数学分析第1章概论

合集下载

数分第一章第一节实数

数分第一章第一节实数

数学分析第一章实数和数列极限《数学分析》又名《微积分》。

(其实我们讲的《数学分析》内容要比通常的《微积分》内容多)主要内容:微分学;积分学;微分与积分的关系。

学习研究微积分的重要基本工具是极限理论(又称无穷小分析),极限理论包括实数理论,数列极限,函数极限,数项级数和函数项级数等。

极限运算其实是一种无穷次运算,这就是区别于有限次运算(只是量变)的代数学几何学的标志。

极限理论是分析学科的灵魂,在分析学中无处不在。

(就如武术中的太极和八卦,在武术中无处不在,起到至高无上的作用。

)极限的无限次运算作用,就是哲学上量变(无限累加)到质变的飞跃。

极限理论的思想方法技巧(又称无穷小分析)不仅是《数学分析》主要工具,也是后继的分析学科(常微分方程,偏微分方程,实分析,复变函数,复分析,Fourier分析,调和分析,逼近理论,实变函数,泛函分析,测度论,概率论等)发展的主要工具,深刻的理论和结论,都要靠极限理论来发掘完成。

极限又有数列的极限(级数)和函数的极限等(既有区别又有联系)。

《数学分析》的基础是建立在实数理论之上,实数是《数学分析》的工作空间,实数理论和极限理论是数学严密严格化的标志(这样才能保证不出错误,否则就会混乱不清,甚至出错。

)实数理论的深刻认识的建立靠的是极限理论。

因此我们得从实数理论和数列的极限理论谈起。

第一节 实数与数轴1 实数的再认识数系的发展自然数: ,,,3,2,1,0n ;分数:q p ,(q p ,为自然数,且0≠q ),负整数: ,,,3,2,1n ----; 负分数:q p -,(q p ,为自然数,且0≠q )整数: ,,,3,2,1,0n , ,,,3,2,1n ---- ;有理数:q p ,(q p ,为整数,且0 q ); (整数和分数统称有理数; 或有理数就是分数,或整数; 或整数,有限小数,无限循环的小数通称有理数。

)在有理数中可引入:加法运算,减法运算,乘法运算,除法运算(除数不能是0);有理数经过加、减、乘、除(除数不能是0)四则运算之后仍为有理数。

数学分析第一册第一章

数学分析第一册第一章

S的最小的上界 称作 的上确界 的最小的上界,称作 的上确界. 的最小的上界 称作S的上确界 满足: 定义2 定义 设S是R中的一个数集 若数 η 满足: 是 中的一个数集 (i) 对一切 x ∈ S , 有 x ≤ η , η 即是 的上界; 即是S的上界 的上界; (ii) 对任何 α < η , 存在x0 ∈ S , 使得 x0 > α , 即 则称数
事实上,对任何正数 无论多么大 无论多么大), 事实上,对任何正数M(无论多么大 ,取 则 n0 ∈ N + , 且 n0
n0 = [ M ] + 1, ([ M ]表示对M 取整)
问题: 问题 设 S
有无上界; 有无上界 = [0,1]. (1) S有无上界 (2) S若有上界 有几个上界 若有上界,有几个上界 若有上界 有几个上界; (3) S有无最小的上界 有无最小的上界. 有无最小的上界
数集.确界原理 §2数集 确界原理 数集 一 区间与邻域 为开区间, 设 a, b ∈ R, 且 a < b. 称数集 {x | a < x < b} 为开区间,记作 ( a, b) 称为闭区间,记作 数集 称为闭区间,
{x | a ≤ x ≤ b}
(a, b)
数集
{x | a ≤ x < b} [a, b) 都称为半开半闭区间, 都称为半开半闭区间,分别记作 ( a, b] { x | a < x ≤ b} b
例2 设
满足: 定义2 定义 设S是R中的一个数集 若数η 满足: 是 中的一个数集 (i) 对一切 x ∈ S , 有 x ≤ η , η 即是 的上界; 即是S的上界 的上界; η 又是 的最小上界, 的最小上界 (ii) 对任何 α < η , 存在x ∈ S , 使得 x0 > α ,即 又是S的最小上界, 则称数 证明: S = [0,1]. 证明 sup S = 1. 的上界; 的上界 证: (i) 对一切 x ∈ S , 有 x ≤ 1, η = 1 是S的上界; (ii) 对任何 α < 1, 取 x0 = 1 ∈ S , 则有 x0 > α , 故 sup S = 1. 例2 设 证明: = [0,1).证明: sup S = 1. 的上界; 的上界 证: (i) 对一切 x ∈ S , 有 x ≤ 1, η = 1 是S的上界; 则有任取 x0 ∈ S , (ii) 对任何 α < 1. 若 α < 0, 1+ α , 有 α < x0 . 有 α < x0 . 若 0 ≤ α < 1, 取 x0 = 2 sup S = 1. 例3 设 S 所以

华东师大第五版数学分析第一章第一节

华东师大第五版数学分析第一章第一节
证 (反证法) 倘若结论不成立, 则根据实数集的有序性, 有 > .
令 = − , 则为正数且 = + , 但这与假设 < + 相矛盾. 从而
必有 ≤ .
1.2 绝对值与不等式
,
≥ 0,
定义: = ቊ
−, < 0.
实数绝对值的性质:
➢ 正定性: = − ≥ 0; 当且仅当 = 0时有 = 0.
其中0 , 0 为非负整数, , ( = 1,2, ⋯ )为整数, 0 ≤ ≤ 9, 0 ≤
≤ 9, 若有
= ,
= 0,1,2, ⋯
则称与相等,记为 = ;若0 > 0 或存在非负整数,使得
= ( = 0,1,2, ⋯ ) 而+1 > +1 ,
• 实数具有阿基米德(Archimedes)性,即对任何, ∈ R, 若 > >
0, 则存在正整数, 使得 > .
• 实数集具有稠密性, 即任何两个不相等的实数之间必有另一个实
数, 且既有有理数,也有无理数.
• 实数集与数轴上的点有着一一对应关系.
例2 设, ∈ R. 证明:若对任何正数, 有 < + , 则 ≤ .
似分别规定为
= −0 . 1 2 ⋯ − 10− 与ҧ = −0 . 1 2 ⋯ .
注:
0 ≤ 1 ≤ 2 ≤ ⋯
ҧ0 ≥ ҧ1 ≥ ҧ2 ≥ ⋯
实数的不足近似与过剩近似是用有限小数研究无限小数的重要
工具.
命题
设 = 0 . 1 2 ⋯ 与 = 0 . 1 2 ⋯为两个实数,则 >
的等价条件是:存在非负整数,使得

数学分析1

数学分析1

第1章 集合与映射 █ █1《数学分析Ⅰ》第1讲 教学内容:数学分析总概第1章 集合与映射一、数学分析总概牛顿(Newton.I 1642-1727)英国数学物理学家,在1665-1666年间发表著名公式()()()baf x dx F b F a =-⎰。

莱布尼兹(Leibniz.G.W 1646-1716)德国数学家,在1673-1676年间发表著名公式()()()b af x dx F b F a =-⎰。

二、集合 §1.1集合概念:一些事物所汇聚的总体通常称为一个集合,总体中的每一个成员,叫做该集合的元素。

一般用大写英文字母表示集合,小写英文字母表示集合中的元素,例如:,,...A B C 通常表示集合;,,...,...a b c x y 等表示集合中的元素。

-自然数集; -整数集; -有理数集; -实数集; {|0}x x +==>▇ ▇ 数学分析2有限集 可列集 无限极 空集 子集 ∙集合的运算:(1)并集:A B{|A B x x A =∈ 或}x B ∈见(图1-1)(2)交集:A B{|A B x x A =∈ 且}x B ∈见(图1-2)(3)差集:A B -{|A B x x A -=∈且}x B ∉见(图1-3)(4)设 A X ⊂,即A 为X 的子集,补集:CA X A =-称为A 的补集。

