、氨基酸、核苷酸等含量增加,氨基酸和核苷酸对紫外光有吸收,对紫外分光光度计测定受伤害组织外渗液消光值,同样可反映出质膜受伤害的程度。用电导仪法和紫外法测定结果有很好的一致性。
二、原理
磺基水杨酸对脯氨酸有特定反应,当用磺基水杨酸提取植物样品时,脯氨酸便游离于磺基水杨酸溶液中。然后用酸性茚三酮加热处理后,茚三酮与脯氨酸反应,生成稳定的红色化合物,再用甲苯处理,则色素全部转移至甲苯中,色素的深浅即表示脯氨酸含量的高低。在520nm波长下测定吸光度,即可从标准曲线上查出脯氨酸的含量。
植物的生理生化研究实验
准备实验材料,设置呼吸作用抑制剂处理组和对照组,观察并记录 植物的生长情况。
数据分析
对比处理组和对照组的植物生长数据,分析呼吸作用对植物生长的 影响及机制。
05
植物矿质营养与代谢实验
测定植物体内矿质元素含量
原子吸收光谱法
利用原子吸收光谱仪测定植物样品中矿质元素的含量,该方法具有灵敏度高、选 择性好、精密度高等优点。
应用价值
实验结果可为农业生产、生态环境保护等领域提供科学依据和技术支持。例如,通过了解植物对不同环境条件的 适应机制,可以指导农业生产中合理施肥、灌溉等措施的制定;同时,对于植物抗逆性、抗病性等方面的研究也 可为植物育种和病虫害防治提供新的思路和方法。
提出进一步研究的设想和建议
深入研究特定基因或蛋白质的功能
质壁分离观察
利用显微镜观察质壁分离后的细胞形 态,了解细胞壁的弹性和原生质体的 收缩情况。
分析水分在植物体内的运输途径
长距离运输
通过测定植物不同部位的水势和含水量,分析水分在植物体内的长距离运输途 径和机制。
短距离运输
利用显微技术观察植物细胞间的水分移动,了解水分在细胞间的短距离运输方 式和过程。
信号传导机制探讨
深入研究激素与受体结合后的信号传导过程,揭示激素调控植物生长发 育的分子机制。
03
激素互作分析
研究不同激素间的相互作用关系,探讨它们在植物生长发育中的协同或
拮抗作用。
07
实验结果分析与讨论
对实验数据进行统计分析
数据收集与整理
详细记录实验过程中的各项数据,包括植物的生长情况、生理生 化指标等,并进行分类整理。
分析环境因素对光合作用的影响
实验原理
研究光照强度、温度、CO2浓度等环境因素对光 合作用的影响。
植物逆境胁迫下的生理生化指标研究
植物逆境胁迫下的生理生化指标研究随着全球气候变化的加剧,植物面临着越来越频繁和严重的逆境胁迫。
逆境胁迫对植物的生长发育、生理代谢、生物化学等方面都会产生重大的影响。
因此,研究植物在逆境胁迫下的生理生化指标,对于了解植物适应环境变化的机制,提高植物抗逆能力,具有重要的科学意义和实际价值。
一、植物生理生化指标的选择与意义逆境胁迫下的植物生理生化指标种类繁多,常见指标包括植物的抗氧化酶活性、膜脂过氧化程度、光合作用参数、叶绿素含量、非饱和脂肪酸含量等。
这些指标可以从不同的层面反映植物对逆境胁迫的响应和适应能力。
例如,抗氧化酶活性可以反映植物对逆境胁迫产生的氧化应激的抵抗能力;膜脂过氧化程度可以反映植物细胞膜的稳定性;光合作用参数可以反映植物光能利用的效率;叶绿素含量可以反映植物叶片的光合能力;非饱和脂肪酸含量可以反映植物细胞膜的可流动性。
通过对这些指标的研究,可以揭示植物适应逆境胁迫的机制,为培育抗逆品种、改善植物逆境胁迫抵抗能力提供理论依据。
二、逆境胁迫下植物生理生化指标的变化逆境胁迫下,植物的生理生化指标往往会发生明显的变化。
以抗氧化酶活性为例,逆境胁迫会导致植物体内活性氧的积累,进而激活一系列抗氧化酶,如超氧化物歧化酶、过氧化物酶等的活性增强。
同时,膜脂过氧化程度也会随之增加,导致细胞膜的功能和稳定性下降。
此外,光合作用参数的变化也是逆境胁迫下植物生理生化指标的重要表现形式。
在强光辐射和干旱等逆境条件下,光合作用的光抑制现象明显,表现为光合速率的下降和光系统II的损伤。
这些指标的变化往往与植物对逆境胁迫的响应和适应密切相关。
三、植物逆境胁迫下生理生化指标研究的方法和技术对于植物逆境胁迫下的生理生化指标研究,需要运用一系列的方法和技术进行分析和检测。
常用的方法包括酶活性测定、色谱分析、光合作用测定、光谱分析等。
例如,通过酶活性的测定,可以分析抗氧化酶活性的变化情况;通过色谱分析,可以测定植物中非饱和脂肪酸的含量;通过光合作用测定,可以评估植物的光合能力。
植物生理生化指标的测定方法与意义解读
植物生理生化指标的测定方法与意义解读植物生理生化指标的测定方法与意义解读对于研究植物生长、适应环境以及疾病防治等领域至关重要。
本文将介绍几种常用的植物生理生化指标的测定方法,并解读其意义。
一、叶绿素含量的测定方法与意义解读叶绿素是植物光合作用的关键物质,反映了植物的光合能力和光合效率。
常用的测定叶绿素含量的方法有多种,如色素提取法、光度法和荧光法等。
其中,色素提取法是最常用的方法之一。
