第10讲反比例函数与几何综合教案

合集下载

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。

过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。

二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。

难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。

三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。

环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。

环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。

环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。

四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。

五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。

九年级数学上册《反比例函数与几何综合运用》教案、教学设计

九年级数学上册《反比例函数与几何综合运用》教案、教学设计
3.提高题:结合几何知识,设计一些反比例函数与几何综合运用的问题,锻炼学生的几何直观和解决问题的能力。
例题:在直角坐标系中,已知点A(2, 3)和点B(-2, -3),求反比例函数y = k/x的图像上距离点A和点B相等的点C的坐标。
4.探究题:引导学生探究反比例函数与一次函数、二次函数的相互转化,提高学生对函数知识的综合运用能力。
(1)导入:通过实际情境引入反比例函数,让学生感受反比例函数在生活中的应用;
(2)新课:讲解反比例函数的定义、性质、图像,并结合几何图形进行展示;
(3)巩固:设计典型习题,让学生运用反比例函数知识解决问题,巩固所学;
(4)拓展:引导学生将反比例函数与一次函数、二次函数相互转化,解决复杂问题;
(5)实践:设计实际问题,让学生将反比例函数与几何知识综合运用,提高解决问题的能力;
2.提高题:设计一些反比例函数与一次函数、二次函数相结合的问题,提高学生解决问题的能力;
3.实践题:结合实际问题,让学生运用反比例函数知识解决几何综合问题。
在学生完成练习的过程中,我会及时给予反馈和指导,帮助学生找到问题所在,提高解题能力。
(五)总结归纳
在课堂尾声,我会对本节课的内容进行总结归纳,强调以下几点:
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了函数的基本概念和性质,能够运用一次函数和二次函数解决一些实际问题。在此基础上,他们对反比例函数的学习将更加深入和系统。然而,学生对反比例函数的理解和应用能力还存在一定的局限性,特别是将反比例函数与几何知识综合运用时,可能会遇到一定的困难。因此,在教学过程中,教师需要关注以下几点:
1.反比例函数的定义、性质和图像;
2.反比例函数在实际问题中的应用;
3.反比例函数与一次函数、二次函数的相互转化;

反比例函数教案及教学反思

反比例函数教案及教学反思

一、教案设计1.1 教学目标:(1) 知识与技能:使学生理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

(2) 过程与方法:通过观察、分析、归纳等方法,引导学生发现反比例函数的规律,提高学生解决问题的能力。

(3) 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学规律的欲望,培养学生的团队合作精神。

1.2 教学内容:(1) 反比例函数的概念:反比例函数是指形如y = k/x (k为常数,k≠0) 的函数。

(2) 反比例函数的性质:反比例函数的图像是一条通过原点的曲线,称为双曲线。

当k>0时,双曲线在第一、三象限;当k<0时,双曲线在第二、四象限。

(3) 反比例函数的应用:解决实际问题,如计算面积、速度、浓度等。

1.3 教学重点与难点:(1) 重点:反比例函数的概念和性质。

(2) 难点:反比例函数的应用。

1.4 教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,提高学生解决问题的能力。

1.5 教学过程:(1) 导入:通过生活中的实例,引导学生思考反比例关系,激发学生的学习兴趣。

(2) 讲解:讲解反比例函数的概念,引导学生观察、分析反比例函数的性质。

(3) 实践:让学生通过实际问题,运用反比例函数解决问题,巩固所学知识。

(5) 作业:布置相关练习题,巩固所学知识。

二、教学反思2.1 教学效果:通过本节课的教学,学生能够理解反比例函数的概念,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。

2.2 教学亮点:(1) 采用问题驱动法,引导学生主动探究,提高学生解决问题的能力。

(2) 结合生活中的实例,让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣。

2.3 改进措施:(1) 在实践环节,可以增加一些具有挑战性的问题,让学生在解决问题的过程中,进一步提高反比例函数的应用能力。

(2) 在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。

反比例函数与几何的综合应用(教案)

