江苏省扬州中学2020-2021学年高二上学期12月月考数学试题

合集下载

江苏省扬州中学2013-2014学年高二上学期12月月考数学试题 Word版含解析

江苏省扬州中学2013-2014学年高二上学期12月月考数学试题 Word版含解析

江苏省扬州中学2013-2014学年高二上学期12月月考试卷数学试卷一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.命题“1,-=∈∃x e R x x ”的否定是 .2.抛物线x y 82=的焦点坐标为 .3.已知正四棱锥的底面边长是6,这个正四棱锥的侧面积是 .4.已知函数()sin f x x x =-,则()f x '= . 【答案】1cos x -. 【解析】试题分析:两函数的差求导数.分别求导再相减.故填1cos x -.正弦函数的导数是余弦函数. 考点:1.函数的差的求导方法.2.正弦函数的导数.5.一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为,x y.则x y≠的概率为.6.若双曲线221yxm-=的离心率为2,则m的值为.7.在不等式组所表示的平面区域内所有的格点(横、纵坐标均为整数的点称为格点)中任取3个点,则该3点恰能成为一个三角形的三个顶点的概率为.【答案】9 10.【解析】试题分析:如图总共有5个点,所以,每三个点一组共有10种情况.其中不能构成三角形的只有一种共线的情况.所以能够成三角形的占910.本题考查的是线性规划问题.结合概率的思想.所以了解格点的个数是关键.考点:1.线性规划问题.2.概率问题.3.格点问题.8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V9.已知椭圆22221(0)x y a b a b +=>>的离心率e =A,B 是椭圆的左、右顶点,P 是椭圆上不同于A,B的一点,直线PA,PB 倾斜角分别为,αβ,则cos()=cos +αβαβ-()10.若“2230x x -->”是 “x a <”的必要不充分条件,则a 的最大值为 .11.已知函数)0()232()(23>+--++=a d x b a c bx ax x f 的图像如图所示,且0)1(='f .则c d +的值是 .12. 设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线, 则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题...的序号 (写出所有真命题的序号).考点:1.面面平行.2.直线与平面平行.3.面面垂直.4.直线与平面垂直.13.已知可导函数)(x f )(R x ∈的导函数)(x f '满足)(x f '>)(x f ,则不等式()(1)x ef x f e >的解集是 .14.已知椭圆E:2214xy+=,椭圆E的内接平行四边形的一组对边分别经过它的两个焦点(如图),则这个平行四边形面积的最大值是.【答案】4.【解析】试题分析:当直线AB与x轴垂直的时候ABCD为矩形面积为当直线AB不垂直x轴时假设直线:(:(AB CDl y k x l y k x==.A(11,x y),B(22,x y).所以直线AB与直线CD的距离.又有22(44y k xx y⎧=⎪⎨+=⎪⎩.消去y可得:2222(41)1240x k x k+-+-=.2121224(31)41kx x x xk-+==+.所以224(1)41kABk+==+.所以平行四边形的面积S=2k t=.所以S ==因为810t -≥时.S 的最大值为4.综上S 的最大值为4.故填4.本题关键考查弦长公式点到直线的距离.考点:1.分类的思想.2.直线与椭圆的关系.3.弦长公式.4.点到直线的距离.二、解答题:(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)求实数m 的取值组成的集合M ,使当M m ∈时,“q p 或”为真,“q p 且”为假.其中:p 方程012=+-mx x 有两个不相等的负根;:q 方程01)2(442=+-+x m x 无实数根.:真q ,044)]2(4[2<⨯--=∆m 即.31<<m …………………10 分①假:真q p ;2-<m②假:真p q .31<<m …………………13分 综上所述:}.312|{<<-<=m m m M 或 …………………14分 考点:1.含连接词的复合命题.2.二次方程的根的分布. 3.集合的概念.16.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是直角梯形,DC ∥AB ,∠BAD =90︒,且AB =2AD =2DC =2PD =4,E 为PA 的中点.(1)证明:DE ∥平面PBC ; (2)证明:DE ⊥平面PAB .17.(本小题满分15分)如图,过点3(0,)a 的两直线与抛物线2y ax =-相切于A 、B 两点, AD 、BC 垂直于直线8y =-,垂足分别为D 、C .(1)若1a =,求矩形ABCD 面积;(2)若(0,2)a ∈,求矩形ABCD 面积的最大值.(2)设切点为00(,)x y ,则200y ax =-,因为2y ax '=-,所以切线方程为0002()y y ax x x -=--, 即20002()y ax ax x x +=--,18.(本小题满分15分)如图,在四棱柱1111ABCD A BC D -中,已知平面11AAC C ABCD ⊥平面,且1AB BC CA AD CD ====. (1)求证:1BD AA ⊥;(2)在棱BC 上取一点E ,使得AE ∥平面11D DCC ,求BEEC的值.【答案】(1)证明参考解析;(2)1BEEC= 【解析】试题分析:(1)由于AB=CB,AD=CD,BD=BD.可得三角形ABD 全等于三角形CBD.所以这两个三角形关于直线BD 对称.所以可得BD AC ⊥.再由面面垂直即可得直线BD 垂直于平面11ACC A .从而可得1BD AA ⊥.19.(本小题满分16分) 已知椭圆()222210x y a b a b+=>>的左右两焦点分别为12,F F ,P 是椭圆上一点,且在x 轴上方,212,PF F F ⊥ 2111,,32PF PF λλ⎡⎤=∈⎢⎥⎣⎦. (1)求椭圆的离心率e 的取值范围;(2)当e 取最大值时,过12,,F F P 的圆Q 的截y 轴的线段长为6,求椭圆的方程;(3)在(2)的条件下,过椭圆右准线l 上任一点A 引圆Q 的两条切线,切点分别为,M N .试探究直线MN 是否过定点?若过定点,请求出该定点;否则,请说明理由.(1)22222211111c b e a a λλλλ-==-=-=++,∴e =在11,32⎡⎤⎢⎥⎣⎦上单调递减.∴12λ=时,2e 最小13,13λ=时,2e 最大12,∴21132e ≤≤e ≤≤.(2) 当2e =时,2ca =,∴2cb ==,∴222b a =.∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴1PF=6.又221322622b a PF a a a a a =-=-==,∴4,a c b ===.∴椭圆方程是221168x y += -------10分20.(本小题满分16分)已知函数2ln )(x x a x f += (a 为实常数) .(1)当4-=a 时,求函数)(x f 在[]1,e 上的最大值及相应的x 值;(2)当[]e x ,1∈时,讨论方程()0=x f 根的个数.(3)若0>a ,且对任意的[]12,1,x x e ∈,都有()()212111x x x f x f -≤-, 求实数a 的取值范围.【答案】(1)4)()(2max -==e e f x f .e x =;(2)e a e 22-<≤-时,方程()0=x f 有2个相异的根. 2e a -< 或e a 2-=时,方程()0=x f 有1个根. e a 2->时,方程()0=x f 有0个根.(3)221e ea -≤∴.(2)易知1≠x ,故[]e x ,1∈,方程()0=x f 根的个数等价于(]e x ,1∈时,方程x x a ln 2=-根的个数. 设()x g =xx ln 2, xx x x x x x x x g 222ln )1ln 2(ln 1ln 2)(-=-=' 当()e x ,1∈时,0)(<'x g ,函数)(x g 递减,当]e e x ,(∈时,0)(>'x g ,函数)(x g 递增.又2)(e e g =,e e g 2)(=,作出)(x g y =与直线a y -=的图像,由图像知:当22e a e ≤-<时,即e a e 22-<≤-时,方程()0=x f 有2个相异的根;当2e a -< 或e a 2-=时,方程()0=x f 有1个根;当e a 2->时,方程()0=x f 有0个根; -------10分(3)当0>a 时,)(x f 在],1[e x ∈时是增函数,又函数xy 1=是减函数,不妨设e x x ≤≤≤211,则()()212111x x x f x f -≤-等211211)()(x x x f x f -≤-。