该方法通过乙醇提取叶片中的叶绿素,然后用紫外-可见光谱仪分析提取液的吸光度,从而计算出叶绿素含量。
叶绿素含量的测定对植物的研究具有重要意义。
首先,叶绿素含量可以直接反映植物的光合能力和光合效率。
一般来说,叶绿素含量越高,植物的光合作用效率越高,并且可以更好地利用阳光进行光合作用。
其次,叶绿素含量也可以作为植物受到生态环境和生理状态变化的指示器。
例如,在氮素缺乏的条件下,植物体内的叶绿素含量会下降,表明植物养分供应不足。
因此,测定叶绿素含量有助于了解植物在不同环境和条件下的光合适应能力和生长状态。
二、抗氧化酶活性的测定方法与意义解读抗氧化酶是植物体内起重要保护作用的一类酶,包括超氧化物歧化酶(SOD)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)等。
这些酶能够清除植物体内产生的有害氧自由基,保护细胞免受氧化损伤。
常用的抗氧化酶活性测定方法有多种,如显色法、发光法和酶活测定法等。
抗氧化酶活性的测定在研究植物的环境适应能力和应对氧化胁迫方面具有重要意义。
首先,抗氧化酶活性可以反映植物受到氧化胁迫的程度。
当植物受到氧化胁迫时,抗氧化酶活性会显著增加,以应对有害氧自由基的累积。
其次,抗氧化酶活性还可以用来评估植物的环境适应能力。
例如,在干旱或高温等胁迫条件下,植物体内的抗氧化酶活性通常会增加,以维持细胞内的氧化-还原平衡。
三、渗透调节物质含量的测定方法与意义解读渗透调节物质是植物在干旱、盐碱等逆境环境下维持细胞渗透平衡和稳态的重要物质。
植物各项生理指标
植物各项生理指标植物的生理指标是指用来反映植物健康状态和生长发育过程的各种参数,可以通过测量和分析这些指标来评估植物的营养状况、生理功能和环境适应能力。
下面详细介绍几个常见的植物生理指标:1.光合作用:光合作用是植物对阳光能量的利用过程,可以通过测量光合速率来评估植物的自养能力。
光合速率受到光照强度、温度、二氧化碳浓度和水分等因素的影响,可以通过光合作用速率仪或测量叶片的气体交换来进行测定。
2.蒸腾作用:蒸腾作用是植物水分和气体交换的过程,通过叶片的气孔释放水分和二氧化碳,并吸收大气中的二氧化碳。
蒸腾速率可以通过测量蒸腾速率仪或水分损失来进行评估,反映植物的水分利用效率和胁迫适应能力。
3.叶绿素含量:叶绿素是植物中主要的光合色素,可以通过测量叶片的叶绿素含量来评估光能的吸收和光合作用的活性。
叶绿素含量可以通过叶绿素仪或酸碱提取法进行测定。
4.叶片氮含量:氮是植物生长所必需的关键元素,叶片的氮含量可以反映植物的养分状况和营养利用效率。
可以通过测量叶片的氮含量来评估植物的营养状态和生长潜力。
5.相对水分含量:相对水分含量是指植物叶片组织中的水分含量与完全脱水状态下的干重之比,可以反映植物体内的水分利用能力和胁迫适应能力。
可以通过测量叶片的相对水分含量来评估植物的水分状况和干旱耐受性。
6.温度响应曲线:温度响应曲线是通过测量植物在不同温度条件下的生理生化指标来研究植物对温度的响应,可以评估植物的热耐性、光合作用活性和生长发育过程。
7.水势:水势是指植物体内和周围环境之间的水分差异,可以通过测量植物的叶片水势来评估植物的水分利用能力和胁迫适应能力。
除了以上提到的指标,还有许多其他的植物生理指标,如叶片气孔导度、叶片蛋白含量、叶片潜热释放率等,这些指标可以更全面地评估植物的生理状态和环境适应能力。
综合应用这些生理指标可以帮助我们更好地了解植物的生长机理和生态功能,并为植物育种、农业生产和生态恢复等提供科学依据。
植物生理生化实验
实验一植物组织游离氨基酸含量测定—茚三酮试剂显色法P199原理:游离氨基酸与茚三酮共热时能定量生成二酮茚-二酮茚胺,产物呈蓝紫色,称Rubemans紫。
其吸收峰在570nm,且在一定范围内吸光度与游离氨基酸浓度成正比,因此可用分光光度法测定其含量。
①微酸、90℃:氨基酸被氧化形成CO2、NH3和醛,茚三酮被还原成还原型茚三酮。
②脱水:还原型茚三酮与另一分子茚三酮和一分子氨进行缩合脱水,生成二酮茚-二酮茚胺。
材料:清水浸种吸涨的水稻、清水浸种萌发两天的水稻。
实验步骤:分别取1g萌发、未萌发水稻于研钵中,加入5ml醋酸(使蛋白质变性,沉淀),研磨成匀浆后,用无置于沸水中加热15min,取出用冷水迅速冷却并不时摇动,使之呈蓝紫色,用60%乙醇定容20ml,在570nm 波长下测定吸光度。
样品氨基态含氮量(ug/100g鲜重)=CV T/V S W *100 ;C=A/k (k=0.103) ;V T=100/2 ;V S=1 ;W=1注意事项:1.测定前所用的玻璃仪器要干燥,所用的蒸馏水必须为无氨水;2.样品要磨匀,用无氨蒸馏水定容,并用干燥滤纸过滤;3.抗坏血酸易被还原;加入的量要严格控制,因为还原剂抗坏血酸会与茚三酮反应;4.水浴锅的液面要高于试管内的液面,使其加热均匀,并在加热后几秒再塞上塞子,水浴锅温度要高于90℃,15min后取出迅速冷却,再加入60%乙醇;5.稀释后要迅速比色;6. 谷物等蛋白质样品可用酸水解法讲蛋白质水解后,用本法测定氨基酸含量,可计算出样品蛋白质含量;7. 反应要在无水、有机、微酸的环境下进行。
