《名校学案》高中数学人教A(选修2-2)课件:第一章导数及其应用阶段复习课.

合集下载

高中数学选修2-2几个常见函数的导数课件

高中数学选修2-2几个常见函数的导数课件

Δx
Δx
x(x +Δx)Δx
=
-
x2
+
1 xΔx
∴y' = lim Δy = lim(- 1 )= - 1
δx→0Δx δx→0 x2 + xΔx
x2
新知探究
探究
画出函数y = 1 的图像, x
根据图像,描述它的变化情 况,并求出曲线在点(1,1) 处的切线方程.
新知探究
结合函数图像及其导数
y'
新知探究
x 3. 函数y=f(x)= 2 的导数
证明:
∵ Δy = f(x + Δx) - f(x) = (x + Δx)2 - x2
Δx
Δx
Δx
= x2 + 2x× Δx +(Δx)2 - x2 Δx
= 2x + Δx
∴y' lim Δy lim(2x + Δx) = 2x. x0 Δx x0
x
(3)求极限 y lim y . x0 x
课前导入
我们知道,导数的几何意义是曲线在某点处的切线的斜率,物理意义是运动物体在某一时刻的瞬 时速度.那么,对于函数y=f(x),如何求它的导数呢? 上节内容,我们讲述了导数的定义,可以根据定义求导数. 这节课我们求几个常见函数的导数.
课前导入
本节知识结构
Δx
Δx
Δx
=
1
x + Δx + x
∴y' = lim Δy = lim
1
=1
δx→0 Δx δx→0 x + Δx + x 2 x
新知探究
知识拓展
公式2:( x n ) nx n1 (n. Q)

人教A版高中数学选修2-2ppt课件:第一章 导数及其应用 C模拟高考PPT

人教A版高中数学选修2-2ppt课件:第一章 导数及其应用 C模拟高考PPT

答案
5.已知f(x)=x3-3x,过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,则实数m的取值范围是( )
A.(-1,1)
B.(-2,3)
C.(-1,2)
D.(-3,-2)
答案
5.D 【解析】 设切点为(t,t3-3t),f '(x)=3x2-3,则切线方程为y=(3t2-3)(x-t)+t3-3t,整理得y=(3t2-3)x-2t3.把A(1,m)代入 整理,得2t3-3t2+m+3=0 ①.因为过点A可作三条切线,所以①有三个解.记g(t)=2t3-3t2+m+3,则g'(t)=6t2-6t=6t(t-1),所 以当t=0时,极大值g(0)=m+3,当t=1时,极小值g(1)=m+2.要使g(t)有三个零点,只需m+3>0且m+2<0,即-3<m<-2.
3.[2017山东卷文·10,5分]若函数exf(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具
有M性质.下列函数中具有M性质的是 ( )
A.f(x)=2-x
B.f(x)=x2C.f(x)=3-xD.f(x)=cos x
答案
4.[2017全国卷Ⅱ理·11,5分]若x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,则 f(x)的极小值为 ( )
答案
6.[2019北京卷理·13,5分]设函数f(x)=ex+ae-x(a为常数).若f(x)为奇函数,则a=
取值范围是
.
;若f(x)是R上的增函数,则a的
答案
7.[2019全国Ⅰ卷文·13,5分]曲线y=3(x2+x)ex在点(0,0)处的切线方程为

数学选修2-2人教A讲义:第一章导数及其应用1.5.3

数学选修2-2人教A讲义:第一章导数及其应用1.5.3

2?21x3 dx=3×
7- 2×15=-
3
4
1 2.
反思与感悟 若函数 f(x)的奇偶性已经明确,且 f( x)在[- a ,a ]上连续,则
a
(1)若函数 f(x)为奇函数,则 ?-af( x)dx= 0. (2)若函数 f(x)为偶函数,则 ?a-af( x)dx= 2?a0f(x)dx.
2x- 1,- 1≤ x<0,
示由直线 x=a, x= b,y= 0 和曲线 y=f(x)所围成的曲边梯形的面积.这就是定积分
?baf (x)dx
的几何意义.
注意: f (x)<0( 图象在 x 轴的下方 )时, ?baf( x)dx<0,- ?baf(x)dx 等于曲边梯形的面积.
知识点三 定积分的性质
思考 你能根据定积分的几何意义解释
Sn

lim
n→∞
13- 3 2 2n

13 2.
反思与感悟 利用定义求定积分的步骤
跟踪训练 1 利用定积分的定义计算 ?32(x+ 2)dx.
考点 定积分的概念
题点 定积分的概念
解 令 f(x)= x+ 2.
将区间 [2,3] 平均分为 n 个小区间,每个小区间的长度为
Δxi

1 n

i- 1
i
[xi-1, xi]= 2+ n , 2+ n , i= 1,2,… , n.
1.5.3 定积分的概念
学习目标 1.了解定积分的概念, 会用定义求定积分 .2.理解定积分的几何意义 .3.掌握定积分 的基本性质.
知识点一 定积分的概念 思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2

高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选修2-2
复习课件
高中数学 第一章 导数及其应用 1.3.2 函数的极值与导数课件 新人教A版选 修2-2
1.3.2 函数的极值与导数
目标定位
重点难点
1.了解函数在某点取得极值的必要条 重点:求函数极值的
件和充分条件 方法和步骤
2.理解极大值和极小值的概念 难点:函数极值的概
3.掌握求可导函数极大值和极小值的 念的理解
设f(x)在x0处连续且f′(x0)=0,判别f(x0)是极大(小)值的方 法:
(1)若在x0两侧f′(x)符号相同,则x0不是f(x)的极值点; (2)若在x0附近的左侧f′(x)>0,右侧f′(x)<0,则f(x0)是极 大值;
(3)若在x0附近的左侧f′(x)<0,右侧f′(x)>0,则f(x0)是极 小值.
解得ab==4-,11 或ab==3-. 3, 故a+b=-7或a+b=0.
【错因分析】可导函数在一点的导数值为0是函数在这 一点取得极值的必要条件,而非充分条件,本题忽略了对所得 两组解进行检验,从而出现了错误.
【正解】(接错解)当a=4,b=-11时, f(x)=x3+4x2-11x+16, 得f′(x)=3x2+8x-11=(3x+11)(x-1). 当x∈-131,1时,f′(x)<0; 当x∈(1,+∞)时,f′(x)>0.
(3) 如 果 f′(x) 在 点 x0 的 左 右 两 侧 符 号 不 变 , 则 f(x0) _不__是__极__值___.
1.函数f(x)=x3-3bx+3b在(0,1)内有极小值,则( )
A.0<b<1
B.b<0
C.b>0 【答案】A
D.b<12
2.已知函数y=x3-3x+2,则( ) A.y无极小值,也无极大值 B.y有极小值0,但无极大值 C.y有极小值0,极大值4 D.y有极大值4,但无极小值 【答案】C