江苏省扬州中学2021-2022学年高二上学期12月月考试题 数学 Word版含解析

江苏省扬州中学2021-2022学年高二上学期12月月考试题 数学 Word版含解析
【详解】设 , , .
由题意得抛物线焦点坐标为 ,准线方程为 .
因为 ,
所以点 是 的重心,故 ,

故选:A.
6.已知函数 ,则不等式 的解集为()
A. B. C. D.
【答案】D
【解析】
【分析】分析可知函数 为偶函数,且在 上为增函数,由已知可得出 ,解此不等式即可得解.
【详解】函数 的定义域为 ,
【答案】B
【解析】
【分析】求导得到导函数,计算 ,再代入 计算得到答案.
详解】 ,则 , , .
, .
故选:B
5.设 为抛物线 的焦点, , , 为该抛物线上三点,若 ,则 ()
A. 6B. 4C. 3D. 2
【答案】A
【解析】
【分析】设 , , .由 ,得 是 的重心,从而求得 ,然后由焦半径公式求得结论.
故选:BCD.
11.已知 是椭圆 上的一动点,离心率为 ,椭圆与 轴的交点分别为 、 ,左、右焦点分别为 、 .下列关于椭圆的四个结论中正确的是()
A.若 、 的斜率存在且分别为 、 ,则 为一定值
B.若椭圆 上存在点 使 ,则
C.若 的面积最大时, ,则
D.根据光学现象知道:从 发出的光线经过椭圆反射后一定会经过 .若一束光线从 出发经椭圆反射,当光线第 次到达 时,光线通过的总路程为
对于D:圆 圆心 ,半径为 ,圆 圆心 ,半径为 ,若两圆相离,
因为 ,所以 或 ,
所以 或 ,故D错误.
故选:BC
10.已知等比数列 的前 项和为 ,且 , 是 与 的等差中项,数列 满足 ,数列 的前 项和为 ,则下列命题正确的是()
A.数列 的通项公式为 B.
C. 的取值范围是 D.数列 的通项公式