最适PH为4.5,是乙醇-乙酸钠缓冲液和醋酸缓和后的PH。
思考题:1.茚三酮与所有氨基酸的反应产物都相同吗?为什么?不相同,因为有些氨基酸的结构不同,不含游离的氨基,如脯氨酸。
2.测定植物组织中游离氨基酸总量有何意义?可以测定植物对氮的根吸收,测定植物的病理和逆境状态和植物的营养、施肥指标等。
植物生理指标测定方法
实验一植物叶绿素含量的测定(分光光度法)(张宪政,1992)一、原理根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。
根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。
当溶液浓度以百分浓度为单位,液层厚度为1cm时,α为该物质的吸光系数。
各种有色物质溶液在不同波长下的吸光系数可通过测定已知浓度的纯物质在不同波长下的吸光度而求得。
如果溶液中有数种吸光物质,则此混合液在某一波长下的总吸光度等于各组分在相应波长下吸光度的总和。
这就是吸光度的加和性。
今欲测定叶绿体色素混合提取液中叶绿素a、b和类胡萝卜素的含量,只需测定该提取液在三个特定波长下的吸光度A,并根据叶绿素a、b及类胡萝卜素在该波长下的吸光系数即可求出其浓度。
在测定叶绿素a、b时为了排除类胡萝卜素的干扰,所用单色光的波长选择叶绿素在红光区的最大吸收峰。
高等植物中叶绿素有两种:叶绿素a 和b,两者均易溶于乙醇、乙醚、丙酮和氯仿。
叶绿素a和叶绿素b的比值反映植物对光能利用效率的大小,比值高则大,则反之。
二、材料、仪器设备及试剂试剂:1)95%乙醇(或80%丙酮)三、实验步骤称取剪碎的新鲜样品0.2~0.3g,加乙醇10ml,提取直至无绿色为止。
把叶绿体色素提取液倒入光径1cm的比色杯内,以95%乙醇为空白,在波长663nm和645nm下测定吸光度。
四、实验结果按计算丙酮法(Arnon法)【可以用于丙酮乙醇混合法和80%丙酮提取法的计算】叶绿素a的含量(mg/g)=(12.71⨯OD663 – 2.59⨯OD645)V/1000*W叶绿素b的含量(mg/g)=(22.88OD645 – 4.67OD663) V/1000*W 叶绿素a、b的总含量(mg/g)=(8.04⨯OD663 +20.29⨯OD645) V/1000*W按Inskeep公式叶绿素a的含量(mg/g)=(12.63⨯OD663 – 2.52⨯OD645)V/1000*W叶绿素b的含量(mg/g)=(20.47OD645 – 4.73OD663) V/1000*W叶绿素a、b的总含量(mg/g)=(7.90⨯OD663 + 17.95⨯OD645) V/1000*W 注:1、叶绿素a和叶绿素b的比值反映植物对光能利用率【1】比如阳生植物叶绿素a和叶绿素b的比值较大【2】阴生植物叶绿素a和叶绿素b的比值较小2、丙酮-------熔点:-94℃;沸点:56.48℃;是一种无色透明液体,有特殊的辛辣气味易溶于水和甲醇、乙醇、乙醚、氯仿、吡啶等有机溶剂.下一步实验方法比较【1】95%乙醇直接提取(√)【2】95%乙醇加热提取(冯瑞云,1985)【3】无水酒精和80%丙酮等体积混合提取实验二、不良环境对植物细胞膜的伤害((张宪政,1992))一、原理植物组织在受到各种不利的环境条件(如干旱、低温、高温、盐渍和大气污染)危害时,细胞膜的结构和功能首先受到伤害,细胞膜透性增大。
生理生化指标要点
※ ATP和蛋白质与抗逆性
ATP是生命活动中最重要的能量携带者,被称为生物体能量转换的 “通货”。维持一定水平的ATP含量是植物进行生命活动的重要前提。 逆境胁迫条件下ATP含量增加或轻微下降的植物,能保持较高的能荷, 使各种代谢活动得以正常(zhèngcháng)进行,从而直接或间接地增强 其抗逆能力,表现出对逆境的适应性。
精品资料
(四) 物质(wùzhì)和能量代谢与植物抗逆性的
关※系 光合作用与抗逆性
逆境使光合作用受抑制的原因是多方面的,主要由于: 逆境造成气孔关闭,CO2扩散的阻力增加,摄入量减少;叶 绿体片层膜体系结构改变,光系统Ⅱ活性减弱甚至丧失,光 合磷酸化解偶联;叶绿素合成速度减慢,光合酶活性降低; 水解加强,糖类积累;……这些都是导致光合作用下降的因 素。而抗逆性强的植物在逆境胁迫时能维持(wéichí)较高的 光合速率,利用物种间这种差异可以评价植物抗逆性和筛选 光合作用强的作物品种。
精品资料
※ 硝酸(xiāo suān)还原酶活性与 抗逆性