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.1.3

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.1.3
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.1.3 导数的几何意义
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
[思路点拨]
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求曲线上某点(x0,y0)处切线方程的步骤: 求出f′x0即切线斜率 ↓ 写出切线的点斜式方程 ↓ 化简切线方程
时,割线 PQ 逼近点 P 的切线 l,从而割线的斜率逼近切线 l 的
斜率.因此,函数 f(x)在 x=x0 处的导数就是切线 l 的斜率 k, 即
k= lim Δx→0
fx0+ΔΔxx-fx0=f′(x0).
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1 . 设 f′(x0) = 0 , 则 曲 线 y = f(x) 在 点 (x0 , f(x0)) 处 的 切 线
()
A.不存在
B.与x轴平行或重合
C.与x轴垂直
D.与x轴相交
解析: 在点(x0,f(x0))处切线斜率为0的直线与x轴平行或 重合,故选B.
答案: B
数学 选修2-2
第一章 导数及其应用

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.4

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.4

第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: y′=-x2+81, ∴当 x>9 时,y′<0,当 x∈(0,9)时,y′>0, ∴函数 y=-13x3+81x-234 在(0,9)上递增,在(9,+∞)上 递减. 故当 x=9 时,y 有最大值.
答案: C
数学 选修2-2
C(x)=
k 3x+5
(0≤x≤10),若不建隔热层,每年能源消耗费用为8
万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.4 生活中的优化问题举例
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)设隔热层厚度为x cm,由题设,每年能源消 耗费用为C(x)=3x+k 5,
再由C(0)=8,得k=40, 因此C(x)=3x4+0 5. 而建造费用为C1(x)=6x. 最后得隔热层建造费用与20年的能源消耗费用之和为 f(x)=20C(x)+C1(x)=20×3x4+0 5+6x =38x+005+6x(0≤x≤10).