见(图1-4)(5)无限并:设12,,...,...n A A A 是一 列集合,定义1{|,}nn n x n x A ∞=A=∃∈∈(6)无限交:设12,,...,...n A A A 是一 列集合,定义1{|,}nn n Ax n x A ∞==∀∈∈设Γ是任意的一个非空集合(拓扑集),α∀∈Γ,对应有集合A α, {:}A αα∈Γ称为集合族,无论Γ是有限集、可列集、还是不可列集(不可数集),都可定义(1) 不可数并:{|,}A x x A αααα∈Γ=∃∈Γ∈ (2) 不可数交:{|,}A x x A αααα∈Γ=∀∈Γ∈第1章 集合与映射 █ █3命题1.1 设{ A α:α∈Γ}中每一个集合都是某个大集合X 的子集,记 A C=X -A ,其中A ⊂X ,则 (3) ()c αα∈ΓA =c αα∈ΓA (4)()c αα∈ΓA =c αα∈ΓA 上面公式(9)和(10)通常称为DeMorgan 公式(隶末根定理)。

数学分析讲义(第一章)

数学分析讲义(第一章)

Ⅱ 典型例题与方法
1. 利用极限定义验证极限
前提:知道数列(函数)的极限值;
关键:寻找 N (δ ) .
基本方法:
(1)求最小的 N :从不等式 an − a < ε 直接解出 n ;
(2)适当放大法:不等式 an − a < ε 较为复杂,无法直接解出,或求解的过程较繁,
为此先将表达式 an − a 进行化简,并适当放大,使之成为关于 n 的简单函数 H (n) (仍为无
(5). lim f (x) = A ⇔ ∀ε > 0, ∃M > 0, 当 x > M 时,有 f (x) − A < ε . x→+∞
(6) lim f (x) = A ⇔ ∀ε > 0, ∃M > 0, 当 x < −M 时,有 f (x) − A < ε . x→−∞ 2
特别地,若函数以零为极限,则称之为该情形下的无穷小量.理解无穷小量阶的比较的定
义及其意义,掌握等价无穷小量在极限计算中的应用,熟记常用的等价无穷小量:当 x → 0
时,
x ~ sin x ~ tan x ~ arcsin x ~ arctan x ~ ln(1 + x) ~ e x −1,
1 − cos x ~ x2 , (1 + x)α ~ αx, a x − 1 ~ x ln a . 2
n →∞
yn xn
= ⎪⎨+ ∞, ⎪⎩− ∞.
二 函数极限
1 定义 函数极限的六种形式:
(1)
lim f (x) = A ⇔ ∀ε > 0, ∃δ > 0, 当 0 <
x → x0
x − x0
< δ 时,有