硝酸还原酶(NRA)是植物氮素代谢过程中的关键 酶,NRA的变化可以影响植物体内(tǐ nèi)各种代谢过 程及作物产量。NRA对逆境胁迫极为敏感, 尤其是水 分胁迫(如轻微的干旱即可引起酶活性的明显下降, 但抗旱性强的作物品种在水分胁迫下NRA活性变化不 大。因此不少学者提出用NRA活性在干旱条件下的变 化幅度作为评定作物品种抗旱性的生理指标)。
精品资料
※ 脯氨酸积累(jīlěi)能力与抗逆 性
脯氨酸是无毒的中性溶质,脯氨酸对细胞渗透调节 有重要作用,是水溶性最大的氨基酸,具有易于水合的 趋势或具有较强的水合能力,在植物(zhíwù)遭受逆境 胁迫时它的增加有助于细胞或组织的持水,防止脱水。 现已在多种植物(zhíwù)上发现,逆境胁迫时植株中游 离脯氨酸的积累能力反映了其抗逆性。但目前脯氨酸仍 是一个争论很大的抗逆指标。
植物生理生化指标的监测与评价研究
植物生理生化指标的监测与评价研究植物的生理生化指标是评估其健康状况和适应性的重要依据。
通过监测和评价这些指标,我们可以了解植物对环境的响应和适应能力,为植物生理学和生态学研究提供有力支持。
本文将综述植物生理生化指标的常用监测技术和评价方法。
一、光合作用相关指标光合作用是植物进行养分合成的关键过程。
通过测量光合作用相关指标,我们可以获得植物的光合效率和养分利用效率等信息。
常用的光合作用相关指标包括净光合速率(Pn)、蒸腾速率(Tr)和光合有效辐射利用率等。
监测这些指标可使用便携式测光仪、气孔仪等设备,评价方法可采用比较分析或建立模型进行预测。
二、叶绿素荧光指标叶绿素荧光是植物光合过程中释放的能量。
通过监测叶绿素荧光指标,我们可以了解植物的光合效率和受逆境胁迫的程度。
常用的叶绿素荧光指标包括最大光化学效率(Fv/Fm)、有效光量子产量(ΦPSII)和非光化学淬灭(NPQ)等。
测量叶绿素荧光指标可使用便携式叶绿素荧光仪,评价方法可采用比较分析或构建响应模型。
三、抗氧化酶活性指标抗氧化酶是植物抵抗氧化胁迫的关键因子。
通过监测抗氧化酶活性指标,我们可以了解植物对氧化应激的防御能力。
常用的抗氧化酶活性指标包括超氧化物歧化酶(SOD)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)等。
测量抗氧化酶活性可使用酶活测定试剂盒,评价方法可采用比较分析或建立反应模型。
四、生长代谢指标生长代谢是植物生长发育的基础过程。
通过监测生长代谢指标,我们可以了解植物的营养吸收和有效利用能力。
常用的生长代谢指标包括根系活力、可溶性糖含量和叶片叶绿素含量等。
监测生长代谢指标可使用土壤养分测定仪、高效液相色谱仪等设备,评价方法可采用比较分析或构建模型。
五、生理生化指标的评价方法评价植物生理生化指标常采用比较分析和数理统计方法。
比较分析可通过对不同栽培条件下植物指标的差异进行比较,进而判断其对环境的响应和适应能力。
数理统计方法可通过建立回归模型或分类模型,对监测数据进行拟合和预测,提高评价的准确性。
植物生理指标测定
氮蓝四唑(NBT)法测定超氧物歧化酶(SOD)活力一、原理超氧物歧化酶(superoxidedismutase,SOD)普遍存在于动、植物体内,是一种清除超氧阴离子自由基的酶。
本实验依据超氧物歧化酶抑制氮蓝四唑(NBT)在光下的还原作用来确定酶活性大小。
在有氧化物质存在下,核黄素可被光还原,被还原的核黄素在有氧条件下极易再氧化而产生O2,可将氮蓝四唑还原为蓝色的甲腙,后者在560nm处有最大吸收。
而SOD可清除O2,从而抑制了甲腙的形成。
于是光还原反应后,反应液蓝色愈深,说明酶活性愈低,反之酶活性愈高。
据此可以计算出酶活性大小。
二、材料、仪器设备及试剂(一)材料;水稻或小麦叶片(二)仪器设备:1.高速台式离心机;2.分光光度计;3.微量进样器;4.荧光灯(反应试管处照度为4000Lx);5.试管或指形管数支。
(三)试剂 1. 0.05mol/L 磷酸缓冲液(pH7.8);2. 130mmol/L 甲硫氨酸(Met)溶液:称1.9399gMet用磷酸缓冲液定容至100ml;3.750μmol/L 氮蓝四唑溶液:称取0.06133gNBT用磷酸缓冲液定容至100ml,避光保存;4. 100μmol/L EDT-Na2溶液:称取0.03721gEDTA-Na2用磷酸缓冲液定容至1000ml;5. 20μmol/L 核黄素溶液:称取0.0753g核黄素用蒸馏水定容至1000ml避光保存。
三、实验步骤1. 酶液提取取一定部位的植物叶片(视需要定,去叶脉)0.5g于预冷的研钵中,1ml预冷的磷酸缓冲液在冰浴上研磨成浆,加缓冲液使终体积为5ml。
取1.5~2ml于1000rpm下离心20min,上清液即为SOD粗提液。