人教版数学高二A版选修2-2学案 第一章 导数及其应用

人教版数学高二A版选修2-2学案 第一章 导数及其应用

1.5.3 定积分的概念学习目标1.了解定积分的概念,会用定义求定积分.2.理解定积分的几何意义.3.掌握定积分的基本性质.知识点一 定积分的概念思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.答案 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.梳理 一般地,如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑i =1nf (ξi )Δx =∑i =1n b -an f (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作ʃb a f (x )d x ,即ʃba f (x )d x =lim n →∞∑i =1n b -an f (ξi ),这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.知识点二 定积分的几何意义思考1 根据定积分的定义求得ʃ21(x +1)d x 的值是多少? 答案 ʃ21(x +1)d x =52. 思考2 ʃ21(x +1)d x 的值与直线x =1,x =2,y =0,f (x )=x +1围成的梯形面积有何关系? 答案 相等.梳理 从几何上看,如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么定积分ʃb a f (x )d x 表示由直线x =a ,x =b ,y =0和曲线y =f (x )所围成的曲边梯形的面积.这就是定积分ʃb a f (x )d x 的几何意义.注意:f (x )<0(图象在x 轴的下方)时,ʃb a f (x )d x <0,-ʃb a f (x )d x 等于曲边梯形的面积.知识点三 定积分的性质思考你能根据定积分的几何意义解释ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b)吗?答案直线x=c把一个大的曲边梯形分成了两个小曲边梯形,因此大曲边梯形的面积S是两个小曲边梯形的面积S1,S2之和,即S=S1+S2.梳理(1)ʃb a kf(x)d x=kʃb a f(x)d x(k为常数).(2)ʃb a[f1(x)±f2(x)]d x=ʃb a f1(x)d x±ʃb a f2(x)d x.(3)ʃb a f(x)d x=ʃc a f(x)d x+ʃb c f(x)d x(其中a<c<b).1.ʃb a f(x)d x=ʃb a f(t)d t.(√)2.ʃb a f(x)d x的值一定是一个正数.(×)3.ʃb a⎣⎡⎦⎤x3+⎝⎛⎭⎫12x d x=ʃb a x3d x+ʃb a⎝⎛⎭⎫12x d x.(√)类型一利用定积分的定义求定积分例1利用定积分的定义,计算ʃ21(3x+2)d x的值.考点定积分的概念题点定积分的概念解令f(x)=3x+2.(1)分割在区间[1,2]上等间隔地插入n-1个分点,把区间[1,2]等分成n个小区间⎣⎢⎡⎦⎥⎤n+i-1n,n+in(i=1,2,…,n),每个小区间的长度为Δx=n+in-n+i-1n=1n.(2)近似代替、求和取ξi=n+i-1n(i=1,2,…,n),则S n=∑i=1nf⎝⎛⎭⎪⎫n+i-1n·Δx=∑i=1n⎣⎢⎡⎦⎥⎤3(n+i-1)n+2·1n=∑i =1n⎣⎢⎡⎦⎥⎤3(i -1)n 2+5n =3n2[0+1+2+…+(n -1)]+5 =32×n 2-n n 2+5=132-32n. (3)取极限ʃ21(3x +2)d x =lim n →∞ S n=lim n →∞ ⎝⎛⎭⎫132-32n =132. 反思与感悟 利用定义求定积分的步骤跟踪训练1 利用定积分的定义计算ʃ32(x +2)d x . 考点 定积分的概念 题点 定积分的概念 解 令f (x )=x +2.将区间[2,3]平均分为n 个小区间,每个小区间的长度为Δx i =1n,[x i -1,x i ]=⎣⎢⎡⎦⎥⎤2+i -1n ,2+i n ,i =1,2,…,n .取ξi =x i =2+i n ,则f (ξi )=2+i n +2=4+in .则∑ni =1f (ξi )Δx i=∑ni =1 ⎝⎛⎭⎫4+i n ·1n=∑ni =1 ⎝⎛⎭⎫4n +i n 2=n ·4n +1+2+…+n n 2=4+n +12n.∴ʃ32(x +2)d x =lim n →∞ ⎝⎛⎭⎫4+n +12n =92. 类型二 利用定积分的性质求定积分例2 已知ʃ10x 3d x =14,ʃ21x 3d x =154,ʃ21x 2d x =73,ʃ42x 2d x =563,求下列各式的值. (1)ʃ20(3x 3)d x ; (2)ʃ41(6x 2)d x ; (3)ʃ21(3x 2-2x 3)d x .考点 定积分性质的应用 题点 定积分性质的应用解 (1)ʃ20(3x 3)d x =3ʃ20x 3d x =3()ʃ10x 3d x +ʃ21x 3d x=3×⎝⎛⎭⎫14+154=12.(2)ʃ41(6x 2)d x =6ʃ41x 2d x =6()ʃ21x 2d x +ʃ42x 2d x=6×⎝⎛⎭⎫73+563=126.(3)ʃ21(3x 2-2x 3)d x =ʃ21(3x 2)d x -ʃ21(2x 3)d x=3ʃ21x 2d x -2ʃ21x 3d x =3×73-2×154=-12. 反思与感悟 若函数f (x )的奇偶性已经明确,且f (x )在[-a ,a ]上连续,则 (1)若函数f (x )为奇函数,则ʃa -a f (x )d x =0.(2)若函数f (x )为偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d x .跟踪训练2 若f (x )=⎩⎪⎨⎪⎧2x -1,-1≤x <0,e -x ,0≤x ≤1,且ʃ0-1(2x -1)d x =-2,ʃ10e -x d x =1-e -1,求ʃ1-1f (x )d x . 