反比例函数与几何的综合应用(教案)
突破方法:通过典型题型,训练学生发现几何问题中的反比例关系,并运用函数知识进行解决。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数与几何的综合应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要根据面积或比例来求解问题的情况?”比如,我们如何根据已知的长和宽来求解矩形的面积。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数在几何问题中的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调反比例函数的性质和图像,以及它在几何问题中的应用这两个重点。对于难点部分,比如反比例函数与一次函数的交点求解,我会通过具体例题和逐步解析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与反比例函数在几何问题中应用相关的实际问题。
三、教学难点与重点
1.教学重点
(1)反比例函数的定义及其性质:反比例函数的定义,图像特点,以及其在实际中的应用。
举例:y = k/x(k≠0),解释k的取值对函数图像的影响,如k>0时图像位于一、三象限,k<0时图像位于二、四象限。
(2)反比例函数与其他函数的交点问题:分析反比例函数与一次函数、二次函数的交点情况,掌握求解方法。
(二)新课讲授(用时10形如y = k/x(k≠0)的函数,它的图像是一条经过原点的曲线。反比例函数在解决与比例相关的问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何利用反比例函数来求解矩形的面积,以及它如何帮助我们解决实际问题。
此外,我在课堂上尝试引导同学们提出问题、分析问题并解决问题,目的是培养他们的独立思考能力。但从实际情况来看,同学们在这一方面的表现还不够理想。因此,我计划在接下来的教学中,进一步加强这方面的训练,鼓励同学们敢于提问、善于提问。

第10讲反比例函数与几何综合 教案

第10讲反比例函数与几何综合  教案

反比例函数与几何综合(讲义)一、知识点睛反比例函数与几何综合的处理思路1. 从关键点入手.通过关键点坐标和横平竖直线段长的互相转化,可将函数特征与几何特征综合在一起进行研究.2. 对函数特征和几何特征进行转化、组合,列方程求解.若借助反比例函数模型,能快速将函数特征转化为几何特征.与反比例函数相关的几个模型,在解题时可以考虑调用.①结论:2||ABO ABCO S S k ==△矩形 结论:OCD ABCD S S =△梯形②结论:AB =CD③结论:BD ∥CE二、精讲精练1.如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,14OA OB=,函数9yx=-的图象与线段AB交于点M.若AM=BM,则直线AB的解析式为_________.的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是_________.3. 正方形A 1B 1P 1P 2的顶点P 1,P 2在反比例函数xy 2=(0x >)的图象上,顶点A 1,B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数xy 2=(0x >)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为_________.4. 如图,已知动点A 在函数4y x=(0x >)的图象上,AB x ⊥轴于点B , AC ⊥y 轴于点C ,延长CA 至点D ,使AD =AB ,延长BA 至点E ,使AE =AC . 直线DE 分别交x 轴、y 轴于点P ,Q .当QE :DP =4:9时,图中阴影部分的面 积为_________.5. 如图,直线12y x =与双曲线k y x =(0k >,0x >)交于点A ,将直线12y x =向上平移4个单位长度后,与y 轴交于点C ,与双曲线ky x=(0k >,0x >)交于点B .若OA =3BC ,则k 的值为____________.6. 如图,等腰直角三角形ABC 的顶点A ,C 在x 轴上,∠ACB =90°,AC BC ==,反比例函数3y x=(0x >)的图象分别与AB ,BC 交于点D ,E .连接DE ,当△BDE ∽△BCA 时,点E 的坐标为______________.7. 如图,A ,B 是双曲线ky x=(0k >)上的点,且A ,B 两点的横坐标分别为1,5,直线AB 交x 轴于点C ,交y 轴于点D .若6COD S =△,则k 的值为_____________.8. 如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数ky x=(0x <)的图象上,则k的值为_______.9. 如图,已知直线12y x =与双曲线ky x=(0k >)交于A ,B 两点,点B 的坐标为(-4,-2),C 为第一象限内双曲线ky x=(0k >)上一点.若△AOC 的面积为6,则点C 的坐标为__________________.10. 如图,M为双曲线y =M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于D ,C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴交于点B ,则AD ·BC 的值为_________.11. 如图,直线l :1y x =+与x 轴、y 轴分别交于A ,B 两点,点C 与原点O 关于直线l对称.反比例函数kyx=的图象经过点C,点P在反比例函数kyx=的图象上,且位于点C左侧,过点P作x轴、y轴的垂线,分别交直线l于M,N两点.则AN·BM的值为____________.反比例函数与几何综合(随堂测试)1.如图,已知第一象限内的点A在反比例函数2yx=的图象上,第二象限内的点B在反比例函数kyx=的图象上,且OA⊥OB,tan Ak的值为______________.2.A.1 B.2 C.3 D.43:如图,等边三角形ABO 的顶点B 的坐标为(-2,0),过点C (2,0)作直线CE ,交AO 于点D ,交AB 于点E ,点E 在反比例函数ky x=(0x <)的图象上.若 S △ADE =S △OCD ,则k =_____.4.如图,直线112y x =--与反比例函数k y x =(0x <)的图象交于点A ,与x 轴交于点B ,过点B 作x 轴的垂线交双曲线于点C .若AB =AC ,则k 的值为__________.5.如图,已知函数1+-=x y 的图象与x 轴、y 轴分别交于C ,B 两点,与双曲线k y x=交于A ,D 两点.若AB+CD =BC ,则k 的值为________.6.如图,将边长为4的等边三角形AOB 放置于平面直角坐标系xOy 中,F 是AB 边上的动点(不与点A ,B 重合),过点F 的反比例函数ky x=(0k >,0x >)与OA 边交于点E ,过点F 作FC ⊥x 轴于点C ,连接EF ,OF . (1)若OCF S =△(2)在(1)的条件下,试判断以点E 为圆心,EA 长为半径的圆与y 轴的位置关系,并说明理由.(3)AB 边上是否存在点F ,使得EF ⊥AE ?若存在,请求出BF :F A 的值;若不存在,请说明理由.答案: 3【思路分析】考虑通过横平竖直的线,将函数特征和几何特征结合起来:过点E 向x 轴作垂线,垂足为F .① 尝试将几何条件与横平竖直的线结合起来使用.EF 和OF 不能直接与S △ADE =S △OCD 产生联系;转为尝试将等边三角形ABO 与S △ADE =S △OCD 相结合,将S △ADE =S △OCD 转化为S △ABO =S △BCE 进行使用. ② 列方程求解.212EF BC ⋅=, 解得,EF13222OF =-=;即E (322-,),所以k=4-.4.5.6.。