2. 显色反应取5ml指形管(要求透明度好)4支,2支为测定管,另2支为对照管,按下列加入各溶液:试剂(酶)用量(ml)终浓度(比色时)0.05mol/L 磷酸缓冲液1.5130mmol/L Met溶液0.313mmol/L 750μmol/LNBT溶液0.375μmol/L 100μmol/L EDTA-Na2液0.310μmol/L 20μmol/L 核黄素0.320μmol/L 酶液0.05。
常用作物生理指标测定方法
常用作物生理指标测定方法作物生理指标是衡量作物生长发育和生理功能的重要参数,对于研究作物生理特性、生长速度、抗逆性能以及优化农业管理具有重要价值。
下面是一些常用的作物生理指标测定方法:1.叶绿素含量测定:叶绿素是作物光合作用的重要生化指标,常用的方法包括醋酸镁法、乙醇法和非破坏性叶绿素测定仪等。
2.叶片相对含水量测定:叶片相对含水量是反映植物水分状况的指标,常用的方法包括重量法、酒精浸泡法等。
3.叶片相对电导率测定:叶片相对电导率是反映作物膜系统完整性的指标,常用的方法包括浸泡法和浸渍法。
4. 叶片蛋白质含量测定:叶片蛋白质含量是反映植物生长和抗逆性的指标,常用的方法包括Lowry法、Bradford法和Biuret法等。
5.叶片活性氧含量测定:活性氧对植物生长和逆境抗性具有重要影响,常用的方法包括过氧化氢测定法、超氧化物歧化酶测定法和丙二醛含量测定法等。
6.叶片抗氧化酶活性测定:抗氧化酶是植物抵御氧化应激的重要酶系,常用的方法包括超氧化物歧化酶活性测定法、过氧化氢酶活性测定法和过氧化物酶活性测定法等。
7.土壤水分含量测定:土壤水分含量是影响作物生长和产量的重要因素,常用的方法包括烘干法、容量法和驻挠仪测定法等。
8.根系活力测定:根系活力是作物吸收水分和养分的重要指标,常用的方法包括三苯四氮唑蓝法和碘化钠法等。
9.气孔导度测定:气孔导度是作物水分调节和碳代谢的重要参数,常用的方法包括气体交换仪测定法和树脂浸泡法等。
10.叶盘蒸腾速率测定:叶盘蒸腾速率是反映作物水分蒸腾能力的指标,常用的方法包括测定叶盘失重法和石蜡浸渍法等。
以上是一些常用的作物生理指标测定方法,这些方法提供了了解作物生长发育和生理功能的重要信息,为作物生理机制的深入研究和农业管理的优化提供了依据。
同时,为提高作物抗逆性能和增加农业产量提供了重要的支持。
植物生理生化实验原理和技术
植物生理生化实验原理和技术植物生理生化实验旨在研究植物生命过程中的生理和生化相关現象,改进对植物的了解及应用。
以下是实验原理和常用技术。
1. 光合作用测定:光合作用是植物生理的重要过程之一,可使用光合速率仪测量光合速率。
原理是通过测量植物叶片释放或吸收的氧气量,来间接测定光合速率。
2. 蒸腾作用测定:蒸腾作用是植物水分代谢的关键环节。
可利用蒸腾速率仪测量植物叶片释放的水蒸气量,从而确定植物的蒸腾速率。
3. 细胞呼吸测定:细胞呼吸是植物细胞产能的主要途径,可以通过测量释放的二氧化碳量来测定细胞呼吸速率。
常用的测定方法有测量呼吸速率的气体分析仪或密闭系统测定二氧化碳的累积。
4. 酶活性测定:酶是植物生物化学过程中的重要催化剂。
酶活性的测定可以通过测量糖类、蛋白质、核酸等底物的代谢速率,或通过测量底物与产物之间的光学、电化学变化来实现。
常用的方法有光谱法、酶促反应连续监测法等。
5. 色素提取:植物体内的色素对光合作用和其他生化过程至关重要。
常用的色素提取方法包括酒精提取、乙醚提取等。
提取后的色素溶液可以通过紫外-可见光谱仪进行定量测定。
6. 蛋白质测定:蛋白质是植物细胞内的重要有机物。
常用的蛋白质测定方法包括巴雷特试剂法、劳氏试剂法、比色试剂法等。
通过测定样品和标准溶液的吸收值,可以计算出蛋白质的含量。
7. 酶动力学测定:酶动力学是研究酶催化作用速度的科学。
可以通过测定底物浓度、酶浓度、反应时间等因素对酶活性的影响来研究酶的催化机理。
常用的测定方法有Michalis-Menten曲线法、双倒数法等。
8. 膜透性测定:膜透性是指物质穿过细胞膜的能力。
可以通过测定溶液中离子浓度的变化,来评估膜透性的改变。
常用的测定方法有电导率法、吸光度法等。
9. RNA/DNA提取和定量:RNA/DNA是植物遗传信息的主要表达形式。
可以使用相关试剂盒从植物样品中提取RNA/DNA,然后通过紫外-可见光谱仪或荧光定量仪测定其浓度。
植物生理生化实验原理与技术
植物生理生化实验原理与技术植物生理生化实验是研究植物生命周期、生长发育、代谢物质合成与分解等生理生化过程的重要手段。
通过实验可以揭示植物对外界环境的适应性和调节机制,探究植物体内的生化反应和代谢途径,为植物科学研究提供实证依据。
本文将从植物生理和生化两个方面介绍相关实验原理与技术。
一、植物生理实验原理与技术1. 光合作用实验光合作用是植物体内最重要的代谢过程之一,通过光合作用,植物能够将光能转化为化学能,合成有机物质,并释放出氧气。
