专题一 几何证明之三角形中的存在性问题 2020年中考数学冲刺难点突破 几何证明问题(解析版)
2020年中考数学难题突破:函数中特殊三角形存在性问题解析与练习及参考答案
(3 ) ①x= 1 (1 ,a)
②三 AQ= BQ,AB=BQ, AQ=AB
解: (1) ∵直线 y=3x+ 3,
∴当 x=0 时, y= 3,当 y=0 时, x=- 1,
∴点 A 的坐标为 ( -1,0) ,点 B 的坐标为 (0 ,3) .
(2) 设抛物线对应的函数表达式为
y=ax2+ bx+c,由题意,得
③当 AQ= AB时,如图③, 由勾股定理,得 22+a2= 10,解得 a=± 6,此时点 Q的坐标是 (1 , 6) 或(1 ,- 6) . 综上所述,存在符合条件的点 Q,点 Q的坐标为 (1 ,1) 或 (1 ,0) 或 (1 , 6) 或(1 ,- 6) . 类型 2 直角三角形、全等三角形存在性问题 例 2 如图 2,已知直线 y=kx -6 与抛物线 y= ax2+bx+c 相交于 A,B 两点,且点 A(1,- 4) 为抛 物线的顶点,点 B 在 x 轴上.
解得
1- m= 2
13
1+ m= 2
13 >0,舍去
,
∴点 P 的坐标为
1- 2
13 ,
13-1 . 2
(3) 如图,①当∠ Q1AB=90°时,△ DAQ∽1 △ DOB,
AD DQ1
5 DQ1
∴OD= DB,即6= 3ຫໍສະໝຸດ , 557
∴DQ1= 2,∴ OQ1=2,
7 即点 Q1的坐标为 0,- 2 ;
C(3,0) .
(1) 求点 A,B 的坐标.
(2) 求抛物线对应的函数表达式.
图1
(3) 在抛物线的对称轴上是否存在点 Q,使△ ABQ是等腰三角形?若存在, 求出符合条件的点 Q的坐
标;若不存在,请说明理由.
中考数学专题讲解:直角三角形的存在性问题
中考专题讲解:直角三角形的存在性问题 一、学习目标1.经历探索直角三角形存在性问题的过程,熟练掌握解题技巧2.体会分类讨论的数学思想,体验解决问题方法的多样性二、课前准备1.已知直角三角形的两边长分别为3和4,则第三边的长为2.如图,A(0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为三、探究理解如图,A(0,1),C(4,3)是直线121+=x y 上的两点,点P 是x 轴上的一个动点,问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标.问题:(1)这样的问题,你怎么思考的? 针对直角顶点进行分类(2)一般会有几种情况? 3种(3)分类时候需要做什么? 画图(4)解题有那些方法?(5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点总结:直角三角形的存在性问题的解题策略:四、反馈练习1.如图,点O (0,0),A(1,2),若存在格点P ,使△APO 为直角三角形, 则点P 的个数有 个2.在△ABC 中,∠C=900,AC=8 cm,BC=6 cm ,动点P 、Q 分别同时从点A 、B 出发,其中点P 在线段AB 上向点B 移动,速度是2 cm/s,点Q 在线段BC上向点C 运动,速度为1cm/s ,设运动时间为t s,当t= 时,△BPQ 是直角三角形.3.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB>1,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设AB=x.若△ABC 为直角三角形,(1)求x 的值.(2)x 的取值是多少.五、链接中考如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线834942++-=x x y 经过A 、C 两点,与AB 边交于点D ,Q 是AC 上一点,且AQ=5.请问在抛物线对称轴l 上是否存在点F ,使得△FDQ 为直角三角形?若存在,请直接写出所有符合条件的点F 的坐标,若不存在,请说明理由六、课堂小结直角三角形的存在性问题解题策略分类画图(1)角:构造相似三角形解题 (2) 边:勾股定理(3)函数:k 1·k 2=-1六、课后练习在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0),如图所示,B 点在抛物线221212-+=x x y 图像上,过点B 作BD ⊥X 轴,垂足为D ,且B 点的横坐标为-3.(1)求证:△BDC ≌△COA(2)求BC 所在直线的函数关系式(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由。
专题一 几何证明之四边形中的存在性问题 2020年中考数学冲刺难点突破 几何证明问题(解析版)
2020年中考数学冲刺难点突破几何证明问题专题一几何证明之四边形中的存在性问题1、已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合),以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,直接写出线段CF、BC、CD之间的数量关系.(2)如图②,当点D在线段BC的延长线上时,其他件不变,则(1)中的三条线段之间的数量关系还成立吗?如成立,请予以证明,如不成立,请说明理由;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC两侧,其他条件不变;若正方形ADEF的边长为4,对角线AE、DF相交于点O,连接OC,请直接写出OC的长度.解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF+CD=BC;(2)CF+CD=BC不成立,存在CF﹣CD=BC;理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF∴BC+CD=CF,∴CF﹣CD=BC;(3)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵正方形ADEF的边长4且对角线AE、DF相交于点O.∴DF=AD=4,O为DF中点.∴Rt△CDF中,OC=DF=×=.2、如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证DG=BE;(2)连接FC,求tan∠FCN的值;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=3,BC=8,E是线段BC上一动点(不含端点B,C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.当点E由B向C运动时,判断tan∠FCN的值是否为定值?若是,求出该定值;若不是,请说明理由.解:(1)如图1,∵正方形ABCD和正方形AEFG中,∴∠BAD=∠EAG=90°,AB=AD,AE=AG,∴△BAE≌△GAD(SAS),∴DG=BE;(2)如图2,过点F作FM⊥BN于M,则∠B=∠AEF=∠FME=90°,∴∠BAE+∠AEB=∠FEM+∠AEB=90°,即∠BAE=∠FEM,又AE=EF,∴△BAE≌△MEF(ASA),∴FM=BE,EM=AB,又BE+EC=AB,EM=EC+CM,∴CM=FM,在Rt△FCM中,tan∠FCN==1;(3)如图2,过点F作FM⊥BN于M,则∠B=∠AEF=∠FME=90°,∴∠BAE+∠AEB=∠FEM+∠AEB=90°,同理可证∠GAD=∠FEM,又AG=EF,∴△DAG≌△MEF,△BAE∽△MEF,∴EM=AD=BC=8,=,设BE=a,则EM=EC+CM=BC=BE+EC,∴CM=BE=a,∴=,∴FM=,∴tan∠FCN===,即tan∠FCN的值为定值.3、如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值?若存在,求此时的值;若不存在,请说明理由.解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴==,即==,解得MN=,ON=,∴AN=AM﹣MN=,在Rt△OAN中,OA==,∴cos∠OAD===.即=.4、如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交BC边于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,请探究:当∠BFD与∠A之间满足怎样的数量关系时,能使四边形BECD成为矩形?为什么?(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,,∴△BEF≌△CDF(ASA);(2)解:∠BFD=2∠A时,四边形BECD成为矩形.证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.5、如图,在△ABC中,AB=AC,AD是BC边上的中线,点E是AD边上一点,过点B作BF∥EC,交AD的延长线于点F,连接BE,CF.(1)求证:△BDF≌△CDE.(2)若DE=BC,求证:四边形BECF是正方形.(1)证明:∵AD是BC边上的中线,AB=AC,∴BD=CD,∵BF∥EC,∴∠DBF=∠DCE,∵∠BDF=∠CDE,∴△BDF≌△CDE(ASA);(2)证明:∵△BDF≌△CDE,∴BF=CE,DE=DF,∵BF∥CE,∴四边形BECF是平行四边形,∵AB=AC,AD是中线,∴四边形BECF是菱形,∵DE=BC,DE=DF=EF,∴EF=BC,∴四边形BECF是正方形.6、在平面直角坐标系中,点O为坐标原点,点A(5,0)在x轴的正半轴上,四边形OABC为平行四边形,对角线OB=OA,BC交y轴于点D,且S▱OABC=20.(1)如图①,求点B的坐标:(2)如图②,点P在线段OD上,设点P的纵坐标为t,△PAB的面积为S,请用含t的式子表示S;(3)在(2)的条件下,如图③,点Q在x轴上,点R为坐标平面内一点,若∠OCB﹣∠CBP=45°,且四边形PQBR为菱形,求t的值并直接写出点Q的坐标.解:(1)∵点A(5,0),OB=OA,∴OA=OB=5,∵S▱OABC=OA×OD=5OD=20,∴OD=4,∵四边形OABC为平行四边形,∴BC∥AO,BC=AO=5,∴∠BDO=90°,∴DB===3,∴点B(3,4);(2)∵点P的纵坐标为t,∴OP=t,∴DP=4﹣t,∴S=×(3+5)×4﹣×3×(4﹣t)﹣×5×t=﹣t+10;(3)如图,由(1)知,B(3,4),OA=5,BC∥OA,∴C(﹣2,4),∴CD=2取OD的中点E,则DE=OD=2,∴DE=CD,∴∠DCE=45°,∴∠OCB﹣∠OCE=45°,∵∠OCB﹣∠CBP=45°,∴∠OCE=∠CBP,过点E作EF⊥OC于F,∴∠CFE=90°=∠BDP,∴△CFE∽△BDP,∴,在Rt△CDE中,CD=DE=2,∴CE=2,在Rt△ODC中,CD=2,OD=4,∴OC=2,∵CE是△OCD的中线,∴S△OCE=S△CDO=××2×4=2∵S△OCE=OC•EF=×EF=2,∴EF=,在Rt△CFE中,根据勾股定理得,CF=,∴,∴DP=1,∴OP=OD﹣DP=3,∴t=3,∴P(0,3),设Q(m,0),∵B(3,4),∴PQ2=m2+9,BQ2=(m﹣3)2+16,∵四边形PQBR为菱形,∴PQ=BQ,∴m2+9=(m﹣3)2+16,∴m=,即Q(,0).7、已知在四边形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=4,BC=6.(1)如图1,P为AB边上一点,以PD,PC为边作平行四边形PCQD,过点Q作QH⊥BC,交BC的延长线于H.求证:△ADP≌△HCQ;(2)若P为AB边上任意一点,延长PD到E,使DE=PD,再以PE,PC为边作平行四边形PCQE.请问对角线PQ的长是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.(3)如图2,若P为DC边上任意一点,延长PA到E,使AE=nPA(n为常数),以PE,PB为边作平行四边形PBQE.请探究对角线PQ的长是否也存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.解:(1)∵AD∥BC,∴∠ADC=∠DCH,∴∠ADP+∠PDC=∠DCQ+∠QCH,∵四边形PCQD是平行四边形,∴PD∥CQ,PD=CQ,∴∠PDC=∠DCQ,∴∠ADP=∠QCH,在△ADP和△HCQ中,,∴△ADP≌△HCQ(AAS);(2)存在最小值,最小值为10,如图1,作QH⊥BC,交BC的延长线于H,设PQ与DC相交于点G,∵PE∥CQ,∴△DPG∽△CQG,∴==,由(1)可知,∠ADP=∠QCH,∴Rt△ADP∽Rt△QCH,∴==,∴CH=2AD=4,∴BH=BC+CH=6+4=10,∴当PQ⊥AB时,PQ的长最小,即为10;(3)存在最小值,最小值为(n+4),如图2,作QH∥DC,交CB的延长线于H,作CK⊥CD,交QH的延长线于K,∵PE∥BQ,AE=nPA,∴==,∵AD∥BC,∴∠ADP+∠DCH=90°,∵CD∥QK,∴∠QHC+∠DCH=180°,∴∠QHC=∠ADQ,∵∠PAD+∠PAG=∠QBH+∠QBG=90°,∠PAG=∠QBG,∴∠PAD=∠QBH,∴△ADP∽△BHQ,∴==,∴BH=2n+2,∴CH=BC+BH=6+2n+2=2n+8,过点D作DM⊥BC于M,又∠DAB=∠ABM=90°,∴四边形ABMD是矩形,∴BM=AD=2,DM=AB=4,∴MC=BC﹣BM=6﹣2=4=DM,∴∠DCM=45°,∴∠HCK=45°,∴CK=CH•cos45°=(2n+8)=(n+4),∴当PQ⊥CD时,PQ的长最小,最小值为(n+4).8、已知:如图①,在Rt△ABC中,∠ACB=90°,BC=8,AB=10,点P,E,F分别是AB,AC,BC上的动点,且AP=2CE=2BF,连结PE,PF,以PE,PF为邻边作平行四边形PFQE.(1)当点P是AB的中点时,试求线段PF的长.(2)在运动过程中,设CE=m,若平行四边形PFQE的面积恰好被线段BC或射线AC分成1:3的两部分,试求m的值.(3)如图②,设直找FQ与直线AC交于点N,在运动过程中,以点Q,N,E为顶点的三角形能否构成直角三角形?若能,请直接写出符合要求的CE的长;若不能,请说明理由.解:(1)如图①,作PH⊥BC于点H,∵∠ACB=90°,BC=8,AB=10,∴AC=6.∵AP=2CE=2BF,∵点P是AB的中点,∴PA=PB=5.∴CE=BF=,PH=3,BH=CH=4,∴FH=.∴PF==.(2)如图②,平行四边形PFQE的面积恰好被线段BC分成1:3的两部分时,则EM=PF.∵PH⊥BC,∴∠PHF=90°=∠ACB,∴PH∥AC,∴△CEM∽△HPF,△PBH∽△ABC,∴PH=2CE=2m,=.∴=,∴m=.如图③,平行四边形PFQE的面积恰好被线段AC分成1:3的两部分时,则FD=QD,QN=PG,∴CF=PG.∵△APG∽△ABC,∴=.∴=,∴m=.∴m的值为或.(3)如图④,当∠QNE=90°时,则点N与点C重合,设CE=x,∵△PBH∽△ABC,∴=,∴=,∴x=.如图⑤,当∠QNE=90°时,则点P与点B重合,则2x=10,∴x=5.如图⑥,当∠QNE=90°时,∵△FPR∽△PES,∴=,∴=,∴x=.经检验,x值符合题意.综上,CE的长为或5或.9、如图,长方形ABCD在平面直角坐标系中,AD∥BC∥x轴,AB∥DC∥y轴,x轴与y轴夹角为90°,点M,N分别在xy轴上,点A(1,8),B(1,6),C(7,6),D(7,8).(1)连接线段OB、OD、BD,求△OBD的面积;(2)若长方形ABCD在第一象限内以每秒0.5个单位长度的速度向下平移,经过多少秒时,△OBD的面积与长方形ABCD的面积相等请直接写出答案;(3)见备用图,连接OB,OD,OD交BC于点E,∠BON的平分线和∠BEO的平分线交于点F.①当∠BEO的度数为n,∠BON的度数为m时,求∠OFE的度数.②请直接写出∠OFE和∠BOE之间的数量关系.解:(1)如图1,延长DA交y轴于H,如图1所示:则AH⊥y轴.