数学分析第一章

数学分析第一章

Chapter1.Metric Spaces§1.Metric SpacesA metric space is a set X endowed with a metricρ:X×X→[0,∞)that satisfies the following properties for all x,y,and z in X:1.ρ(x,y)=0if and only if x=y,2.ρ(x,y)=ρ(y,x),and3.ρ(x,z)≤ρ(x,y)+ρ(y,z).The third property is called the triangle inequality.We will write(X,ρ)to denote the metric space X endowed with a metricρ.If Y is a subset of X,then the metric space(Y,ρ|Y×Y)is called a subspace of(X,ρ).Example1.Letρ(x,y):=|x−y|for x,y∈I R.Then(I R,ρ)is a metric space.The set I R equipped with this metric is called the real line.Example2.Let I R2:=I R×I R.For x=(x1,x2)∈I R2and y=(y1,y2)∈I R2,defineρ(x,y):=(x1−y1)+(x2−y2).Thenρis a metric on I R2.The set I R2equipped with this metric is called the Euclidean plane.More generally,for k∈I N,the Euclidean k space I R k is the Cartesian product of k copies of I R equipped with the metricρgiven byρ(x,y):=kj=1(x j−y j)21/2,x=(x1,...,x k)and y=(y1,...,y k)∈I R k.Example3.Let X be a nonempty set.For x,y∈X,defineρ(x,y):=1if x=y, 0if x=y.In this case,ρis called the discrete metric on X.Let(X,ρ)be a metric space.For x∈X and r>0,the open ball centered at x∈X with radius r is defined asB r(x):={y∈X:ρ(x,y)<r}.A subset A of X is called an open set if for every x∈A,there exists some r>0 such thatB r(x)⊆A.1Theorem1.1.For a metric space(X,ρ)the following statements are true.1.X and∅are open sets.2.Arbitrary unions of open sets are open sets.3.Finite intersections of open sets are open sets.Proof.Thefirst statement is obviously true.For the second statement,we let(A i)i∈I be a family of open subsets of X and wish to prove that∪i∈I A i is an open set.Suppose x∈∪i∈I A i.Then x∈A ifor some i0∈I.Since A i0is an open set,there exists some r>0such that B r(x)⊆A i.Consequently,B r(x)⊆∪i∈I A i.This shows that∪i∈I A i is an open set.For the third statement,we let{A1,...,A n}be afinite collection of open subsets of X and wish to prove that∩n i=1A i is an open set.Suppose x∈∩n i=1A i.Then x∈A i for every i∈{1,...,n}.For each i∈{1,...,n},there exists r i>0such that B ri(x)⊆A i. Set r:=min{r1,...,r n}.Then r>0and B r(x)⊆∩n i=1A i.This shows that∩n i=1A i is an open set.Let(X,ρ)be a metric space.A subset B of X is called an closed set if its complement B c:=X\B is an open set.The following theorem is an immediate consequence of Theorem1.1.Theorem1.2.For a metric space(X,ρ)the following statements are true.1.X and∅are closed sets.2.Arbitrary intersections of closed sets are closed sets.3.Finite unions of closed sets are closed sets.Let(X,ρ)be a metric space.Given a subset A of X and a point x in X,there are three possibilities:1.There exists some r>0such that B r(x)⊆A.In this case,x is called an interiorpoint of A.2.For any r>0,B r(x)intersects both A and A c.In this case,x is called a boundarypoint of A.3.There exists some r>0such that B r(x)⊆A c.In this case,x is called an exteriorpoint of A.For example,if A is a subset of the real line I R bounded above,then sup A is a boundary point of A.Also,if A is bounded below,then inf A is a boundary point of A.A point x is called a closure point of A if x is either an interior point or a boundary point of A.We denote by A the set of closure points of A.Then A⊆A.The set A is called the closure of A.2Theorem1.3.If A is a subset of a metric space(X,ρ),then A is the smallest closed set that includes A.Proof.Let A be a subset of a metric space.Wefirst show that A is closed.Suppose x/∈A. Then x is an exterior point of A;hence there exists some r>0such that B r(x)⊆A c.If y∈B r(x),thenρ(x,y)<r.Forδ:=r−ρ(x,y)>0,by the triangle inequality we have Bδ(y)⊆B r(x).It follows that Bδ(y)⊆A c.This shows y/∈A.Consequently,B r(x)⊆A c. Therefore,A c is open.In other words,A is closed.Now assume that B is a closed subset of X such that A⊆B.Let x∈B c.Then there exists r>0such that B r(x)⊆B c⊆A c.This shows x∈A c.Hence,B c⊆A c.It follows that A⊆B.Therefore,A is the smallest closed set that includes A.A subset A of a metric space(X,ρ)is said to be dense in X if A=X.§pletenessLet(x n)n=1,2,...be a sequence of elements in a metric space(X,ρ).We say that (x n)n=1,2,...converges to x in X and write lim n→∞x n=x,ifρ(x n,x)=0.limn→∞From the triangle inequality it follows that a sequence in a metric space has at most one limit.Theorem2.1.Let A be a subset of a metric space(X,ρ).Then a point x∈X belongs to A if and only if there exists a sequence(x n)n=1,2,...in A such that lim n→∞x n=x. Proof.If x∈A,then B1/n(x)∩A=∅for every n∈I N.Choose x n∈B1/n(x)∩A for each n∈I N.Thenρ(x n,x)<1/n,and hence lim n→∞x n=x.Suppose x/∈A.Then there exists some r>0such that B r(x)∩A=∅.Consequently, for any sequence(x n)n=1,2,...in A,we haveρ(x n,x)≥r for all n∈I N.Thus,there is no sequence of elements in A that converges to x.A sequence(x n)n=1,2,...in a metric space(X,ρ)is said to be a Cauchy sequence if for any givenε>0there exists a positive integer N such thatm,n>N impliesρ(x m,x n)<ε.Clearly,every convergent sequence is a Cauchy sequence.If a metric space has the property that every Cauchy sequence converges,then the metric space is said to be complete.For example,the real line is a complete metric space.3The diameter of a set A is defined byd(A):=sup{ρ(x,y):x,y∈A}.If d(A)<∞,then A is called a bounded set.Theorem2.2.Let(X,ρ)be a complete metric space.Suppose that(A n)n=1,2,...is a sequence of closed and nonempty subsets of X such that A n+1⊆A n for every n∈I N and lim n→∞d(A n)=0.Then∩∞n=1A n consists of precisely one element.Proof.If x,y∈∩∞n=1A n,then x,y∈A n for every n∈I N.Hence,ρ(x,y)≤d(A n)for all n∈I N.Since lim n→∞ρ(A n)=0,it follows thatρ(x,y)=0,i.e.,x=y.To show∩∞n=1A n=∅,we proceed as follows.Choose x n∈A n for each n∈I N.Since A m⊆A n for m≥n,we haveρ(x m,x n)≤d(A n)for m≥n.This in connection with the assumption lim n→∞d(A n)=0shows that(x n)n=1,2,...is a Cauchy sequence.Since (X,ρ)is complete,there exists x∈X such that lim n→∞x n=x.We have x m∈A n for all=A n.This is true for all n∈I N.Therefore,x∈∩∞n=1A n.m≥n.Hence,x∈A§pactnessLet(X,ρ)be a metric space.A subset A of X is said to be sequentially compact if every sequence in A has a subsequence that converges to a point in A.For example,afinite subset of a metric space is sequentially compact.The real line I R is not sequentially compact.But a bounded closed interval in the real line is sequentially compact.A subset A of a metric space is called totally bounded if,for every r>0,A can be covered byfinitely many open balls of radius r.For example,a bounded subset of the real line is totally bounded.On the other hand, ifρis the discrete metric on an infinite set X,then X is bounded but not totally bounded. Theorem3.1.Let A be a subset of a metric space(X,ρ).Then A is sequentially compact if and only if A is complete and totally bounded.Proof.Suppose that A is sequentially compact.Wefirst show that A is complete.Let (x n)n=1,2,...be a Cauchy sequence in A.Since A is sequentially compact,there exists a )k=1,2,...that converges to a point x in A.For anyε>0,there exists subsequence(x nka positive integer N such thatρ(x m,x n)<ε/2whenever m,n>N.Moreover,there exists some k∈I N such that n k>N andρ(x n,x)<ε/2.Thus,for n>N we havek4ρ(x n,x)≤ρ(x n,x nk )+ρ(x nk,x)<ε.Hence,lim n→∞x n=x.This shows that A iscomplete.Next,if A is not totally bounded,then there exists some r>0such that A cannot be covered byfinitely many open balls of radius r.Choose x1∈A.Suppose x1,...,x n∈A have been chosen.Let x n+1be a point in the nonempty set A\∪n i=1B r(x i).If m,n∈I N and m=n,thenρ(x m,x n)≥r.Therefore,the sequence(x n)n=1,2,...has no convergent subsequence.Thus,if A is sequentially compact,then A is totally bounded.Conversely,suppose that A is complete and totally bounded.Let(x n)n=1,2,...be a sequence of points in A.We shall construct a subsequence of(x n)n=1,2,...that is a Cauchy sequence,so that the subsequence converges to a point in A,by the completeness of A.For this purpose,we construct open balls B k of radius1/k and corresponding infinite subsets I k of I N for k∈I N recursively.Since A is totally bounded,A can be covered byfinitely many balls of radius1.Hence,we can choose a ball B1of radius1such that the set I1:={n∈I N:x n∈B1}is infinite.Suppose that a ball B k of radius1/k and an infinite subset I k of I N have been constructed.Since A is totally bounded,A can be covered by finitely many balls of radius1/(k+1).Hence,we can choose a ball B k+1of radius1/(k+1) such that the set I k+1:={n∈I k:x n∈B k+1}is infinite.Choose n1∈I1.Given n k,choose n k+1∈I k+1such that n k+1>n k.By our construction,I k+1⊆I k for all k∈I N.Therefore,for all i,j≥k,the points x niandx nj are contained in the ball B k of radius1/k.It follows that(x nk)k=1,2,...is a Cauchysequence,as desired.Theorem3.2.A subset of a Euclidean space is sequentially compact if and only if it is closed and bounded.Proof.Let A be a subset of I R k.If A is sequentially compact,then A is totally bounded and complete.In particular,A is bounded.Moreover,as a complete subset of I R k,A is closed.Conversely,suppose A is bounded and closed in I R k.Since I R k is complete and A is closed,A is complete.It is easily seen that a bounded subset of I R k is totally bounded.Let(A i)i∈I be a family of subsets of X.We say that(A i)i∈I is a cover of a subset A of X,if A⊆∪i∈I A i.If a subfamily of(A i)i∈I also covers A,then it is called a subcover. If,in addition,(X,ρ)is a metric space and each A i is an open set,then(A i)i∈I is said to be an open cover.Let(G i)i∈I be an open cover of A.A real numberδ>0is called a Lebesgue number for the cover(G i)i∈I if,for each subset E of A having diameter less thanδ,E⊆G i for5some i∈I.Theorem3.3.Let A be a subset of a metric space(X,ρ).If A is sequentially compact, then there exists a Lebesgue numberδ>0for any open cover of A.Proof.Let(G i)i∈I be an open cover of A.Suppose that there is no Lebesgue number for the cover(G i)i∈I.Then for each n∈I N there exists a subset E n of A having diameter less than1/n such that E n∩G c i=∅for all i∈I.Choose x n∈E n for n∈I N.Since A is sequentially compact,there exists a subsequence(x nk)k=1,2,...which converges to a point x in A.Since(G i)i∈I is a cover of A,x∈G i for some i∈I.But G i is an open set.Hence, there exists some r>0such that B r(x)⊆G i.We canfind a positive integer k such that1/n k<r/2andρ(x nk ,x)<r/2.Let y be a point in E nk.Since x nkalso lies in the setE nk with diameter less than1/n k,we haveρ(x nk,y)<1/n k.Consequently,ρ(x,y)≤ρ(x,x nk)+ρ(x nk,y)<r2+1n k<r.This shows E nk ⊆B r(x)⊆G i.However,E nkwas so chosen that E nk∩G c i=∅.Thiscontradiction proves the existence of a Lebesgue number for the open cover(Gi)i∈I.A subset A of(X,ρ)is said to be compact if each open cover of A possesses afinite subcover of A.If X itself is compact,then(X,ρ)is called a compact metric space. Theorem3.4.Let A be a subset of a metric space(X,ρ).Then A is compact if and only if it is sequentially compact.Proof.If A is not sequentially compact,then A is an infinite set.Moreover,there exists a sequence(x n)n=1,2,...in A having no convergent subsequence.Consequently,for each x∈A,there exists an open ball B x centered at x such that{n∈I N:x n∈B x}is afinite set.Then(B x)x∈A is an open cover of A which does not possess afinite subcover of A. Thus,A is not compact.Now suppose A is sequentially compact.Let(G i)i∈I be an open cover of A.By Theorem3.3,there exists a Lebesgue numberδ>0for the open cover(G i)i∈I.By Theorem 3.1,A is totally bounded.Hence,A is covered by afinite collection{B1,...,B m}of open balls with radius less thanδ/2.For each k∈{1,...,m},the diameter of B k is less thanδ.Hence,B k⊆G ik for some i k∈I.Thus,{G ik:k=1,...,m}is afinite subcover of A.This shows that A is compact.6§4.Continuous FunctionsLet(X,ρ)and(Y,τ)be two metric spaces.A function f from X to Y is said to be continuous at a point a∈X if for everyε>0there existsδ>0(depending onε)such thatτ(f(x),f(a))<εwheneverρ(x,a)<δ.The function f is said to be continuous on X if f is continuous at every point of X.Theorem4.1.For a function f from a metric space(X,ρ)to a metric space(Y,τ),the following statements are equivalent:1.f is continuous on X.2.f−1(G)is an open subset of X whenever G is an open subset of Y.3.If lim n→∞x n=x holds in X,then lim n→∞f(x n)=f(x)holds in Y.4.f(A)⊆f(A)holds for every subset A of X.5.f−1(F)is a closed subset of X whenever F is a closed subset of Y.Proof.1⇒2:Let G be an open subset of Y and a∈f−1(G).Since f(a)∈G and G is open,there exists someε>0such that Bε(f(a))⊆G.By the continuity of f,there exists someδ>0such thatτ(f(x),f(a))<εwheneverρ(x,a)<δ.This shows Bδ(a)⊆f−1(G). Therefore,f−1(G)is an open set.2⇒3:Assume lim n→∞x n=x in X.Forε>0,let V:=Bε(f(x)).In light of statement2,f−1(V)is an open subset of X.Since x∈f−1(V),there exists someδ>0 such that Bδ(x)⊆f−1(V).Then there exists a positive integer N such that x n∈Bδ(x) for all n>N.It follows that f(x n)∈V=Bε(f(x))for all n>N.Consequently, lim n→∞f(x n)=f(x).3⇒4:Let A be a subset of X.If y∈f(A),then there exists x∈A such that y=f(x).Since x∈A,there exists a sequence(x n)n=1,2,...of A such that lim n→∞x n=x. By statement3we have lim n→∞f(x n)=f(x).It follows that y=f(x)∈f(A).This shows f(A)⊆f(A).4⇒5:Let F be a closed subset of Y,and let A:=f−1(F).By statement4we have f(A)⊆⊆F=F.It follows that A⊆f−1(F)=A.Hence,A is a closed subset of X.5⇒1:Let a∈X andε>0.Consider the closed set F:=Y\Bε(f(a)).By statement5,f−1(F)is a closed subset of X.Since a/∈f−1(F),there exists someδ>0 such that Bδ(a)⊆X\f−1(F).Consequently,ρ(x,a)<δimpliesτ(f(x),f(a))<ε.So f is continuous at a.This is true for every point a in X.Hence,f is continuous on X.As an application of Theorem4.1,we prove the Intermediate Value Theorem for continuous functions.7Theorem 4.2.Suppose that a,b ∈I R and a <b .If f is a continuous function from [a,b ]to I R ,then f has the intermediate value property,that is,for any real number d between f (a )and f (b ),there exists c ∈[a,b ]such that f (c )=d .Proof.Without loss of any generality,we may assume that f (a )<d <f (b ).Since the interval (−∞,d ]is a closed set,the set F :=f −1((−∞,d ])={x ∈[a,b ]:f (x )≤d }is closed,by Theorem 4.1.Let c :=sup F .Then c lies in F and hence f (c )≤d .It follows that a ≤c <b .We claim f (c )=d .Indeed,if f (c )<d ,then by the continuity of f we could find r >0such that c <c +r <b and f (c +r )<d .Thus,we would have c +r ∈F and c +r >sup F .This contradiction shows f (c )=d .The following theorem shows that a continuous function maps compact sets to compact sets.Theorem 4.3.Let f be a continuous function from a metric space (X,ρ)to a metric space (Y,τ).If A is a compact subset of X ,then f (A )is compact.Proof.Suppose that (G i )i ∈I is an open cover of f (A ).Since f is continuous,f −1(G i )is open for every i ∈I ,by Theorem 4.1.Hence,(f −1(G i ))i ∈I is an open cover of A .By thecompactness of A ,there exists a finite subset {i 1,...,i m }of I such that A ⊆∪m k =1f−1(G i k ).Consequently,f (A )⊆∪mk =1G i k .This shows that f (A )is compact.Theorem 4.4.Let A be a nonempty compact subset of a metric space (X,ρ).If f is a continuous function from A to the real line I R ,then f is bounded and assumes its maximum and minimum.Proof.By Theorem 4.3,f (A )is a compact set,and so it is bounded and closed.Let t :=inf f (A ).Then t ∈f (A )=f (A ).Hence,t =min f (A )and t =f (a )for some a ∈A .Similarly,Let s :=sup f (A ).Then s ∈f (A )=f (A ).Hence,s =max f (A )and s =f (b )for some b ∈A .A function f from a metric space (X,ρ)to a metric space (Y,τ)is said to be uni-formly continuous on X if for every ε>0there exists δ>0(depending on ε)such that τ(f (x ),f (y ))<εwhenever ρ(x,y )<δ.Clearly,a uniformly continuous function is continuous.A function from (X,ρ)to (Y,τ)is said to be a Lipschitz function if there exists a constant C f such that τ(f (x ),f (y ))≤C f ρ(x,y )for all x,y ∈X .Clearly,a Lipschitz function is uniformly continuous.8Example.Let f and g be the functions from the interval(0,1]to the real line I R given by f(x)=x2and g(x)=1/x,x∈(0,1],respectively.Then f is uniformly continuous, while g is continuous but not uniformly continuous.Theorem4.5.Let f be a continuous function from a metric space(X,ρ)to a metric space(Y,τ).If X is compact,then f is uniformly continuous on X.Proof.Letε>0be given.Since f is continuous,for each x∈X there exists r x>0suchthatτ(f(x),f(y))<ε/2for all y∈B rx (x).Then(B rx(x))x∈X is an open cover of X.Since X is compact,Theorem3.3tells us that there exists a Lebesgue numberδ>0for this open cover.Suppose y,z∈X andρ(y,z)<δ.Then{y,z}⊆B rx(x)for some x∈X. Consequently,τ(f(y),f(z))≤τ(f(y),f(x))+τ(f(x),f(z))<ε/2+ε/2=ε.This shows that f is uniformly continuous on X.9。