江苏省扬州市邗江区梅岭中学2020-2021学年九年级上学期数学12月月考试卷

江苏省扬州市邗江区梅岭中学2020-2021学年九年级上学期数学12月月考试卷

江苏省扬州市邗江区梅岭中学2020-2021学年九年级上学期数学12月月考试卷一、单选题1.下列函数中,是二次函数的为()A. y=2x+1B. y=(x−2)2−x2C. y=2x2D. y=2x(x+1)2.已知P是线段AB的黄金分割点,且AP>BP,那么下列比例式能成立的是( )A. AB AP=AP BPB. AB AP=BP ABC. BP AP=AB BPD.AB AP=5−123.如图所示,在半径为10的⊙O中,弦AB=16,OC⊥AB于点C,则OC的长为()A. 5B. 6C. 7D. 84.如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为()A. 23B. 43C. 83D. 1635.如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长),其余三边除大门外用栅栏围成,栅栏总长度为50m,门宽为2m.若饲养室长为xm,占地面积为y m2,则y关于x的函数表达式为()A. y=﹣12 x2+26x(2≤x<52)B. y=﹣12 x2+50x(2≤x<52)C. y=﹣x2+52x(2≤x<52)D. y=﹣12 x2+27x﹣52(2≤x<52)6.在同一坐标系中,一次函数y=−mx+n2与二次函数y=x2+m的图象可能是().A. B. C. D.7.已知函数y=(k−3)x2+2x+1的图象与x轴有交点.则k的取值范围是( )A. k<4B. k≤4C. k<4且k≠3D. k≤4且k≠38.如图,已知点A是第一象限内横坐标为2 3的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B运动的路径长为().A. 3B. 22C. 4D. 23二、填空题9.抛物线y=2x2-bx+3的对称轴是直线x=−1,则b的值为 .10.若函数y=(m−3)x m2−3m+2+mx+1是二次函数,则m的值为11.用一个半径为6,圆心角为150°的扇形纸片,做成一个圆锥模型的侧面,则这个模型的底面半径为 .12.将抛物线y=2(x﹣1)2+2向下平移4个单位,那么得到的抛物线的表达式为 .13.如图,AB是⊙O的直径,点C、D在⊙O上.∠BDC=21°,则∠AOC的度数是14.等边△ABC的边长为4cm,内切圆的半径为 cm15.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=时,△CPQ与△CBA相似.16.二次函数y=a x2+bx+c的部分对应值如下表:x …-3 -2 0 1 3 5 …y …7 1 -8 -9 -5 7 …当x=2时,对应的函数值y= .17.如图,△ABC中,AB=BC,AC=8,点F是△ABC的重心(即点F是△ABC的两条中线AD、BE的交点),BF=6,则DF= .18.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4 2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为________.三、解答题19.若直线y=x+3与二次函数的图象y=−x2+2x+3与交A、B两点(A在B的左侧)(1).求A、B两点的坐标;(2).求三角形ABO的面积.20.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF 保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为多少?21.已知二次函数y=−x2+(m−2)x+m+1.试证明:不论m取何值,这个二次函数的图象必与x轴有两个交点22.如图,已知点A,B,C,D均在已知圆上,AD∥BC,CA平分∠BCD,∠ADC=120°,四边形ABCD的周长为10.(1).求此圆的半径;(2).求图中阴影部分的面积.23.抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1).求该抛物线的解析式.(2).一动点P在(1)中抛物线上滑动且满足S△ABP=10,求此时P点的坐标.24.如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交边BC于点D,过点D作DE⊥AC交AC于点E,延长ED交AB的延长线于点F,(1).求证:DE是⊙O的切线;(2).若AB=8,AE=6,求BF的长25.如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠B=∠ADE=∠C.(1)证明:△BDA∽△CED;(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),且△ADE是等腰三角形,求此时BD的长.26.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元) 15 20 30 …y(袋) 25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?27.如图,抛物线y=ax2+bx﹣4a(a≠0)经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1).求抛物线的解析式;(2).过点C作x轴的平行线交抛物线于另一点D,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标;(3).在抛物线的对称轴上是否存在点M,使得由点M,A,C构成的△MAC是直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.28.如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.(1).求过A、C两点直线的解析式;(2).当点N在半圆M内时,求a的取值范围;(3).过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标.答案解析部分一、单选题1.【答案】 D2.【答案】 A3.【答案】 B4.【答案】 C5.【答案】 A6.【答案】 D7.【答案】 B8.【答案】 B二、填空题9.【答案】 -410.【答案】 011.【答案】 2.512.【答案】 y=2(x-1)2-213.【答案】 138°14.【答案】23315.【答案】 4.8或641116.【答案】 -817.【答案】5218.【答案】25﹣2三、解答题19.【答案】(1)解:由题意得:{y=x+3y=−x2+2x+3解得:{x=0y=3或{x=1y=4又A在B的左侧∴A(0,3),B(1,4);(2)解:如图所示:A(0,3),B(1,4);∴OA=3,OA边上的高为1,∴S△AOB=12·AO×1=12×3×1=3220.【答案】解:∵DE⊥EF,BC⊥CD,DF=50cm,EF=30cm,∴DE= D F2−E F2=502−302=40cm又∠EDF=∠CDB,∴△DEF∽DCB,∴DE EF=CD BC,即0.40.3=20BC,解得BC=15m,∵小明同学和树AB都垂直于底面,∴AC=1.5m,∴AB=BC+AC=16.5m,答:树高AB为16.5m.21.【答案】证明:由题意,知二次函数对应的方程−x2+(m−2)x+m+1=0的判别式为b2−4ac=(m−2)2−4×(−1)×(m+1)=m2−4m+4+4m+4=m2+8 .因为m2≥0,所以m2+8>0,即b2−4ac>0,所以不论m取何值,这个二次函数的图象必与x轴有两个交点.22.【答案】(1)解:∵AC平分∠BCD,∴∠ACD=∠ACB,又∵AD∥BC,∴∠ACB=∠DAC=∠ACD,而∠ADC=120°,∴∠ACB=∠DAC=∠ACD =30°,∠B=60°,∴AB=AD=DC,且∠BAC=90°,∴BC为直径,设AB=x,则BC=2AB=2x,又∵四边形ABCD的周长为10cm,∴x+x+x+2x=10,解得x=2,即⊙O的半径为2;(2)解:设圆心为O,连接OA、OD,由(1)可知OA=OD=AD=2,∴△AOD为等边三角形,∴∠AOD=60°;∵AD∥BC,∴SΔAOD=SΔACD34×22=3,∴S阴影=S扇形AOD−S△AOD=60π×22360−3=2π3−3 .23.【答案】(1)解:根据题意得:{1−b+c=09+3b+c=0解得:{b=−2c=−3,则方程的解析式是:y=x2﹣2x﹣3;(2)解:AB=3+1=4,设P的纵坐标是m,则12 ×4|m|=10,解得:|m|=5,则m=5或﹣5.当m=5时,x2-2x-3=5,x=-2或4,则P的坐标是(-2,5)或(4,5);当m=-5时,x2-2x-3=-5,方程无解.故P的坐标是(-2,5)或(4,5).24.【答案】(1)证明:连接OD,∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,又DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OD∥AC,∴△FOD∽△FAE,∴OD AE=FO FA,即46=BF+4BF+8,解得,BF=4.25.【答案】(1)证明:如图可知:∠ADE+∠ADB+∠EDC=180°在△ABD中,∴∠B+∠ADB+∠DAB=180°又∵∠B=∠ADE=∠C∴∠EDC=∠DAB∴△BDA∽△CED.(2)解:∵∠B=∠ADE=∠C,∠B=45°∴△ABC是等腰直角三角形∴∠BAC=90°∵ BC=2,∴ AB=AC= 22 BC= 2①当AD=AE时,∴∠ADE=∠AED∵∠B=45°,∴∠B=∠ADE=∠AED=45°∴∠DAE=90°∴∠DAE=∠BAC=90°∵点D在BC上运动时(点D不与B、C重合),点E在AC上∴此情况不符合题意.②当AD=DE时,∴∠DAE=∠DEA∴由(1)结论可知:△BDA≌△CED∴ AB=DC= 2∴BD=2−2.③当AE=DE时,∠ADE=∠DAE=45°∴△AED是等腰直角三角形∵∠B=45°,∴∠B=∠C=∠DAE=45°∴∠ADC=90°,即AD⊥BC∴BD=12BC=1.综上所诉:BD=2−2或1.26.【答案】(1)解:依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得{25=15k+b20=20k+b,解得{k=−1b=40,故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40(2)解:依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400,整理得w=﹣(x﹣25)2+225,∵﹣1<0,∴当x=2时,w取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元27.【答案】(1)解:﹣4a=4,解得:a=﹣1,则抛物线的表达式为:y=﹣x2+bx+4,将点A的坐标代入上式并解得:b=3,故抛物线的表达式为:y=﹣x2+3x+4…①;(2)解:抛物线的对称轴为:x=32,点D(3,4),过点D作x轴的垂线交BP于点H,交x轴于点G,过点H作HR⊥BD与点R,则BG=1,GD=4,tan∠BDG=14,∠DBP=45°,设:HR=BR=x,则DR=4x, BD=5x=1+16=17,x=175, BH=2 x,BG=1,则GH=2x2−1=35,故点H(3,35),而点B(4,0),同理可得直线HB的表达式为:y=﹣35 x+ 125…②,联立①②并解得:x=4或﹣25(舍去4),故点P(﹣25,6625);(3)解:设点M(32,m),而点A(﹣1,0)、点C(0,4),则AM2=254 +m2, CM2=94 +(m﹣4)2, AC2=17,①当AM是斜边时,254 +m2=94 +(m﹣4)2+17,解得:m=298;②当CM是斜边时,同理可得:m=﹣58;③当AC是斜边时,同理可得:m=52或32;综上,点M的坐标为:(32,298)或(32,﹣58)或(32,52)或(32,32).28.【答案】(1)解:在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),所以B(4,0),C(4,2)设过A、C两点直线解析式为y=kx+b,则{k+b=04k+b=2解得{k=23b=−23,故过A、C两点直线解析式为y=23x−23;(2)解:设过A、B两点抛物线的解析式为y=a(x−1)(x−4)整理得y=a x2−5ax+4a则顶点N的坐标为(52,−9a4),由抛物线、半圆的轴对称可知,抛物线的顶点在过点M且与CD垂直的直线上,又点N在半圆内,所以12<−9a4<2解得−89<a<−29;(3)解:设EF=x,则CF=x,BF=2−x,AF=2+x,AB=3在Rt△ABF中,由勾股定理得A B2+B F2=A F2,得x=98,BF=78①由△ABF∼△CMN得AB CM=BF MN,即MN=BF⋅CM AB=716当点N在CD的下方时,由−9a4=2−716=2516,得N1(52,2516)当点N在CD的上方时,由−9a4=2+716=3916,得N2(52,3916)②由△ABF∼△NMC得AB MN=BF CM,即MN=AB⋅CM BF=367当点N在CD的下方时,由−9a4=2−367=−227,得N3(52,−227)当点N在CD的上方时,由−9a4=2+367=507,得N4(52,507)综上点N的坐标为N1(52,2516),N2(52,3916),N3(52,−227),N4(52,507) .。

江苏省扬州中学2020-2021学年高一上学期期中考试数学试题(PDF版含答案)

江苏省扬州中学2020-2021学年高一上学期期中考试数学试题(PDF版含答案)

二、多选题(本大题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中,有多项符 合题目要求,全部选对得 5 分,有选错的得 0 分,部分选对得 3 分.)
BD AD CD BCD
三、填空题(本大题共 4 小题,每小题 5 分,多空题,第一空 2 分,第二空 3 分,共 20 分.)
13、 x R,3x2 2x 1 0
(2)函数 f x =0 在0, 2上有解,即方程 x a x 2b 在0, 2上有解;

h
x
{
x
2
x
ax 2 ax
x
(x
a
a)

当a
0 时,则 h x
x2
ax,
x
0,
2
,且
h
x

0,
2
上单调增,∴
h
x
min
h0
0,
h
x
max
h2
4 2a ,则当 0
2b
4
2a
时,原方程有解,则
a
A.
x
1
y
1 4
B.
1 x
1 y
1
C. xy 2
D.
1 xy
1
7.已知函数
f
(x)
x2 ax 5,(x1)
a x
,( x
1)