考点 定积分性质的应用 题点 定积分性质的应用解 ʃ1-1f (x )d x =ʃ0-1f (x )d x +ʃ10f (x )d x =ʃ0-1(2x -1)d x +ʃ10e -x d x =-2+1-e -1=-(e -1+1).类型三 利用定积分的几何意义求定积分 例3 用定积分的几何意义求下列各式的值.(1)ʃ1-14-x 2d x ; (2)π2π-2sin d x x ⎰.考点 定积分几何意义的应用 题点 定积分几何意义的应用 解 (1)由y =4-x 2得x 2+y 2=4(y ≥0),其图象如图所示.ʃ1-14-x 2d x 等于圆心角为60°的弓形CED 的面积与矩形ABCD 的面积之和,S 弓形CED =12×π3×22-12×2×3=2π3-3,S 矩形ABCD =AB ·BC =23,∴ʃ1-14-x 2d x =23+2π3-3=2π3+ 3. (2)∵函数y =sin x 在x ∈⎣⎡⎦⎤-π2,π2上是奇函数, ∴π2π-2sin d x x ⎰=0.跟踪训练3 求定积分:ʃ20(4-(x -2)2-x )d x .考点 定积分几何意义的应用 题点 定积分几何意义的应用 解 ʃ204-(x -2)2d x 表示圆心在(2,0),半径等于2的圆的面积的14,即ʃ204-(x -2)2d x =14×π×22=π.ʃ20x d x 表示底和高都为2的直角三角形的面积, 即ʃ20x d x =12×22=2. ∴原式=ʃ204-(x -2)2d x -ʃ20x d x=π-2.1.下列结论中成立的个数是( )①ʃ10x 3d x =∑i =1n i 3n 3·1n ;②ʃ10x 3d x =lim n →∞∑i =1n (i -1)3n 3·1n ; ③ʃ10x 3d x =lim n →∞∑i =1ni 3n 3·1n . A .0 B .1 C .2 D .3 考点 定积分的概念 题点 定积分的概念 答案 C解析 ②③成立.2.关于定积分a =ʃ2-1(-2)d x 的叙述正确的是( ) A .被积函数为y =2,a =6 B .被积函数为y =-2,a =6 C .被积函数为y =-2,a =-6 D .被积函数为y =2,a =-6 考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 C解析 由定积分的概念可知, ʃ2-1(-2)d x 中的被积函数为y =-2,由定积分的几何意义知,ʃ2-1(-2)d x 等于由直线x =-1,x =2,y =0,y =-2所围成的图形的面积的相反数,∴ʃ2-1(-2)d x =-2×3=-6. 3.已知定积分ʃ60f (x )d x =8,且f (x )为偶函数,则ʃ6-6f (x )d x 等于( )A .0B .16C .12D .8考点 定积分的几何意义及性质 题点 定积分性质 答案 B解析 ʃ6-6f (x )d x =2ʃ60f (x )d x =16. 4.由函数y =-x 的图象,直线x =1,x =0,y =0所围成的图形的面积可表示为( ) A .ʃ10(-x )d xB .ʃ10|-x |d xC .ʃ0-1x d xD .-ʃ10x d x考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 B解析 由定积分的几何意义可知,所求图形的面积为 S =ʃ10|-x |d x .5.计算ʃ3-3(9-x 2-x 3)d x . 考点 定积分几何意义的应用 题点 定积分几何意义的应用 解 如图所示,由定积分的几何意义得ʃ3-39-x 2d x =π×322=9π2, ʃ3-3x 3d x =0,由定积分性质得ʃ3-3(9-x 2-x 3)d x =ʃ3-39-x 2d x -ʃ3-3x 3d x =9π2.1.定积分ʃb a f (x )d x是一个和式 i =1n b -anf (ξi )的极限,是一个常数.2.可以利用“分割、近似代替、求和、取极限”求定积分.对于一些特殊函数,也可以利用几何意义求定积分.3.定积分的几何性质可以帮助简化定积分运算.一、选择题1.根据定积分的定义,ʃ20x 2d x 等于( )A.∑i =1n ⎝⎛⎭⎫i -1n 2·1n B .lim n →∞ ∑i =1n⎝⎛⎭⎫i -1n 2·1n C.∑i =1n ⎝⎛⎭⎫2i n 2·2n D .lim n →∞ ∑i =1n⎝⎛⎭⎫2i n 2·2n 考点 定积分的概念 题点 定积分的概念 答案 D 解析根据定积分的定义,ʃ20x 2d x =lim n →∞∑i =1n⎝⎛⎭⎫2i n 2·2n .2.下列定积分的值等于1的是( ) A .ʃ101d x B .ʃ10(x +1)d x C .ʃ1012d x D .ʃ10x d x考点 定积分的几何意义及性质 题点 定积分性质 答案 A解析 D 项,ʃ10x d x =12,C 项,ʃ1012d x =12, B 项,ʃ10(x +1)d x =32,A 项,ʃ101d x =1,故选A. 3.下列命题不正确的是( )A .若f (x )是连续的奇函数,则ʃa -a f (x )d x =0B .若f (x )是连续的偶函数,则ʃa -a f (x )d x =2ʃa 0f (x )d xC .若f (x )在[a ,b ]上连续且恒正,则ʃb a f (x )d x >0D .若f (x )在[a ,b ]上连续且ʃb a f (x )d x >0,则f (x )在[a ,b ]上恒正考点 定积分的几何意义及性质 题点 定积分性质 答案 D解析 A 项,因为f (x )是奇函数,图象关于原点对称,所以x 轴上方的面积和x 轴下方的面积相等,故积分是0,所以A 项正确;B 项,因为f (x )是偶函数,图象关于y 轴对称,故y 轴两侧的图象都在x 轴上方或下方且面积相等,故B 项正确;由定积分的几何意义知,C 项显然正确;D 项,f (x )也可以小于0,但必须有大于0的部分,且f (x )>0的曲线围成的面积比f (x )<0的曲线围成的面积大. 4.与定积分3π2x ⎰相等的是( )A.3π20sin d x x ⎰B.3π2sin d x x ⎰C .ʃπ0sin x d x -3π2πsin d x x ⎰D.