光合作用实验可以通过测定氧气释放量、二氧化碳吸收量、光合速率等指标来评估植物的光合能力。
实验中常用的技术包括测气法、光合速率仪等。
2. 呼吸作用实验呼吸作用是植物体内的一种氧化代谢过程,通过呼吸作用,植物能够将有机物质分解为二氧化碳和水,并释放出能量。
呼吸作用实验可以通过测定二氧化碳释放量、氧气消耗量等指标来评估植物的呼吸能力。
实验中常用的技术包括测气法、呼吸速率仪等。
3. 水分逆境实验水分是植物生长发育的重要因素之一,水分逆境实验可以模拟干旱或水浸等环境条件,研究植物对水分胁迫的响应机制。
常用的实验方法包括干旱处理、水浸处理、土壤水分测定等。
4. 盐胁迫实验盐胁迫是植物生长发育中常见的逆境因素之一,盐胁迫实验可以研究植物对盐胁迫的耐受性和适应性。
常用的实验方法包括盐溶液处理、盐浓度测定、生长指标测定等。
二、植物生化实验原理与技术1. 酶活性测定实验酶是植物体内生化反应的催化剂,酶活性测定实验可以评估酶的活力和功能。
常用的实验方法包括酶活性测定试剂盒法、酶底物转化法等。
2. 叶绿素含量测定实验叶绿素是植物体内的一种重要色素,可以吸收光能进行光合作用。
叶绿素含量测定实验可以评估植物的叶绿素合成和光合能力。
常用的实验方法包括乙醇提取法、叶绿素荧光法等。
3. 蛋白质含量测定实验蛋白质是植物体内的重要代谢产物,蛋白质含量测定实验可以评估植物的蛋白质合成和分解能力。
常用的实验方法包括布鲁氏试剂法、Lowry法等。
植物生理生化实验原理和技术
植物生理生化实验原理和技术
植物生理生化实验是植物学研究的基础,它能够反映植物物质合成、分解过程及信号转导等过程,对植物发育过程、功能和环境变化的实验评估有着重要的意义。
植物生理生化实验的原理和技术包括:
1、生理及生化活性的检测: (1)利用光量子产量来测定植物光合作用的特性;
(2)利用质谱(HPLC、MS)等技术测量生物分子,如氨基酸,蛋白质,糖类活性
物质的水平和变化; (3) 用酶活检测法和痕量元素检测法评价植物的生理活性。
2、植物分析技术:遗传学技术和全基因组分析:利用遗传学技术开展植物裂变、转基因、育种相关研究及全基因组分析,如农杆菌及其他病原体的基因的克隆、表达。
3、植物细胞培养技术:细胞培养技术是植物生理及生化实验的重要工具,可用于研究组织培养和细胞培养。
细胞培养包括细胞培养供体、细胞外培养和药物作用等。
4、遗传工程技术:遗传工程技术在植物研究中发挥着重要作用,用于对植物遗传组织、酵素、植物病原体等重要物质的异构性,比较、表达和发掘如基因分离、反式、克隆等技术及不同表达等技术的遗传学研究。
总的来说,植物生理生化实验的原理和技术可以用来研究植物的物质合成、组织交互、生物活性的变化及其响应机制,从而为植物学研究提供有效的理论依据及方法。
植物生理生化实验原理和技术
植物生理生化实验原理和技术植物生理生化实验是研究植物生长、发育和代谢过程的重要手段,通过实验可以深入了解植物的生理生化特性,为植物科学研究提供重要数据和理论基础。
本文将介绍植物生理生化实验的原理和技术,帮助读者更好地理解和开展相关实验工作。
一、植物生理生化实验原理。
1. 细胞膜通透性实验原理。
细胞膜通透性是植物细胞内外物质交换的重要途径,可通过测定不同条件下细胞对离子、小分子物质的通透性来研究细胞膜的特性。
实验原理是利用渗透压差测定物质的渗透性,或通过测定不同条件下细胞内外离子浓度的变化来间接反映细胞膜通透性。
2. 光合作用速率测定原理。
光合作用是植物生长发育的重要能量来源,测定光合作用速率可了解植物对光合作用的适应能力和养分利用效率。
实验原理是通过测定单位时间内植物释放的氧气量或二氧化碳的吸收量来反映光合作用速率。
3. 酶活性测定原理。
酶是植物生理生化过程中的重要催化剂,测定酶活性可以了解植物代谢活动的强弱和酶的特性。
实验原理是通过测定单位时间内酶催化反应产物的生成量或底物的消耗量来反映酶的活性。
二、植物生理生化实验技术。
1. 细胞膜通透性实验技术。
(1)渗透压法,将不同渗透压溶液浸泡植物组织,测定不同条件下组织体积的变化,计算渗透系数。
(2)离子浓度法,测定不同条件下细胞内外离子浓度的变化,通过离子选择电极或离子色谱仪进行分析。
2. 光合作用速率测定技术。
(1)氧气释放法,将植物组织置于含有光源的水中,测定单位时间内水中氧气含量的变化。
(2)二氧化碳吸收法,将植物组织置于密闭容器中,测定单位时间内二氧化碳浓度的变化。
3. 酶活性测定技术。
(1)酶促反应法,将酶和底物混合反应一定时间后,通过比色法或荧光法测定反应产物的含量。
(2)酶抑制法,向酶底物混合液中加入不同浓度的抑制剂,测定酶活性的变化。
通过对植物生理生化实验原理和技术的了解,可以更好地开展相关实验工作,为植物科学研究提供可靠的数据和支持。