R
上的增函数,则 a
的取值范围是(

A. 3a 0
B. 3a 2
C. a 2
D. a 0
8.设平行于 x 轴的直线 l 分别与函数 y 2x 和 y 2x1 的图象相交于点 A,B,若在函数
2
由(1)知集合 A

江苏省扬州中学2022-2023学年高二上学期12月月考地理答案

江苏省扬州中学2022-2023学年高二上学期12月月考地理答案

江苏省扬州中学2022―2023年度第一学期12月检测卷高二地理2022.12.11注意事项:考生在答题前请认真阅读本注意事项及各题答题要求。

1.本试卷共10页,包含选择题和综合题两部分。

本次考试时间为75分钟,满分100分。

考试结束后,请将答题卡交给监考老师。

2.答题前,请您务必将自己的学校、班级、姓名、准考证号用黑色字迹的0.5毫米签字笔填写在试卷及答题卡上。

3.作答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案。

作答综合题,请您用黑色字迹的0.5毫米签字笔将答案写在答题卡上的指定位置,在其它位置作答一律无效。

4.如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。

一.单项选择题:在下列各小题的四个选项中,只有一个选项最符合题目的要求。

请在答题卡上将所选答案的字母代号涂黑(22小题,每小题2分,共44分)。

我国某校地理兴趣小组于某日北京时间12:30在学校附近拍下了一张“白墙树影”的照片,此时树干影子刚好与东西向白墙垂直。

1小时后该小组再次来到此地进行第二次观察。

据此完成1-2题。

公众号高中僧试题下载 1.该学校最可能位于 A .哈尔滨B .北京C .西宁D .太原2.该小组发现,第二次观察到的墙面树影较第一次的 A .东移且变短 B .西移且变短C .西移且变长D .东移且变长三角洲是陆海相互作用的关键地带。

图2示意珠江三角洲形成前河口地带同一剖面演化的四个阶段。

读图回答3-5题。

3. 距今7万年时,该剖面海相沉积物部分缺失的原因是A. 岩层断裂下陷B. 向斜槽部凹陷C. 河流侵蚀D. 冰川侵蚀 4. 距今1万年至距今0.9万年期间,珠江河口移动方向是A. 总体向海B. 总体向陆C. 先向海后向陆D. 先向陆后向海 5. 四个阶段中,该河口地带最可能A. 地壳抬升B. 降水量增加C. 盐度下降D. 海水沉积图1图2太行山脉是我国黄土高原和华北平原的地理分界线,其山麓焚风(过山气流在背风坡下沉增温形成的一种干热地方性风)较强,焚风往往以阵风形式出现,从山上沿山坡向下吹。

考点17 分组求和法(1月)(期末复习热点题型)(人教A版2019)(解析版)

考点17 分组求和法(1月)(期末复习热点题型)(人教A版2019)(解析版)

