汉诺塔游戏ppt课件
《Hanoi塔问题》课件
在游戏设计和人工智能领域,Hanoi塔问题可以作为解决游戏策略和决策问题的 模型。例如在围棋、象棋等游戏中,可以利用Hanoi塔问题的解法来设计更强大 的游戏AI。
PART 04
Hanoi塔问题的扩展和变 种
REPORTING
带限制的Hanoi塔问题
总结词
带限制的Hanoi塔问题是指在移动盘 子时,需要满足一些特定的限制条件 。
分治策略解法的优点是能够将问题分 解为更小的子问题,降低问题的复杂 度。但缺点是需要仔细设计子问题的 分解方式和合并方式,以确保能够正 确地解决问题。
PART 03
Hanoi塔问题的应用
REPORTING
在计算机科学中的应用
算法设计
Hanoi塔问题可以作为解决复杂算法问题的模型,例如在解决图论、动态规划 等算法问题时,可以利用Hanoi塔问题的特性来设计更高效的算法。
决。
在Hanoi塔问题中,递归解法的基本思 路是将问题分解为三个子问题:将n个 盘,最后将第n个盘子从
A柱移动到B柱。
递归解法的优点是思路简单明了,易于 理解。但缺点是对于大规模问题,递归 解法的时间复杂度较高,容易造成栈溢
出。
动态规划解法
动态规划解法是一种通过将问题分解为子问题并存储子问题的解来避免重复计算的方法。
数学模型的应用
汉诺塔问题可以通过数学模型进行描述和解决,如使用递归公式或动态规划方法。理解如何将实际问题转化为数 学模型,并运用数学工具进行分析和解决,是数学应用的重要能力。
对解决问题的方法论的启示
解决问题的思维方式
汉诺塔问题提供了一种独特的思维方式,即通过不断将问题分解为更小的子问题来解决。这种思维方 式有助于我们在面对复杂问题时,能够更加清晰地理解和分析问题,从而找到有效的解决方案。
3Done 汉诺塔教学课件
总结归纳
名称 塔基 柱子 圆环
运用到的3D技术
创意汉诺塔
我认为创新的汉诺塔应该是: 外形漂亮□ 价格合理□ 材料环保□
使用方便□
• 1. 各位同学继续修改完善汉诺塔,建议每一位 同学独立制作一 个有创意汉诺塔。
• 2.下一节课开一个创意汉诺塔展览会。
பைடு நூலகம்
探秘汉诺塔
玩一玩汉诺塔游戏
/
刚才我们在玩的过程中发现这个游戏有 什么规则?
大家再玩一次,移动1个、2个、3个圆 盘,思考发现什么规律?
动手制作汉诺塔
大家在制作塔基、三根柱子、大小不一样 的圆环,发现哪个最好制作?哪个最难制作? 有没有更好的办法?
汉诺塔问题的详解课件
03 汉诺塔问题的变 种和扩展
多层汉诺塔问题
01
02
03
定义
多层汉诺塔问题是指将多 层的盘子从一个柱子移动 到另一个柱子,同时满足 汉诺塔问题的规则。
难度
随着盘子层数的增加,解 决问题的难度呈指数级增 长。
子从中间柱子移动到目标柱子。
递归解法的优点是思路简单明了,易于 理解。但是,对于较大的n值,递归解 法的时间复杂度较高,容易造成栈溢出
。
分治策略
分治策略是解决汉诺塔问题的另一种方法。它将问题分解为若干个子问题,分别求解这些子 问题,然后将子问题的解合并起来得到原问题的解。
分治策略的基本思路是将汉诺塔问题分解为三个阶段:预处理阶段、递归转移阶段和合并阶 段。预处理阶段将n-1个盘子从起始柱子移动到中间柱子,递归转移阶段将第n个盘子从起 始柱子移动到目标柱子,合并阶段将n-1个盘子从中间柱子移动到目标柱子。
制作汉诺塔问题的动画演示
除了使用Python或数学软件进行可视化演示外,还可以使 用动画制作软件来制作汉诺塔问题的动画演示。这些软件 提供了丰富的动画效果和编辑工具,可以创建生动有趣的 演示。
在动画演示中,可以使用不同的颜色和形状来表示不同的 柱子和盘子。通过添加音效和文字说明,可以增强演示的 视觉效果和互动性。最终的动画演示可以保存为视频文件 ,并在任何支持视频播放的设备上播放。