植物生理生化实验
实验一植物组织游离氨基酸含量测定—茚三酮试剂显色法P199原理:游离氨基酸与茚三酮共热时能定量生成二酮茚-二酮茚胺,产物呈蓝紫色,称Rubemans紫。
其吸收峰在570nm,且在一定范围内吸光度与游离氨基酸浓度成正比,因此可用分光光度法测定其含量。
①微酸、90℃:氨基酸被氧化形成CO2、NH3和醛,茚三酮被还原成还原型茚三酮。
②脱水:还原型茚三酮与另一分子茚三酮和一分子氨进行缩合脱水,生成二酮茚-二酮茚胺。
材料:清水浸种吸涨的水稻、清水浸种萌发两天的水稻。
实验步骤:分别取1g萌发、未萌发水稻于研钵中,加入5ml醋酸(使蛋白质变性,沉淀),研磨成匀浆后,用无置于沸水中加热15min,取出用冷水迅速冷却并不时摇动,使之呈蓝紫色,用60%乙醇定容20ml,在570nm 波长下测定吸光度。
样品氨基态含氮量(ug/100g鲜重)=CV T/V S W *100 ;C=A/k (k=0.103) ;V T=100/2 ;V S=1 ;W=1注意事项:1.测定前所用的玻璃仪器要干燥,所用的蒸馏水必须为无氨水;2.样品要磨匀,用无氨蒸馏水定容,并用干燥滤纸过滤;3.抗坏血酸易被还原;加入的量要严格控制,因为还原剂抗坏血酸会与茚三酮反应;4.水浴锅的液面要高于试管内的液面,使其加热均匀,并在加热后几秒再塞上塞子,水浴锅温度要高于90℃,15min后取出迅速冷却,再加入60%乙醇;5.稀释后要迅速比色;6. 谷物等蛋白质样品可用酸水解法讲蛋白质水解后,用本法测定氨基酸含量,可计算出样品蛋白质含量;7. 反应要在无水、有机、微酸的环境下进行。
最适PH为4.5,是乙醇-乙酸钠缓冲液和醋酸缓和后的PH。
思考题:1.茚三酮与所有氨基酸的反应产物都相同吗?为什么?不相同,因为有些氨基酸的结构不同,不含游离的氨基,如脯氨酸。
2.测定植物组织中游离氨基酸总量有何意义?可以测定植物对氮的根吸收,测定植物的病理和逆境状态和植物的营养、施肥指标等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小黑豆相关生理指标测定
1.表型变化:鲜重、株高、主根长和叶面积
鲜重:取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测6个重复。
株高:取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。
主根长:取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。
叶面积:取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长,测叶片最窄处长度作为叶的宽,叶片长和宽的乘积即为叶表面积。
每个测6个重复。
2.总蛋白、可溶性糖、丙二醛(MDA)和H2O2含量测定
样品处理:取0.5g样品(叶片要去除叶脉、根要先用清水清洗干净),速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入1.5ml的Tris-HCl(pH7.4)抽提,将抽提液转移到2ml的EP管中,于4℃,12000rpm离心15min,取上清,保存在-20℃下,上清液可用于总蛋白、丙二醛(MDA)、可溶性糖和H2O2含量测定。
总蛋白测定(Bradford法):样品反应体系(800ul H2O+200ul Bradford+5ul 样品),空白对照为(800ul H2O+200ul Bradford)。
测定后带入标准曲线Y=32.549X-0.224(Y代表蛋白含量,X代表OD595),计算得出蛋白含量。
可溶性糖测定:样品反应体系(1ml蒽酮+180ul ddH2O+20ul样品提取液);空白对照(1ml蒽酮+180ul ddH2O),测定OD625后带入标准曲线:Y=0.0345X+0.0204(Y代表OD625,X代表可溶性糖含量(ug))
蒽酮配方:称取100mg蒽酮溶于100ml稀硫酸(76ml浓硫酸+30mlH2O).注意:浓硫酸加入水中时,一点一点递加,小心溅出受伤。
丙二醛(MDA)测定:在酸性和高温条件下,丙二醛可与硫代巴比妥(TBA)反应生成红棕色的3,5,5-三甲基恶唑2,4-二酮,在532nm处有最大吸收波长,但该反应受可溶性糖的极大干扰,糖与TBA的反应产物在532nm处也有吸收,但其最大吸收波长在450nm处。
采用双组分分光光度法,可计算出MDA含量。
MDA的计算公式为:MDA(umol/L)=6.45OD532-0.56OD450.
反应体系为:400ul 0.6%TBA+350ul H2O+50ul样品,80℃水浴10min后,测OD532和OD450。
对照用Tris-HCl.