考点17 分组求和法一、单选题1.若数列{}n a 的通项公式是()()131nn a n =--,则1210···+a a a ++= A .15 B .12 C .12-D .15-【试题来源】吉林省蛟河市第一中学校2020-2021学年第一学期11月阶段性检测高二(理) 【答案】A【解析】因为()()131nn a n =--,所以12253a a +=-+=,348113a a +=-+=,5614173a a +=-+=,7820233a a +=-+=,91026293a a +=-+=, 因此1210···+3515a a a ++=⨯=.故选A . 2.已知数列{}n a 满足11n n a a λ+=+,且11a =,23a =,则数列{}n a 前6项的和为 A .115 B .118 C .120D .128【试题来源】河南省豫北名校2020-2021学年高二上学期12月质量检测(文) 【答案】C【分析】由题干条件求得2λ=,得到121n n a a +=+,构造等比数列可得数列{}n a 的通项公式,再结合等比数列求和公式即可求得数列{}n a 前6项的和. 【解析】21113a a λλ=+=+=,则2λ=,可得121n n a a +=+,可化为()1121n n a a ++=+,有12nn a +=,得21n n a =-,则数列{}n a 前6项的和为()()6262122226612012⨯-+++-=-=-.故选C .3.设数列{a n }的前n 项和为S n ,且a 1=2,a n +a n +1=2n (n ∈N *),则S 2020=A .2020223-B .202022 3+C .202122 3-D .202122 3+【试题来源】河南省濮阳市2019-2020学年高二下学期升级考试(期末)(文) 【答案】C【分析】根据递推公式a n +a n +1 =2n (n ∈N *)的特点在求S 2020时可采用分组求和法,然后根据等比数列的求和公式即可得到正确选项. 【解析】由题意,可知2020122020123420192020()()()S a a a a a a a a a =+++=++++++132019222=+++2021223-=.故选C . 4.定义:在数列{}n a 中,0n a >,且1n a ≠,若1n an a +为定值,则称数列{}n a 为“等幂数列”.已知数列{}n a 为“等幂数列”,且122,4,n a a S ==为数列{}n a 的前n 项和,则2009S 为 A .6026 B .6024 C .2D .4【试题来源】山西省长治市第二中学2019-2020学年高一下学期期末(文) 【答案】A【分析】根据数列新定义求出数列的前几项,得出规律,然后求和.【解析】因为122,4a a ==,所以334242a a a ==,32a =,4216a =,44a =,所以212n a -=,24n a =,*n N ∈,2009(24)100426026S =+⨯+=.故选A . 【名师点睛】本题考查数列的新定义,解题关键是根据新定义计算出数列的项,然后寻找出规律,解决问题. 5.数列111111,2,3,4,,248162n n +++++的前n 项和等于 A .21122n n n +-++B .2122n n n++C .2122n n n +-+D .【试题来源】四川省三台中学实验学校2019-2020学年高一6月月考(期末适应性) 【答案】A 【解析】因,故,故选A .6.已知一组整数1a ,2a ,3a ,4a ,…满足130m m a a +++=,其中m 为正整数,若12a =,则这组数前50项的和为 A .-50 B .-73 C .-75D .-77【试题来源】四川省自贡市旭川中学2020-2021学年高一上学期开学考试 【答案】C【分析】先利用已知条件写出整数列的前五项,得到其周期性,再计算这组数前50项的和即可.【解析】因为130m m a a +++=,12a =,所以2130a a ++=,得25a =-;3230a a ++=,得32a =-;4330a a ++=,得41a =-;5430a a ++=,得52a =-,由此可知,该组整数从第3项开始,以-2,-1,-2,-1,…的规律循环, 故这组数的前50项和为()()25212475+-+--⨯=-.故选C .7.已知n S 为数列{}n a 的前n 项和,且满足11a =,23a =,23n n a a +=,则2020S = A .1010232⨯-B .101023⨯C .2020312-D .1010312+【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】A【分析】利用递推关系得出数列的奇数项与偶数项分别成等比数列,对2020S 进行分组求和. 【解析】因为11a =,23a =,23n n a a +=,所以数列{}n a 的奇数项成等比数列,偶数项也成等比数列,且仅比均为3,所以101010102020132019242020133(13)()()1313S a a a a a a --=+++++++=+--1010232=⨯-.故选A .【名师点睛】本题考查等比数列的判定,等比数列的前n 项和公式,考查分组求和法,解题时注意对递推式23n n a a +=的认识,它确定数列的奇数项与偶数项分别成等比数列,而不是数列{}n a 成等比数列.8.已知数列{(1)(21)}n n -+的前n 项和为n S ,*N n ∈,则11S = A .13- B .12- C .11-D .10-【试题来源】山东省青岛胶州市2019-2020学年高二下学期期末考试 【答案】A【分析】本题根据数列通项公式的特点可先求出相邻奇偶项的和,然后运用分组求和法可计算出11S 的值,得到正确选项.【解析】由题意,令(1)(21)nn a n =-+,则当n 为奇数时,1n +为偶数, 1(21)[2(1)1]2n n a a n n ++=-++++=,111211S a a a ∴=++⋯+ 123491011()()()a a a a a a a =++++⋯+++222(2111)=++⋯+-⨯+2523=⨯-13=-.故选A .【名师点睛】本题主要考查正负交错数列的求和问题,考查了转化与化归思想,整体思想,分组求和法,以及逻辑推理能力和数学运算能力.本题属中档题.9.已知数列{}n a 的前n 项和为n S ,且11a =,13nn n a a +=,那么100S 的值为A .()50231-B .5031-C .5032-D .50342-【试题来源】吉林省四平市公主岭范家屯镇第一中学2019-2020学年高一下学期期末考试 【答案】A【分析】根据题中条件,得到23n na a +=,推出数列{}n a 的奇数项和偶数项都是成等比数列,由等比数列的求和公式,分别计算奇数项与偶数项的和,即可得出结果.【解析】因为11a =,13nn n a a +=,所以23a =,1123n n n a a +++=,所以1213n n n n a a a a +++=,即23n na a +=,所以135,,,a a a ⋅⋅⋅成以1为首项、3为公比的等比数列,246,,,a a a ⋅⋅⋅也成以3为首项、3为公比的等比数列,所以()()()5050100139924100313131313Sa a a a a a --=++⋅⋅⋅++++⋅⋅⋅+=+--505050313532322-+⋅-==⋅-.故选A .【名师点睛】本题主要考查等比数列求和公式的基本量运算,考查分组求和,熟记公式即可,属于常考题型.10.已知数列{}n a 满足12321111222n n a a a a n -++++=,记数列{2}n a n -的前n 项和为n S ,则n S =A .2222nn n--B .22122nn n---C .212222n n n +--- D .2222nn n--【试题来源】河北省秦皇岛市第一中学2020-2021学年高二上学期第一次月考 【答案】C【分析】利用递推关系求出数列{}n a 的通项公式,然后利用等差数列和等比数列的前n 项和公式进行求解即可.【解析】因为12321111(1)222n n a a a a n -++++=,所以有11a =, 当2,n n N *≥∈时,有1231221111(2)222n n a a a a n --++++=-,(1)(2)-得,111122n n n n a a --=⇒=,显然当1n =时,也适合,所以12()n n a n N -*=∈,令 2n n a n b -=,所以2n n b n =-,因此有:2323(21)(22)(23)(2)(2222)(123)n n n n S n =-+-+-++-=++++-++++22112(12)(1)222 2.1222222n n n n n n n n n ++-+=-=---=----故选C.【名师点睛】本题考查了由递推关系求数列的通项公式,考查了等差数列和等比数列的前n 项和公式,考查了数学运算能力.11.已知数列{}n a 的前n 项和为n S ,且(),n P n a 为函数221x y x =+-图象上的一点,则n S =A .2122n n ++-B .212n n ++C .22n -D .22n n +【试题来源】四川省仁寿第二中学2020-2021学年高三9月月考(理) 【答案】A【分析】根据已知条件求得n a ,利用分组求和法求得n S【解析】因为(),n P n a 为函数221x y x =+-图象上的一点,所以()212nn a n =-+,则()()121212322121321222nnn S n n =++++⋅⋅⋅+-+=++⋅⋅⋅+-+++⋅⋅⋅+()()212121212nn n -+-=+-1222n n +=+-.故选A .12.数列112、134、158、1716、的前n 项和n S 为A .21112n n -+-B .2122n n +-C .2112n n +-D .21122n n -+-【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期线上学习质量检测 【答案】C【分析】归纳出数列的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,然后利用分组求和法可求得n S . 【解析】数列112、134、158、1716、的通项公式为1212nn a n ⎛⎫=-+ ⎪⎝⎭,所以,2341111113572122222n n S n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++++++-+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()231111211111221352112222212n n n n n ⎛⎫- ⎪+-⎛⎫⎝⎭=++++-+++++=+⎡⎤ ⎪⎣⎦⎝⎭-2112n n =+-.故选C .13.若数列{}n a 的通项公式是1(1)(32)n n a n +=-⋅-,则122020a a a ++⋯+=A .-3027B .3027C .-3030D .3030【试题来源】江苏省扬州市宝应中学2020-2021学年高二上学期阶段考试 【答案】C【分析】分组求和,结合等差数列求和公式即可求出122020a a a ++⋯+. 