π3π22π02sin d sin d x x x x +⎰⎰考点 定积分的几何意义及性质 题点 定积分性质 答案 C解析 当x ∈[0,π]时,sin x ≥0; 当x ∈⎝⎛⎦⎤π,3π2时,sin x <0. ∴由定积分的性质可得,3π2sin d x x ⎰=ʃπ0|sin x |d x +3π2πsin d x x ⎰=ʃπ0sin x d x +()3π2πsin d x x -⎰=ʃπ0sin x d x -3π2πsin d x x ⎰.5.下列各阴影部分的面积S 不可以用S =ʃb a [f (x )-g (x )]d x 求出的是( )考点 定积分的几何意义及性质 题点 定积分的几何意义答案 B解析 定积分S =ʃb a [f (x )-g (x )]d x 的几何意义是求函数f (x )与g (x )之间的阴影部分的面积,必须注意f (x )的图象要在g (x )的图象上方.对照各选项可知,B 项中f (x )的图象不全在g (x )的图象上方,故选B.6.由直线y =x ,y =-x +1及x 轴围成的平面图形的面积为( ) A .ʃ10[(1-y )-y ]d y B .()121d x x x -+-⎡⎤⎣⎦⎰ C .()112102d 1d x x x x +-+⎰⎰D .ʃ10[x -(-x +1)]d x考点 定积分的几何意义及性质 题点 定积分的几何意义 答案 C解析 联立⎩⎪⎨⎪⎧y =x ,y =-x +1,解得⎩⎨⎧x =12,y =12,故A ⎝⎛⎭⎫12,12.由图知阴影部分的面积可表示为()112102d 1d x x x x +-+⎰⎰.7.设a =ʃ1013x d x ,b =ʃ10x 2d x ,c =ʃ10x 3d x ,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a =b >cD .c >a >b考点 定积分几何意义的应用 题点 定积分几何意义的应用答案A解析根据定积分的几何意义,易知ʃ10x3d x<ʃ10x2d x<ʃ1013x d x,即a>b>c,故选A.8.若ʃa-a|56x|d x≤2 016,则正数a的最大值为() A.6 B.56C.36 D.2 016考点定积分几何意义的应用题点定积分几何意义的应用答案A解析由ʃa-a|56x|d x=56ʃa-a|x|d x≤2 016,得ʃa-a|x|d x≤36,∵ʃa-a|x|d x=a2,∴a2≤36,即0<a≤6.故正数a的最大值为6.二、填空题9.若ʃ1012f(x)d x=1,ʃ0-13f(x)d x=2,则ʃ1-1f(x)d x=________.考点定积分性质的应用题点定积分性质的应用答案8 3解析∵ʃ1012f(x)d x=12ʃ10f(x)d x=1,∴ʃ10f(x)d x=2.又ʃ0-13f(x)d x=3ʃ0-1f(x)d x=2,∴ʃ0-1f(x)d x=2 3.∴ʃ1-1f(x)d x=ʃ0-1f(x)d x+ʃ10f(x)d x=23+2=83.10.如图所示的阴影部分的面积用定积分表示为________.考点定积分的几何意义及性质题点 定积分的几何意义答案 ʃ2-4x 22d x 11.定积分ʃ10(2+1-x 2)d x =________.考点 定积分几何意义的应用题点 定积分几何意义的应用答案 2+π4解析 原式=ʃ102d x +ʃ101-x 2d x .因为ʃ102d x =2,ʃ101-x 2d x =π4, 所以ʃ10(2+1-x 2)d x =2+π4. 12.已知f (x )是一次函数,其图象过点(3,4)且ʃ10f (x )d x =1,则f (x )的解析式为________. 考点 定积分几何意义的应用题点 定积分几何意义的应用答案 f (x )=65x +25解析 设f (x )=ax +b (a ≠0),∵f (x )图象过(3,4)点,∴3a +b =4.又ʃ10f (x )d x =ʃ10(ax +b )d x =a ʃ10x d x +ʃ10b d x =12a +b =1. 解方程组⎩⎪⎨⎪⎧3a +b =4,12a +b =1, 得⎩⎨⎧ a =65,b =25.∴f (x )=65x +25.三、解答题 13.已知f (x )=⎩⎪⎨⎪⎧ x ,x ∈[0,2),4-x ,x ∈[2,3),52-x 2,x ∈[3,5],求f (x )在区间[0,5]上的定积分.考点 定积分几何意义的应用题点 定积分几何意义的应用解 如图画出函数f (x )的图象.由定积分的几何意义得ʃ20x d x =12×2×2=2, ʃ32(4-x )d x =12×(1+2)×1=32, ʃ53⎝⎛⎭⎫52-x 2d x =12×2×1=1. 所以ʃ50f (x )d x =ʃ20x d x +ʃ32(4-x )d x +ʃ53⎝⎛⎭⎫52-x 2d x =2+32+1=92. 四、探究与拓展14.若定积分ʃm -2-x 2-2x d x =π4,则m 等于( ) A .-1B .0C .1D .2 考点 定积分几何意义的应用题点 定积分几何意义的应用答案 A解析 根据定积分的几何意义知,定积分ʃm -2-x 2-2x d x 的值就是函数y =-x 2-2x 的图象与x 轴及直线x =-2,x =m 所围成的图形的面积.y =-x 2-2x 是一个以(-1,0)为圆心,1为半径的半圆,其面积等于π2,而ʃm -2-x 2-2x d x =π4,所以m =-1. 15.如图所示,抛物线y =12x 2将圆x 2+y 2≤8分成两部分,现在向圆上均匀投点,这些点落在圆中阴影部分的概率为14+16π, 求ʃ20⎝⎛⎭⎫8-x 2-12x 2d x . 考点 定积分几何意义的应用题点 定积分几何意义的应用解 解方程组⎩⎪⎨⎪⎧x 2+y 2=8,y =12x 2, 得x =±2.∴阴影部分的面积为ʃ2-2⎝⎛⎭⎫8-x 2-12x 2d x . ∵圆的面积为8π, ∴由几何概型可得阴影部分的面积是8π·⎝⎛⎭⎫14+16π=2π+43. 由定积分的几何意义得,ʃ20⎝⎛⎭⎫8-x 2-12x 2d x =12ʃ2-2⎝⎛⎭⎫8-x 2-12x 2d x =π+23.。