反比例函数教案

反比例函数教案

反比例函数教案一、教学目标1. 理解什么是反比例函数及其基本性质;2. 掌握反比例函数的图像特点和变化规律;3. 能够解决与反比例函数相关的实际问题。

二、教学内容1. 反比例函数的定义和表示方法;2. 反比例函数图像的特点分析;3. 反比例函数的性质与变化规律;4. 反比例函数在实际问题中的应用。

三、教学过程导入:复习正比例函数的基本概念和性质。

1. 反比例函数的定义和表示方法反比例函数是指当自变量x的值增大时,函数值y的数量级会减小,且二者之间存在一个比例关系。

一般形式为 y = k/x,其中k为常数且k ≠ 0。

2. 反比例函数图像的特点分析(1)绘制反比例函数的图像:- 选取一些自变量的值,计算对应的函数值;- 按照坐标轴的刻度绘制函数图像;- 将各点连成一条曲线。

(2)观察反比例函数的图像特点:- 函数图像通过第一、第三象限的原点;- 函数图像在y轴的正半轴和x轴的负半轴上;- 函数图像近似于一个双曲线。

3. 反比例函数的性质与变化规律(1)解析性质:- 当x=0时,函数无定义;- 当x>0时,函数单调递减;- 当x<0时,函数单调递增。

(2)图像性质:- y轴正半轴上的函数值无上界,但接近于0;- x轴负半轴上,函数值无下界,但取值趋近于无穷大; - 函数图像关于y轴的负半轴对称。

4. 反比例函数在实际问题中的应用(1)解决实际问题:- 根据已知条件建立反比例函数模型;- 利用模型解决实际问题。

(2)例题分析:某贸易公司按照国际贸易规则计算货物的运输费用,运输费用与货物的重量成反比例关系,当货物重量为1000kg时,运费为500元,求运输4000kg货物的运费。