∵A(1,8),B(1,6),C(7,6),D(7,8)∴OH=8,DH=7,AH=1,AD=6,AB=2,∴S△OBD=S△ODH﹣S△ABD﹣S梯形AHOB=×OH×DH﹣×AB×AD﹣×(AB+OH)×AH=×8×7﹣×2×6﹣×(2+8)×1=17;(2)∵S长方形ABCD=2×6=12,∴S△OBD=S△ODH﹣S△ABD﹣S梯形AHOB=12,∴×(8﹣0.5t)×7﹣×2×6﹣×(2+8﹣0.5t)×1=12,∴t=;(3)①如图2,延长CB交y轴于P,延长EF交y轴于点G,∵EF平分∠BEO,OF平分∠NOB,∴∠GOF=∠NOB=m,∠BEF=∠BEO=n,∵∠EFO=∠GOF+∠FGO,∠FGO=∠GPE+∠BEF,∴∠EFO=∠GOF+∠GPE+∠BEF=m+n+90°;②∵EF平分∠BEO,OF平分∠NOB,∴∠GOF=∠NOB,∠BEF=∠BEO,∵∠EFO=∠GOF+∠FGO,∠FGO=∠GPE+∠BEF,∴∠EFO=∠GOF+∠GPE+∠BEF=90°+∠NOB+∠BEO,∵∠BOE=90°﹣∠BON﹣∠BEO,∴2∠EFO+∠BOE=270°.10、将一个矩形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(8,0),点C(0,6).P是边OC上的﹣一点(点P不与点O,C重合),沿着AP折叠该纸片,得点O的对应点O'.(Ⅰ)如图①,当点O'落在边BC上时,求点O'的坐标;(Ⅱ)若点O'落在边BC的上方,O'P,O'A与分别与边BC交于点D,E.①如图②,当∠OAP=30°时,求点D的坐标;②当CD=O'D时,求点D的坐标(直接写出结果即可).解:(Ⅰ)∵点A(8,0),点C(0,6),OABC为矩形,∴AB=OC=6,OA=CB=8,∠B=90°.根据题意,由折叠可知△AOP≌△AO'P,∴O'A=OA=8.在Rt△AO'B中,BO'==2.∴CO'=BC﹣BO'=8﹣2.∴点O'的坐标为(8﹣2,6).(Ⅱ)①∵∠OAP=30°,∴∠OPA=60°,∵∠OPA=∠O'PA,∴∠CPD=180°﹣∠OPA﹣∠O'PA=60°.∵OA=8,∴OP=OA•tan30°=.∴CP=6﹣OP=6﹣.∴CD=CP•tan60°=6﹣8.∴点D的坐标为(6﹣8,6).②连接AD,如图:设CD=x,则BD=BC﹣CD=8﹣x,O'D=CD=x,根据折叠可知AO'=AO=8,∠PO'A=∠POA=90°,∴在Rt△ADO'中,AD2=AO'2+DO'2=82+x2=x2+64;在Rt△ABD中,AD2=BD2+AB2=(8﹣x)2+62=x2﹣16x+100;∴x2+64=x2﹣16x+100,解得:x=,∴CD=,∴D(,6).11、在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.(1)梯形ABCD的面积等于.(2)如图1,动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.当PQ∥AB 时,P点离开D点多少时间?(3)如图2,点K是线段AD上的点,M、N为边BC上的点,BM=CN=5,连接AN、DM,分别交BK、CK于点E、F,记△ADG和△BKC重叠部分的面积为S,求S的最大值.解:(1)如图1,作AE⊥BC于E,DF⊥BC于F,则AE∥DF,∵AD∥BC,AE⊥BC,∴四边形ADFE是矩形,∴AE=DF,AD=EF=6,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),∴BE=CF,∴BE=CF==3,由勾股定理得,AE===4,梯形ABCD的面积=×(AD+BC)×AE=×(12+6)×4=36,故答案为:36;(2)如图3,过D作DE∥AB,交BC于点E,∵AD∥BC,DE∥AB,∴四边形ABED为平行四边形,∴BE=AD=6,∴EC=6,当PQ∥AB时,PQ∥DE,∴△CQP~△CED,∴,即=,解得,t=;(3)如图2,过G作GH⊥BC,延长HG交AD于I,过E作EX⊥BC,延长XE交AD于Y,过F作FU⊥BC 于U,延长UF交AD于W,∵BM=CN=5,∴MN=12﹣5﹣5=2,∴BN=CM=7,∵MN∥AD,∴△MGN~△DGA,∴=,即=,解得,HG=1,设AK=x,∵AD∥BC,∴△BEN~△KEA,∴=,即=,解得,EX=,同理:FU=,S=S△BKC﹣S△BEN﹣S△CFM+S△MNG=×12×4﹣×7×﹣×7×+×2×1 =,当x=3时,S的最大值为25﹣=5.4.12、【探索规律】如图①,在△ABC中,点D,E,F分别在AB,BC,AC上,且DF∥BC,EF∥AB.设△ADF的边DF 上的高为h1,△EFC的边CE上的高为h2.(1)若△ADF、△EFC的面积分别为3,1,则=;(2)设△ADF、△EFC、四边形BDFE的面积分别为S1,S2,S,求证:S=2;【解决问题】(3)如图②,在△ABC中,点D,E分别在AB,AC上,点F,G在BC上,且DE∥BC,DF∥BG.若△ADE、△DBF、△EGC的面积分别为3,7,5,求△ABC的面积.解:(1)∵DF∥BC,EF∥AB,∴∠AFD=∠ACB,∠DAF=∠EFC,∴△ADF∽△FEC,∵△ADF、△EFC的面积分别为3,1,∴,∴,∵△ADF的边DF上的高为h1,△EFC的边CE上的高为h2,∴;故答案为:.(2)证明:如图①,设AD=a,BD=b,DB与EF间的距离为h,∵EF∥AB,DF∥BC,∴四边形DBFE是平行四边形,∴BD=EF=b,由(1)知△ADF∽△FEC,∴,∵S1=ah,∴S2=,∴S1S2=,∴bh=2,∵S=bh,∴S=2.(3)如图②,过点D作DM∥AC交BC于点M,∴∠DMF=∠ECG,∵DE∥BC,DF∥BG,∴四边形DFGE为平行四边形,∴∠DF=EG,∠DFM=∠EGC,∴△DFM≌△EGC(AAS),∴S△DFM=S△EGC=5,∵S△DBF=7,∴S△BDM=7+5=12,∵DE∥BM,DM∥AC,∴∠ADE=∠DBM,∠BDM=∠BAE,∴△DAE∽△BDM,∴=,∴,∴,同理,△ADE∽△ABC,∴S△ABC=9S△ADE=9×3=27.13、已知:如图,在四边形ABCD中,AB∥CD,∠ABC=90°,AB=AD=10cm,CD=4cm.点P从点A出发,沿AB方向匀速运动,速度为2cm/s;同时点Q从点C出发,沿DC方向在DC的延长线上匀速运动,速度为1cm/s;当点P到达点B时,点Q停止运动.过点P作PE∥BD,交AD于点E.连接EQ,BQ.设运动时间为t(s)(0<t<5),解答下列问题:(1)连接PQ,当t为何值时,PQ∥AD?(2)设四边形PBQE的面积为y(cm2),求y与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PBQE的面积为四边形ABQD面积的,若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使EQ⊥BD?若存在,求出t的值;若不存在,请说明理由.解:(1)当PQ∥AD时,∵DC∥AB,∴四边形APQD是平行四边形,∴AP=DQ,即2t=4+t,解得,t=4,∴当t为4s时,PQ∥AD;(2)过点D作DF⊥AB于F,过点E作EM⊥AB于M,延长ME交CD的延长线于点N,∴∠DFA=∠DFB=90°,∠EMA=∠EMB=90°,∵AB∥CD,∴∠CDF=90°,∠CNM=90°,∵∠ABC=90°,∴四边形DFBC、NMFD是矩形,∴BF=DC=4,∴AF=6,∴DF==8,∴MN=BC=DF=8,∵PE∥BD,∴,∵AB=AD,∴AE=AP=2t,∵∠A=∠A,∠EMA=∠DFA,∴△AEM∽△ADF,∴,即,∴,∴,∴y=S=S梯形ABQD﹣S△AEP﹣S△QED四边形PBQE===﹣t2+t+40,∴y与的函数关系式为:y═﹣t2+t+40(0<t<5);(3)假设存在某一时刻t,四边形PBQE的面积为四边形ABQD面积的,则﹣t2+t+40=××(4+t+10)×8,解得,t1=4,t2=﹣(不合题意,舍去),答:当t=4时,四边形PBQE的面积为四边形ABQD面积的;(4)若存在某一时刻t,使EQ⊥BD,垂足为O,∴∠DOE=∠DOQ=90°,∵AB∥CD,∴∠BDC=∠DBA,∵AB=AD,∴∠BDA=∠DBA,∴∠BDC=∠BDA,∴DE=DQ,∴4+t=10﹣2t,∴t=2,∴当t为2s时,EQ⊥BD.14、已知菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,连接PC,在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30°.(1)如图,当点P在边AB上,且BP=3时,求PC的长;(2)当点P在射线BA上,且BP=n(0≤n<8)时,求QC的长;(用含n的式子表示)(3)连接PQ,直线PQ与直线BC相交于点E,如果△QCE与△BCP相似,请直接写出线段BP的长.解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC═==.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴,∴,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=QC,∴PC=QC,在Rt△PHB中,BP=n,∴BH=n,PH=n,∵PC2=PH2+CH2,∴3QC2=(n)2+(4﹣n)2,∴QC=(0≤n<8).(3)①如图2中,若直线QP交直线BC于B点左侧的点E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于点C右侧的点E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时BP=2+2,③如图4中,当点P在AB的延长线上时,∵△CBE与△CBP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠CBP=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCB=45°,∴BF=BC=2,CF=PF=2,∴BP=2﹣2.综上所述,满足条件的BP的值为2+2或2﹣2.。
专题01 三角形中的存在性问题(解析版)
专题01 三角形中的存在性问题1、如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB平移至线段CD,使点A的对应点C在x轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴=+,解得:k=2.(3)∠BPD=∠BCD+∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.2、在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证△A'CD是等边三角形;(2)如图2,设AC中点为E,A'B'中点为P,AC=a,连接EP.在旋转过程中,线段EP的长度是否存在最大值?如果存在,请求出这个最大值并说明此时旋转角θ的度数,如果不存在,请说明理由.(1)证明:∵AB∥CB',∴∠BCB'=∠ABC=30°,∵将△ABC绕顶点C顺时针旋转,∴∠ACA'=30°.又∵∠ACB=90°,∴∠A'CD=60°.又∵∠CA'B'=∠CAB=60°,∴△A'CD是等边三角形.(2)当θ=120°时,EP的长度最大,EP的最大值为a.解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA′=120°,∵∠B′=30°,∠A′CB′=90°,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=a.3、如图,等腰△ABC中,BA=BC,AO=3CO=6.动点F在BA上以每分钟5个单位长度的速度从B点出发向A点移动,过F作FE∥BC交AC边于E点,连结FO、EO.设F点移动的时间为t.(1)求A、B两点的坐标;(2)计算:当△EFO面积最大时,t的值;(3)在(2)的条件下,边BC上是否还存在一个点D,使得△EFD≌△FEO?若存在,请直接写出D 点的坐标;若不存在,试说明理由.解:(1)∵CO=2,∴C(2,0).又∵AO=3OC=6,∴A(0,6),可设BO=x,且x>0;则:BC2=(2+x)2,AB2=AO2+OB2=36+x2;又∵BC=AB,∴(2+x)2=36+x2,故:x=8,∴B(﹣8,0);(2)过F点作FK⊥BC于K,可设F点移动的时间为t,且0<t<2,则:BF=5t,TO=FK=3t;∴AT=6﹣3t,又∵FE∥BC,∴△AFE∽△ABC,而AO⊥BC交EF于T,则:=,∴=,即:EF=10﹣5t,故:S△EFO=EF×TO=(10﹣5t)×3t,即:S△EFO=﹣(t﹣2)t=,∴当t=1时,△EFO的面积达到最大值;(3)在(2)的基础上,E、F分别是AC、AB的中点,若使D为BC的中点时,===,又∵==,∴FO=ED,EO=FD,EF=FE,∴△EFD≌△FEO(SSS),∵C(2,0),B(﹣8,0)∴D(﹣3,0).故:存在满足条件的D点,其坐标为(﹣3,0).4、如图,在平面直角坐标系xOy中,A(a,0),B(0,b),C(c,0).且满足:+(c+1)2+(b+2c)2=0.(1)求证:△ABC是直角三角形;(2)在y轴上是否存在点P,使得△ABP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在y轴上是否存在点D,使得∠BCD=45°?若存在,请求出点D的坐标;若不存在,请说明理由.(1)证明:∵+(c+1)2+(b+2c)2=0,≥0,(c+1)2≥0,(b+2c)2≥0,∴a﹣4=0,c+1=0,b+2c=0,解得,a=4,b=2,c=﹣1,∴BC2=12+22=5,AB2=22+42=20,AC2=25,∴BC2+AB2=AC2.∴△ABC是直角三角形;(2)解:AB==2,当BA=BP,点P在点B的上方时,OP=2+2,此时,点P的坐标为(0,2+2),当BA=BP,点P在点B的下方时,OP=2﹣2,此时,点P的坐标为(0,2﹣2),当AB=AP时,∵OA⊥BP,∴OP=OB=2,此时,点P的坐标为(0,2),当PA=PB时,设点P的坐标为(y,0),PB=2﹣x,PA=,则2﹣x=,解得,x=﹣3,此时,点P的坐标为(0,﹣3),综上所述,△ABP为等腰三角形时,点P的坐标为(0,2+2)或(0,2﹣2)或(0,2)或(0,﹣3);(3)解:假设存在点D,使得∠BCD=45°,点D的坐标为(0,b),作DH⊥BC于H,CD=,BD=2﹣b,在Rt△CDH中,∠BCD=45°,∴CH=DH=CD=,∴BH=﹣,在Rt△BHD中,BH2+DH2=BD2.即(﹣)2+()2=(2﹣b)2.解得,x1=(舍去),x2=,∴点D的坐标为(0,).5、已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)问题发现如图①,若点E、F分别是AB,AC的中点,连接DE,DF,EF,则线段DE与DF的数量关系是,线段DE与DF的位置关系是;(2)拓展探究如图②,若点E,F分别是AB,AC上的点,且BE=AF,连接DE,DF,EF,上述结论是否依然成立?若成立,请给出证明;若不成立,请说明理由;(3)解决问题当点E,F分别为AB,CA延长线上的点,且BE=AF=AB=2,连接DE,DF,EF,直接写出△DEF 的面积.解:(1)结论:DE=DF,DE⊥DF.理由:连接AD,∵AB=AC,∠BAC=90°,BD=CD,∴AD⊥BC,∴AD=BD=CD,∴∠ADB=∠ADC=90°,∵AE=EB,AF=FC,∴DE⊥AB,DF⊥AC,∴DE=AB,DF=AC,∴DE=DF.∵∠DEA=∠EAF=∠DFA=90°,∴∠EDF=90°,∴DE⊥DF,故答案为:DE=DF,DE⊥DF.(2)结论成立,DE=DF;DE⊥DF.证明:如解图①,连接AD,∵AB=AC,∠BAC=90°,点D为BC的中点,∴,且AD平分∠BAC,∴∠BAD=∠CAD=45°,在△BDE和△ADF中,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,即DE⊥DF;(3)如图③,连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,点D为BC的中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴DF=DE,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,∴△DEF为等腰直角三角形,∵,∴AE=CF=2+4=6,在Rt△AEF中,EF2=AF2+AE2=22+62=40,∴,∴.6、在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为.(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=12,求CF的最大值.