数学分析第一章 1.1汇总

数学分析第一章 1.1汇总

第一章教学安排的说明章节题目:实数集与函数学时分配:共5学时§ 1 实数(1学时)§ 2 数集.确界原理(2学时)§ 3 函数概念 ( 1学时 )§ 4 具有某些特性的函数 (1学时 )教学目的:通过教学,使学生正确理解函数、极限与连续的基本概念,熟练掌握极限的运算。

教学要求:1、掌握实数的各条性质,初步理解上下确界的定义及确界原理的实质。

2、正确理解和掌握函数的概念、性质,四则运算,复合函数,反函数的定义。

3、掌握基本初等函数的性质及其图形。

4、掌握初等函数的性质,了解几个常见非初等函数的定义及性质。

5、理解函数的单调性,周期性,奇偶性等,会对初等函数是否具备这些性质。

其他:注: 第一章大部分内容中学学过。

课堂教学方案课题名称、授课时数:§ 1 实数 1学时§ 2 数集 确界原理 2学时授课类型:理论课教学方法与手段:讲授为主(部分内容自学)教学目的与要求:1.掌握实数的基本概念、基本性质和最常见的不等式,并熟练运用实数的有序性、稠密性和封闭性、实数绝对值的有关性质以及几个常见的不等式2.掌握实数的区间与邻域概念,掌握集合的有界性和确界概念,要求理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用。

教学重点: 1.实数集的概念性质及应用,;2.数集有界、无界及确界的概念,确界原理。

教学难点:数集确界的定义及其应用,确界原理的证明。

教学内容首先简要介绍“数学分析”课程的内容:分三个学期;所有内容可分为四部分:1)极限理论,包括数列极限、函数极限及函数的连续性;2)一元函数的微积分,包括导数和微分及其应用、不定积分、定积分及其应用、反常积分;这之间包括第七章实数的完备性;3)级数理论,包括数项级数、函数项级数、幂级数、傅里叶级数;4)多元函数的极限与连续,多元函数的微积分,包括多元函数的偏导数与全微分、隐函数定理及其应用、含参变量积分、二重积分、三重积分、曲线积分及曲面积分.数学分析是数学专业的一门重要理论基础课,在之后要学习的课程:复变函数、常微分方程、实变函数都是它最直接的后继课,学好数学分析对这些后继课程的学习是极其重要的,故一定要打好数学分析课程这个理论基础.第一章 实数集与函数§ 1 实 数复习引新:一、实数集及性质1.实数集:回顾中学中关于实数集的定义.2.实数集性质:四则运算封闭性;三歧性( 即有序性 );Rrchimedes 性; 稠密性: 由有理数和无理数的稠密性, 给出实数稠密性的定义;实数集的 几何表示 ─── 数轴:3.两实数相等的充要条件:b a b a =⇔<->∀εε||,0二. 重要不等式1. 绝对值不等式: 定义[1]P3 的六个不等式.2. 其他不等式:(1)(2) 均值不等式(3) Bernoulli 不等式:有不等式(4) 由二项展开式对有)...2,1(,!)1)...(1()1(n k h C h k k n n n h kk n k n ==+-->+ .在应用时根据需要确定右边的某一项(k 的值)。