使用Python的图形库,如matplotlib或tkinter,可以创建汉诺塔的动态演示。 通过在屏幕上绘制柱子和盘子,并模拟移动过程,可以直观地展示汉诺塔问题的 解决方案。
Python代码可以编写一个函数来模拟移动盘子的过程,并在屏幕上实时更新盘 子的位置。通过递归调用该函数,可以逐步展示移动盘子的步骤,直到所有盘子 被成功移动到目标柱子上。
汉诺塔问题的详解课件
04
数据结构与排序
汉诺塔问题也可以用来解释和演示不同的 数据结构和排序算法。
05
06
通过汉诺塔问题,人们可以更好地理解如 堆、栈等数据结构的应用和优劣。
在物理学中的应用
复杂系统与自组织
汉诺塔问题在物理学中常被用来研究复杂系统和自组织现 象。
通过对汉诺塔问题的深入研究,人们可以发现其在物理学 中的一些应用,如量子计算、自旋玻璃等。
人工智能与机器学习
在人工智能和机器学习中,汉诺塔问题可以被用来演示 如何使用不同的算法来解决问题。
06
总结与展望
对汉诺塔问题的总结
汉诺塔问题是一个经典的递归问题,其核心在于将一个复杂的问题分解为若干个简单的子问题来解决 。
通过解决汉诺塔问题,我们可以了解到递归算法在解决复杂问题中的重要性,以及将大问题分解为小问 题的方法。
此外,汉诺塔问题还被广泛应用于数学教育和计算机 科学教育中,成为许多课程和教材中的经典案例之一
。
02
汉诺塔问题的数学模型
建立数学模型
定义问题的基本参数
盘子的数量、柱子的数量和塔的直径 。
建立数学方程
根据问题的特点,我们可以建立如下 的数学方程。
递归算法原理
递归的基本思想
将一个复杂的问题分解成更小的子问题来解决。
通过深入研究汉诺塔问题的本质和解决方法,我们可以 为解决其他领域的问题提供有益的启示和方法。
THANKS
感谢观看
其他移动规则
除了传统的规则(盘子只能放在更大的盘子下面)之外,还 可以有其他移动规则,这会改变问题的性质和解决方案。
05
汉诺塔问题的应用场景
在计算机科学中的应用
算法设计与优化
01
《汉诺塔游戏》PPT课件.ppt
显 示 函 数
演 示 移 动 函 数
递 归 演 示 函 数
程 序 类 说 明
Di sk 类 说 明
程 序 手 动 测 试 画 面
程 序 自 动 执 行 画 面
汉诺塔游戏演示
游戏来源
汉诺塔(又称河内塔)问题是印度的一个古老的 传说。开天辟地的神勃拉玛在一个庙里留下了三根 金刚石的棒,第一根上面套着64个圆的金片,最大 的一个在底下,其余一个比一个小,依次叠上去, 庙里的众僧不倦地把它们一个个地从这根棒搬到另 一根棒上,规定可利用中间的一根棒作为帮助,但 每次只能搬一个,而且大的不能放在小的上面。解 答结果请自己运行计算,程序见尾部。面对庞大的 数字(移动圆片的次数)18446744073709551615, 看来,众僧们耗尽毕生精力也不可能完成金片的移 动。 后来,这个传说就演变为汉诺塔游戏
立 刻 显 示 结 果
程序设计流程图
汉诺塔 游戏
递 归 函 数
选 择 函 数
显 示程序功能解析
优点:(1)这个程序可以简 单的进行游戏演示,分为1-7关, 第一关为3个盘子,第二关有4个 盘子,第三关有5个盘子…... (2)可以显现每步移动的方向, 可视化界面
(3)程序稍加变化,就可以自动演 示
问题要求
汉诺塔益智游戏,完成以下功能:在平面上有A,B,C,三个 位置,在A位置上有N个大小不等得长方形塔,从上至下, 依次排列,要求将A位置得N个长方形,通过B位置,移动到 C位置
设计思想
定义一个position类,它名含友元类disk,其次有公有成 员:过关条件判断函数 check(),HANO塔显示函数 display(),HANO塔初始化函数initial();对于HANO塔数据 int a[10] ; int b[10]; int c[10]则为保护成员,这组数据是在游 戏时用来动态显示游戏过程最重要的一组数据。设为保护成 员是为了便于以后派生类disk的访问 派生类disk是对基类position的公有继承,它的公有成员 名括主菜单界面函数welcome(),演示中的移动函数 mov(char x,char y,int N),递归演示函数hano(int n,char a,char b,char c,int N)