解:(1)如图1中,设AD交EC于点O,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=30°,∵BA=CA,∠ACE=∠ACB=∠B,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,故答案为30°.(2)(1)中的结论还成立.理由:如图2中,∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°,又∵∠ACM=∠ACB,∴∠B=∠ACM=30°,又∵CE=BD,∴△ABD≌△ACE(SAS),∴AD=AE,∠1=∠2,∴∠2+∠3=∠1+∠3=∠BAC=120°,即∠DAE=120°,又∵AD=AE,∴∠ADE=∠AED=30°.(3)∵AB=AC,AB=12,∴AC=12,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF•AC,∴AD2=12AF,∴,∴当AD最短时,AF最短、CF最长,易得当AD⊥BC时,AF最短、CF最长,此时.,∴CF=AC﹣AF=12﹣3=9,∴CF的最大值为9.7、等腰直角△ABC和等腰直角△ACD,M、N分别在直线BC、CD上.(1)如图1所示,M、N分别在线段BC、CD上,若AM⊥MN,求证:AM=MN.(2)若M、N分别在线段BC、CD外(还在直线BC、CD上),根据题意,画出图形,那么(1)的结论是否依然成立,若成立,写出证明过程;若不成立,说明原因;(3)如图2,若AM=MN,求证:AM⊥MN.解:(1)延长DC,交AB的延长线于H,连接HM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∵等腰直角△ABC和等腰直角△ACD,∴∠MCD=135°,∴∠BCH=45°,∴△BHC为等腰直角三角形,∴BC=BH,∵AB=BC,∴AB=BH,∴BC是AH的垂直平分线,∴AM=BH,∴∠BHM=∠BAM,∴∠NMC=∠BHM,∵∠NMC+∠MNC=45°,∠BHM+∠MHC=45°,∴∠MHC=∠MNC,∴HM=MN,∴AM=MN;(2)(1)的结论依然成立,第一种情况:如图3所示,延长DC,交AB的延长线于H,连接HM;由(1)可知,MC是AH的垂直平分线,∴AM=MH,∴∠BAM=∠BHM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∴∠BHM=∠NMC,∵∠MHN=∠BHM+45°,∠MNH=∠NMC+45°,∴∠MHN=∠MNH,∴MN=MH,∴AM=MN;第二种情况:如图4所示,仿照第一种情况的证明方法,可以证明AM=MN;(3)如图2,延长DC,交AB的延长线于H,连接HM,由(1)可得BC是AH的垂直平分线,∴HM=AM=MN,∴∠MAB=∠MHB,∠MHC=∠MNC∵∠MHB+∠MHC=45°,∠MNC+∠NMC=45°,∴∠MHB=∠NMC,∵∠MHB=∠MAB,∴∠BAM=∠NMC,∵∠BAM+∠AMB=90°,∴∠AMB+∠NMC=90°,∴∠AMN=90°,∴AM⊥MN.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,D、E分别在AC、BC上,连接AE、BD交于点O,且CD=CE.(1)如图1,求证:AO=BO.(2)如图2,F是BD的中点,试探讨AE与CF的位置关系.(3)如图3,F、G分别是BD、AE的中点,若AC=,CE=,求△CGF的面积.解:(1)如图1中,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵CA=CB,∴∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB.(2)如图2,设AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,设AE与CF的交点为M,∵AC=,∴BC=AC=,∵CE=,∴CD=CE=,在Rt△BCD中,根据勾股定理得,BD==,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=××=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.9、如图,在平面直角坐标系中,点A在y轴上,点B、C在x轴上,∠ABO=30°,AB=2,OB=OC.(1)如图1,求点A、B、C的坐标;(2)如图2,若点D在第一象限且满足AD=AC,∠DAC=90°,线段BD交y轴于点G,求线段BG的长;(3)如图3,在(2)的条件下,若在第四象限有一点E,满足∠BEC=∠BDC.请探究BE、CE、AE 之间的数量关系.解:(1)∵∠AOB=90°,∠ABO=30°,AB=2,∴A(0,1),B(﹣,0),∵OB=OC,∴OC=,∴C(,0).(2)过点D作DM⊥y轴于点M,过点D作DN⊥x轴于点N,由题意,y轴是线段BC的垂直平分线,∴AB=AC,∴∠ABO=∠ACO=30°,∵∠DAC=90°,x轴⊥y轴,∴∠DAM=∠ACO=30°,又AD=AC,∠AMD=∠CAO,∴△AMD≌△COA(AAS),∴DM=AO,AM=CO,∵AO=1,CO=,∴DM=ON=1,AM=,∴DN=+1,又BN=OB+ON=+1,∴DN=BN,∴△BND是等腰直角三角形,∴∠DBN=45°,∴△GBO是等腰直角三角形,∴BG=OB==;(3)由(2)可知:∠DBN=45°,∠DCB=30°+45°=75°,∴∠BDC=180°﹣45°﹣75°=60°,∵∠BEC=∠BDC,∴∠BEC=60°,延长EB至F,使BF=CE,连接AF,∵∠ABC=∠ACB=30°,∴∠BAC=120°,∴∠ACE+∠ABE=180°,∵∠ABF+∠ABE=180°,∴∠ABF=∠ACE,又∵AB=AC,BF=CE,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAB,∴∠FAE=∠BAC=120°,∴FE=AE,∴BE+CE=BE+BF=FE=AE,即BE+CE=AE.11、已知:点B、C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上(1)特殊情况:如图1,当∠MAN=90°时,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.(2)一般情况:如图2,当∠MAN为任意锐角时,若∠BED=∠CFD=∠MAN,则(1)式结论是否仍然成立?若成立,请证明,若不成立,请说明理由.证明:(1)如图①中,∵∠MAN=90°,∴∠BAE+∠CAF=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF(AAS).(2)如图2,(1)中结论仍然成立,理由:如图②中,∵∠1=∠BAE+∠ABE,∠1=∠BAC,∴∠BAC=∠BAE+∠ABE,∵∠BAC=∠BAE+∠CAF,∴∠ABE=∠CAF,∵∠1=∠BAE+∠ABE,∠2=∠CAF+∠ACF,∠1=∠2,∴∠BAE=∠ACF,∵AB=AC,∴△BAE≌△ACF(ASA).11、(1)如图1,AD∥BC,AD=BC,AC与BD相交于点O,求证:△AOD≌△BOC;(2)如图2,过线段AB的两个端点作射线AM,BN,使AM∥BN.①作∠MAB,∠NBA的平分线交于点E,∠AEB是什么角?为什么?②过点E任作一条直线,交AM于点D,交BN于点C.证明:DE=CE;③试说明无论DC的两个端点在AM,BN上如何移动,只要DC经过点E,AD+BC的值就不变.解:(1)∵AD∥BC,∴∠D=∠B,∠A=∠C,∵AD=BC,∴△AOD≌△BOC(ASA);(2)①∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠BAE+∠ABE=(∠MAB+∠ABN)=90°,∴∠AEB=180°﹣∠BAE﹣∠ABE=90°,即∠AEB为直角;②延长AE,交BN于点F,∵AM∥BN,∴∠MAF=∠AFB,∵∠MAE=∠BAE,∴∠BAF=∠AFB,∴BA=FB,∵∠AEB为直角,∴AE=EF,∵∠DAE=∠EFC,∠AED=∠CEF,∴△DAE≌△CFE(ASA),∴ED=EC;③由②中结论可知,AB=BF,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总有△DAE≌△CFE,总有AD=CF;所以总有AD+BC=2EF=AB.。
中考数学压轴题分析:相似三角形的存在性问题
中考数学压轴题分析:相似三角形的存在性问题几何图形的存在性问题是中考常见的问题。
本文内容选自2020年广东省中考数学压轴题,考查相似三角形的存在性问题,难度不小。
一个三角形形状大小确定,另外一个三角形有两个动点。
具体请看下面内容。
【中考真题】(2020·广东)如图,抛物线与轴交于,两点,点,分别位于原点的左、右两侧,,过点的直线与轴正半轴和抛物线的交点分别为,,.(1)求,的值;(2)求直线的函数解析式;(3)点在抛物线的对称轴上且在轴下方,点在射线上.当与相似时,请直接写出所有满足条件的点的坐标.【分析】题(1)利用待定系数法求解析式,根据BO=3AO=3,得出点,点坐标,代入求抛物线解析式。
题(2)求BD的解析式,需要确定点D的坐标。
由于题目已知BC与CD的比例关系,可以考虑过点D作x轴的垂线,得到一个A字型的相似,求出点D的横坐标,代入二次函数的解析式,然后即可得到结论。
当然,如果先设直线BD的解析式为y=kx-3k,联立二次函数的解析式,得到一元二次方程的两根x1与x2的关系即可求出k的值。
题(3)中需要确定与△ABD相似的△BPQ。
由于A、B、D三点的位置的固定的,坐标也是确定的。
那么形状与大小就确定了。
先求出3边长度,且易得∠BAD为钝角。
而∠PBQ不可能为钝角,所以只需要分两种情况讨论即可:①点B与点B对应;②点B与点D对应。
两种情况中边的比例又有两种情况,因此分为4种情况讨论。
设PQ的坐标,然后根据比例关系得出结论。
【答案】解:(1),点,点,抛物线解析式为:,,;(2)如图1,过点作于,,,,,,,点横坐标为,点坐标为,,设直线的函数解析式为:,由题意可得:,解得:,直线的函数解析式为;(3)点,点,点,,,,,对称轴为直线,直线与轴交于点,点,,,,如图2,过点作于,,,,,如图,设对称轴与轴的交点为,即点,若,,,,,当,,,点,;当,,,点,;若,,,当,,,点,;当,,,点,;综上所述:满足条件的点的坐标为,或,或,或,.。
2020中考数学冲刺练习-第21讲 函数中三角形存在问题--含解析
2020数学中考冲刺专项练习专题21函数中三角形存在问题【难点突破】着眼思路,方法点拨, 疑难突破;三角形的存在性问题是一类考查是否存在点,使其能构成某种特殊三角形的问题,如:直角三角形、等腰三角形、全等三角形及相似三角形的存在性.常结合动点、函数与几何,考查分类讨论、画图及建等式计算.主要思路为:①由判定定理确定三角形所满足的特殊关系;②分类讨论,画图;③建等式,对结果验证取舍.对于目标三角形不确定、点的位置难以寻找等存在性问题的思考方向为:①从角度入手,通过角的对应关系尝试画出一种情形.②解决第一种情形.能根据几何特征表达线段长的,借助对应边成比例、或线段长转坐标代入函数表达式求解;不能直接表达线段长的,观察点的位置,考虑联立函数表达式求解.③分类讨论,类比解决其他情形.分类时,先考虑点的位置,再考虑对应关系,用同样方法解决问题.解题策略可以从以下几方面进行分析:①直角三角形关键是用好直角,可考虑:勾股定理逆定理、弦图模型、直线k值乘积为1;②等腰三角形可考虑直接表达线段长,利用两腰相等建等式,或借助三线合一找相似建等式;③全等三角形或相似三角形关键是研究目标三角形的边角关系,进而表达线段长,借助函数或几何特征建等式.④分类不仅要考虑图形存在性的分类,也要考虑点运动的分类.解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【名师原创】原创检测,关注素养,提炼主题;【原创1】如图所示,抛物线y=ax2+bx+c与坐标轴分别相交于点A、B、C,其坐标分别为A(3,0),B(0,3),C(-1,0),直线y=kx+d经过A、B两点,点D为抛物线的顶点.(1)求此抛物线的解析式;(2)在x 轴上是否存在点N 使△ADN 为直角三角形?若存在,确定点N 的坐标;若不存在,请说明理由. (3)是否存在点P,使以A,B,C,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax 2+bx+c 与y 轴交点为(0,3),故c=3, 又因为A (3,0),C (-1,0), 代入抛物线y=ax 2+bx+c 有,309330a b a b -+=⎧⎨++=⎩ ∴12a b =-⎧⎨=⎩∴抛物线的解析式y=-x 2+2x+3.(2)由抛物线解析式为y=-x 2+2x+3=-(x-1)2+4, 得D (1,4),ΘA (3,0),点N 在x 轴上,显然∠DAN=90°不成立. ①∠DNA=90°,易得N 1(1,0). ②∠ADN=90°设N (x ,0).过D 作DE ⊥x 轴于E ,易证△ADE ∽△DNE , 得DE 2=NE •EA,∴42=(1-x )⨯2∴x=-7,∴N 2(-7 ,0).(3)答:P 1(2 ,-3),P 2(-4 ,3),P 3(4 ,3).①当PC//AB 时,有两个点存在,可看作线段AB 向下平移三个单位,向左平移一个单位,或者看作线段AB 向左平移四个单位,即有P 1(2 ,-3)或P 2(-4 ,3);②当CP 为对角线时,则BP//CA ,可以看作点B 向右平移四个单位,即(4 ,3); 综上所述,点P 的坐标为(2 ,-3)、(-4 ,3)或(4 ,3).【原创2】如图,在平面直角坐标系中,抛物线y =ax 2+2x +c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)设交点式y=a(x+1)(x﹣3),展开得到﹣2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=﹣x+b,把C点坐标代入求出b得到直线PC的解析式为y=﹣x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BD M的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得或,则此时P点坐标为(,﹣),综上所述,符合条件的点P的坐标为(,)或(,﹣),【典题精练】典例精讲,运筹帷幄,举一反三; 【例题1】等腰三角形存在性问题如图,直线y =3x +3交x 轴于点A ,交y 轴于点B ,过A ,B 两点的抛物线交x 轴于另一点C (3,0). (1)求点A ,B 的坐标.(2)求抛物线对应的函数表达式.(3)在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的点Q 的坐标;若不存在,请说明理由. 【分析】(1)令一次函数表达式中的x 或y 为0,即可求出图象与y 轴或x 轴的交点坐标.(2)求抛物线对应的函数表达式一般有三种方法:一般式法、顶点式法和交点式法.本题利用一般式法或交点式法都比较简单.(3)①x =1 (1,a )②三 AQ =BQ ,AB =BQ ,AQ =AB 【解析】:(1)∵直线y =3x +3,∴当x =0时,y =3,当y =0时,x =-1, ∴点A 的坐标为(-1,0),点B 的坐标为(0,3).(2)设抛物线对应的函数表达式为y =ax 2+bx +c ,由题意,得⎩⎪⎨⎪⎧0=a -b +c ,3=c ,0=9a +3b +c ,解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴抛物线对应的函数表达式为y =-x 2+2x +3.(3)∵抛物线对应的函数表达式为y =-x 2+2x +3,配方,得y =-(x -1)2+4,∴抛物线的对称轴为直线x=1,设Q(1,a).①当AQ=BQ时,如图①,设抛物线的对称轴交x轴于点D,过点B作BF⊥DQ于点F.由勾股定理,得BQ=BF2+QF2=(1-0)2+(3-a)2,AQ=AD2+QD2=22+a2,得(1-0)2+(3-a)2=22+a2,解得a=1,∴点Q的坐标为(1,1).②当AB=BQ时,如图②,由勾股定理,得(1-0)2+(a-3)2=10,解得a=0或6,当点Q的坐标为(1,6)时,其在直线AB上,A,B,Q三点共线,舍去,∴点Q的坐标是(1,0).③当AQ=AB时,如图③,由勾股定理,得22+a2=10,解得a=±6,此时点Q的坐标是(1,6)或(1,-6).综上所述,存在符合条件的点Q,点Q的坐标为(1,1)或(1,0)或(1,6)或(1,-6).【归纳】对于等腰三角形的分类应分三种情况.可以设一个未知数,然后用这个未知数分别表示出三角形的三边,再根据两边相等,得到三个方程,即三种情况.