解:设运输费用为y(元),货物重量为x(kg),根据题意可建立反比例函数 y = k/x。

根据已知条件,当x=1000kg,y=500元,代入反比例函数求解常数k:500 = k/1000k = 500000代入x=4000kg,求解y:y = 500000/4000 = 125元答:运输4000kg货物的运费为125元。

反比例函数教案

反比例函数教案

反比例函数教案反比例函数教案(通用12篇)作为一名专为他人授业解惑的人民教师,往往需要进行教案编写工作,借助教案可以让教学工作更科学化。

优秀的教案都具备一些什么特点呢?下面是小编整理的反比例函数教案,欢迎大家借鉴与参考,希望对大家有所帮助。

反比例函数教案篇1教学目标:使学生对反比例函数和反比例函数的图象意义加深理解。

教学重点:反比例函数的应用教学程序:一、新授:1、实例1:(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?答:P=600s (s0),P 是S的反比例函数。

(2)、当木板面积为0.2 m2时,压强是多少?答:P=3000Pa(3)、如果要求压强不超过6000Pa,木板的面积至少要多少?答:至少0.lm2。

(4)、在直角坐标系中,作出相应的函数图象。

(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。

二、做一做1、(1)蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?电压U=36V , I=60k2、完成下表,并回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?R() 3 4 5 6 7 8 9 10I(A )3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;随堂练习:P145~146 1、2、3、4、5作业:P146 习题5.4 1、2反比例函数教案篇2一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。

二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。

运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。

案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。

师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。

通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。

二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。

复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。

案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。

师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。

那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。

生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。

反比例函数的图像与性质教案

反比例函数的图像与性质教案

反比例函数的图像与性质教案教案标题:反比例函数的图像与性质教学目标:1. 理解反比例函数的定义及其特点;2. 掌握绘制反比例函数图像的方法;3. 理解反比例函数图像的性质。

教学准备:1. 教师:准备反比例函数的定义、性质和图像的讲解材料;2. 学生:准备笔、纸和计算器。

教学过程:导入(5分钟):1. 引入反比例函数的概念,与学生一起回顾比例函数的定义及其性质;2. 提问:你们对反比例函数有什么了解?它与比例函数有何不同?讲解(15分钟):1. 讲解反比例函数的定义:y = k/x,其中k为常数且不等于0;2. 解释反比例函数的性质:当x增大时,y减小;当x减小时,y增大;3. 通过实例演示如何计算反比例函数的值,并讨论k的正负对函数图像的影响;4. 讲解反比例函数图像的特点:曲线经过第一象限的原点,且与坐标轴无交点。

练习(15分钟):1. 学生在纸上绘制反比例函数y = 3/x的图像,并标出至少5个点;2. 学生计算并填写表格:x取1、2、3、4、5时,对应的y值;3. 学生观察表格数据,并总结反比例函数图像的特点。

拓展(10分钟):1. 引导学生思考:如果反比例函数的定义中的k为负数,图像会有什么变化?2. 学生尝试绘制反比例函数y = -2/x的图像,并与之前的图像进行比较;3. 学生讨论负数k对反比例函数图像的影响,并总结出结论。

归纳(5分钟):1. 教师与学生一起总结反比例函数的图像与性质;2. 学生回答以下问题:反比例函数图像经过哪个象限的原点?与坐标轴是否有交点?作业:1. 学生完成课堂练习的剩余部分,并绘制反比例函数y = -4/x的图像;2. 学生回答书面问题:反比例函数图像的性质与比例函数图像的性质有何不同?评估:1. 教师检查学生在课堂练习中的图像绘制情况;2. 教师评估学生对反比例函数图像与性质的理解程度。

教学延伸:1. 学生可以进一步探索反比例函数的应用,如在实际问题中的应用;2. 学生可以尝试绘制更多不同参数的反比例函数图像,比较它们之间的差异。

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)