【解析】12202014710...60556058a a a ++⋯+=-+-++-()()101010091010100917...6055410...60551010610104622⨯⨯⎛⎫=+++-+++=+⨯-⨯+⨯ ⎪⎝⎭3030=-.故选C .14.在数列{}n a 中,129a =-,()*13n n a a n +=+∈N ,则1220a a a +++=A .10B .145C .300D .320【试题来源】山西省太原市2021届高三上学期期中 【答案】C【分析】由等差数列的性质可得332n a n =-,结合分组求和法即可得解.【解析】因为129a =-,()*13n n a a n N +=+∈,所以数列{}n a 是以29-为首项,公差为3的等差数列,所以()11332n a a n d n =+-=-,所以当10n ≤时,0n a <;当11n ≥时,0n a >;所以()()12201210111220a a a a a a a a a +++=-++⋅⋅⋅++++⋅⋅⋅+1101120292128101010103002222a a a a ++--+=-⨯+⨯=-⨯+⨯=.故选C . 15.数列{}n a 的通项公式为2π1sin 2n n a n =+,前n 项和为n S ,则100S = A .50 B .-2400 C .4900-D .9900-【试题来源】河南省焦作市2020—2021学年高三年级第一次模拟考试(理) 【答案】C【分析】由πsin2n y =的周期为4,可得22222210010013579799S =+-+-+⋅⋅⋅+-,利用并项求和可得解.【解析】2111a =+,21a =,2313a =-,41a =,…,考虑到πsin2n y =的周期为4, 所以()222222100100135797991002135799S =+-+-+⋅⋅⋅+-=-⨯++++⋅⋅⋅+(199)50100249002+⨯=-⨯=-.故选C .16.已知{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,则2019S 的值为 A .1008 B .1009 C .1010D .1011【试题来源】广东省广州市增城区增城中学2020-2021学年高二上学期第一次段考 【答案】C【分析】由2n ≥时,可得1n n n S S a -=-,结合题设条件,推得11n n a a -+=,进而求得2019S 的值,得到答案.【解析】由题意,当2n ≥时,可得1n n n S S a -=-,因为12n n a S n -+=,所以2()n n n S a a n +-=,即2n n S a n =+,当2n ≥时,1121n n S a n --=+-,两式相减,可得121n n n a a a -=-+,即11n n a a -+=, 所以2345671,1,1,a a a a a a +=+=+=,所以()()()12345201820120991201911110102a a a a a a a S -=+++++++=+⨯=.故选C . 17.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a =,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人 A .225 B .255 C .365D .465【试题来源】山东省烟台市2020-2021学年高二上学期期末月考 【答案】B【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和【解析】当n 为奇数时,2n n a a +=,当n 为偶数时,22n n a a +-=,所以13291a a a ==⋅⋅⋅==, 2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=,故选B 18.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为 A .1348 B .1358 C .1347D .1357【试题来源】江苏省镇江市八校2020-2021学年高三上学期期中联考 【答案】C【分析】由题意可知,得数列{}n a 是周期为3的周期数列,前3项和为1102++=,又202067331=⨯+,由此可得答案.【解析】由数列1,1,2,3,5,8,13,21,34,55,…,各项除以2的余数,可得数列{}n a 为1,1,0,1,1,0,1,1,0,⋅⋅⋅,所以数列{}n a 是周期为3的周期数列,前3项和为1102++=, 因为202067331=⨯+,所以数列{}n a 的前2020项的和为673211347⨯+=,故选C. 19.已知数列{}n a 的前n 项和为n S ,11a =,当2n ≥时,12n n a S n -+=,,则S 2019的值为 A .1008 B .1009 C .1010D .1011【试题来源】江苏省南通市2020-2021学年高三上学期期中考前热身 【答案】C【分析】由2n ≥时,12n n a S n -+=,得到121n n a S n ++=+,两式相减,整理得()112n n a a n ++=≥,结合并项求和,即可求解.【解析】当2n ≥时,12n n a S n -+=,①,可得121n n a S n ++=+,②, 由②-①得,112()1n n n n a a S S +--+-=,整理得()112n n a a n ++=≥, 又由11a =,所以20191234520182019()()()1010S a a a a a a a =+++++++=.故选C .20.已知数列{}n a 的前n 项和为n S ,且()11213n n n n S S a n +++=+-+,现有如下说法:①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为 A .0 B .1 C .2D .3【试题来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)(文)试卷 【答案】D【分析】由()11213n n n n S S a n +++=+-+得到()11132n n n a a n ++=-+-,再分n 为奇数和偶数得到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【解析】因为()11213n n n n S S a n +++=+-+,所以()11132n n n a a n ++=-+-,所以()212621k k a a k +=-+-,()221652k k a a k -=+-,联立得()212133k k a a +-+=, 所以()232134k k a a +++=,故2321k k a a +-=,从而15941a a a a ===⋅⋅⋅=,22162k k a a k ++=-,222161k k a a k ++=++,则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++()()()()234538394041...a a a a a a a a =++++++++()()201411820622k k =+⨯=-==∑1220,故①②③正确.故选D.21.已知正项数列{}n a 中,11a =,前n 项和为n S ,且当*2,n n N ≥∈时,2n a =,数列()1cos 12n n n a π⎧⎫-⋅+⎨⎬⎩⎭的前64项和为 A .240 B .256 C .300D .320【试题来源】重庆市第一中学2019-2020学年高一下学期期末【答案】D【分析】由题意结合数列n a 与n S 2-=,由等差数列的性质即可得21n =-,进而可得当2n ≥时,88n a n =-,结合余弦函数的性质、分组求和法可得()()()642664648264T a a a a a a --=+++⋅⋅⋅+-,即可得解.【解析】由题意,当*2,n n N ≥∈时,12n n n S a S -==-,即2=,由0n S >2=,所以数列1=,公差为2的等差数列,()12121n n =+-=-,所以当2n ≥时,()222121188n a n n n ==-+--=-⎡⎤⎣⎦,设数列()1cos12nn n a π⎧⎫-⋅+⎨⎬⎩⎭的前n 项和为数列n T ,所以该数列前64项的和为 164234234cos 1cos 1cos 1cos 12222T a a a a ππππ⎛⎫⎛⎫⎛⎫⎛⎫=-⋅++⋅++-⋅++⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭6464cos 12a π⎛⎫+⋅⋅⋅+⋅+ ⎪⎝⎭ ()()()262642664624486464a a a a a a a a a a =-+-⋅⋅⋅-+=+++⋅⋅⋅--+-641616320=+⨯=.故选D .【名师点睛】本题考查了数列n a 与n S 的关系、等差数列的判断及性质的应用,考查了分组求和法求数列前n 项和的应用,属于中档题. 22.数列{}n a 的前n 项和为n S ,项n a 由下列方式给出1121231234,,,,,,,,,,2334445555⋅⋅⋅⋅⋅⋅.若100k S ≥,则k 的最小值为 A .200 B .202 C .204D .205【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】首先观察数列中项的特征,先分组求和,之后应用等差数列求和公式,结合题中所给的条件,建立不等关系式,之后再找其满足的条件即可求得结果. 【解析】11212312112312334442222n n S n nn --⎛⎫⎛⎫⎛⎫=+++++++++⋅⋅⋅+=+++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (1)1004n n -=≥.所以(1)400n n -≥,21n ≥.而当20n =时,95S =,只需要125212121m++⋅⋅⋅+≥,解得14m ≥. 所以总需要的项数为1231914204+++⋅⋅⋅++=,故选C .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列求和公式,分组求和法,属于中档题目.23.已知数列{} n a 中,10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和为A .10311102-+B .1131902-+C .1031902-+D .11311102-+【试题来源】福建省莆田市第二中学2020-2021学年高二10月阶段性检测 【答案】C【分析】根据n 为奇数时,22n n a a +-=;n 为偶数时,23n n a a +=,得到数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列;所有偶数项构成以1为首项,以3为公比的等比数列;然后分别利用等差数列和等比数列前n 项和求解.【解析】因为10a =,21a =,且当n 为奇数时,22n n a a +-=;当n 为偶数时,23n n a a +=,则此数列的前20项的和:数列{}n a 中所有奇数项构成以0为首项,以2为公差的等差数列; 数列{}n a 中所有偶数项构成以1为首项,以3为公比的等比数列; 所有()()2013192420......S a a a a a a =+++++++()()10113101012100213⨯-+=⨯++-1031902-=+,故选C . 