特别注意求出的值需检验能否构成三角形.【例题2】直角三角形、全等三角形存在性问题如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线对应的函数表达式.(2)在(1)中二次函数的第二象限的图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由.(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.【解析】(1)顶点点B待定系数(2)点A,B,Q解:(1)把(1,-4)代入y=kx-6,得k=2,∴直线AB对应的函数表达式为y=2x-6.令y=0,解得x=3,∴点B的坐标是(3,0).∵点A为抛物线的顶点,∴设抛物线对应的函数表达式为y=a(x-1)2-4,把(3,0)代入,得4a-4=0,解得a=1,∴抛物线对应的函数表达式为y=(x-1)2-4=x2-2x-3.(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时OP平分第二象限,即直线PO对应的函数表达式为y=-x.设P (m ,-m ),则-m =m 2-2m -3, 解得m =1-132⎝ ⎛⎭⎪⎫m =1+132>0,舍去,∴点P 的坐标为⎝⎛⎭⎪⎫1-132,13-12. (3)如图,①当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴AD OD =DQ 1DB ,即56=DQ 13 5, ∴DQ 1=52,∴OQ 1=72,即点Q 1的坐标为⎝⎛⎭⎫0,-72;②当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴OB OD =OQ 2OB ,即36=OQ 23, ∴OQ 2=32,即点Q 2的坐标为⎝⎛⎭⎫0,32; ③当∠AQ 3B =90°时,过点A 作AE ⊥y 轴于点E , 则△BOQ 3∽△Q 3EA , ∴OB Q 3E =OQ 3AE ,即34-OQ 3=OQ 31, ∴OQ 32-4OQ 3+3=0,∴OQ 3=1或3, 即点Q 3的坐标为(0,-1)或(0,-3).综上,点Q 的坐标为⎝⎛⎭⎫0,-72或⎝⎛⎭⎫0,32或(0,-1)或(0,-3). 【归纳】本题为综合题,考查了平面直角坐标系中,利用待定系数法求抛物线对应的函数表达式,利用方程、分类讨论和数形结合等思想解题.【最新试题】名校直考,巅峰冲刺,一步到位。
中考数学重难点突破:存在性问题
中考数学重难点突破:存在性问题
存在性类问题是近几年来各地中考的“热点、难点”。
解决存在性问题就是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
尤其以二次函数中的是否存在相似三角形、三角形的面积相等、等腰(直角)三角形、平行四边形作为考查对象是中考命题热点.这类题型对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对知识、能力的一次全面的考查。
典型例题
存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法
灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:
假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种或更多可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
【中考数学宝典】官方网站271初中数学网 网站所有教学资源均免注册,免费下载,终身免费!。
2020年中考专题练习题---相似三角形的存在性问题---教师版
若ABC∆与DEF∆相似,理论上应有六种可能情况,但在中考中,6种情况未免过于复杂,所以题目中一般都还会隐含(或明示)着其中一组对应角关系,于是就只需讨论两种情况是否可能,并解出相关结果.可以将相似三角形的存在问题大致分为两类:以函数为背景的和以几何为背景的。
相比而言,以函数为背景的题目往往计算过程较为复杂,但思维过程相对简单,需要的是仔细认真;而以几何为背景的题目思维过程更为复杂,需要相对高的几何能力.1、知识内容:相似三角形的存在性问题内容分析知识结构模块一:以函数为背景的相似三角形问题知识精讲在纯几何问题中,证明三角形相似主要有三种方法:①两组角对应相等;②一组角相等且其两边对应成比例;③三组边对应成比例.在以函数为背景的压轴题中,基本都属于第二种情况,其他两种出现较少。
若ABC ∆与DEF ∆相似,且A D ∠=∠,则可能有两种情况:①AB DE AC DF =;②AB DFAC DE=. 2、 解题思路:(1) 寻找或证明两个三角形中一定相等的两个角; (2) 计算或表示出夹此两角的四条边中的三条;(3) 解出第四条边,并代回题面进行验证,舍去多余情况.【例1】 如图,在平面直角坐标系中,双曲线ky x=(0k ≠)与直线y = x +2都经过点 A (2,m ).(1)求k 与m 的值;(2)此双曲线又经过点B (n ,2),过点B 的直线BC 与直线y = x +2平行交y 轴于点 C ,联结AB 、AC ,求ABC ∆的面积;(3)在(2)的条件下,设直线y = x +2与y 轴交于点D ,在射线CB 上有一点E ,如 果以点A 、C 、E 所组成的三角形与ACD ∆相似,且相似比不为1,求点E 的坐标. 【答案】(1)k = 8,m = 4;(2)8;(3)(10,8). 【解析】(1)将A (2,m )代入y = x + 2,得m = 4;将A (2,4)代入ky x=,得k = 8; (2)将B (n ,2)代入8y x=,得n = 4; 例题解析xy1 1O设BC 为y x c =+,将B (4,2)代入,得2c =-, ∴直线BC 解析式为2y x =-. ∴C 点为(0,2-).∴ABC ∆的面积为()14662224482⨯-⨯+⨯+⨯=; △ABC 为直角三角形(4) D 点坐标为(2,0),∴E 点坐标为(10,8).【总结】本题一方面考查函数解析式与点的坐标的关系,另一方面考查几何图形的面积的确定以及相似三角形的存在性,注意根据公共角去分类讨论.【例2】 如图,在平面直角坐标系xOy 中,顶点为M 的抛物线y = ax 2+bx (a > 0)经过点A 和x 轴正半轴上的点B ,AO = BO = 2,∠AOB = 120°. (1)求这条抛物线的表达式; (2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且ABC ∆与AOM ∆相似,求点C 的坐标.AB OMxy【答案】(1)2323y x x =;(2)150︒;(3)(4,0)或(8,0). 【解析】解:(1)∵120AOB ∠=︒,2AO BO ==,∴A 点坐标为(13-,,B 点坐标为()20,.∴代入2y ax bx =+,解得:3a ,23b =∴抛物线解析式为:2323y =. (2)过M 作MF ⊥OB 于F ,∵点M 的坐标为31,⎛ ⎝⎭,∴30FOM ∠=︒. ∴309030150AOM ∠=︒+︒+︒=︒.(3)∵30ABO ∠=︒,150AOM ∠=︒,∴C 点在B 点右侧,ABC ∠与AOM ∠为对应角,分情况讨论:① ABC AOM ∆∆∽时,∴AO MOAB BC=. ∵23MO =2BC =. ∴C 点坐标为(4,0); ② CAB AOM ∆∆∽时,∴BC ABAO MO=. ∴6BC =.∴C 点坐标为(8,0).综上所述,C 点坐标为(4,0)或(8,0).【总结】本题一方面考查二次函数背景下的角度的确定,注意对特殊角的发掘,另一方面考查相似的分类讨论,先找到相等的角,再分类讨论.【例3】 如图,平面直角坐标系xOy 中,已知B (1-,0),一次函数5y x =-+的图像与x轴、y 轴分别交于点A ,C 两点.二次函数2y x bx c =-++的图像经过点A 、点B .(1)求这个二次函数的解析式;(2)点P 是该二次函数图像的顶点,求APC ∆的面积;(3)如果点Q 在线段AC 上,且ABC ∆与AOQ ∆相似,求点Q 的坐标. 【答案】(1)245y x x =-++;(2)15;(3)1Q (56,256)或2Q (2,3). 【解析】(1)∵直线5y x =-+,当0y =时,得5x =;当0x =时,得5y =; ∴A (5,0) C (0,5)∵二次函数2y x bx c =-++的图像经过点A (5,0)、点B (1-,0).∴255010b c b c -++=⎧⎨--+=⎩,解得:45b c =⎧⎨=⎩;∴二次函数的解析式为245y x x =-++.(2)由()224529y x x x =-++=--+,由题意得顶点P (2,9) . 设抛物线对称轴与x 轴交于G 点,∴S 1413.512.515APC AOC APG AOC AOCP OCPG S S S S S ∆∆∆∆=-=+-=+-=四边形梯形.(3)∠CAB =∠OAQ ,AB = 6,AO = 6,AC =52,○1ABC ∆∽AOQ ∆,∴AB AOAC AQ=, ∴2526AQ =,1Q (56,256); ○2ABC ∆∽AQO ∆,∴AB AQAC AO=, yxOCAB∴32AQ =,2Q (2,3),∴当点Q 的坐标为1Q (56,256)或2Q (2,3)时,ABC ∆与AOQ ∆相似. 【总结】本题主要考查二次函数背景下的面积问题及相似三角形的存在性问题,注意求面积的常用方法及相似的分类讨论.【例4】 如图,在平面直角坐标系xOy 中,直线AB 过点A (3,0)、B (0,m )(0>m ),tan 2BAO ∠=.(1)求直线AB 的表达式; (2)反比例函数1k y x=的图像与直线AB 交于第一象限内的C 、D 两点(BD < BC ),当AD = 2DB 时,求1k 的值;(3)设线段AB 的中点为E ,过点E 作x 轴的垂线,垂足为点M ,交反比例函数2k y x=的图像于点F ,分别联结OE 、OF ,当OEF ∆∽OBE ∆时,请直接写出满足条件的所有2k 的值.【答案】(1)26y x =-+;(2)14k =;(3)292k =-或22716k =. 【解析】解:(1)∵tan 2BAO ∠=,()3,0A ,∴()0,6B ,∴:26AB y x =-+;(2)∵2AD BD =,∴3A D x x =,∴()14D ,,∴14k =; xyABO(3)3,32E ⎛⎫⎪⎝⎭,BOE EFO ∠=∠○1当OBE EFO ∠=∠时,OB OEEF EO=, ∴61EF=,6EF =, ∴3,32F ⎛⎫- ⎪⎝⎭,∴292k =-;○2当OBE EOF ∠=∠时,OB OEEO EF=, ∴2158OE EF OB ==,∴39,28F ⎛⎫⎪⎝⎭,∴22716k =;综上:292k =-或22716k =.【总结】本题综合性较强,一方面考查了锐角三角比在函数背景下的运用,另一方面考查了点的坐标与距离间的关系,注意对符号的判定.模块二:以几何为背景的相似三角形问题知识精讲1、知识内容:在以几何为背景的此类压轴题中,几何推导的过程较为复杂,往往需要多次运用边、角关系的代换才能得到最终结果;在计算上也经常需要借助函数、方程的思想,来求得最后的解答。
中考专题讲解:直角三角形的存在性问题解题策略
中考专题讲解:直角三角形的存在性问题解题策略有关直角三角形的存在性问题,一般都是放在平面直角坐标系中和抛物线结合起来考察,这种题的解法套路一般都是固定的,在学习的过程中只需要牢固掌握直角三角形存在的基本模型:两线一圆,多加练习,这类问题就可以轻松掌握。
一、模型讲解“两线一圆”模型:在平面直角坐标系中遇到直角三角形的相关问题时,通常是以直角顶点作为分类标准,如下图,分别以点A、点B、点M为直角定点来构造直角三角形,然后根据相关条件来进行求解即可。
已知:定点A(2,1)、B(6,4)和动点M(m,0),存在直角三角形。
具体有以下三种情况:(1)过点A作直线AM垂直AB,交x轴于点M;(2)过点B作直线BM垂直AB,交x轴于点M;(3)根据直径所对的圆周角为90度,以AB为直径作圆,交x轴的点即为满足条件的点M(一般情况下有两个交点,特殊情况下只有一个交点),然后根据相关条件来进行求解即可。
作出图形后,具体求解方法有三种:方法一:“K型”图(有的叫“一线三等角”),三角形相似易得△ACM∽△BEA,求得CM,从而求出点M的坐标。
易得△AEB ∽△BFM求得BF,从而得M的坐标方法二:勾股定理∵BH²=BG²-GH² ∵AC²+CM²=AM²BH²=BM²-HM² MD²+BD²=BM²∴BG²-GH² =BM²-HM² AM²+BM²=AB²∴AC²+CM²+MD²+BD²=AB²方法三:解析法(来源于高中的解析几何,虽然有点超纲,但是很多老师都教学生这种方法)K AB ·K AM =-1,直线BM 与x 轴的交点即为M 。
K AB ·K BM =-1,直线A 与x 轴的交点即为M 。
专题8直角三角形的存在性问题探究-备战2020年中考数学压轴题专题研究
专题8直角三角形的存在性问题探究-备战2020年中考数学压轴题专题研究2020深圳中考数学6月冲刺专题直角三角形的存在性问题探究专题导例如图,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿线段DA、BA向点A 的方向运动,当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN可得△FMN,设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒(0≤x≤4).求x为何值,△FMN为直角三角形。
[来源:学科网]【分析】:(1)定方向:△FMN已知,需要强化为直角三角形。
(2)定分类:MNF=90°;FMN=90°;MFN=90°三种情况。
(几何法需要分类情况,代数法可以盲解)(3)定解法:可以利用“三直角结构”构造相似,用几何法求解。
也△FMN三边可以用勾股定理表示,可以用代数法表示;[来源:学,科,网Z,X,X,K](4)定结果:x值汇总。
方法讲解模型分析(1)“两线一圆”模型已知线段AB,在平面内找一点C,使△ABC为直角三角形.(1)CAB=90°时,过点A作AB的垂线,此直线上所有的点均满足条件;(2)CBA=90°时,过点B作AB的垂线,此直线上所有的点均满足条件;(3)ACB=90°时,以AB为直径作圆,此圆上所有的点均满足条件.“两线一圆”上所有的点C均满足△ABC为直角三角形,即满足“直角”条件的点C有无数个.因此,题目会对点C再加上另外一个限定条件——例如还限定点C在坐标轴上或抛物线上,这样,点C的个数就只有几个.典例剖析类型一:“两线一圆”类问题例1:已知点A(2,1),B(6,4),若在x轴上取点C,使△ABC为等腰三角形,求满足条件的点C的坐标.分析:BAC=90°时,过点A作x轴的垂线,垂足为E,过点B作直线AE的垂线,垂足为F由题可得:;ABC=90°时,过点B作x轴的垂线,垂足为M,过点A作直线BM的垂线,垂足为N;ACB=90°时,过点A作x轴的垂线,垂足为P,过点B作x轴的垂线,垂足为Q由题可得:,可得:,由题可得:,则。
中考压轴题动态几何之直角三角形存在性问题