反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。

2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。

教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。

今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。

这两种量之间是反比例关系。

活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。

(2)三角形的面积肯定,它的底与高。

(3)一个数和它的倒数。

(4)一捆100米电线,用去长度与剩下长度。

(5)圆柱体的体积肯定,底面积和高。

反比例函数的图象和性质教案设计

反比例函数的图象和性质教案设计

反比例函数的图象和性质教案设计第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。

通过实际例子,让学生理解反比例函数表示两个变量之间的关系。

1.2 反比例函数的表达式介绍反比例函数的一般形式y = k/x (其中k 为常数,k ≠0)。

解释反比例函数中的k 值对函数图象的影响。

第二章:反比例函数的图象特点2.1 反比例函数图象的形状引导学生观察反比例函数图象,发现其形状为双曲线。

解释双曲线的特点及其与反比例函数的关系。

2.2 反比例函数图象的渐近线引导学生观察反比例函数图象,发现其图象具有两条渐近线。

解释渐近线的概念及其在反比例函数图象中的表现。

第三章:反比例函数的性质3.1 反比例函数的单调性引导学生分析反比例函数在不同区间的单调性。

解释反比例函数单调性的原因及其与比例系数k 的关系。

3.2 反比例函数的奇偶性引导学生观察反比例函数图象,发现其具有奇偶性。

解释反比例函数奇偶性的概念及其与比例系数k 的关系。

第四章:反比例函数的应用4.1 反比例函数在实际问题中的应用提供实际问题,引导学生运用反比例函数解决问题。

解释反比例函数在实际问题中的应用场景,如速度与时间的关系。

4.2 反比例函数的综合应用提供综合问题,引导学生综合运用反比例函数解决问题。

强调反比例函数在其他数学领域中的应用,如在几何中的运用。

第五章:反比例函数的图象和性质的巩固练习5.1 反比例函数图象的绘制引导学生独立绘制反比例函数的图象,巩固对反比例函数图象的理解。

提供不同比例系数的函数,让学生绘制并分析其图象特点。

5.2 反比例函数性质的练习题提供练习题,让学生运用反比例函数的性质解决问题。

强调对反比例函数单调性、奇偶性等性质的理解和应用。

第六章:反比例函数的图象变换6.1 反比例函数的平移引导学生理解反比例函数图象的平移规律,即上下移动对应y 轴的平移,左右移动对应x 轴的平移。

反比例函数图像和性质(教学案)

反比例函数图像和性质(教学案)
02 过程与方法
通过观察、比较、分析、归纳等数学活动,培养 学生的数学思维能力,提高学生的数学素养。
03 情感态度与价值观
让学生感受数学与生活的密切联系,激发学生的 学习兴趣和求知欲,培养学生的创新意识和实践 能力。
教学内容
01 反比例函数的概念
通过实例引入反比例函数的概念,让学生理解并 掌握反比例函数的一般形式。
07
课堂小结与作业布置
课堂小结回顾本次课重点内容
01
02
03
反比例函数的概念
回顾反比例函数的定义,
强调函数形式$y
=
frac{k}{x}$($k neq 0$
)。
反比例函数的图像
总结反比例函数图像的特 点,包括图像所在的象限 、与坐标轴的交点情况等 。
反比例函数的性质
归纳反比例函数的主要性 质,如单调性、奇偶性等 ,并解释这些性质在函数 图像上的表现。
02 由于分母不能为零,因此$x neq 0$。
反比例函数表达式及参数意义
反比例函数的一般表达式为$y = frac{k}{x}$( 01 $k$为常数且$k neq 0$)。
参数$k$称为反比例系数,它决定了函数的图像和 02 性质。
当$k > 0$时,反比例函数的图像位于第一、三象 03 限;当$k < 0$时,反比例函数的图像位于第二、
作业布置针对本节课知识点进行巩固练习
绘制反比例函数图像
分析反比例函数性质
解决问题
思考题
要求学生自行选择几个不同的 $k$值,绘制对应的反比例函 数图像,并观察图像的变化规 律。
给出几个具体的反比例函数, 要求学生分析其单调性、奇偶 性等性质,并解释这些性质在 函数图像上的表现。