数学分析第一章

数学分析第一章
1 < 1 (b a). n2
前页 后页 返回

k
是满足
k n
a
的最大的正整数,即
k +1 n
> a.
于是, a < k + 1 < k + 2 < b, 则 k + 1, k + 2 是
nn
nn
a 与 b 之间的有理数, 而 k + 1 + π 是 a 与 b 之间 n 4n
的无理数.
例2 若a,b R,对 > 0,a < b + ,则 a b.
3.实数集的大小关系具有传递性.即若a > b, b > c,则有
a>c.
4.实数具有阿基米德性 , 即对任何 a, b R, 若 b > a > 0
则存在正整数 n, 使得na > b.
5.实数集R具有稠密性.即任何两个不相等的实数之间必 有另一个实数,且既有有理数,也有无理数.
6.实数集R与数轴上的点具有一一对应关系.即任一实数 都对应数轴上唯一的一点,反之,数轴上的每一点也都唯 一的代表一个实数.
证 倘若a > b,设 a b > 0, 则 a b + ,
与 a < b + 矛盾.
前页 后页 返回
(6)实数与数轴上的点一一对应
实数集 R与数轴上的点可建立一一对应关系.
1. 这种对应关系,粗略地可这样描述: 设 P 是数轴上的一点 (不妨设在 0的右边), 若 P 在 整数 n与 n + 1之间,则 a0 n. 把(n, n + 1]十等分, 若点 P 在第 i 个区间,则 a1 i. 类似可得到 an, n 2, 3, L . 这时, 令点 p 对应于 a0 .a1a2 L an L .

大学数学《数学分析》第一章_实数集与函数

大学数学《数学分析》第一章_实数集与函数

数学分析(mathematical analysis)课程简介一、背景:从切线、面积等问题引入.1极限 (limit) —— 变量数学的基本运算.2数学分析的基本内容:数学分析以极限作为工具来研究函数的一门学科(仅在实数范围内进行讨论).主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数,并依据这些运算引进并研究一些非初等函数.数学分析基本上是连续函数的微积分理论.3 数学分析的形成过程:孕育于古希腊时期:在我国很早就有极限思想.纪元前三世纪, Archimedes 就有了积分思想.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期:十七世纪下半叶到十九时纪上半叶——微积分的创建时期:十九时纪上半叶到二十时纪上半叶——分析学理论的完善和重建时期.二、内容安排1.课时分配: 第一学期16×6=96; 第二学期18×6=108;第三学期18×4=72.2.内容分配: 第一学期一元函数微分学; 第二学期一元函数积分学与级数论; 第三学期二元函数微积分学.第一章 实数集与函数(计划课时:6 时)P1—22§1 实 数(1时)一.实数及其性质:回顾中学中关于实数集的定义.1. 实数用无限小数表示的方法:为了把有限小数(包括整数)表示为无限小数, 规定: 对于正有限小数(包括正整数)x ,n a a a a x 210. 时,其中,90 i a ,0,,,2,1 n a n i 0a 为非负整数,记 9999)1(.210 n a a a a x ; 而当0a x 为正整数时,则记 9999).1(0 a x ;对于负有限小数(包括负整数)y ,则先将y 表示为无限小数,再在所得无限小数之前加负号;又规定数0表示为 000.0.例如 010999.2011.2 , 999.78 .2. 实数的大小:定义1: (实数大小的概念)见[1]P1.定义2: (不足近似与过剩近似的概念)见[1]P2.命题: 设 210.a a a x 与 210.b b b y 为两个实数,则y x n ,使得n n y x .例1 设x 、y 为实数,y x .证明:存在有理数r 满足y r x . [1]P17E1.3. 实数的性质:⑴.四则运算封闭性:⑵.三歧性(即有序性):⑶.Rrchimedes 性:b na N n a b R b a ,,0,,.⑷.稠密性: 有理数和无理数的稠密性, 给出稠密性的定义.⑸.实数集的几何表示 ─── 数轴:⑺.两实数相等的充要条件: . ,0 b a b a二. 区间和邻域的概念:见[1]P5三.几个重要不等式:1. 绝对值不等式: 定义 . , max a a a [1]P2 的六个不等式.2. 其它不等式: ⑴ ,222ab b a .1 sin x . sin x x⑵ 均值不等式: 对,,,,21R n a a a 记,1 )(121 n i i n i a n n a a a a M (算术平均值) ,)(1121n n i i n n i a a a a a G(几何平均值) .1111111)(1121 n i i n i i n i a n a n a a a na H (调和平均值)有平均值不等式: ),( )( )(i i i a M a G a H 等号当且仅当n a a a 21时成立.⑶ Bernoulli 不等式: ,1 x 有不等式 . ,1)1(N n nx x n当1 x 且 0 x , N n 且2 n 时, 有严格不等式 .1)1(nx x n 证 由 01 x 且 111)1(1)1( ,01 nn x n x x).1( )1( x n x n n n .1)1( nx x n ⑷ 利用二项展开式得到的不等式: 对,0 h 由二项展开式,!3)2)(1(!2)1(1)1(32n n h h n n n h n n nh h 有 n h )1( 上式右端任何一项. Ex [1]P4: 3,4,5,6;§2 确界原理(2时)一、有界数集:定义(上、下有界,有界), 闭区间、b a b a ,( ),(为有限数)、邻域等都是有界数集,如集合 ) , ( ,sin x x y y E 也是有界数集.二、无界数集: 定义, ) , 0 ( , ) 0 , ( , ) , ( 等都是无界数集,如集合) 1 , 0 ( ,1 x x y y E 也是无界数集. 三、确界:给出直观和刻画两种定义.例1 ⑴,) 1(1n S n 则._______inf ______,sup S S⑵.),0( ,sin x x y y E 则._________inf ________,sup E E例2 非空有界数集的上(或下)确界是唯一的.例3 设S 和A 是非空数集,且有.A S 则有 .inf inf ,sup sup A S A S .例4 设A 和B 是非空数集. 若对A x 和,B y 都有,y x 则有.inf sup B A证,B y y 是A 的上界,.sup y A A sup 是B 的下界,.inf sup B A 例5 A 和B 为非空数集, .B A S 试证明:. inf , inf m in inf B A S 证 ,S x 有A x 或,B x 由A inf 和B inf 分别是A 和B 的下界,有A x inf 或 . inf , inf m in .inf B A x B x 即 inf , inf m in B A 是数集S 的下界, . inf , inf m in inf B A S 又S A S , 的下界就是A 的下界,S inf 是S 的下界, S inf 是A 的下界, ;inf inf A S 同理有.inf inf B S 于是有inf , inf m in inf B A S . 综上, 有 inf , inf m in inf B A S .四、数集与确界的关系: 确界不一定属于原集合. 以例1⑵为例做解释.五、确界与最值的关系:设E 为数集.⑴E 的最值必属于E , 但确界未必, 确界是一种临界点.⑵非空有界数集必有确界(见下面的确界原理), 但未必有最值.⑶若E max 存在, 必有 .sup max E E 对下确界有类似的结论.六、确界原理: Th (确界原理).Ex [1]P9: 2,4,5.§3 函数概念 ( 2时 )一. 函数的定义:1. 函数: [1]P10—11的四点说明.2. 定义域: 定义域和存在域.3. 函数的表示法:4. 反函数: 一 一对应, 反函数存在定理.5. 函数的代数运算:二.分段函数:函数1 ,,1 ,2,1 ,1)(2x x x x x x f 和 1 ,,1 ,2)(2x x x x x g ,123)( x x f 去掉绝对值符号.例2 .1 ,1,1 ,)(x x x x x f 求 ).2( ),1( ),0(f f f例3 设 .10 ,)5(,10 ,3)(x x f f x x x f 求 ).5(f三. 复合函数:例4 .1)( ,)(2x x g u u u f y 求 ).()(x g f x g f 并求定义域. 例5 ⑴ ._______________)( ,1)1(2 x f x x x f⑵ .1122x x x x f则) ( )( x fA. ,2xB. ,12 xC. ,22 xD. .22 x四. 初等函数:1. 基本初等函数:2. 初等函数:3. 初等函数的几个特例: 设函数)(x f 和)(x g 都是初等函数, 则⑴ )( x f 是初等函数, 因为 .)( )( 2x f x f⑵ )( , )(m ax )(x g x f x 和 )( , )(m in )(x g x f x 都是初等函数, 因为 )( , )(m ax )(x g x f x )()()()(21x g x f x g x f ,)( , )(m in )(x g x f x )()()()(21x g x f x g x f .⑶ 幂指函数 0)( )()( x f x f x g 是初等函数,因为 .)()(ln )()(ln )()(x f x g x f x g e e x f x g五. 介绍一些特殊函数:1. 符号函数2. Dirichlet 函数3. Riemann 函数4. 取整函数5. 非负小数部分函数Ex [1]P15 1(4)(5),2, 3,4,5, 6, 7, 8;§4 具有某些特性的函数 ( 1时 )一、有界函数: 有界与无界函数的概念. 例1 验证函数 325)(2 x xx f 在R 内有界.解法一 由,62322)3()2(32222x x x x 当0 x 时,有.3625625325325 )( 22 x xx xx xx f 30 )0( f ,对 ,R x 总有 ,3 )( x f 即)(x f 在R 内有界. 解法二 令 3252 x xy 关于x 的二次方程 03522 y x yx 有实数根.22245 y .2 ,42425,02 y y解法三 令2,2 ,23t tgt x 对应). , ( x 于是tt tt tg tgt tgt tgtx x x f 2222sec 1cos sin 65123353232235325)(.6252sin 625)( ,2sin 625t x f t例2 见[1]P17.例3 见[1]P17.二、关于单调函数、奇偶函数和周期函数 (略) ,参阅[1]P17—19, Ex [1]P20 1,2, 3,4,5, 6, 7;。