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.6

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.6

=(0-1)-[0-(-1)]
=-1-1=-2.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)∵(ex-sin x)′=ex-cos x,
0
∴ -π
(ex-cos
x)dx=(ex-sin
x)|
0 -π
=(e0-sin 0)-[e-π-sin(-π)]
=1-e-π.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求简单的定积分关键注意两点: (1)掌握基本函数的导数以及导数的运算法则,正确求解被 积函数的原函数,当原函数不易求时,可将被积函数适当变形 后再求解; (2)精确定位积分区间,分清积分下限与积分上限.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
定积分的应用
已知 f(x)=21x++x12,,xx∈∈[2-,24,],2],
3

使

k
f(x)dx

430恒成立的 k 值.
数学 选修2-2
第一章 导数及其应用
[思路点拨]
自主学习 新知突破
0
(3)

(ex-cos x)dx.
-π
[思路点拨] 先求被积函数的原函数,然后利用微积分基
本定理求解.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(1)∵x3+12x2-x′=3x2+x-1,

人教版数学高二A版选修2-2学案 第一章 导数及其应用 1.2 第1课时

人教版数学高二A版选修2-2学案 第一章 导数及其应用 1.2 第1课时

§1.2 导数的计算第1课时 几个常用函数的导数与基本初等函数的导数公式学习目标 1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x ,y =x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.知识点一 几个常用函数的导数原函数 导函数 f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x知识点二 基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x f ′(x )=a x ln a (a >0)f (x )=e x f ′(x )=e xf (x )=log a x f ′(x )=1x ln a(a >0且a ≠1)f (x )=ln xf ′(x )=1x1.若y =2,则y ′=12×2=1.( × )2.若f ′(x )=sin x ,则f (x )=cos x .( × ) 3.f (x )=1x 3,则f ′(x )=-3x4.( √ )类型一 利用导数公式求函数的导数 例1 求下列函数的导数.(1)y =sin π6;(2)y =⎝⎛⎭⎫12x ;(3)y =lg x ;(4)y =x 2x ;(5)y =2cos 2x 2-1. 考点 常数、幂函数、指数函数、对数函数的导数 题点 常数、幂函数、指数函数、对数函数的导数 解 (1)y ′=0.(2)y ′=⎝⎛⎭⎫12x ln 12=-⎝⎛⎭⎫12x ln 2. (3)y ′=1x ln 10.(4)∵y =x 2x=32x ,∴y ′=(32x )′=3212x =32x .(5)∵y =2cos 2x2-1=cos x ,∴y ′=(cos x )′=-sin x .反思与感悟 (1)若所求函数符合导数公式,则直接利用公式求解.(2)若给出的函数解析式不符合基本初等函数的导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.如y =1x 4可以写成y =x -4,y =5x 3可以写成y =35x 等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.跟踪训练1 (1)已知函数f (x )=1x 3,则f ′(-3)等于( )A .81B .243C .-243D .-127(2)已知f (x )=ln x 且f ′(x 0)=1x 20,则x 0= .考点 常数、幂函数、指数函数、对数函数的导数 题点 常数、幂函数、指数函数、对数函数的导数 答案 (1)D (2)1 解析 (1)因为f (x )=x -3, 所以f ′(x )=-3x -4=-3x 4,所以f ′(-3)=-3(-3)4=-127.(2)因为f (x )=ln x (x >0), 所以f ′(x )=1x,所以f ′(x 0)=1x 0=1x 20,所以x 0=1.类型二 利用导数公式研究切线问题 命题角度1 求切线方程或切线斜率例2 已知曲线y =f (x )=x ,y =g (x )=1x ,过两条曲线交点作两条曲线的切线,求两切线与x轴所围成的三角形面积. 考点 导数公式的综合应用 题点 导数公式的综合应用解 由⎩⎪⎨⎪⎧ y =x ,y =1x ,得⎩⎪⎨⎪⎧x =1,y =1,得两曲线的交点坐标为(1,1).两条曲线切线的斜率分别为f ′(1)=12,g ′(1)=-1.易得两切线方程分别为y -1=12(x -1),y -1=-(x -1),即y =12x +12与y =-x +2.其与x 轴的交点坐标分别为(-1,0),(2,0),所以两切线与x 轴所围成的三角形面积为12×1×|2-(-1)|=32.反思与感悟 解决切线问题,关键是确定切点,要充分利用切点处的导数是切线的斜率、切点在切线上及切点在曲线上这三个条件联立方程解决.跟踪训练2 已知y =kx 是曲线y =ln x 的一条切线,则k = . 考点 导数公式的综合应用 题点 导数公式的综合应用 答案 1e解析 设切点坐标为(x 0,y 0), 由题意得0=|x x y'=1x 0=k ,①又y 0=kx 0,② 而且y 0=ln x 0,③由①②③可得x 0=e ,y 0=1,则k =1e .命题角度2 求切点坐标问题例3 求抛物线y =x 2上的点到直线x -y -2=0的最短距离. 考点 导数公式的综合应用 题点 导数公式的综合应用解 设切点坐标为(x 0,x 20),依题意知与直线x -y -2=0平行的抛物线y =x 2的切线的切点到直线x -y -2=0的距离最短.∵y ′=(x 2)′=2x ,∴2x 0=1,∴x 0=12,∴切点坐标为⎝⎛⎭⎫12,14,∴所求的最短距离d =⎪⎪⎪⎪12-14-22=728.反思与感悟 利用基本初等函数的求导公式,可求其图象在某一点P (x 0,y 0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关.解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算.跟踪训练3 已知直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点,O 是坐标原点,试求与直线l 平行的抛物线的切线方程,并在弧AOB 上求一点P ,使△ABP 的面积最大. 考点 导数公式的综合应用 题点 导数公式的综合应用解 由于直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点,∴|AB |为定值,要使△ABP 的面积最大,只要点P 到AB 的距离最大,设P (x 0,y 0)为切点,过点P 与AB 平行的直线斜率k =y ′=2x 0,∴k =2x 0=2,∴x 0=1,y 0 =1. 故可得P (1,1),∴切线方程为2x -y -1=0.故P (1,1)点即为所求弧AOB 上的点,使△ABP 的面积最大.1.下列函数求导运算正确的个数为( )①(3x )′=3x log 3e ;②(log 2x )′=1x ln 2;③1(ln x )′=x ;④若y =1x 2,则=3|x y'=-227.A .1B .2C .3D .4考点 常数、幂函数、指数函数、对数函数的导数 题点 常数、幂函数、指数函数、对数函数的导数 答案 C解析 ①中(3x )′=3x ln 3,②③④均正确. 2.函数f (x )=x 3的斜率等于1的切线有( ) A .1条 B .2条 C .3条D .不确定考点 常数、幂函数、指数函数、对数函数的导数 题点 常数、幂函数的导数 答案 B解析 设切点坐标为(x 0,y 0),∵f ′(x 0)=3x 20=1, ∴x 0=±33.故斜率等于1的切线有2条. 3.已知f (x )=x 2,g (x )=ln x ,若f ′(x )-g ′(x )=1,则x = . 考点 常数、幂函数、指数函数、对数函数的导数 题点 指数函数、对数函数的导数 答案 1解析 f ′(x )=2x ,g ′(x )=1x ,f ′(x )-g ′(x )=1,即2x -1x =1,解得x =1或-12.因为x >0,所以x =1.4.过原点作曲线y =e x 的切线,则切点的坐标为 ,切线的斜率为 . 考点 导数公式的综合应用 题点 导数公式的综合应用 答案 (1,e) e解析 设切点坐标为(x 0,y 0), 切线的斜率为0=|x x y'=0e x, 则0e x =y 0-0x 0-0,①又y 0=0e x,② 由①②可得x 0=1,∴切点坐标为(1,e),切线的斜率为e.5.