汉诺塔课件PPT课件
7.6 函数的递归调用
定义
函数执行的过程中, 直接或者间接的调用 该函数本身,称为函 数的递归调用。
包括:回溯和递推 两个过程
int fun(int n) {
…
z=n*fun(n-1);
…}
第21页/共86页
引例:了解递归问题的回溯和递归两个过程
例7.6
有5个学生,
问第5个学生几岁,他说比第4个学生大2岁。
z=(x>y)?x,y; return z; }
第8页/共86页
复习
4. 函数调用过程
值 形参
实参
39
c = max( a , b ); (main函数)
int max(int x,int y) 9 { int z;
z=(x>y)?x,y; return z; }
第9页/共86页
复习
4. 函数调用过程
把函数头信息,如int max(int x,int y) 通知给编译系统,以便在调用时系统 按此检查调用的合法性。 c = max ( a , b );
第11页/共86页
复习
5. 函数声明 在 哪里 对 谁 进行声明: 主调函数内部对被调用函数进行声明
若main()调用max(),则在( )函数 内部,对( )函数进行声明。
第12页/共86页
复习
5. 函数声明 在 哪里 对 谁 进行声明: 主调函数内部对被调用函数进行声明
若main()调用max(),则在(main)函数 内部,对(max)函数进行声明。
第13页/共86页
复习
5. 函数声明 声明方法:函数原型(首部)加分号
void main() { int a,b;
汉诺塔动画演示课件
汉诺塔的规则和玩法
01
02
03
04
05
规则:汉诺塔的规则是 要求将所有的圆盘从起 始柱子移到目标柱子上, 移动过程中必须遵循以 下三个原 则
1. 每次只能移动一个圆 盘;
2. 圆盘只能放在比它大 3. 圆盘只能放在空柱子
的圆盘上;
上。
玩法:汉诺塔的玩法是 从起始柱子开始,按照 规则将圆盘逐个移到目 标柱子上。在移动过程 中,需要不断地将圆盘 进行分解和组合,以找 到最优的移动方案。
03
人工智能与机器学习
汉诺塔问题可以作为人工智能和机器学习领域的基准测试案例,用于评
估和优化算法和模型的性能。
在物理学中的应用
力学与运动学
汉诺塔问题涉及到物体的运动和相互作用,可以用来解释和演示力学和运动学的基本原理,如牛顿运 动定律、动量守恒定律等。
光学与视觉
汉诺塔问题中的不同颜色和形状的盘子可以用来模拟光线和颜色的传播和反射,可以用来解释和演示 光学和视觉的基本原理。
效地降低时间复杂度,提高求解效率。
优化二:使用遗传算法求解
总结词
遗传算法是一种基于生物进化原理的优化算法,可以用于求解组合优化问题。
详细描述
遗传算法是一种基于生物进化原理的优化算法,它通过模拟生物进化过程中的基因选择、交叉和变异等过程来寻 找最优解。在汉诺塔问题中,我们可以使用遗传算法来求解。首先,我们定义一个表示汉诺塔问题的染色体,然 后通过模拟选择、交叉和变异等过程来不断优化染色体的适应度,最终得到最优解。
02
汉诺塔动画演示
演示一:移动三个盘子
总结词:通过演示,展示汉诺塔问题最简单的情形,即只 有三个盘子需要移动。
详细描述
1. 起始状态:三个盘子叠在一起,放在第一个柱子上。
四上. 汉诺塔
第一根
第二根
第三根
1
第一根
第二根
第三根
2 1
第一根
第二根
第三根
3
2 1
温馨提示: 1. 先思考:最上面珠子放在第几根合适? 2.后动手:每一步是不是最合理的?