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:1. 知识与技能:(1)理解反比例函数的定义,掌握反比例函数的一般形式;(2)学会用图像和解析式表示反比例函数;(3)能够运用反比例函数解决实际问题。

2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用信息技术工具,绘制反比例函数的图像,观察其特点;(3)运用反比例函数解决生活中的实际问题,提高学生的应用能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣,提高学生学习数学的积极性;(2)培养学生合作探究的精神,提高学生的团队协作能力;(3)培养学生运用数学知识解决实际问题的能力,增强学生的实践能力。

二、教学重点与难点:1. 教学重点:(1)反比例函数的定义及其一般形式;(2)反比例函数的图像特点;(3)反比例函数在实际问题中的应用。

2. 教学难点:(1)反比例函数图像的绘制;(2)反比例函数在实际问题中的灵活运用。

1. 导入新课:(1)引导学生回顾正比例函数的知识,为新课的学习做好铺垫;(2)通过展示实例,引导学生发现反比例函数的规律。

2. 自主探究:(1)让学生根据实例,总结反比例函数的定义及其一般形式;(2)引导学生利用信息技术工具,绘制反比例函数的图像,观察其特点;(3)组织学生进行小组讨论,分享各自的学习心得。

3. 课堂讲解:(1)讲解反比例函数的定义及其一般形式;(2)讲解反比例函数的图像特点;(3)讲解反比例函数在实际问题中的应用。

4. 巩固练习:(1)设计练习题,让学生巩固反比例函数的知识;(2)鼓励学生运用反比例函数解决实际问题,提高学生的应用能力。

5. 小结与拓展:(1)对本节课的内容进行总结,加深学生对反比例函数的理解;(2)布置课后作业,让学生进一步巩固反比例函数的知识。

四、教学评价:1. 学生对反比例函数的定义、一般形式和图像特点的掌握程度;2. 学生运用反比例函数解决实际问题的能力;3. 学生在课堂上的参与程度、合作意识和团队协作能力。

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇反比例函数的图象与性质教案篇一教学目标1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3. 使学生会画出反比例函数的图象。