中考压轴题动态几何之直角三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写直角三角形存在性问题模拟题.在中考压轴题中,直角三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类.原创模拟预测题1.如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△P AB为直角三角形时,AP的长为.原创模拟预测题2.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q 从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?原创模拟预测题3.如图,抛物线212y x bx c =-++与x 轴分别相交于点A (﹣2,0),B (4,0),与y 轴交于点C ,顶点为点P .(1)求抛物线的解析式;(2)动点M 、N 从点O 同时出发,都以每秒1个单位长度的速度分别在线段OB 、OC 上向点B 、C 方向运动,过点M 作x 轴的垂线交BC 于点F ,交抛物线于点H .①当四边形OMHN 为矩形时,求点H 的坐标;②是否存在这样的点F ,使△PFB 为直角三角形?若存在,求出点F 的坐标;若不存在,请说明理由.原创模拟预测题4.如图,已知抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =-,且抛物线经过A (1,0),C (0,3)两点,与x 轴交于点B .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使△BPC 为直角三角形的点P 的坐标.原创模拟预测题5.如图,已知直线3y x =-+与x 轴、y 轴分别交于A ,B 两点,抛物线2y x bx c =-++经过A ,B 两点,点P 在线段OA 上,从点O 出发,向点A 以1个单位/秒的速度匀速运动;同时,点Q 在线段AB 上,从点A 出发,向点B 以2个单位/秒的速度匀速运动,连接PQ ,设运动时间为t 秒.(1)求抛物线的解析式;(2)问:当t 为何值时,△APQ 为直角三角形;(3)过点P 作PE ∥y 轴,交AB 于点E ,过点Q 作QF ∥y 轴,交抛物线于点F ,连接EF ,当EF ∥PQ 时,求点F 的坐标;(4)设抛物线顶点为M ,连接BP ,BM ,MQ ,问:是否存在t 的值,使以B ,Q ,M 为顶点的三角形与以O ,B ,P 为顶点的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.原创模拟预测题6.如图,二次函数2+y x bx c 的图象交x 轴于A (﹣1,0)、B (3,0)两点,交y 轴于点C ,连接BC ,动点P 以每秒1个单位长度的速度从A 向B 运动,动点Q以每秒2个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;t时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ (3)如图2,当2的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.原创模拟预测题7.如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x <4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.原创模拟预测题8.如图,已知二次函数232y ax x c =++的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数232y ax x c =++的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请直接写出此时点N 的坐标;(4)若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.原创模拟预测题9.如图1,一条抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且当x =﹣1和x =3时,y 的值相等,直线421815-=x y 与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M .(1)求这条抛物线的表达式.(2)动点P 从原点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒2个单位长度的速度向点C 运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t 秒.①若使△BPQ 为直角三角形,请求出所有符合条件的t 值;②求t 为何值时,四边形ACQP 的面积有最小值,最小值是多少?(3)如图2,当动点P 运动到OB 的中点时,过点P 作PD ⊥x 轴,交抛物线于点D ,连接OD ,OM ,MD 得△ODM ,将△OPD 沿x 轴向左平移m 个单位长度(0<m <2),将平移后的三角形与△ODM 重叠部分的面积记为S ,求S 与m 的函数关系式.。
中考数学压轴题分析:直角三角形的存在性问题
中考数学压轴题分析:直角三角形的存在性问题本文内容选自2020年广元中考数学压轴题,涉及直角三角形的存在性问题,难度不大。
大家可以看看。
【中考真题】(2020·广元)如图,直线分别与轴,轴交于,两点,点为的中点,抛物线经过,两点.(1)求抛物线的函数表达式;(2)点是直线下方的抛物线上的一点,且的面积为,求点的坐标;(3)点为抛物线上一点,若是以为直角边的直角三角形,求点到抛物线的对称轴的距离.【分析】题(1)先求出点A和B的坐标,然后代入求出抛物线的解析式。
题(2)可以先设点D的坐标,表示出面积,然后再令面积为,解方程求出坐标即可。
题(3)是两定一动型指教三角形存在性问题,由于知道了直角边AB,那么只需分别过点A、B作直线AB的垂线即可,与抛物线的交点就是所求的。
然后构造三垂直相似可以建立等量关系求出坐标。
知道坐标后,即可根据横坐标与对称轴之间的关系求出点P到对称轴的距离,难度不大。
【答案】解:(1)直线中,令,则,令,则,,,点是中点,,将和代入抛物线中,,解得:,抛物线表达式为:;(2)联立:,解得:或,直线与抛物线交于点和,点是直线下方抛物线上的一点,设,,过点作轴,交直线于点,,,,解得:,点的坐标为;(3)抛物线表达式为:,是以为直角边的直角三角形,设点,,,,,,当点为直角顶点时,,解得:或5(舍,当点为直角顶点时,,解得:或,而抛物线对称轴为直线,则,,,综上:点到抛物线对称轴的距离为:或或.。
重难点 几何动点及最值、存在性问题(解析版)--2024年中考数学
重难点几何动点及最值、存在性问题目录题型01将军饮马问题题型02胡不归问题题型03阿氏圆问题题型04隐圆问题题型05费马点问题题型06瓜豆原理模型题型07等腰(边)三角形存在问题题型08直角三角形存在问题题型09平行四边形存在问题题型10矩形、菱形、正方形存在问题题型11全等/相似存在性问题题型12角度存在性问题【命题趋势】动态几何问题是近年来中考的一个重难点问题,以运动的观点探究几何图形或函数与几何图形的变化规律,从而确定某一图形的存在性问题.随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题.【基本原理】1)基本原理(定点到定点):两点之间,线段最短.2)三角形两边之和>第三边3)基本原理(定点到定线):垂线段最短.4)平行线的距离处处相等.5)基本原理(定点到定圆):点圆之间,点心线截距最短(长).6)基本原理(定线到定圆):线圆之间,心垂线截距最短.7)基本原理(定圆到定圆):圆圆之间,连心线截距最短(长).【解题思路】1)动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题.有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等.根据其运动的特点,又可分为(1)动点类(点在线段或弧线上运动)也包括一个动点或两个动点;(2)动直线类;(3)动图形问题.2)解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”动中求静,即在运动变化中探索问题中的不变性;动静互化抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论.解决这类问题,要善于探索图形的运动特点和规律抓住变化中图形的性质与特征,化动为静,以静制动.解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注--些不变量和不变关系或特殊关系.3)动态几何形成的存在性问题,重点和难点在于应用分类思想和数形结合的思想准确地进行分类,包括等腰(边)三角形存在问题,直角三角形存在问题,平行四边形存在问题,矩形、菱形、正方形存在问题.全等三角形存在问题,相似三角形存在问题等.题型01 将军饮马问题1(2023·辽宁盘锦·中考真题)如图,四边形ABCD 是矩形,AB =10,AD =42,点P 是边AD 上一点(不与点A ,D 重合),连接PB ,PC .点M ,N 分别是PB ,PC 的中点,连接MN ,AM ,DN ,点E 在边AD 上,ME ∥DN ,则AM +ME 的最小值是()A.23B.3C.32D.42【答案】C【分析】根据直线三角形斜边中线的性质可得AM =12BP ,DN =12CP ,通过证明四边形MNDE 是平行四边形,可得ME =DN ,则AM +ME =AM +DN =12BP +CP ,作点C 关于直线AD 的对称点M ,则BP +CP =BP +PM ,点B ,P ,M 三点共线时,BP +PM 的值最小,最小值为BM .【详解】解:∵四边形ABCD 是矩形,∴∠BAP =∠CDP =90°,AD ∥BC ,∵点M ,N 分别是PB ,PC 的中点,∴AM =12BP ,DN =12CP ,MN =12BC ,MN ∥BC ,∵AD ∥BC ,MN ∥BC ,∴MN ∥BC ,又∵ME ∥DN ,∴四边形MNDE 是平行四边形,∴ME =DN ,∴AM +ME =AM +DN =12BP +CP ,如图,作点C 关于直线AD 的对称点M ,连接PM ,BM ,则BP +CP =BP +PM ,当点B ,P ,M 三点共线时,BP +PM 的值最小,最小值为BM ,在Rt △BCM 中,MC =2CD =2AB =210,BC =AD =42,∴BM =BC 2+MC 2=42 2+210 2=62,∴AM +ME 的最小值=12BM =32,故选C .【点睛】本题考查矩形的性质,直线三角形斜边中线的性质,中位线的性质,平行四边形的判定与性质,轴对称的性质,勾股定理,线段的最值问题等,解题的关键是牢固掌握上述知识点,熟练运用等量代换思想.2(2023·广东广州·中考真题)如图,正方形ABCD 的边长为4,点E 在边BC 上,且BE =1,F 为对角线BD 上一动点,连接CF ,EF ,则CF +EF 的最小值为.【答案】17【分析】连接AE 交BD 于一点F ,连接CF ,根据正方形的对称性得到此时CF +EF =AE 最小,利用勾股定理求出AE 即可.【详解】解:如图,连接AE 交BD 于一点F ,连接CF ,∵四边形ABCD 是正方形,∴点A 与点C 关于BD 对称,∴AF =CF ,∴CF +EF =AF +EF =AE ,此时CF +EF 最小,∵正方形ABCD 的边长为4,∴AD =4,∠ABC =90°,∵点E 在AB 上,且BE =1,∴AE =AB 2+BE 2=42+12=17,即CF +EF 的最小值为17故答案为:17.【点睛】此题考查正方形的性质,熟练运用勾股定理计算是解题的关键.3(2023·四川宜宾·中考真题)如图,在平面直角坐标系xOy 中,等腰直角三角形ABC 的直角顶点C 3,0 ,顶点A 、B 6,m 恰好落在反比例函数y =k x第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使△ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.【答案】(1)y =6,y =-1x +4(2)在x 轴上存在一点P 5,0 ,使△ABP 周长的值最小,最小值是25+42.【分析】(1)过点A 作AE ⊥x 轴于点E ,过点B 作BD ⊥x 轴于点D ,证明△ACE ≌△CBD AAS ,则CD =AE =3,BD =EC =m ,由OE =3-m 得到点A 的坐标是3-m ,3 ,由A 、B 6,m 恰好落在反比例函数y =k x第一象限的图象上得到33-m =6m ,解得m =1,得到点A 的坐标是2,3 ,点B 的坐标是6,1 ,进一步用待定系数法即可得到答案;(2)延长AE 至点A ,使得EA =AE ,连接A B 交x 轴于点P ,连接AP ,利用轴对称的性质得到AP =A P ,A2,-3 ,则AP +PB =A B ,由AB =25知AB 是定值,此时△ABP 的周长为AP +PB +AB =AB +A B 最小,利用待定系数法求出直线A B 的解析式,求出点P 的坐标,再求出周长最小值即可.【详解】(1)解:过点A 作AE ⊥x 轴于点E ,过点B 作BD ⊥x 轴于点D ,则∠AEC =∠CDB =90°,∵点C 3,0 ,B 6,m ,∴OC =3,OD =6, BD =m ,∴CD =OD -OC =3,∵△ABC 是等腰直角三角形,∴∠ACB =90°,AC =BC ,∵∠ACE +∠BCD =∠CBD +∠BCD =90°,∴∠ACE =∠CBD ,∴△ACE ≌△CBD AAS ,∴CD =AE =3,BD =EC =m ,∴OE =OC -EC =3-m ,∴点A 的坐标是3-m ,3 ,∵A 、B 6,m 恰好落在反比例函数y =k x第一象限的图象上.∴33-m =6m ,解得m =1,∴点A 的坐标是2,3 ,点B 的坐标是6,1 ,∴k =6m =6,∴反比例函数的解析式是y =6x,设直线AB 所对应的一次函数的表达式为y =px +q ,把点A 和点B 的坐标代入得,2p +q =36p +q =1 ,解得p =-12q =4 ,∴直线AB 所对应的一次函数的表达式为y =-12x +4,(2)延长AE 至点A ,使得EA =AE ,连接A B 交x 轴于点P ,连接AP ,∴点A 与点A 关于x 轴对称,∴AP =A P ,A 2,-3,∵AP +PB =A P +PB =A B ,∴AP +PB 的最小值是A B 的长度,∵AB =2-6 2+3-1 2=25,即AB 是定值,∴此时△ABP 的周长为AP +PB +AB =AB +A B 最小,设直线A B 的解析式是y =nx +t ,则2n +t =-3 ,解得n =1t =-5 ,∴直线A B 的解析式是y =x -5,当y =0时,0=x -5,解得x =5,即点P 的坐标是5,0 ,此时AP +PB +AB =AB +A B =25+2-6 2+-3-1 2=25+42,综上可知,在x 轴上存在一点P 5,0 ,使△ABP 周长的值最小,最小值是25+42.【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.题型02 胡不归问题1(2022·内蒙古鄂尔多斯·中考真题)如图,在△ABC 中,AB =AC =4,∠CAB =30°,AD ⊥BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC .则PA +2PB 的最小值为.【答案】42【分析】在∠BAC 的外部作∠CAE =15°,作BF ⊥AE 于F ,交AD 于P ,此时PA +2PB =212PA +PB=12PF +PB =2BF ,通过解直角三角形ABF ,进一步求得结果.【详解】解:如图,在∠BAC 的外部作∠CAE =15°,作BF ⊥AE 于F ,交AD 于P ,此时PA +2PB 最小,∴∠AFB =90°∵AB =AC ,AD ⊥BC ,∴∠CAD =∠BAD =12∠BAC =12×30°=15°,∴∠EAD =∠CAE +∠CAD =30°,∴PF =12PA ,∴PA +2PB =212PA +PB =12PF +PB =2BF ,在Rt △ABF 中,AB =4,∠BAF =∠BAC +∠CAE =45°,∴BF =AB •sin45°=4×22=22,∴(PA +2PB )最大=2BF =42,故答案为:42.【点睛】本题考查了等腰三角形的性质,解直角直角三角形,解题的关键是作辅助线.2(2023·湖南湘西·中考真题)如图,⊙O 是等边三角形ABC 的外接圆,其半径为4.过点B 作BE ⊥AC 于点E ,点P 为线段BE 上一动点(点P 不与B ,E 重合),则CP +12BP 的最小值为.【答案】6【分析】过点P 作PD ⊥AB ,连接CO 并延长交AB 于点F ,连接AO ,根据等边三角形的性质和圆内接三角形的性质得到OA =OB =4,CF ⊥AB ,然后利用含30°角直角三角形的性质得到OE =12OA =2,进而求出BE =BO +EO =6,然后利用CP +12BP =CP +PD ≤CF 代入求解即可.【详解】如图所示,过点P 作PD ⊥AB ,连接CO 并延长交AB 于点F ,连接AO∵△ABC 是等边三角形,BE ⊥AC∴∠ABE =∠CBE =12∠ABC =30°∵⊙O 是等边三角形ABC 的外接圆,其半径为4∴OA =OB =4,CF ⊥AB ,∴∠OBA =∠OAB =30°∴∠OAE =∠OAB =12∠BAC =30°∵BE ⊥AC∴OE =12OA =2∴BE =BO +EO =6∵PD ⊥AB ,∠ABE =30°∴PD =12PB ∴CP +12BP =CP +PD ≤CF ∴CP +12BP 的最小值为CF 的长度∵△ABC 是等边三角形,BE ⊥AC ,CF ⊥AB∴CF =BE =6∴CP +12BP 的最小值为6.故答案为:6.【点睛】此题考查了圆内接三角形的性质,等边三角形的性质,含30°角直角三角形的性质等知识,解题的关键是熟练掌握以上知识点.3(2023·辽宁锦州·中考真题)如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =4,按下列步骤作图:①在AC 和AB 上分别截取AD 、AE ,使AD =AE .