第一根
第二根
第三根
3
2 1
第一根
第二根
第三根
3
2 1
第一根
第二根
第三根
3
2 1
移动上面2个:3次 移动上面2个:3次
移动下面1个:1次 3+1+3=7()
第一根
第二根
第三根
3
2 1
谢谢
有趣的汉诺塔
宁波市奉化区江口街道方桥小学 郑娟娟
传说,大梵天创造世界的时候,在贝拿勒斯的 圣庙里,留下了三根金刚石的棒,第一根有64片金 片,大小不一,最大的一个在最底下,其余的一个 比一个小,依次叠放上去。不论白天黑夜,庙里的 众僧把它们一个个地从这根棒搬到另一根棒上,规 定可利用中间的一根棒作为帮助,但每次只能搬一 个,而且大的不能放在小的上面。神预言:当所有 的金环全部移完时,世界末日就会到来。
C09 汉诺塔
汉诺塔•法国数学家卢卡斯(Edouard Lucas)在1883年提出了一个数学游戏:•传说在世界中心贝拿勒斯(印度北部)的圣庙里,一块黄铜板上有三根宝石柱。
印度教的主神大梵天在创造世界的时候,在其中一根柱上从下到上地穿好了由大到小的64片金盘。
大梵天命令僧侣们将圆盘从下面开始按大小顺序重新摆放在另一根柱子上,并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
预言说当这些盘子移动完毕时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。
A B C•这个传说又称作梵天寺之塔问题(Tower of Brahma puzzle),而且有若干变体:其一是寺院的地点位于越南河内,因此该问题也常被称作“河内塔”或“汉诺塔(Tower of Hanoi)”。
•考虑该问题的一般形式:有n个圆盘,最初自下而上、自大而小地穿在A柱上,每次按规则移动一个圆盘,最终将所有圆盘移动到C柱上。
A B CA B C •共移动7次•先将A柱上所有其他盘子移到B柱上(这是一个类似于自己的子问题)•接着将最大的盘子从A柱移到C柱,之后不必再管它•最后再将刚才移到B柱上的盘子移到C柱上(这又是一个子问题)。
1……n-1nA B C•汉诺塔的递归算法 Hanoi (n, source, dest, by) 输入:圆盘数n。
• 1.If (n=1) then• 1.1.Print (Move disk from source to dest) • 2.Else• 2.1.Hanoi (n-1, source, by, dest)• 2.2.Print (Move disk from source to dest) • 2.3.Hanoi (n-1, by, dest, source)•递归算法直接解决足够简单? Y 通过一些操作简化为与自己类似的子问题N问题规模变小•用T(n)表示移动n 个圆盘所需要的步数•根据算法•先把前面n-1 个盘子转移到B上;•然后把第n 个盘子转到C上;•最后再次将B上的n-1 个盘子转移到C上•得到递推关系T(n)=2T(n-1)+1•使用倒推法求解T(n)=2T(n-1)+1, T(1)=1: T(n) = 2T(n-1)+1= 2(2T(n-2)+1)+1 =22T(n-2)+2+1= 22(2T(n-3)+1)+2+1 = 23T(n-3)+22+2+1= ……= 2n-1T(1)+2(n-1)-1+…+22+2+1= 2n-1+2(n-1)-1+…+22+2+1= 2n-1汉诺塔•回到最初的汉诺塔问题,要将64片金盘重新摆放在另一根柱子上,最少需要264-1步,即使僧侣每秒钟移动一步而且每次移动都是正确的方法,那么也需要5.8⨯1011 年,即5千多亿年!11E nd。