数学分析第一章(新)

数学分析第一章(新)

第一章 实数集与函数§1 实数Ⅰ.教学目的与要求1.理解实数的概念,掌握实数的表示方法2.了解实数的性质, 并在有关命题中正确地加以应用3.理解绝对值的概念,掌握绝对值的性质,并在有关命题中正确地加以应用.Ⅱ.教学重点与难点重点: 实数的定义及性质、绝对值与不等式.难点: 实数的定义及其应用.Ⅲ.讲授内容一 实数及其性质实数的组成:实数由有理数与无理数两部分组成.有理数的表示:有理数可用分数形式q p(p ˛q 为整数,q ≠0)表示,也可用有限十进小数或无限十进循环小数来表示.无理数:无限十进不循环小数则称为无理数.有理数和无理数统称为实数.有限小数(包括整数)也表示为无限小数.规定如下:对于正有限小数(包括整数)x,当x=a 0.a1a 2n a 时,其中0,9≤≤i a i=1,2, n, na ,0≠0a 为非负整数,记x=a 0.a 1a 2-n a ( 1)̣.999 9,而当x=a 1为正整数时,则记x=(a 0—1).999 9…,例如2.001记为2.000 999 9…;对于负有限小数(包括负整数)y ,则先将—y 表示为无限小数,再在所得无限小数之前加负号,例如—8记为—7.999 9…;又规定数0表示为0.000 0….于是,任何实数都可用一个确定的无限小数来表示.我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系.定义1 给定两个非负实数x= 0a .a a 1n a , y=,.210 n b b b b其中00,b a 为非负整数,k k b a ,(k=1,2,…)为整数,0≤a k ≤9,0≤b k ≤9.若有==k b a k k ,0,1,2,, 则称x 与y 相等,记为x=y ;若00b a >或存在非负整数L ,使得 a k =b k (k=0,1,2,…,L)而11++>l l b a ,则称x 大于y 或y 小于x ,分别记为x>y 或y<x .对于负实数x ,y ,若按上述规定分别有y x -=-与y x ->-,则分别称x=y 与x<y(或y>x).另外,自然规定任何非负实数大于任何负实数.定义2 : x =a 0.a 1a 2n a 为非负实数.称有理=n x a 0.1a a 2n a 为实数x 的n 位不足近似,而有理数=n x nn x 101+称为x 的n 位过剩近似,n=0,1,2, . 对于负实数 n a a a a a x 3210.-=,其n 位不足近似与过剩近似分别规定为n n n a a a a a x 101.3210--= 与=n x n a a a a a 3210.-. 注 不难看出,实数x 的不足近似n x 当n 增大时不减,即有x 0≤x 1≤x 2≤…,而过剩近似n x 当n 增大时不增,即有0x ≥1x ≥2x ≥….其中x 例证则r 即得 1. 2a <b, a =b , 3 4.实数具有阿基米德(Archimedes)性,即对任何a 、b ∈R ,若b >a >0,则存在正整数n ,使得n a >b .5.实数集R 具有稠密性,即任何两个不相等的实数之间必有另一个实数,且既有有理数(见例1),也有无理数.6.如果在一直线(通常画成水平直线)上确定一点O 作为原点,指定一个方向为正向(通常把指向右方的方向规定为正向),并规定一个单位长度,则称此直线为数轴.任一实数都对应数轴上唯一的一点;反之,数轴上的每一点也都唯一地代表一个实数.于是,实数集R 与数轴上的点有着一一对应关系.因此在以后的叙述中,常把“实数a ”与“数轴上的点a ”看作具有相同的含义﹒例2 设a 、b ∈R .证明:若对任何正数ε有a <b +ε,则a ≤b .证 用反证法.倘若结论不成立,则根据实数集的有序性,有a >b .令a =εb -,则ε为正数且ε+=b a ,但这与假设a <b ε+相矛盾.从而必有a ≤b .二 绝对值与不等式实数a 的绝对值定义为⎩⎨⎧<-≥=.0,,0,a a a a a 从数轴上看,数a 的绝对值a 就是点a 到原点的距离.实数的绝对值有如下一些性质:1 2 34 5 6 将右半部分.又由)式有据(1,b b a a +-=.b b a a +-≤从而得.b a b a -≤- ()2 将(2)式中b 换成b -,即得得性质4.b a b a +≤-证.Ⅳ 小结与提问:本节要求学生掌握实数的概念及其性质,牢记并熟练运用实数绝对值的有关性质以及常见的不等式,并在有关命题证明中正确地加以运用.3、4、5、6、7、8、9.Ⅴ课外作业:P4。

数学分析第一册讲义

数学分析第一册讲义
3,…。“严格”的定义可以用枚举的办法,也就是说 i 1, 2,3, ,但这省略号表示什
么呢?事实上,自然数的定义是和加法联系在一起的,换言之,自然数可以用第一个数 1, 和后继这两个说清楚。自然数集合的严格定义如下(皮亚诺 Peano):
(P1)有数 1; (P2)每一个数 m 都有一个后继,记为 m+1; (P3)1 不是任何数的后继; (P4)若 m+1=n+1,则 m=n; (P5)(归纳公理)若一个子集合满足(P1)(P2),则它就是自然数集。 其实这里定义了一个以 1 为首的一列“数字”队伍,我们依次称它们为 2,3,4,…。 这就解释了省略号的意思。 加法来自于我们解释后继为加 1,具体地说,n 的后继为 n+1,而 m+n 可以定义为 ( ((m 1) 1) ) 1;或者递归定义 m+(n+1)=(m+n)+1。可以证明(试一试!)这样定义的 加法满足: 交换率 m n n m ; 结合率 (m n) p m (n p) 。 因为自然数集合通过后继来定义,我们就得到了数与数之间的一种“序”的关系,大于、 等于和小于的意思于是就知道了。任给两个自然数 m 和 n,必有 m n, m n, m n 三种关 系中的一种出现,而且只有一种。这就是说,自然数可以比较大小。一会儿我们将看到,实 数比较大小要困难许多。 自然数这个定义对于微积分来说,非常重要的是第一次清晰、准确地刻画了一个无穷的 概念。我们没有定义任何一个数是无穷大,事实上,任给一个自然数 n,都存在比它更大的 数,如 n+1;但是,自然数逐渐加大的这样一个无穷的过程,定义了一个无穷。我们今后会 不断看到,这样一个作为过程的“无穷”。
说到这里,上面所有的内容并不涉及自然数的记法。有了乘法,就可以有数的进制。