②分别以点D 和点E 为圆心,以大于12DE 的长为半径作弧,两弧在∠BAC 内交于点M .③作射线AM 交BC 于点F .若点P 是线段AF 上的一个动点,连接CP ,则CP +12AP 的最小值是.【答案】23【分析】过点P 作PQ ⊥AB 于点Q ,过点C 作CH ⊥AB 于点H ,先利用角平分线和三角形的内角和定理求出∠BAF =30°,然后利用含30°的直角三角的性质得出PQ =12AP ,则CP +12AP =CP +PQ ≥CH ,当C 、P 、Q 三点共线,且与AB 垂直时,CP +12AP 最小,CP +12AP 最小值为CH ,利用含30°的直角三角的性质和勾股定理求出AB ,BC ,最后利用等面积法求解即可.【详解】解:过点P 作PQ ⊥AB 于点Q ,过点C 作CH ⊥AB 于点H ,由题意知:AF 平分∠BAC ,∵∠ACB =90°,∠ABC =30°,∴∠BAC =60°,∴∠BAF =12∠BAC =30°,∴PQ =12AP ,∴CP +12AP =CP +PQ ≥CH ,∴当C 、P 、Q 三点共线,且与AB 垂直时,CP +12AP 最小,CP +12AP 最小值为CH ,∵∠ACB =90°,∠ABC =30°,AC =4,∴AB =2AC =8,∴BC =AB 2-AC 2=43,∵S △ABC =12AC ⋅BC =12AB ⋅CH ,∴CH =AC ⋅BC AB =4×438=23,即CP +12AP 最小值为23.故答案为:23.【点睛】本题考查了尺规作图-作角平分线,含30°的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.题型03 阿氏圆问题1(2023·山东烟台·中考真题)如图,抛物线y =ax 2+bx +5与x 轴交于A ,B 两点,与y 轴交于点C ,AB =4.抛物线的对称轴x =3与经过点A 的直线y =kx -1交于点D ,与x 轴交于点E .(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得△ADM 是以AD 为直角边的直角三角形?若存在,求出所有点M 的坐标;若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为⊙B 上一个动点,请求出PC +12PA 的最小值.【答案】(1)直线AD 的解析式为y =x -1;抛物线解析式为y =x 2-6x +5(2)存在,点M 的坐标为4,-3 或0,5 或5,0(3)41【分析】(1)根据对称轴x =3,AB =4,得到点A 及B 的坐标,再利用待定系数法求解析式即可;(2)先求出点D 的坐标,再分两种情况:①当∠DAM =90°时,求出直线AM 的解析式为y =-x +1,解方程组y =-x +1y =x 2-6x +5 ,即可得到点M 的坐标;②当∠ADM =90°时,求出直线DM 的解析式为y =-x +5,解方程组y =-x +5y =x 2-6x +5 ,即可得到点M 的坐标;(3)在AB 上取点F ,使BF =1,连接CF ,证得BF PB =PB AB ,又∠PBF =∠ABP ,得到△PBF ∽△ABP ,推出PF =12PA ,进而得到当点C 、P 、F 三点共线时,PC +12PA 的值最小,即为线段CF 的长,利用勾股定理求出CF 即可.【详解】(1)解:∵抛物线的对称轴x =3,AB =4,∴A 1,0 ,B 5,0 ,将A 1,0 代入直线y =kx -1,得k -1=0,解得k =1,∴直线AD 的解析式为y =x -1;将A 1,0 ,B 5,0 代入y =ax 2+bx +5,得a +b +5=025a +5b +5=0 ,解得a =1b =-6 ,∴抛物线的解析式为y =x 2-6x +5;(2)存在点M ,∵直线AD 的解析式为y =x -1,抛物线对称轴x =3与x 轴交于点E .∴当x =3时,y =x -1=2,∴D 3,2 ,①当∠DAM =90°时,设直线AM 的解析式为y =-x +c ,将点A 坐标代入,得-1+c =0,解得c =1,∴直线AM 的解析式为y =-x +1,解方程组y =-x +1y =x 2-6x +5 ,得x =1y =0 或x =4y =-3 ,∴点M 的坐标为4,-3 ;②当∠ADM =90°时,设直线DM 的解析式为y =-x +d ,将D 3,2 代入,得-3+d =2,解得d =5,∴直线DM 的解析式为y =-x +5,解方程组y =-x +5y =x 2-6x +5 ,解得x =0y =5 或x =5y =0 ,∴点M 的坐标为0,5 或5,0综上,点M 的坐标为4,-3 或0,5 或5,0 ;(3)如图,在AB 上取点F ,使BF =1,连接CF ,∵PB =2,∴BF PB =12,∵PB AB =24=12,、∴BF PB =PB AB,又∵∠PBF =∠ABP ,∴△PBF ∽△ABP ,∴PF PA =BF PB =12,即PF =12PA ,∴PC +12PA =PC +PF ≥CF ,∴当点C 、P 、F 三点共线时,PC +12PA 的值最小,即为线段CF 的长,∵OC =5,OF =OB -1=5-1=4,∴CF =OC 2+OF 2=52+42=41,∴PC +12PA 的最小值为41.【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.2(2023·山东济南·一模)抛物线y =-12x 2+a -1 x +2a 与x 轴交于A b ,0 ,B 4,0 两点,与y 轴交于点C 0,c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若S △PMB S △AMB=14,求点P 的坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为α(0°<α<90°),连接E 'B ,E C ,求E B +34E C 的最小值.【答案】(1)a =2,b =-2,c =4(2)P 3,52(3)3374【分析】(1)利用待定系数法求解即可;(2)过点P 作PD ⊥x 轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,求得l BC 的解析式,设P m ,-12m 2+m +4 ,则D m ,-m +4 ,利用相似三角形的判定与性质可得答案;(3)在y 轴上取一点F ,使得OF =94,连接BF ,由相似三角形的判定与性质可得FE =34CE ,可得E B +34E C =BE +E F ,即可解答.【详解】(1)解:将B 4,0 代入y =-12x 2+a -1 x +2a ,得-8+4a -1 +2a =0,∴a =2,∴抛物线的解析式为y =-12x 2+x +4,令x =0,则y =4,∴c =4,令y =0,则0=-12x 2+x +4,∴x 1=4,x 2=-2,∴A -2,0 ,即b =-2;∴a =2,b =-2,c =4(2)过点P 作PD ⊥x 轴,交BC 于点D ,过点A 作y 轴的平行线交BC 的延长线于H ,设l BC :y =kx +b ,将0,4 ,4,0 代入得b =44k +b =0 解得:b =4,k =-1,∴l BC :y =-x +4,设P m ,-12m 2+m +4 ,则D m ,-m +4 ,PD =y P -y D =-12m 2+m +4--m +4 =-12m 2+2m ,∵PD ∥HA ,∴△AMH ∽△PMD ,∴PM MA =PD HA,将x =-2代入y =-x +4,∴HA =6,∵S △PMB S △AMB =12PM ⋅h 12AM ⋅h =PM AM =14,∴PD HA =PD 6=14,∴PD =32,∴32=-12m 2+2m ,∴m 1=1(舍),m 2=3,∴P 3,52 ;(3)在y 轴上取一点F ,使得OF =94,连接BF ,根据旋转得性质得出:OE =OE =3,∵OF ⋅OC =94×4=9,∴OE 2=OF ⋅OC ,∴OE OF =OC OE,∵∠COE =∠FOE ,∴△FOE ∽△E OC ,∴FE CE =OE OC =34,∴FE =34CE ,∴E B +34E C =BE +E F ,当B 、E '、F 三点共线时,此时E B +34E C 最小=BF ,最小值为:BF =42+94 2=3374.【点睛】此题考查的是二次函数的综合题意,涉及到相似三角形的判定与性质、二次函数与面积的问题、待定系数法求解析式,旋转的性质等知识.正确的作出辅助线是解此题的关键.题型04 隐圆问题1(2022·山东泰安·中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.5B.12C.13-3D.13-2【答案】D【分析】证明∠AMD=90°,得出点M在O点为圆心,以AO为半径的圆上,从而计算出答案.【详解】设AD的中点为O,以O点为圆心,AO为半径画圆∵四边形ABCD为矩形∴∠BAP+∠MAD=90°∵∠ADM=∠BAP∴∠MAD+∠ADM=90°∴∠AMD=90°∴点M在O点为圆心,以AO为半径的圆上连接OB交圆O与点N∵点B为圆O外一点∴当直线BM过圆心O时,BM最短∵BO2=AB2+AO2,AO=12AD=2∴BO2=9+4=13∴BO=13∵BN=BO-AO=13-2故选:D.【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.2(2022·安徽蚌埠·一模)如图,Rt△ABC中,AB⊥BC,AB=8,BC=6,P是△ABC内部的一个动点,满足∠PAB=∠PBC,则线段CP长的最小值为()A.325B.2C.213-6D.213-4【答案】D【分析】结合题意推导得∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP;根据直角三角形斜边中线的性质,得OP=OA=OB=12AB=4;根据圆的对称性,得点P在以AB为直径的⊙O上,根据两点之间直线段最短的性质,得当点O、点P、点C三点共线时,PC最小;根据勾股定理的性质计算得OC,通过线段和差计算即可得到答案.【详解】∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,取AB的中点O,以点O为圆心,AB为直径作圆,连接OP,∴OP=OA=OB=12AB=4∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,当点O、点P、点C三点共线时,PC最小在Rt△BCO中,∵∠OBC=90°,BC=6,OB=4,∴OC=BO2+BC2=42+62=213,∴PC=OC-OP=213-4∴PC最小值为213-4故选:D.【点睛】本题考查了两点之间直线段最短、圆、勾股定理、直角三角形斜边中线的知识;解题的关键是熟练掌握圆的对称性、两点之间直线段最短、直角三角形斜边中线的性质,从而完成求解.3(20-21九年级上·江苏盐城·期末)如图,⊙M的半径为4,圆心M的坐标为(5,12),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为.【答案】18【分析】由RtΔAPB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P',当点P位于P'位置时,OP'取得最小值,据此求解可得.【详解】解:连接OP,∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P',当点P位于P'位置时,OP'取得最小值,过点M作MQ⊥x轴于点Q,则OQ=5,MQ=12,∴OM=13,又∵MP'=4,∴OP'=9,∴AB=2OP'=18,故答案是:18.【点睛】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.4(2021九年级·全国·专题练习)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A 、B 、P 三点所在圆的圆心为C ,直接写出点C 的坐标和⊙C 的半径;②y 轴正半轴上是否有线段AB 的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P 在y 轴正半轴上运动时,∠APB 是否有最大值?如果有,说明此时∠APB 最大的理由,并求出点P 的坐标;如果没有请说明理由.【答案】(1)①(4,3)或(4,-3),半径为32;②存在,(0,3+2)或(0,3-2),见解析;(2)有,见解析,(0,7)【分析】(1)①在x 轴的上方,作以AB 为斜边的等腰直角三角形△ACB ,易知A ,B ,P 三点在⊙C 上,圆心C 的坐标为(4,3),半径为32,根据对称性可知点C (4,-3)也满足条件;②当圆心为C (4,3)时,过点C 作CD ⊥y 轴于D ,则D (0,3),CD =4,根据⊙C 的半径得⊙C 与y 轴相交,设交点为P 1,P 2,此时P 1,P 2在y 轴的正半轴上,连接CP 1、CP 2、CA ,则CP 1=CP 2=CA =r =32,得DP 2=2,即可得;(2)如果点P 在y 轴的正半轴上,设此时圆心为E ,则E 在第一象限,在y 轴的正半轴上任取一点M (不与点P 重合),连接MA ,MB ,PA ,PB ,设MB 交于⊙E 于点N ,连接NA ,则∠APB =∠ANB ,∠ANB 是△MAN的外角,∠ANB >∠AMB ,即∠APB >∠AMB ,过点E 作EF ⊥x 轴于F ,连接EA ,EP ,则AF =12AB =3,OF =4,四边形OPEF 是矩形,OP =EF ,PE =OF =4,得EF =7,则OP =7,即可得.【详解】(1)①如图1中,在x 轴的上方,作以AB 为斜边的等腰直角三角形△ACB ,易知A ,B ,P 三点在⊙C 上,圆心C 的坐标为(4,3),半径为32,根据对称性可知点C (4,-3)也满足条件;②y 轴的正半轴上存在线段AB 的“等角点“。
2020中考数学压轴题型——三角形和四边形的存在性问题解题方法
三角形和四边形的存在性问题解题方法难点:已知两点坐标,求某种条件下的等腰三角形存在性问题。
寻找等腰三角形的方法:已知A,B 两点,求一点C ,满足限制条件下的等腰三角形。
因为等腰三角形有一个底边和两条腰,底边对应的点称为顶点。
所以,分类讨论——1) 当A 为顶点时,BC 为底,此时,AC=AB2) 当B 为顶点时,AC 为底,此时BC=AB3) 当C 为顶点时,AB 为底,此时AC=BC具体寻找方法:1) 当A 为顶点时,BC 为底,此时,AC=AB以A 为圆心,以已知的边AB 为半径,作○,与制约条件(比如,x 轴,y 轴,或某条直线)的交点即为满足条件的点(最少0个,最多2个交点)2) 当B 为顶点时,AC 为底,此时BC=AB以B 为圆心,以已知的边AB 为半径,作○,与制约条件(比如,x 轴,y 轴,或某条直线)的交点即为满足条件的点(最少0个,最多2个交点)O y y=kx+bx A B A O y y=kx+b x B3) 当C 为顶点时,AB 为底,此时AC=BC分别以A 、B 为圆心,以已知的边AB 为半径,作○,连接两圆的交点,将其两端延伸至与制约条件【直线(比如,x 轴,y 轴,或某条一次函数的直线),或者曲线(如抛物线、双曲线)】的交点即为满足条件的点(最少0个,最多2个交点)难点:已知两点坐标,求某种条件下的直角三角形存在性问题。
已知两点,),(,)a a b b A x y B x y (两点,求某些约束条件下【直线(x 轴上,y 轴上,一次函数直线上),曲线(抛物线或双曲线)】是否存在点C ,使得三角形ABC 是直角三角形?解题思路:寻找直角三角形直线,我们应该清楚,三角形的三条边都有可能称为斜边。
因此,在解题时依然使用分类讨论的方法。
(1)当AB 边为斜边时取AB 中点D ,以D 为圆心,以AB 为直径,作圆,该圆与约束条件的交点就是满足条件的C 点。
O Ax B y y=kx+b连接交点和AB两点,即可得到直角三角形。
【中考押题】2020中考数学经典压轴专项突破 -三角形存在性问题