0.6%TBA配方:称取硫代巴比妥0.6g,溶于少量1M NaOH中,待其完全溶解后用10%TCA(称取10gTCA三氯乙酸,溶于100ml蒸馏水中,待其溶解即可)定容至100ml。
H2O2测定(二甲酚橙法):样品反应体系(82ul溶液A+820ul溶液B (A:B=1:10)+150ul样品提取液),30℃水浴30min,测OD560。
标准曲线为:Y=0.01734X-0.0555(Y代表OD560,X代表H2O2含量)
溶液A(200ml):FeSO4.7H2O 0.1835g;(NH4)2SO4 0.0872g;H2SO4(浓硫酸18M)4.58ml,加水定容。
溶液B(200ml):二甲酚橙0.0234g;山梨醇6g,加水定容到200ml
3.可溶性蛋白、SOD、POD和CAT活性测定
样品处理:取0.5g样品,速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入1.5ml的Tris-HCl(pH7.0)(内含有20%甘油、1mmol/L ASA(抗坏血酸)、1mmol/L DTT(二硫苏糖醇)、1mmol/L EDTA、1mmol/L GSH(还原型谷胱甘肽)、5mmol/L MgCl2)抽提,将抽提液转移到2ml的EP管中,于4℃,12000rpm离心15min,取上清,保存在-20℃下,上清液可用于可溶性蛋白、SOD、POD和CAT含量测定。
1mmol/L的ASA配制:先配制10mmol/L的母液—称取176.13mg的ASA,溶于100ml的Tris-HCl(pH7.0)中即可,然后稀释10倍即可。
1mmol/L的DTT配制:先配制10mmol/L的母液—称取154.25mg的DDT 溶于100 ml的Tris-HCl(pH7.0)中即可,然后稀释10倍即可。
1mmol/L的EDTA配制:用30mmol/L的EDTA稀释30倍即可。
5mmol/L的MgCl2配制:称取MgCl2.6H2O的101.5mg溶于100ml的Tris-HCl (pH7.0),即可。
样品提取液的配制(200ml):取10mmol/L的ASA母液20ml,10mmol/L 的母液DTT20ml,取30mmol/L的EDTA母液7ml,称取203mg的MgCl2.6H2O,最后再量取20ml的甘油,将最终体积定容到200ml,即可。
可溶性蛋白测定(Bradford法):样品反应体系(800ul H2O+200ul Bradford+5ul样品),空白对照为(800ul H2O+200ul Bradford)。
测定后带入标准曲线Y=32.549X-0.224(Y代表蛋白含量,X代表OD595),计算得出蛋白含量。
SOD测定:SOD活性的测定是根据照光时,体系中产生氧自由基使硝基四唑蓝还原成蓝色甲(在560nm处有一吸收峰), 而超氧化物歧化酶作为氧自由基的清除剂可抑制此反应。
•一个酶活单位定义为将硝基四唑蓝的还原抑制到对照一半(50%)时所需的酶量。
14.5mmol/L的dl-甲硫氨酸(分子量149.21)(现用现配):称取甲硫氨酸216.4mg,加少量Tris-HCl(pH7.0)溶解后,用Tris-HCl(pH7.0)定容到100ml,即可。
30mmol/L的EDTA(292.25)(现用现配):称取EDTA药品876.75mg,加少量Tris-HCl(pH7.0)溶解后,用Tris-HCl(pH7.0)定容到100ml,即可。
2.25mmol/L的NBT(硝基四唑蓝)(817.6)(现用现配):称取NBT药品18
3.96mg,加少量Tris-HCl(pH7.0)溶解后,用Tris-HCl(pH7.0)定容到100ml,即可。
60umol/L的核黄素(376.36)(现用现配):先称取225.81mg的核黄素,加少量50mM Tris-HCl(pH7.4)溶解后,用50mM Tris-HCl(pH7.4)定容到10ml,配制成60mmol/L的母液,然后取100ul到100ml的Tris-HCl(pH7.4)中,即可配制成60umol/L的核黄素。
测酶活的反应介质:测定前在54ml的14.5mmol/L的dl-甲硫氨酸中分别加入EDTA、NBT和核黄素各2ml,此为反应混合液。
酶活测定:在盛有 1.0ml反应液的试管中,加入适量的酶液(50ul)(以抑制达50%作用酶浓度为最佳)。
混匀后放在透明的试管架上,于光照培养箱中准确照光10min后,迅速测定560nm处的光密度。
以不加酶液照光液的为对照,计算反应被抑制的百分比。
按下式计算超氧化物歧化酶的活性
△A×N
酶活力=───────────────
AO×W×T×V×50%
式中:酶活力单位为每min每g鲜重酶活单位数;
AO为对照试管溶液在560nm处的吸光度值;
△A为对照试管溶液在560nm处的吸光值与加入酶液的反应液在560nm处的吸光值的差; N为酶液总体积;W为提取酶液的样品鲜重g;T为照光时间(10min);V为加入酶液的体积(ml);
POD测定(愈创木酚法):过氧化物酶广泛分布于植物的各个组织器官中。
在有过氧化氢存在下,过氧化物酶能使愈创木酚氧化,生成茶褐色物质,可用分光光度计测量生成物的含量。
反应混合液配制:在50ml的50mmol/L的Tris-HCl(pH7.0)缓冲液中加入28ul 的愈创木酚,与磁力搅拌器上加热搅拌直至愈创木酚溶解,再加入19ul的30%的H2O2,混合均匀,4℃保存。
酶活测定:取反应混合液1.0ml,加入0.1ml酶提取液,2min前后,于470nm 处测OD值,每隔1min读数一次,以每分钟OD值的变化表示酶活大小。
(测量时再加入酶液)
CAT测定(H2O2法)
反应缓冲液:20mM的H2O2,使用前在25℃水浴中加热30min。
酶活测定:取反应液1.4ml,加入100ul酶液,每加完一管立即计时,并迅速在波长240nm 下测定30S、1min30S、2min30S时的吸光度,以Tris-HCl的作为空白。
以1min内A240减少0.1的酶量为1个酶活单位。
代入酶活力公式,以△OD*V/0.1*v*t FW表示CAT 活性,所有测定均重复三次。
△OD代表空白的吸光度-样品管的吸光度;V代表酶提取液的总体积,v代表测量是加入的样品体积;t代表反应时间min,FW代表样品鲜重。
0.1mol/LH2O2 配方:称取1.1333g的30%的H2O2,加入100ml的50mmol/L 的Tris-HCl(pH7.4),即可。
也可以用0.01%的H2O2。
4.叶绿素含量测定
样品处理及测定:取0.1g样品,速于液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入1.5ml的95%乙醇抽提,将抽提液转移到2ml的EP管中,于4℃,12000rpm离心15min,取上清,上清用于叶绿素含量测定。
测OD665和OD649。
空白对照为95%乙醇。
Ca=13.95OD665-6.88OD649
Cb=24.96OD649-7.32OD665
总叶绿素=Ca+Cb。