24.已知数列{}n a 的通项公式为2(1)n n a n =-,设1n n n c a a +=+,则数列{}n c 的前200项和为 A .200- B .0 C .200D .10000【试题来源】安徽省六安市第一中学2019-2020学年高一下学期期中(理)【答案】A【分析】利用分组求和法及等差数列求和公式求解. 【解析】记数列{}n c 的前200项和为n T ,122001223199200200201n T c c c a a a a a a a a =++=++++++++123419920012012[()()()]a a a a a a a a =++++++-+()()()2222[41169200199]1201=-+-++-+-22[3711399]1201=⨯+++++-()2100339921201402004040112002+=⨯+-=-+=-.故选A .25.已知等差数列{}n a 的首项为1a ,公差0d ≠,记n S 为数列(){}1nn a -⋅的前n 项和,且存在*k N ∈,使得10k S +=成立,则 A .10a d > B .10a d < C .1a d >D .1a d <【试题来源】浙江省浙考交流联盟2020-2021学年高三上学期8月线上考试 【答案】B【分析】由题意按照k 为奇数、k 为偶数讨论,利用并项求和法可得1k S +,转化条件得存在*k N ∈且k 为偶数时,102ka d --=,即可得解.【解析】因为等差数列{}n a 的首项为1a ,公差0d ≠,n S 为数列(){}1nn a -⋅的前n 项和,所以当*k N ∈且k 为奇数时,112341k k k S a a a a a a ++=-+-++⋅⋅⋅-+()()()12341102k k k a a a a a a d ++=-++-++⋅⋅⋅+-+=≠; 当*k N ∈且k 为偶数时,1123411k k k k S a a a a a a a +-+=-+-++⋅⋅⋅-+-()()()()1234111122k k k k ka a a a a a a d a kd a d -+=-++-++⋅⋅⋅+-+-=-+=--; 所以存在*k N ∈且k 为偶数时,102k a d --=即102ka d =-≠,当2k =时,1a d =-,此时1a d =,故排除C 、D ;所以1a 与d 异号即10a d <,故A 错误,B 正确.故选B . 26.已知函数()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++,则1232020a a a a ++++的值为A .4040B .4040-C .2020D .2020-【试题来源】四川省宜宾市叙州区第一中学校2020-2021学年高二上学期开学考试(文) 【答案】A【分析】由题意得2222(1)sin(1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++,从而可求出11a =,222232018201920203,,2019,2021a a a a a ==-⋅⋅⋅==-=,然后通过分组求和可得答案.【解析】因为()2*()sin2n f n n n N π=∈,且()(1)n a f n f n =++, 所以2222(1)sin (1)sin sin (1)cos 2222n n n n n a n n n n ππππ+=++=++, 所以11a =,222223452018201920203,5,,2019,2021a a a a a a a ==-==⋅⋅⋅==-=,所以1232020a a a a ++++13520192462020()()a a a a a a a a =+++++++++22222222222[(13)(57)(20172019)][(35)(79)(20192021)]=-+-+⋅⋅⋅+-+-++-++⋅⋅⋅+-+2(135720172019)2(35720192021)=-++++⋅⋅⋅++++++⋅⋅⋅++10102020101020242222⨯⨯=-⨯+⨯1010202010102024=-⨯+⨯4040=,故选A.27.已知数列{}n a 中,11a =,23a =,*122(3,)n n n a a a n n N --=+≥∈,设211(2)(2)n n n b a a n n --=-≥,则数列{}n b 的前40项的和为A .860B .820C .820-D .860-【试题来源】河南省开封市河南大学附属中学2020-2021学年高二9月质检 【答案】A【分析】本题先对数列{}n a 的递推公式进行转化可发现数列{}12n n a a --是以1为首项,1-为公比的等比数列,通过计算出数列{}12n n a a --的通项公式可得1n b -的表达式,进一步可得数列{}n b 的通项公式,最后在求和时进行转化并应用平方差公式和等差数列的求和公式即可得到前40项的和.【解析】由题意,可知当3n ≥时,122n n n a a a --=+,两边同时减去12n a -,可得112112222(2)n n n n n n n a a a a a a a -------=+-=--,2123211a a -=-⨯=,∴数列{}12n n a a --是以1为首项,1-为公比的等比数列, 11121(1)(1)n n n n a a ---∴-=⋅-=-,*(2,)n n ≥∈N ,21211(2)(1)n n n n b a a n n ---∴==-⋅-,故2(1)(1)n n b n ⋅=-+,令数列{}n b 的前n 项和为n T ,则4012343940T b b b b b b =++++⋯++22222223454041=-+-+-⋯-+222222[(23)(45)(4041)]=--+-+⋯+-[(23)(45)(4041)]=--+-+-⋯-+23454041=++++⋯++40(241)2⨯+=860=.故选A .【名师点睛】本题主要考查数列由递推公式推导出通项公式,以及数列求和问题.考查了转化与化归思想,整体思想,定义法,平方差公式,以及逻辑推理能力和数学运算能力.本题属中档题.28.在数列{}n a 中,122,2a a ==,且11(1)(*),nn n a a n N +-=+-∈则100S =A .5100B .2600C .2800D .3100【试题来源】河南省洛阳市第一中学2020-2021学年高二上学期10月月考 【答案】A【分析】转化条件为22n n a a +-=,进而可得21k a -,2k a ,由分组求和法结合等差数列的前n 项和公式即可得解.【解析】因为11(1)(*)n n n a a n N +-=+-∈,所以1211(1)n n n a a +++-=+-,所以()()122121n n n n a a ++-=+--+=,因为122,2a a ==,所以()211212k a a k k -=+-=,()22212k k a k a =+-=,*k N ∈,所以()()100123499100139924100S a a a a a a a a a a a a =++++⋅⋅⋅++=++⋅⋅⋅++++⋅⋅⋅+()()2100241002410025051002+=++⋅⋅⋅++++⋅⋅⋅+=⨯⨯=.故选A . 【名师点睛】本题考查了等差数列通项公式及前n 项和公式的应用,考查了分组求和法的应用及转化化归思想,属于中档题.29.正项数列{}n a 的前n 项和为n S ,且()2*2n n n S a a n N =+∈,设()2112nn n na c s +=-,则数列{}n c 的前2020项的和为A .20192020-B .20202019-C .20202021-D .20212020-【试题来源】2020届广东省华南师范大学附属中学高三年级月考(三)(理) 【答案】C【分析】先根据和项与通项关系得11n n a a --=,再根据等差数列定义与通项公式、求和公式得,n n a S ,代入化简n c ,最后利用分组求和法求结果. 【解析】因为()2*2,0n n n nS a a n Na=+∈>,所以当1n =时,21112a a a =+,解得11a =,当2n ≥时,()()2211122n n n n n n n a S S a a a a ---=-=+-+,所以 ()()1110n n n n a a a a --+--=, 因为0n a >,所以11n n a a --=,所以数列{}n a 是等差数列,公差为1,首项为1, 所以()()111,2n n n n a n n S +=+-==,所以()()21111121n n n n na c s n n +⎛⎫=-=-+ ⎪+⎝⎭,则数列{}n c 的前2020项的和11111111202011223342020202120212021⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选C . 30.若数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅,则满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值是 A .4B .5C .6D .7【试题来源】山西省运城市2021届高三(上)期中(理) 【答案】B【分析】求得1122nn c c c ++⋅⋅⋅+关于n 的表达式,利用数列的单调性可求得满足11222021nn c c c ++⋅⋅⋅+<的n 的最大值.【解析】数列{}n a 的通项公式为21nn a =-,在一个n 行n 列的数表中,第i 行第j 列的元素为()1,2,,,1,2,,ij i j i j c a a a a i n j n =⋅++=⋅⋅⋅=⋅⋅⋅, 所以()()2121212121iji j i jij i j i j c a a a a +=⋅++=--+-+-=-.令1122n nn S c c c =+++,则()102,n n nn S S c n n N *--=>≥∈,所以,数列{}n S 为递增数列,当11222021nn c c c +++<时,所有的元素之和为246212121212021n n n S +=-+-+-++-<,当4n =时,24684222243362021S =+++-=<, 当5n =时,246810522222513592021S =++++-=<, 当6n =时,246810126222222654542021S =+++++-=>, 故n 的最大值为5,故选B .【点评】关键点【名师点睛】本题考查数列不等式的求解,解题的关键在于求出1122nn c c c ++⋅⋅⋅+关于n 的表达式,在求解数列不等式时,要充分结合数列的单调性求解.31.公元1202年列昂那多·斐波那契(意大利著名数学家)以兔子繁殖为例,引入“兔子数列”{}n a :1,1,2,3,5,8,13,21,34,55,……,即11a =,21a =,()*12,2n n n a a a n n --=+∈>N ,此数列在现代物理、化学等学科都有着十分广泛的应用.