4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。

假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。

因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数。

即速度增大了,时间变小;速度减小了,时间增大。

2.自变量v的取值是v0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。

设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数。

即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系。

反比例函数图像与性质教案

反比例函数图像与性质教案

反比例函数图像与性质教案教案标题:反比例函数图像与性质教案教案目标:1. 了解反比例函数的定义及其性质。

2. 掌握绘制反比例函数图像的方法。

3. 理解反比例函数图像与性质之间的关系。

4. 能够应用反比例函数解决实际问题。

教学步骤:引入活动:1. 利用实际生活中的例子介绍反比例函数的概念,如速度与时间、工人数量与完成任务所需时间等。

2. 引导学生思考反比例函数的特点,如一个变量的增大导致另一个变量的减小,两个变量的乘积始终保持不变等。

知识讲解:3. 介绍反比例函数的定义:当两个变量x和y满足xy=k(k为常数)时,称y为x的反比例函数。

4. 解释反比例函数的性质:a. 当x趋近于0时,y趋近于无穷大;当x趋近于无穷大时,y趋近于0。

b. 反比例函数的图像通常是一个双曲线,以原点为对称中心。

c. 反比例函数的图像在第一、第三象限上。

d. 反比例函数的图像是渐近线y=0和x=0。

图像绘制:5. 指导学生绘制反比例函数的图像:a. 给定一个常数k,列出一组x和y的值,计算xy=k。

b. 绘制坐标系,并标出坐标轴和原点。

c. 根据计算得到的x和y的值,绘制点,并将它们连成一条曲线。

图像性质探究:6. 引导学生观察反比例函数图像的性质:a. 观察当x趋近于0时,y的变化情况。

b. 观察当x趋近于无穷大时,y的变化情况。

c. 观察反比例函数图像与x轴和y轴的关系。

d. 讨论反比例函数图像的对称性和渐近线。

应用实例:7. 提供一些实际问题,要求学生应用反比例函数解决问题,如速度与时间、工人数量与完成任务所需时间等。

总结和拓展:8. 总结反比例函数的定义和性质。

9. 引导学生思考反比例函数的应用领域,如经济学、物理学等。

10. 鼓励学生进一步探究反比例函数与其他数学概念的关系,如直线函数、二次函数等。

教学评估:11. 给学生几道练习题,检验他们对反比例函数图像与性质的理解和应用能力。

12. 针对学生的答题情况进行评估和反馈,及时纠正错误并加强巩固。

反比例函数与几何原理教案

反比例函数与几何原理教案

反比例函数与几何原理教案一、教材内容本教案主要针对初中数学反比例函数章节中的教学,内容涵盖反比例函数的基本概念、性质、解法以及与几何相关的应用等方面。

二、教学目标通过本教案的教学,学生能够掌握以下知识点:1、理解反比例函数的概念及其性质。

2、掌握反比例函数的图像特征及其变化规律。

3、熟练掌握反比例函数的解法。

4、了解反比例函数在几何中的应用,如面积、相似等。

三、教学重难点教学重点:1、反比例函数的概念和性质。

2、反比例函数的图像特征及其变化规律。

3、反比例函数的解法。

教学难点:1、反比例函数与几何原理的联系。

2、几何问题中反比例函数的应用。

四、教学方法1、问题导入法:运用问题和实例导入知识,引发学生兴趣。

2、演示法:将反比例函数的图像及其变化规律等内容在黑板上进行演示。

3、举例法:运用具体例子加深学生对反比例函数的理解。

4、分组讨论法:将学生分成小组讨论问题,激发学生的思维和创造力。

五、教学过程1、反比例函数的概念和性质教师通过问题导入法向学生提供一个实际生活中的例子:汽车行驶的速度与所花费时间的关系是什么?让学生思考,在交通中,与汽车速度有关的还有什么?引出反比例函数的概念。

教师再向学生展示如下函数及其图像:y=k/x其中,k为常数。

让学生通过对图像的观察,了解反比例函数的基本性质:当x越大时,y越小,当x越小时,y越大。

同时,通过更改k的值,观察反比例函数的图像特征及其变化规律。

2、反比例函数的解法教师向学生提供一道通过建立反比例函数方程解题的例子,如下:如果3个人可以在20天内完成一项工作,那么5个人需要几天才能完成该工作?解法:设5个人需要x天才能完成工作,设该工作需要a单位时间工作完成度,那么3个人在20天内完成工作的完成度为:3*20/a=60/a而5个人需要x天才能完成该项工作,在这个时间内,完成的完成度为:5*x/a根据反比例函数的概念可知:3*20/a=5*x/a即:x=12教师在学生掌握反比例函数的解法后,应给予学生足够的练习机会,帮助学生巩固所学内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数与几何综合(讲义)
一、知识点睛
反比例函数与几何综合的处理思路
1. 从关键点入手.通过关键点坐标和横平竖直线段长的互相转化,可将函数特
征与几何特征综合在一起进行研究.
2. 对函数特征和几何特征进行转化、组合,列方程求解.若借助反比例函数模
型,能快速将函数特征转化为几何特征.
与反比例函数相关的几个模型,在解题时可以考虑调用.