y =-y =-2020中考数学经典压轴专项突破 -三角形存在性问题板块一、等腰三角形存在性1. 如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.(备用图)2. 如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.板块二、直角三角形3.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△P AE是直角三角形时,求点P的坐标.4.如图所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M 可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线上时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N 运动的时间为x秒.试解答下列问题:(1)说明△FMN∽△QWP;(2)设04x≤≤(即M从D到A运动的时间段).试问x为何值时,△PWQ 为直角三角形?当x在何范围时,△PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值.WQPNMFDBA板块三、相似三角形存在性 5. 在平面直角坐标系中,抛物线2y ax bx =+3+与x 轴的两个交点分别为A (-3,0)、B (1,0),过顶点C 作CH ⊥x 轴于点H .(1)直接填写:a = ,b = ,顶点C 的坐标为 ; (2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.FP WQN A B(备用图)三、测试提高1. 如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C 的坐标是_____,b =_____,c =_____; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.。
2020年中考数学压轴题专题1 直角三角形的存在性问题学案(原版+解析)
专题一直角三角形的存在性问题【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。
这类问题主要是和动点问题结合在一起,主要在于考查学生的探寻能力和分类研究的推理能力,也是近几年来各市地对学生能力提高方面的一个考查。
【解题攻略】解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).【解题类型及其思路】当直角三角形存在时可从三个角度进行分析研究:(1)当动点在直线上运动时,常用的方法是①121k k⋅=-,②三角形相似,③勾股定理;(2)当动点在曲线上运动时,情况分类如下,第一当已知点处作直角的方法①121k k⋅=-,②三角形相似,③勾股定理;第二是当动点处作直角的方法:寻找特殊角【典例指引】类型一【确定三角形的形状】典例指引1.(2019·辽宁中考模拟)已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.【举一反三】(2019·淮滨县王店乡教育管理站中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.类型二【确定点的坐标】典例指引2.19.(2019·江西中考模拟)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n 上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.【举一反三】如图,抛物线y=﹣x2+bx+c的图象与x轴交于A(﹣5,0),B(1,0)两点,与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的函数表达式;(2)如图1,点E(x,y)为抛物线上一点,且﹣5<x<﹣2,过点E作EF△x轴,交抛物线的对称轴于点F,作EH△x轴于点H,得到矩形EHDF,求矩形EHDF周长的最大值;(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,A,C为顶点的三角形是直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.类型三【确定动点运动的时间】典例指引3.已知二次函数y=ax2+bx-2的图象与x轴交于A,B两点,与y轴交于点C,点A的坐标为(4,0),且当x=-2和x=5时二次函数的函数值y相等.(1)求实数a,b的值;(2)如图①,动点E,F同时从A点出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F5AC方向运动.当点E停止运动时,点F随之停止运动.设运动时间为t秒.连接EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.①是否存在某一时刻t,使得△DCF为直角三角形?若存在,求出t的值;若不存在,请说明理由;②设△DEF与△ABC重叠部分的面积为S,求S关于t的函数关系式.【举一反三】(2018·河北中考模拟)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【新题训练】1.(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.2.(2019·福建师范大学附属中学初中部初三月考)如图,抛物线y =mx 2+nx ﹣3(m ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求点C 坐标及抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点D ,使得△BCD 是以CD 为直角边的直角三角形?若存在,直接写出D 点坐标;若不存在,请说明理由.3.(2019·四川中考真题)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON . (1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题:①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.4.(2018·贵州中考真题)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.5.(2018·四川中考真题)如图①,已知抛物线y =ax 2+bx +c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x =2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m .(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.6.(2019·云南中考模拟)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.7.(2019·黑龙江中考模拟)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A (﹣1,0)B(3,0)两点,与y轴交于点C.(1)求抛物线y=ax2+2x+c的解析式:;(2)点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;(3)①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.8.(2019·广西中考模拟)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,抛物线与x轴的另一交点为B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.9.(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12 DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.10.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.11.(2019·陕西中考模拟)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.12.(2019·山东中考模拟)如图,已知直线AB 经过点(0,4),与抛物线y =14x 2交于A ,B 两点,其中点A 的横坐标是2-.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由.(3)过线段AB 上一点P ,作PM ∥x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN +3MP 的长度最大?最大值是多少?13.(2019·河北中考模拟)已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y 轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由;(4)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.14.(2019·河南中考模拟)如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).(1)求抛物线解析式;(2)线段BD 上有一动点E ,过点E 作y 轴的平行线,交BC 于点F ,若S △BOD =4S △EBF ,求点E 的坐标;(3)抛物线的对称轴上是否存在点P ,使△BPD 是以BD 为斜边的直角三角形?如果存在,求出点P 的坐标;如果不存在,说明理由.15.(2019·临沭县青云镇青云初级中学中考模拟)如图,直线y =x +2与抛物线y =ax 2+bx +6(a ≠0)相交于A (,)和B (4,m ),点P 是线段AB 上异于A 、B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C .(1)求抛物线的解析式;(2)是否存在这样的P 点,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求∆PAC 为直角三角形时点P 的坐标.16.(2019·江西中考模拟)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线249y x bx c =-++经过A 、C 两点,与AB 边交于点D . (1)求抛物线的函数表达式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S .①求S 关于m 的函数表达式,并求出m 为何值时,S 取得最大值; ②当S 最大时,在抛物线249y x bx c =-++的对称轴l 上若存在点F ,使△FDQ 为直角三角形,请直接写出所有符合条件的F 的坐标;若不存在,请说明理由.专题一直角三角形的存在性问题【考题研究】这类问题主要是已知直角三角形的一边(即直角三角形的两个点确定),求解第三点。
2019-2020中考数学压轴题突破与提升策略:全等三角形的存在性问题(无答案)
2019-2020中考数学压轴题突破与提升策略:全等三角形的存在性问题一. 问题解读全等三角形存在性的处理思路1.分析特征:分析背景图形中的定点、定线及不变特征,结合图形形成因素(判定等)考虑分类.注:全等三角形存在性问题主要结合对应关系及不变特征考虑分类.2.画图求解:往往先从对应关系入手,再结合背景中的不变特征分析,综合考虑边、角的对应相等和不变特征后列方程求解.3.结果验证:回归点的运动范围,画图或推理,验证结果.二. 例题解析例1.如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,与y轴交于点D,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式.(2)设抛物线对称轴与x轴交于点E,F是y轴上一动点,在y轴右侧的抛物线上是否存在一点P,使△POE与△POF全等?若存在,求出点P的坐标;若不存在,请说明理由.I 当△POE≌△POF时,OE=OF=1∴F1(0,1),F2(0,-1)①当OF 1=OE 时,此时∠F 1OP =∠EOP ,则l OP :y =x∴ 则或∴P 1) ②当OF 2=OE 时,此时∠F 2OP =∠EOP ,则l OP :y =-x∴则或∴P2(,)II 当△POE ≌△OPF 时,当OE ,PF 在OP 的异侧时,分析可得四边形OEPF 为平行四边形(矩形),此时,P 与A 重合,P 3(1,-4).当OE ,PF 在OP 的同侧时,分析可得四边形OEFP 为等腰梯形,此时不存在符合题意的点P .综上,点P 的坐标为(,),(,),(1,-4). 三. 练习反馈1.已知抛物线与x 轴交于A ,B 两点(点A 在点B的左侧),与y 轴交于点C ,直线与x轴交于点D .在第一象限内,若直线上223y xy x x =⎧⎨=--⎩32x y ⎧=⎪⎪⎨+⎪=⎪⎩32x y ⎧=⎪⎪⎨⎪=⎪⎩223y x y x x =-⎧⎨=--⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩1212-323212+12--存在点P,使得以P,B,D为顶点的三角形与△OBC全等,则点P的坐标为( )A.(4,1),(0,3)B.(4,1),(3,2)或(1,2)C.(4,1),(0,3)或(3,2)D.(4,1),(4,-1),(3,2)或(3,-2)2. 如图所示,抛物线的顶点为A,直线与y轴的交点为B,其中.若Q为抛物线的对称轴直线上一个动点,在对称轴左侧的抛物线上存在点P,使以P,Q,A为顶点的三角形与△OAB全等,则点P的坐标为( )A.B.C.D.3. 如图,在△ABC 中,AB=AC=10cm ,BC=8cm ,D 为AB 的中点.点P 在BC 边上以3cm/s 的速度由点B 向点C 运动;同时点Q 在AC 边上以相同的速度由点C 向点A 运动,其中一个点到达终点时另一个点也随之停止运动.当△BPD 与△CQP 全等时,点P 运动的时间为( )A. B. C. D.4. 如图,抛物线与x 轴的一个交点为A (-2,0),与y 轴交于点C ,对称轴与x 轴交于点B .若点D 在x 轴上,点P 在抛物线上,使得△PBD ≌△PBC ,则点P 的坐标为_____________________________________.与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过原点O ,与抛物线的一个交点为D (6,-8),与抛物线的对称轴交于点E ,连接CE .若点F 在抛物线上,使△FOE ≌△FCE ,则点F 的坐标为____________.6. 如图,抛物线与y 轴交于点C ,对称轴与x 轴交于点D ,顶213442y x x =-++38x -21(2)62y x =--+点为M.设点Q是y轴右侧该抛物线上的一动点,若经过点Q的直线QE与y轴交于点E,使得以O,Q,E为顶点的三角形与△OQD全等,则直线QE的解析式为_______________.7.如图,在平面直角坐标系中,点A坐标为(2,1),点B坐标为(3,0),点D 为平面直角坐标系中任一点(与点O,A,B不重合).(1)△AOB和△DOB的公共边为_________.(2)若△DOB与△OAB全等,则点D的坐标为_________.(3)在下图中画出可能的△DOB,并考虑与△AOB之间的联系.8. 如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,与y轴交于点D,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式.(2)设抛物线对称轴与x轴交于点E,F是y轴上一动点,在y轴右侧的抛物线上是否存在一点P,使△POE与△POF全等?若存在,求出点P的坐标;若不存在,请说明理由.9. 如图,抛物线C 1经过A ,B ,C 三点,顶点为D ,且与x 轴的另一个交点为E .(1)求抛物线C 1的解析式.(2)设抛物线C 1的对称轴与x 轴交于点F ,另一条抛物线C 2经过点E (抛物线C 2与抛物线C 1不重合),且顶点为M (a ,b ),对称轴与x 轴交于点G ,且以M ,G ,E 为顶点的三角形与以D ,E ,F 为顶点的三角形全等,求a ,b 的值.(只需写出结果,不必写出解答过程)10.已知抛物线经过点A (2,0),顶点为P ,与x 轴的另一交点为B .(1)求b 的值及点P ,点B 的坐标.(2)如图,在直线上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由.(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,请求出点M 的坐标;如果不存在,试说明理由.22y x bx =++y=11. 