求过曲线y =sin x 上一点P ⎝⎛⎭⎫π6,12且与在该点处的切线垂直的直线方程. 考点 导数公式的综合应用 题点 导数公式的综合应用解 曲线y =sin x 在点P ⎝⎛⎭⎫π6,12处切线的斜率 k =π=6|x y'=cos π6=32, 则与切线垂直的直线的斜率为-233,∴所求直线方程为y -12=-233⎝⎛⎭⎫x -π6, 即123x +18y -23π-9=0.1.利用常见函数的导数公式可以比较简捷地求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.有些函数可先化简再应用公式求导.如求y =1-2sin 2x 2的导数.因为y =1-2sin 2x2=cos x ,所以y ′=(cos x )′=-sin x .3.对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.一、选择题1.下列各式中正确的个数是( )①(x 7)′=7x 6;②(x -1)′=x -2;③⎝⎛⎭⎫1x ′=-12x -32;④(5x 2)′=25x -35;⑤(cos x )′=-sin x ;⑥(cos 2)′=-sin 2. A .3 B .4 C .5 D .6考点 常数、幂函数、指数函数、对数函数的导数 题点 常数、幂函数、指数函数、对数函数的导数 答案 B解析 ∵②(x -1)′=-x -2; ⑥(cos 2)′=0. ∴②⑥不正确,故选B.2.已知函数f (x )=x a ,若f ′(-1)=-4,则a 的值等于( ) A .4 B .-4 C .5D .-5考点 常数、幂函数、指数函数、对数函数的导数 题点 常数、幂函数的导数 答案 A解析 ∵f ′(x )=ax a -1,f ′(-1)=a (-1)a -1=-4, ∴a =4.3.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( ) A.12523 B.110523C.25523 D.110523 考点 常数、幂函数、指数函数、对数函数的导数 题点 常数、幂函数的导数 答案 B解析 ∵s ′=15t -45.∴当t =4时,s ′=15·1544=110523.4.正弦曲线y =sin x 上切线的斜率等于12的点为( )A.⎝⎛⎭⎫π3,32 B.⎝⎛⎭⎫-π3,-32或⎝⎛⎭⎫π3,32C.⎝⎛⎭⎫2k π+π3,32(k ∈Z )D.⎝⎛⎭⎫2k π+π3,32或⎝⎛⎭⎫2k π-π3,-32(k ∈Z )考点 导数公式的综合应用 题点 导数公式的综合应用 答案 D解析 设斜率等于12的切线与曲线的切点为P (x 0,y 0),∵0=|x x y'=cos x 0=12,∴x 0=2k π+π3或2k π-π3,∴y 0=32或-32. 5.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为( )A .2B .ln 2+1C .ln 2-1D .ln 2考点 导数公式的综合应用 题点 导数公式的综合应用 答案 C解析 ∵y =ln x 的导数y ′=1x,∴令1x =12,得x =2,∴切点坐标为(2,ln 2).代入直线y =12x +b ,得b =ln 2-1.6.下列曲线的所有切线中,存在无数对互相垂直的切线的曲线是( ) A .f (x )=e x B .f (x )=x 3 C .f (x )=ln xD .f (x )=sin x考点 导数公式的综合应用题点 导数公式的综合应用 答案 D解析 若直线垂直且斜率存在,则其斜率之积为-1.因为A 项中,(e x )′=e x >0,B 项中,(x 3)′=3x 2≥0,C 项中,x >0,即(ln x )′=1x >0,所以不会使切线斜率之积为-1,故选D.7.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( ) A.1n B.1n +1 C.n n +1D .1考点 导数公式的综合应用 题点 导数公式的综合应用 答案 B解析 对y =x n +1(n ∈N *)求导得y ′=(n +1)·x n . 令x =1,得在点(1,1)处的切线的斜率k =n +1, ∴在点(1,1)处的切线方程为y -1=(n +1)(x n -1). 令y =0,得x n =nn +1,∴x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.二、填空题 8.若曲线y =12x -在点(a ,12a-)处的切线与两个坐标轴围成的三角形的面积为18,则a= .考点 几个常用函数的导数 题点 几个常用函数导数的应用 答案 64 解析 ∵y =12x-,∴y ′=-1232x -,∴曲线在点(a ,12a-)处的切线斜率k =-1232a -,∴切线方程为y -12a -=-1232a -(x -a ). 令x =0,得y =3212a -;令y =0,得x =3a , ∴该切线与两坐标轴围成的三角形的面积为S =12·3a ·3212a -=9412a =18, ∴a =64.9.设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)在点P 处的切线垂直,则点P 的坐标为 .考点 导数公式的综合应用题点 导数公式的综合应用答案 (1,1)解析 y =e x 的导数为y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率为k 1=e 0=1.设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2 (x >0), 曲线y =1x (x >0)在点P 处的切线的斜率为k 2=-1m 2 (m >0).因为两切线垂直,所以k 1k 2=-1, 所以m =1,n =1,则点P 的坐标为(1,1).10.若曲线y =x 在点P (a ,a )处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是 .考点 导数公式的综合应用题点 导数公式的综合应用答案 4解析 ∵y ′=12x ,∴切线方程为y -a =12a(x -a ), 令x =0,得y =a 2,令y =0,得x =-a , 由题意知12·a 2·a =2,∴a =4. 11.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 017(x )= . 考点 正弦、余弦函数的导数题点 正弦、余弦函数的运算法则答案 cos x解析 由已知f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,…依次类推可得,f 2 017(x )=f 1(x )=cos x .12.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角α的取值范围是 .考点 导数公式的综合应用题点 导数公式的综合应用答案 ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π 解析 ∵(sin x )′=cos x ,∴k l =cos x ,∴-1≤k l ≤1,∴α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 三、解答题13.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.考点 导数公式的综合应用题点 导数公式的综合应用解 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,所以0e x =1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22. 四、探究与拓展14.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是 .考点 导数公式的综合应用题点 导数公式的综合应用答案 21解析 ∵y ′=2x ,∴y =x 2(x >0)的图象在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点坐标为(a k +1,0),∴a k +1=12a k ,即数列{a k }是首项为a 1=16,公比为q =12的等比数列, ∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.15.求证:双曲线xy =a 2(a ≠0)上任意一点处的切线与两坐标轴围成的三角形的面积等于常数. 考点 导数公式的综合应用题点 导数公式的综合应用证明 设P (x 0,y 0)为双曲线xy =a 2上任一点.∵y ′=⎝⎛⎭⎫a 2x ′=-a 2x 2. ∴过点P 的切线方程为y -y 0=-a 2x 20(x -x 0). 令x =0,得y =2a 2x 0;令y =0,得x =2x 0. 则切线与两坐标轴围成的三角形的面积为S =12·⎪⎪⎪⎪2a 2x 0·|2x 0|=2a 2. 即双曲线xy =a 2上任意一点处的切线与两坐标轴围成的三角形的面积为常数2a 2.。