大一数学分析1知识点总结

大一数学分析1知识点总结

大一数学分析1知识点总结数学分析是学习高等数学的基础课程之一,它以极限理论为中心,研究函数的性质和变化规律。

作为大一学习数学的入门课程,数学分析1包含了许多重要的知识点。

在本文中,我将对这些知识点进行总结和归纳,以便更好地帮助大家巩固和理解这些概念。

1. 极限的定义和性质数学分析的核心概念之一就是极限。

极限的定义是指当自变量趋近于某一值时,函数的输出趋于一个确定的值。

对于给定的数列或函数,我们可以通过求取极限来确定其收敛性和发散性。

在学习极限的时候,我们需要掌握极限的基本性质,如唯一性、有界性、保号性等。

2. 函数的连续性连续性是数学分析中的一个重要概念。

如果一个函数在某一点的极限等于该点的函数值,则称该函数在该点连续。

函数的连续性可以根据极限的定义来判断。

一般来说,多项式函数、指数函数、对数函数等都是连续函数。

而分段函数、有理函数则可能存在不连续点。

3. 导数的定义和计算方法导数是函数变化率的度量,描述了函数在某一点的瞬时增量。

导数的定义是函数在该点的极限,也可以理解为函数的斜率。

通过导数,我们可以判断函数的增减性、凹凸性以及切线的斜率等。

常见的函数求导方法有常数法、幂函数法、指数函数法、对数函数法等。

4. 高阶导数和泰勒展开高阶导数是导数的导数,描述了函数变化的二阶、三阶……n阶性质。

高阶导数可以通过逐次求导来计算。

泰勒展开是将函数在某一点展开为无穷级数的形式,利用这种形式可以近似计算函数的值。

泰勒展开在物理、工程等领域常常被广泛应用。

5. 积分的概念和计算方法积分是函数的面积与变量的乘积,描述了函数的累积效应。

积分的概念可以通过极限来定义,常见的积分符号为∫。

对于给定的函数,我们可以通过不同的积分方法来计算其积分值,如定积分、不定积分、换元法、分部积分法等。

6. 微分方程和其应用微分方程是数学分析的重要分支,研究了函数与其导数之间的关系。

微分方程广泛应用于自然科学、工程技术等领域。

在大一数学分析1中,我们主要学习了常微分方程的基本概念和解法,如可分离变量法、线性齐次方程法、齐次线性方程法等。

数学分析华东师大版上第一章ppt课件

数学分析华东师大版上第一章ppt课件

是奇函数
y1 =
1 (ex -e- x ) 的反 2
函数,从而由奇函数的图象性质可知它也是奇函
数.
前页 后页 返回
四、周期函数
定义4 设 f 为 D 上定义的函数. 若 0, 使 x D 必有x D,且 f ( x ) f ( x), 则称 f 为周期函数, 为 f 的一个周期.
一、有界函数
定义1 设 f 定义在D上. 若M R, x D, f ( x) M ,则称 f 在 D上有上界;
若L R,x D, f ( x) L, 则称 f 在D上有下界; 若M R,x D, f ( x) M , 则称 f 在 D上有界. 易证 f 在D上有界 f 在D上既有上界又有下界. 若M R, x0D, f ( x0) M, 则称 f 在 D 上无上 界;
x2n1 1

0
x2n1 2

x2n1 1
0
x22n1,
这证明了 y2n1 在 R 上严格增.
前页 后页 返回
例5 易证函数 y [ x]在 R上是增函数, 但非严格 增.
y
3 2 1
2 1 O 1 2 3 4 x
1 2
前页 后页 返回
定理1.2 设 y f ( x), x D为严格增函数,则 f 必 有反函数 f 1,且 f 1在其定义域 f (D)上也是严格 增函数. 类似地, 严格减函数 f 必有反函数 f 1, 且 f 1在其 定义域上也是严格减函数. 证 设 f 在 D 上严格增, 则 y f (D)只有一个 x D, 使 f (x) y. 事实上,若 x1 x2, 使 f ( x1) y f ( x2 ), 则与 f
前页 后页 返回
若L R,x0D, f ( x0) L, 则称 f 在D上无下界; 若MR, x0D, f ( x0) M , 则称 f 在 D上无界.

数学分析 第一章ppt

数学分析 第一章ppt

(1) y log(x 1) arctan 1 cos x
2
(2) y f ( x)
g ( x)
, 其中f ( x) 0, g ( x)为初等函数
3
(3) y 1 x x x
2
2016/8/27
解:
( 1 )初等函数 (2)初等函数 因为y f ( x)
2016/8/27

2
; 对于
(5)对于反正弦函数 y arcsin x和反余弦函数
( 例1:求函数y log (x1 ) 16 x )的定义域。
2
解:
16 x 2 0 x 1 0 x 1 1
?
1 x 2或2 x 4 定义域为: D (1, 2) (2, 4)
2016/8/27
解:
x ( 1 )y 与y x是两个不同的函数 ,因为前者 x 的定义域为 (,0) (0,), 后者的定义域为 ( , ),两个函数定义域不 同.
2
(2) y lg( x )与y 2 lg x是两个不同的函数,
2
因为前者的定义域为 (,0) (0,), 后者的定义域为( 0, ),两个函数定 义域不同 .
S X \ S,其中S是X的一个子集
C X
有限集与无限集
若集合S由n个元素组成,n是确定的非负整数,则称
集合S为有限集。
不是有限集的集合称为无限集,前面所说的N,Z,Q,R 都是无限集。
无限集:可列集合不可列集
可列集:若一个无限集上的元素可以按某种规律排成一个序列,或者可以表示成 { } 如 正整数集

(4)反余切函数arc cot x

数学分析 第一章 集合与映射

数学分析 第一章 集合与映射

(2) 复合映射 引例.
X
手电筒 复合映射
X
X1
X2
机动 目录 上页 下页 返回 结束
定义1.2.3
设有映射链
g
xX
u
g(x)
g(X
)
u X1 f
则当 g(X ) X 1 时, 由上述映射链可定义由 X 到 Y 的复
合映射 , 记作
或 f g(x), x X .
g(X )
注意: 构成复合映射的条件 g(X ) X 1不可少. 以上定义也可推广到多个映射的情形.
元素 x 称为元素 y 在映射 f 下的 逆像(也称为原像). 集合 X 称为映射 f 的定义域 ,记为Df=X; Y 的子集
f (X ) f (x) x X 称为 f 的 值域 ,记为Rf 。
注意: 1) 映射的三要素— 定义域 , 对应规则 , 值域 . 2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .
机动 目录 上页 下页 返回 结束
函数的性质
函数f(x)在I上有上界 函数f(x)在I上无上界 函数f(x)在I上有下界 函数f(x)在I上无下界 函数f(x)在I上有界 函数f(x)在I上无界
定义
MR, xI, 都有f (x)M MR, x0I, 都有f (x0)>M mR, xI, 都有f (x)m mR, x0I, 都有f (x0)<m MR, xI, 都有|f (x)|M MR, x0I, 都有|f (x0)|>M
ax bx
( X [ a , b ] )
x X f y f (X ) y y f (x), x X
(定义域)
(对应规则)
(值域)
• 定义域