如图,已知抛物线y =ax 2+bx +c 经过点A (-6,0),B (2,0)和C (0,3),点D 是该抛物线的顶点,AC ,OD 相交于点M .(1)求点D 的坐标.(2)在x 轴下方的平面内是否存在点N ,使△DBN 与△ADM 全等?若存在,请求出该点的坐标;若不存在,请说明理由.12.已知抛物线过点(-6,-2),与y 轴交于点C ,且对称轴与x 轴交于点B (-2,0),顶点为A .(1)求该抛物线的解析式和点A 的坐标.(2)若点M 是第二象限内该抛物线上的一个动点,经过点M 的直线MN 与y 轴交于点N ,是否存在以O ,M ,N 为顶点的三角形与△OMB 全等?若存在,请求出直线MN 的解析式;若不存在,请说明理由.212y x bx c =-++13. 如图,在平面直角坐标系中,直线l 1过点A (1,0)且与y 轴平行,直线l 2过点B (0,2)且与x 轴平行,直线l 1与l 2相交于点P .点E 为直线l 2上一点,反比例函数(k >0)的图象过点E 且与直线l 1相交于点F . (1)若点E 与点P 重合,求k 的值.(2)连接EF .是否存在点E 及y 轴上的点M ,使得以M ,E ,F 为顶点的三角形与△PEF 全等?若存在,求出点E 的坐标;若不存在,请说明理由. k y x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学冲刺难点突破几何证明问题专题一几何证明之三角形中的存在性问题1、如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB平移至线段CD,使点A的对应点C在x轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴=+,解得:k=2.(3)∠BPD=∠BCD+∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.2、在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证△A'CD是等边三角形;(2)如图2,设AC中点为E,A'B'中点为P,AC=a,连接EP.在旋转过程中,线段EP的长度是否存在最大值?如果存在,请求出这个最大值并说明此时旋转角θ的度数,如果不存在,请说明理由.(1)证明:∵AB∥CB',∴∠BCB'=∠ABC=30°,∵将△ABC绕顶点C顺时针旋转,∴∠ACA'=30°.又∵∠ACB=90°,∴∠A'CD=60°.又∵∠CA'B'=∠CAB=60°,∴△A'CD是等边三角形.(2)当θ=120°时,EP的长度最大,EP的最大值为a.解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA′=120°,∵∠B′=30°,∠A′CB′=90°,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=a.3、如图,等腰△ABC中,BA=BC,AO=3CO=6.动点F在BA上以每分钟5个单位长度的速度从B点出发向A点移动,过F作FE∥BC交AC边于E点,连结FO、EO.设F点移动的时间为t.(1)求A、B两点的坐标;(2)计算:当△EFO面积最大时,t的值;(3)在(2)的条件下,边BC上是否还存在一个点D,使得△EFD≌△FEO?若存在,请直接写出D点的坐标;若不存在,试说明理由.解:(1)∵CO=2,∴C(2,0).又∵AO=3OC=6,∴A(0,6),可设BO=x,且x>0;则:BC2=(2+x)2,AB2=AO2+OB2=36+x2;又∵BC=AB,∴(2+x)2=36+x2,故:x=8,∴B(﹣8,0);(2)过F点作FK⊥BC于K,可设F点移动的时间为t,且0<t<2,则:BF=5t,TO=FK=3t;∴AT=6﹣3t,又∵FE∥BC,∴△AFE∽△ABC,而AO⊥BC交EF于T,则:=,∴=,即:EF=10﹣5t,故:S△EFO=EF×TO=(10﹣5t)×3t,即:S△EFO=﹣(t﹣2)t=,∴当t=1时,△EFO的面积达到最大值;(3)在(2)的基础上,E、F分别是AC、AB的中点,若使D为BC的中点时,===,又∵==,∴FO=ED,EO=FD,EF=FE,∴△EFD≌△FEO(SSS),∵C(2,0),B(﹣8,0)∴D(﹣3,0).故:存在满足条件的D点,其坐标为(﹣3,0).4、如图,在平面直角坐标系xOy中,A(a,0),B(0,b),C(c,0).且满足:+(c+1)2+(b+2c)2=0.(1)求证:△ABC是直角三角形;(2)在y轴上是否存在点P,使得△ABP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在y轴上是否存在点D,使得∠BCD=45°?若存在,请求出点D的坐标;若不存在,请说明理由.(1)证明:∵+(c+1)2+(b+2c)2=0,≥0,(c+1)2≥0,(b+2c)2≥0,∴a﹣4=0,c+1=0,b+2c=0,解得,a=4,b=2,c=﹣1,∴BC2=12+22=5,AB2=22+42=20,AC2=25,∴BC2+AB2=AC2.∴△ABC是直角三角形;(2)解:AB==2,当BA=BP,点P在点B的上方时,OP=2+2,此时,点P的坐标为(0,2+2),当BA=BP,点P在点B的下方时,OP=2﹣2,此时,点P的坐标为(0,2﹣2),当AB=AP时,∵OA⊥BP,∴OP=OB=2,此时,点P的坐标为(0,2),当PA=PB时,设点P的坐标为(y,0),PB=2﹣x,PA=,则2﹣x=,解得,x=﹣3,此时,点P的坐标为(0,﹣3),综上所述,△ABP为等腰三角形时,点P的坐标为(0,2+2)或(0,2﹣2)或(0,2)或(0,﹣3);(3)解:假设存在点D,使得∠BCD=45°,点D的坐标为(0,b),作DH⊥BC于H,CD=,BD=2﹣b,在Rt△CDH中,∠BCD=45°,∴CH=DH=CD=,∴BH=﹣,在Rt△BHD中,BH2+DH2=BD2.即(﹣)2+()2=(2﹣b)2.解得,x1=(舍去),x2=,∴点D的坐标为(0,).5、已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)问题发现如图①,若点E、F分别是AB,AC的中点,连接DE,DF,EF,则线段DE与DF的数量关系是,线段DE与DF的位置关系是;(2)拓展探究如图②,若点E,F分别是AB,AC上的点,且BE=AF,连接DE,DF,EF,上述结论是否依然成立?若成立,请给出证明;若不成立,请说明理由;(3)解决问题当点E,F分别为AB,CA延长线上的点,且BE=AF=AB=2,连接DE,DF,EF,直接写出△DEF的面积.解:(1)结论:DE=DF,DE⊥DF.理由:连接AD,∵AB=AC,∠BAC=90°,BD=CD,∴AD⊥BC,∴AD=BD=CD,∴∠ADB=∠ADC=90°,∵AE=EB,AF=FC,∴DE⊥AB,DF⊥AC,∴DE=AB,DF=AC,∴DE=DF.∵∠DEA=∠EAF=∠DFA=90°,∴∠EDF=90°,∴DE⊥DF,故答案为:DE=DF,DE⊥DF.(2)结论成立,DE=DF;DE⊥DF.证明:如解图①,连接AD,∵AB=AC,∠BAC=90°,点D为BC的中点,∴,且AD平分∠BAC,∴∠BAD=∠CAD=45°,在△BDE和△ADF中,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,即DE⊥DF;(3)如图③,连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,点D为BC的中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴DF=DE,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,∴△DEF为等腰直角三角形,∵,∴AE=CF=2+4=6,在Rt△AEF中,EF2=AF2+AE2=22+62=40,∴,∴.6、在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为.(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=12,求CF的最大值.解:(1)如图1中,设AD交EC于点O,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=30°,∵BA=CA,∠ACE=∠ACB=∠B,BD=CE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,故答案为30°.(2)(1)中的结论还成立.理由:如图2中,∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°,又∵∠ACM=∠ACB,∴∠B=∠ACM=30°,又∵CE=BD,∴△ABD≌△ACE(SAS),∴AD=AE,∠1=∠2,∴∠2+∠3=∠1+∠3=∠BAC=120°,即∠DAE=120°,又∵AD=AE,∴∠ADE=∠AED=30°.(3)∵AB=AC,AB=12,∴AC=12,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴,∴AD2=AF•AC,∴AD2=12AF,∴,∴当AD最短时,AF最短、CF最长,易得当AD⊥BC时,AF最短、CF最长,此时.,∴CF=AC﹣AF=12﹣3=9,∴CF的最大值为9.7、等腰直角△ABC和等腰直角△ACD,M、N分别在直线BC、CD上.(1)如图1所示,M、N分别在线段BC、CD上,若AM⊥MN,求证:AM=MN.(2)若M、N分别在线段BC、CD外(还在直线BC、CD上),根据题意,画出图形,那么(1)的结论是否依然成立,若成立,写出证明过程;若不成立,说明原因;(3)如图2,若AM=MN,求证:AM⊥MN.解:(1)延长DC,交AB的延长线于H,连接HM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∵等腰直角△ABC和等腰直角△ACD,∴∠MCD=135°,∴∠BCH=45°,∴△BHC为等腰直角三角形,∴BC=BH,∵AB=BC,∴AB=BH,∴BC是AH的垂直平分线,∴AM=BH,∴∠BHM=∠BAM,∴∠NMC=∠BHM,∵∠NMC+∠MNC=45°,∠BHM+∠MHC=45°,∴∠MHC=∠MNC,∴HM=MN,∴AM=MN;(2)(1)的结论依然成立,第一种情况:如图3所示,延长DC,交AB的延长线于H,连接HM;由(1)可知,MC是AH的垂直平分线,∴AM=MH,∴∠BAM=∠BHM,∵AM⊥MN,∴∠NMC+∠AMB=90°,∵∠ABC=90°,∴∠BAM+∠AMB=90°,∴∠NMC=∠BAM,∴∠BHM=∠NMC,∵∠MHN=∠BHM+45°,∠MNH=∠NMC+45°,∴∠MHN=∠MNH,∴MN=MH,∴AM=MN;第二种情况:如图4所示,仿照第一种情况的证明方法,可以证明AM=MN;(3)如图2,延长DC,交AB的延长线于H,连接HM,由(1)可得BC是AH的垂直平分线,∴HM=AM=MN,∴∠MAB=∠MHB,∠MHC=∠MNC∵∠MHB+∠MHC=45°,∠MNC+∠NMC=45°,∴∠MHB=∠NMC,∵∠MHB=∠MAB,∴∠BAM=∠NMC,∵∠BAM+∠AMB=90°,∴∠AMB+∠NMC=90°,∴∠AMN=90°,∴AM⊥MN.8、如图,在Rt△ABC中,AC=BC,∠ACB=90°,D、E分别在AC、BC上,连接AE、BD交于点O,且CD=CE.(1)如图1,求证:AO=BO.(2)如图2,F是BD的中点,试探讨AE与CF的位置关系.(3)如图3,F、G分别是BD、AE的中点,若AC=,CE=,求△CGF的面积.解:(1)如图1中,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵CA=CB,∴∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB.(2)如图2,设AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,设AE与CF的交点为M,∵AC=,∴BC=AC=,∵CE=,∴CD=CE=,在Rt△BCD中,根据勾股定理得,BD==,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,∴S△CEF=CE•FH=××=,由(2)知,AE⊥CF,∴S△CEF=CF•ME=×ME=ME,∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,∴S△CFG=CF•GM=××=.9、如图,在平面直角坐标系中,点A在y轴上,点B、C在x轴上,∠ABO=30°,AB=2,OB=OC.(1)如图1,求点A、B、C的坐标;(2)如图2,若点D在第一象限且满足AD=AC,∠DAC=90°,线段BD交y轴于点G,求线段BG的长;(3)如图3,在(2)的条件下,若在第四象限有一点E,满足∠BEC=∠BDC.请探究BE、CE、AE之间的数量关系.解:(1)∵∠AOB=90°,∠ABO=30°,AB=2,∴OA=1,OB=,∴A(0,1),B(﹣,0),∵OB=OC,∴C(,0).(2)过点D作DM⊥y轴于点M,过点D作DN⊥x轴于点N,由题意,y轴是线段BC的垂直平分线,∴AB=AC,∴∠ABO=∠ACO=30°,∵∠DAC=90°,x轴⊥y轴,∴∠DAM=∠ACO=30°,又AD=AC,∠AMD=∠CAO,∴△AMD≌△COA(AAS),∴DM=AO,AM=CO,∵AO=1,CO=,∴DM=ON=1,AM=,∴D(1,+1),∴DN=+1,又BN=OB+ON=+1,∴△BND是等腰直角三角形,∴∠DBN=45°,∴△GBO是等腰直角三角形,∴BG=OB==;(3)由(2)可知:∠DBN=45°,∠DCB=30°+45°=75°,∴∠BDC=180°﹣45°﹣75°=60°,∵∠BEC=∠BDC,∴∠BEC=60°,延长EB至F,使BF=CE,连接AF,∵∠ABC=∠ACB=30°,∴∠BAC=120°,∴∠ACE+∠ABE=180°,∵∠ABF+∠ABE=180°,∴∠ABF=∠ACE,又∵AB=AC,BF=CE,∴△ABF≌△ACE(SAS),∴AF=AE,∠BAF=∠CAB,∴∠FAE=∠BAC=120°,∴FE=AE,∴BE+CE=BE+BF=FE=AE,即BE+CE=AE.11、已知:点B、C在∠MAN的边AM、AN上,AB=AC,点E,F在∠MAN内部的射线AD上(1)特殊情况:如图1,当∠MAN=90°时,BE⊥AD于点E,CF⊥AD于点F.求证:△ABE≌△CAF.(2)一般情况:如图2,当∠MAN为任意锐角时,若∠BED=∠CFD=∠MAN,则(1)式结论是否仍然成立?若成立,请证明,若不成立,请说明理由.证明:(1)如图①中,∵∠MAN=90°,∵BE⊥AD,CF⊥AD,∴∠BEA=∠AFC=90°,∴∠BAE+∠EBA=90°,∴∠CAF=∠EBA,∵AB=AC,∴△BAE≌△ACF(AAS).(2)如图2,(1)中结论仍然成立,理由:如图②中,∵∠1=∠BAE+∠ABE,∠1=∠BAC,∴∠BAC=∠BAE+∠ABE,∵∠BAC=∠BAE+∠CAF,∴∠ABE=∠CAF,∵∠1=∠BAE+∠ABE,∠2=∠CAF+∠ACF,∠1=∠2,∴∠BAE=∠ACF,∵AB=AC,11、(1)如图1,AD∥BC,AD=BC,AC与BD相交于点O,求证:△AOD≌△BOC;(2)如图2,过线段AB的两个端点作射线AM,BN,使AM∥BN.①作∠MAB,∠NBA的平分线交于点E,∠AEB是什么角?为什么?②过点E任作一条直线,交AM于点D,交BN于点C.证明:DE=CE;③试说明无论DC的两个端点在AM,BN上如何移动,只要DC经过点E,AD+BC的值就不变.解:(1)∵AD∥BC,∴∠D=∠B,∠A=∠C,∵AD=BC,∴△AOD≌△BOC(ASA);(2)①∵AM∥BN,∴∠MAB+∠ABN=180°,又AE,BE分别为∠MAB、∠NBA的平分线,∴∠BAE+∠ABE=(∠MAB+∠ABN)=90°,∴∠AEB=180°﹣∠BAE﹣∠ABE=90°,即∠AEB为直角;②延长AE,交BN于点F,∵AM∥BN,∴∠MAF=∠AFB,∵∠MAE=∠BAE,∴∠BAF=∠AFB,∴BA=FB,∵∠AEB为直角,∴AE=EF,∵∠DAE=∠EFC,∠AED=∠CEF,∴△DAE≌△CFE(ASA),∴ED=EC;③由②中结论可知,AB=BF,无论DC的两端点在AM、BN如何移动,只要DC经过点E,总有△DAE≌△CFE,总有AD=CF;所以总有AD+BC=2EF=AB.。