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.5.3

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.5.3

数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
答案: (1)D
数学 选修2-2
1.了解定积分的概念,理解定积分的几何意义. 2.掌握定积分的基本性质.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
[问题1] 直线x=1,x=2,y=0和函数f(x)=1+x围成 的图形的面积是多少?
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.5.3 定积分的概念
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用

高中数学人教A版选修2-2第一章1.2导数的计算课件

高中数学人教A版选修2-2第一章1.2导数的计算课件

,求y
x=3
3、求
y
x x2
3 3
在点x
3处的导数
1. y x2 的导数 sin x
解:y '
(x2 )'
sin x x2 sin2 x
(sin
x)'
2x sin x x2 sin2 x
cos
x
2、已知y
=
1 x2
,求y
x=3
解: y (x2 ) 2x21 2x3
y
x3
2 (3)3
2
3
1.2 导数的计算
第二课时
复习回顾:
基本初等函数的导数公式表:
函数 y=c y=xn (n是有理数) y=sinx y=cosx y=ax y=ex y=logax
y=lnx
导数
y 0 y nxn1 y cos x y sin x y a x ln a y ex
y 1 x ln a
y 1 x
导数的运算法则:
1.f(x) g(x) f (x) g(x)
2.f(x) g(x) f (x)g(x) f(x)g(x)
3.
f(x) g(x)
f
(x)g(xg)(x)f(2x)g(x() g(x)
0)
课后练习
1、求y x2 的导数 sin x
2、已知y
=
1 x2
y
x x2
3 3
在点x
3处的导数
1. y x2 的导数 sin x
解:y '
(x2 )'
sin x x2 sin2 x
(sin
x)'
2x sin x x2 sin2 x

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1)

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1)

自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求简单函数的导函数有两种基本方法: (1)用导数的定义求导,但运算比较繁杂; (2)用导数公式求导 ,可以简化运算过程、降低运算难 度.解题时根据所给问题的特征,将题中函数的结构进行调 整,再选择合适的求导公式.
数学 选修2-2
第一章 导数及其应用
A.(0,0)
B.(0,1)
C.(1,0)
D.以上都不是
解析: (x3)′=3x2,若切线平行或重合于x轴则切线斜率k
=0,即3x2=0得x=0,
∴y=0,即切点为(0,0).故选A.
答案: A
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.函数f(x)=sin x,则f′(6π)=________. 解析: f′(x)=cos x,所以f′(6π)=1. 答案: 1
6分 8分
10 分 12 分
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.求过点P的切线方程时应注意,P点在曲线 上还是在曲线外,两种情况的解法是不同的.
2.解决此类问题应充分利用切点满足的三个关系: 一是切点坐标满足曲线方程;二是切点坐标满足对应切线 的方程;三是切线的斜率是曲线在此切点处的导数值.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(1)y′=-3x-4.(2)y′=3xln 3.
(4)y′=xln1 5.(5)y=sin x,y′=cos x. (6)y′=0.(7)y′=1x.(8)y′=ex.

高二数学人教A版选修2-2课件:第一章 导数及其应用 整合

高二数学人教A版选修2-2课件:第一章 导数及其应用 整合
专题一
专题二
专题一 导数应用中常见的数学思想 1.分类讨论 分类讨论是基本逻辑方法之一,也是一种数学思想,在近几年的高考中,都把分类讨论思想列为重要的思想 方法来考查. 当我们面临的数学问题不能以统一形式解决,或因为一种形式无法进行概括,不分类就不能再进行下去,这 时,分类讨论就顺理成章了,分类要遵循“不重不漏”的原则,然后对于每一类情况都要给出问题的解答.分类讨 论的一般步骤如下:(1)确定标准;(2)恰当分类;(3)逐类讨论;(4)归纳总结.本章中的题型,如:求单调区间,求参数 范围,求极值、最值以及恒成立问题有时都要用到该思想方法.
讨论-2������与 1 的大小关系.
专题一
专题二
解:(1)f'(x)=x(ax+2)eax.
①当 a=0 时,令 f'(x)=0,得 x=0.
若 x>0,则 f'(x)>0,从而 f(x)在(0,+∞)上单调递增;
若 x<0,则 f'(x)<0,从而 f(x)在(-∞,0)上单调递减.
②当 a<0 时,令 f'(x)=0,得 x(ax+2)=0,故 x=0 或 x=-2. ������
专题一
专题二
(3)(方法一)f(x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1),因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立.令g(x)=x2+x-5,因 为g(x)在(1,+∞)上是增函数,所以g(x)>g(1)=-3.所以k的取值范围是k≤-3.
(方法二)直线y=k(x-1)过定点(1,0),且f(1)=0,曲线f(x)在点(1,0)处切线斜率f'(1)=-3,由(2)中草图知要使 x∈(1,+∞)时,f(x)≥k(x-1)恒成立需k≤-3.

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.4

(人教版)高中数学选修2-2课件:第1章 导数及其应用1.4
(1)当汽车以 40 千米/时的速度匀速行驶时,从甲地到乙地 要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最 少?最少为多少升?
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
分析 写出函数 写出定 [思路点拨] 题意 ―→ 关系式 ―→ 义域
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令 V′(x)=0,得 x=0(舍去)或 x=1. 当 0<x<1 时,V′(x)>0; 当 1<x<32时,V′(x)<0,故在 x=1 处 V(x)取得极大值,并 且这个极大值就是 V(x)的最大值, 从而 Vmax=V(1)=9×12-6×13=3 m3,此时长方体的长为 2 m,高为 1.5 m. 即当长方体的长为 2 m、宽为 1 m、高为 1.5 m 时,体积最 大,最大体积为 3 m3.
解析: 设长方体的宽为 x m,长为 2x m, 则高为 h=18-412x=4.5-3x0<x<32. 故长方体的体积为 V(x)=2x2(4.5-3x)=9x2-6x30<x<32, 从而 V′(x)=18x-18x2=18x(1-x).
数学 选修2-2
第一章 导数及其应用
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
令h′(x)=0,得x=80, 当x∈(0,80)时,h′(x)<0,h(x)是减函数; 当x∈(80,120]时,h′(x)>0,h(x)是增函数. ∴当x=80时,h(x)取到极小值h(80)=11.25. ∵h(x)在(0,120]上只有一个极值, ∴它是最小值. 答:当汽车以80千米/时的速度匀速行驶时,从甲地到乙 地耗油最少,最少为11.25升.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档