结论:2||ABO ABCO S S k ==△矩形 结论:OCD ABCD S S =△梯形

结论:AB =CD

结论:BD∥CE
二、精讲精练
1.如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴
上,
1
4
OA OB
=,函数
9
y
x
=-的图象与线段AB交于点M.若AM=BM,则直线
AB的解析式为_________.
2.
的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是_________.
3. 正方形A 1B 1P 1P 2的顶点P 1,P 2在反比例函数x
y 2
=
(0x >)的图象上,顶点A 1,B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数x
y 2
=
(0x >)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为_________.
4.如图,已知动点A在函数
4
y
x
=(0
x>)的图象上,AB x
⊥轴于点B,
AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴、y轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积为_________.
A
B
C D
E
P x
y
Q
O
5.如图,直线
1
2
y x
=与双曲线
k
y
x
=(0
k>,0
x>)交于点A,将直线
1
2
y x
=向上平移4个单位长度后,与y轴交于点C,与双曲线
k
y
x
=(0
k>,0
x>)交于点B.若OA=3BC,则k的值为____________.
x
y
C
B
A
O
6.如图,等腰直角三角形ABC的顶点A,C在x轴上,∠ACB=90°,
22AC BC ==,反比例函数3
y x
=(0x >)的图象分别与AB ,BC 交于点D ,
E .连接DE ,当△BDE ∽△BCA 时,点E 的坐标为______________.
y
x
D
E B C
O
A
7. 如图,A ,B 是双曲线k
y x
=
(0k >)上的点,且A ,B 两点的横坐标分别为1,5,直线AB 交x 轴于点C ,交y 轴于点D .若6COD S =△,则k 的值为_____________.
8.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,
0),(0,2),C,D两点在反比例函数
k
y
x
=(0
x<)的图象上,则k的值为
_______.
9.如图,已知直线
1
2
y x
=与双曲线
k
y
x
=(0
k>)交于A,B两点,点B的坐
标为(-4,-2),C为第一象限内双曲线
k
y
x
=(0
k>)上一点.若△AOC的
面积为6,则点C的坐标为__________________.
10. 如图,M 为双曲线3
y =
上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于D ,C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴交于点B ,
则AD ·BC 的值为_________.
A
B
C
D
M y x
O
11. 如图,直线l :1y x =+与x 轴、y 轴分别交于A ,B 两点,点C 与原点O 关
于直线l 对称.反比例函数k y x =
的图象经过点C ,点P 在反比例函数k y x
=的图象上,且位于点C 左侧,过点P 作x 轴、y 轴的垂线,分别交直线l 于M ,N 两点.则AN ·BM 的值为____________.
C P
N M
A B
l
O y x
反比例函数与几何综合(随堂测试)
1. 如图,已知第一象限内的点A 在反比例函数2
y x
=
的图象上,第二象限内的点B 在反比例函数k
y x
=的图象上,且OA ⊥OB ,tan A =3,则k 的值为______________.
2.
A.1 B.2 C.3 D
.4
3:如图,等边三角形ABO的顶点B的坐标为(-2,0),过点C(2,0)作直线CE,
交AO于点D,交AB于点E,点E在反比例函数
k
y
x
=(0
x<)的图象上.若
S
△ADE
=S△OCD,则
k =_____.
4.如图,直线1
12
y x =--与反比例函数k y x =(0x <)的图象交于点A ,与x 轴
交于点B ,过点B 作x 轴的垂线交双曲线于点C .若AB =AC ,则k 的值为__________.
5.如图,已知函数1+-=x y 的图象与x 轴、y 轴分别交于C ,B 两点,与双曲线k
y x
=交于A ,D 两点.若AB+CD =BC ,则k 的值为________.
6.如图,将边长为4的等边三角形AOB 放置于平面直角坐标系xOy 中,F 是AB
边上的动点(不与点A ,B 重合),过点F 的反比例函数k
y x
=(0k >,0x >)与OA 边交于点E ,过点F 作FC ⊥x 轴于点C ,连接EF ,OF . (1
)若OCF S =△
(2)在(1)的条件下,试判断以点E 为圆心,EA 长为半径的圆与y 轴的位置关系,并说明理由.
(3)AB 边上是否存在点F ,使得EF ⊥AE 若存在,请求出BF :FA 的值;若不存在,请说明理由.
答案: 3【思路分析】
考虑通过横平竖直的线,将函数特征和几何特征结合起来:过点E 向x 轴作垂线,垂足为F .
① 尝试将几何条件与横平竖直的线结合起来使用.
EF 和OF 不能直接与S △ADE =S △OCD 产生联系;转为尝试将等边三角形ABO 与S △ADE =S △OCD 相结合,将S △ADE =S △OCD 转化为S △ABO =S △BCE 进行使用. ② 列方程求解.
212EF BC ⋅=, 解得,EF
=
2,则13
222
OF =-=; 即E
(32-),所以k
=.
4.
5.
6.。

相关文档
最新文档