数学分析第一章

数学分析第一章

第一章 函 数§1.1 实 数数学分析研究的基本对象是定义在实数集上的函数,为此,我们先简要叙述实数的概念与基本性质。

与基本性质。

一 实数及其性质在中学数学课程中,我们知道实数由有理数和无理数两部分组成。

在中学数学课程中,我们知道实数由有理数和无理数两部分组成。

有理数的特征:全体有理数构成的集合通常记为Q 。

对"q ÎQ (读作任一个有理数q )可以用一个分数表示,即uv q =(u 、v 为整数,且u ¹0),也可以用有限十进小数或无限十进循环小数表示。

如果一个数不能表示成分数,则称为无理数。

有理数和无理数统称为实数。

全体实数构成的集合记为R 。

实数有如下一些主要性质:实数有如下一些主要性质: 1. 实数集关于四则运算是封闭的,即实数集关于四则运算是封闭的,即 "a ,b ÎR ,则a ± b ÎR , a ´ b ÎR ,当b ¹0时,有a ¸b ÎR 。

2. 实数集具有有序性,即"a ,b ÎR ,则以下三个关系式a < b ,a > b ,a = b ,当且仅当只有一个成立。

仅当只有一个成立。

3. 实数的大小关系具有传递性,即"a ,b ,c ÎR ,若a > b ,b > c ,则a > c 。

4. 实数具有阿基米德(Archimedes 287—212 B.C )性,即"a ,b ÎR ,若a > b >0,则$(读作存在)正整数n ,使nb > a 。

5. 实数集R 具有稠密性:"a ,b ÎR ,若a > b ,则$c ÎR 使a >c >b 。

其中c 既可以是有理数,是有理数,也可以是无理数。

也可以是无理数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六. 课程学时与总分
• 课程总学时224学时,14学分, • 具体分配如下: • 第一学期《数学分析(1)》88学时,5.5学分 • 第二学期《数学分析(2)》88学时,5.5学分 • 第三学期《数学分析(3)》48学时,3学分
数学分析的主要内容
变动观点
极限方法 工具 基础
变量
对象
数学分析
内容
关系
预习环节
了解大致内容、熟悉基本结构、找出难 点、试图解决之
听讲环节
会作笔记(概要,重点, 难点,疑点) 、紧跟 讲解、 擅于应答。
复习环节
整理笔记、完成作业、查阅参考书、使 用工具书;
小结环节
写总结(定义、定理、性质、典型解题 方法);制表格 (条件、性质、结论、
几何意义)。
3、重视独立思考,依靠自学取胜;
2. 我们用符号“”表示“存 符号“”称 在”. 为存在量词.
例:命题“对任意的实数x, 都存在实数y, 使得x+y=1”可表示为“xR, yR, 使x+y=1”
3. 我们用符号“”表示“充分条件” 或 “推出” 这一意思. 比如, 若用p, q分别表示两个命题或陈述句. 则“ p q”表示“ 若p成立, 则q也成 立”. 即p是q成立的充分条件.
3、高等(变量)数学时期 (1750年 ~ 1820年) 笛卡尔创建了解析几何;牛顿-莱布尼兹创建了微积分学;
分析学、微分方程、概率论、射影几何取得很大成就。
4、近代数学时期 (1820年~1945年) 非欧几何、集合论导致科学革命;拓扑学、数理逻辑、 复变函数、近世代数、泛函分析、微分几何相继问世。
5、科学数学化时期 (1945年~
)
原子弹、电子计算机、运筹学、模糊数学、数学建模。
马克思:只有成功运用数学时,一门学科才算真正完善。
二、为何要学数学
1、训练思维的需要(数学是思维体操);
2、经济与科技发展的需要(科技是第一生产力, 数学是科技的基础);
3、军事斗争的需要(世一战为化学战、世二战为 物理战、海湾战争为数学战);
4. 我们用符号“”表示“当且仅当” 或 “充要条件” 这一意思. 比如“p q”表示“p成立当且仅当q成 立” 或者说p成立的充要条件是q成立.
一. 集合与实数的性质
1.集合 ❖集合
集合是指具有某种特定性质的事物的总体. 集合可用大写的字母A, B, C, D 等标识. ❖元素 组成集合的事物称为集合的元素. 集合的元素可用小写的字母a, b, c, d 等标识. a是集合M的元素记为aM, 读作a属于M. a不是集合M的元素记为aM, 读作a不属于M.
四. 数学分析简介
• 数学分析是高等学校数理科学专业的一门专业基 础课,通过本课程的教学使学生对极限思想和方 法有较深刻的认识,使学生的思维能力得到锻炼 和提高。特别是基于强化基础、偏重一元微积分 系统知识的教学,学生应能正确理解数学分析的 基本概念,基本掌握数学分析中常用的论证方法, 获得较熟练的演算技能和初步应用的能力。本课 程不仅对许多后继课程的学习有直接影响,而且 对学生数学基本功的训练与良好专业素质的培养 起着十分重要的作用。
1、数学萌芽 (数形) 时期 (公元前2000~公元前600) 贸易、测量、航海的需要而整理形成,如埃及金字塔的 建筑。特点:片断、零散、 缺乏逻辑、没有形成体系。
2、初等(常量) 数学时期 (公元前600~1750年) 古希腊数学科学地位独立;欧氏“几何原本”确立数学成完 整科学;初等几何、算术、代数、三角等成独立学科。
中心 函数
对象
极限论
微分学 积分学
(单变量和多变量)
级数论
教材及参考资料
• 1.教材:数学分析(第三版),欧阳光中,高等 教育出版社
• 2.参考资料 • 1)《数学分析讲义》(第三版),刘玉链等编,
高等教育出版社,1992 • 2)《数学分析学习指导》(上、下册),吴良森
等编,高等教育出版社,2004 • 3)《数学分析的思想方法》,朱匀华等编,中山
4、数学是科学技术的载体,为学习后继课程提供 必须的数学工具(物理、计算机、电子、机械、 经济、运筹、统计、会计等等);
5、未来从事科学研究的需要(数学位于三大重点 基础学科之首,为此硕士研究生入学考分数由 100→150 ) 。
三、如何学好数学;
1、树立自信,亲近数学;
2、抓好四个环节,突出两个重点;
❖集合的表示 •列举法
把集合的全体元素一一列举出来. 例如A{a, b, c, d, e, f, g}. •描述法 若集合M是由元素具有某种性质P的元素x的全体所 组成, 则M可表示为
M{x | x具有性质P }. 例如M{(x, y)| x, y为实数, x2y21}.
❖几个数集 所有自然数构成的集合记为N, 称为自然数集. 所有实数构成的集合记为R, 称为实数集. 所有整数构成的集合记为Z, 称为整数集. 所有有理数构成的集合记为Q, 称为有理集.
大学出版社,1998 • 4)《吉米多维奇数学分析习题集解答》,山东科技出 Nhomakorabea社,1983
第一章 变量与函数
§1 实数 §2 函数的概念 §3 复合函数与反函数 §4 基本初等函数
1.1 实数
一 .集合与实数的性质 二. 绝对值与不等式
几个常用符号
1. 我们用符号“” 表示“任取” 或“对于任意的”或“对于所有的” , 符号“” 称为全称量词.
五. 数学分析与其它课程关系
• 数学分析与另外两门基础课(高等代数、 解析几何)相互协调,并以其自身为主干 构成现代数学各分支的共同基础。几乎所 有专业课都需要该课程的支撑。其后续课 程主要有实变函数、复变函数、泛函分析、 点集拓扑等。它是学习常微分方程、偏微 分方程、概率论、数学模型等应用性较强 课程必备的直接基础,也对数值计算、数 学实验、逻辑学、计算科学等学科的学习 有着潜在的深远影响。
数学分析电子教案
重庆邮电大学数理学院
高等数学教学部
沈世云 62460842 shensy@
数学 不仅是一种工具,
而且是一种思维模式;
数学 不仅是一种知识,
而且是一种素养;
数学 不仅是一种科学,
而且是一种文化;
能否运用数学观念定量思维是衡量 民族科学文化素质的一个重要标志.
一、简明数学史
相关文档
最新文档