若将此数列{}n a 的各项除以2后的余数构成一个新数列{}n b ,设数列{}n b 的前n 项的和为n T ;若数列{}n a 满足:212n n n n c a a a ++=-,设数列{}n c 的前n 项的和为n S ,则20202020T S +=A .1348B .1347C .674D .673【试题来源】浙江省宁波市慈溪市2020-2021学年高三上学期期中 【答案】B【分析】根据题意写出数列{}n a 的前若干项,观察发现此数列是以3为周期的周期数列,可得2020T ,再计算1n nc c +,结合等比数列的通项公式和求和公式,可得2020S ,进而得到所求和. 【解析】“兔子数列”的各项为1,1,2,3,5,8,13,21,34,55,⋯,∴此数列被2除后的余数依次为1,1,0,1,1,0,1,1,0,⋯⋯,即11b =,21b =,30b =,41b =,51b =,60b =,⋯⋯, ∴数列{}n b 是以3为周期的周期数列,20201231673()673211347T b b b b ∴=+++=⨯+=,由题意知22212112221121222121212()()1n n n n n n n n n n n n n n n n n n n n n n c a a a a a a a a a a a c a a a a a a a a a +++++++++++++++++-+---====----, 由于212131c a a a =-=-,所以(1)n n c =-,所以2020(11)(11)(11)0S =-++-++⋯+-+=. 则202020201347T S +=.故选B.【名师点睛】确定数列数列{}n b 是以3为周期的周期数列,利用周期性求出数列的和,摆动数列(1)n n c =-可以利用分组求和,是解决问题的关键,属于中档题. 32.已知函数()()()22,,n n f n n n ⎧⎪=⎨-⎪⎩当为奇数时当为偶数时且()(1)n a f n f n =++,则121100a a a a ++++等于A .0B .100C .-100D .10200【试题来源】广东省普宁市2020-2021学年高二上学期期中质量测试 【答案】B【分析】先求出通项公式n a ,然后两项一组,即可求解数列的前100项的和【解析】()(1)n a f n f n =++,∴由已知条件知,2222(1),(1),n n n n a n n n ⎧-+=⎨-++⎩为奇数为偶数,即()21,21,n n n a n n ⎧-+=⎨+⎩为奇数为偶数,(1)(21)n n a n ∴=-+,12(n n a a n +∴+=是奇数),123100123499100()()()2222100a a a a a a a a a a ∴+++⋯+=++++⋯++=+++⋯+=故选B .【名师点睛】解答本题的关键是求出数列{}n a 的通项(1)(21)n n a n =-+,即得到12(n n a a n ++=是奇数).33.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是 A .8 B .9 C .10D .11【试题来源】山东省菏泽市2021届高三上学期期中考试(A ) 【答案】A【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案.【解析】由题意得323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2nn +-()212312n n ⨯-=⨯-- 1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<;当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选A .【名师点睛】本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .34.已知数列{}n a 满足11a =,1(1)(1)n n na n a n n +=+++,*n N ∈,且23n n b π=,记n S 为数列{}n b 的前n 项和,则2020S =A .1B .12C .12-D .-1【试题来源】山西省孝义市第二中学校2019-2020学年高一下学期期末 【答案】C【分析】由题设条件以及等差数列的性质得出2n a n =,进而得出2cos3n n b n π=,利用诱导公式求出32313,,k k k b b b --,即可求得2020S . 【解析】1(1)(1)n n na n a n n +=+++,111n na a n n+∴-=+, ∴数列n a n ⎧⎫⎨⎬⎩⎭是等差数列,公差与首项都为1,21(1)n n a n a n n ∴=+-⇒=,2cos3n n b n π∴=,3241(32)cos 2(32)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭, 3121(31)cos 2(31)32k b k k k ππ-⎛⎫=--=-- ⎪⎝⎭,33cos 23k b k k k π==, 3231332k k k b b b --+∴=+,20203674212020(36742)101022b b ⨯-=-⨯-=-=-=, ()()()1234562017201820192020202031673101022b b b b b b b b b S b ++++++++++==⨯-=-故选C .35.设()f n ()*n ∈N 的整数, 如()()()()()11,21,324252f f f f f =====,,,若正整数m 满足()()()()11114034123f f f f m ++++=,则m = A .20162017⨯ B .20172018⨯ C .20182019⨯D .20192020⨯【试题来源】陕西省西安市高新一中2018-2019学年高二上学期期末(理) 【答案】B【解析】设()f x j =,,*x j N ∈,n 是整数,则221124n n n ⎛⎫+=++ ⎪⎝⎭不是整数,因此任意正整数的正的平方根不可能是1()2n n Z +∈形式,所以1122j j -<<+,221144j j x j j -+<<++, 因为,*x j N ∈,所以221j j x j j -+≤≤+,故()f x j =时,2221,2,,x j j j j j j =-+-++共2j 个,设222111(1)(2)()p a f j j f j j f j j =+++-+-++,则22p ja j==,*p N ∈, 由题意()()()()11114034123f f f f m ++++=,403422017=⨯, 所以()()()()1111111111123(1)(2)(3)(4)(5)(6)f f f f m f f f f f f ⎡⎤⎡⎤++++=+++++++⎢⎥⎢⎥⎣⎦⎣⎦1114034(220171)(220172)()f m f m f m ⎡⎤+++=⎢⎥-⨯+-⨯+⎣⎦, 故()2017f m =,m 为方程2017f =的最大整数解, 所以22017201720172018m =+=⨯.故选B .【名师点睛】本题主要考查数列与函数的关系、数列的应用,解题关键是设()f x j =,,*x j N ∈,确定x 的范围,得出x 的个数,然后计算出满足()f x j =的所有1()f x 的和为2. 二、多选题1.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 【试题来源】湖南省长沙市第一中学2020-2021学年高三上学期月考(三) 【答案】ACD【解析】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的;又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的,故选ACD . 【名师点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.2.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+- 【试题来源】江苏省扬州市仪征中学2020-2021学年高二上学期期中模拟(2) 【答案】ACD【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【解析】因为a 11=2,a 13=a 61+1,所以2m 2=2+5m +1,解得m =3或m 12=-(舍去), 所以a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,所以a 67=17×36,所以S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )11121131313131313nn n n a a a ---=+++---()()()12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1),故选ACD . 【名师点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题. 三、填空题1.已知数列{}n a 的前n 项和为n S ,满足112a =-,且()1222n n a a n N n n *++=∈+,则10S =__________.【试题来源】广西桂林市第十八中学2021届高三上学期第二次月考(理) 【答案】1011【分析】根据题中条件,由裂项的方法得到1112n n a a n n ++=-+,根据裂项相消与并项求和的方法,即可得出结果. 【解析】因为()122211222n n a a n n n n n n ++===-+++,则()()()()()1012345678910S a a a a a a a a a a =+++++++++11111111113355779911⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11011111=-=.2.设n S 为数列{}n a 的前n 项和,10a =,若11(1)(2)n n n na a +⎡⎤=+-+-⎣⎦(*n N ∈),则100S =__________.【试题来源】江苏省徐州市沛县2020-2021学年高三上学期第一次学情调研【答案】101223- 【分析】分n 为奇数、n 为偶数两种情况讨论,可得数列{}n a 的特点,然后可算出答案. 【解析】当n 为奇数时,()12nn a +=-,则()122a =-,()342a =-,,()991002a =-,当n 为偶数时,()12222nn n n n a a a +=+-=+,则232220a a =+=,454220a a =+=,,989998220a a =+=,又10a =,所以10110024100223S a a a -=+++=. 3.已知数列{}n a 满足:11a =,12n n n a a a +=+,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S =__________. 【试题来源】安徽省亳州市涡阳县第四中学2019-2020学年高一下学期第二次质量检测(理) 【答案】122n n +--【分析】根据题中条件,得到11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭,判定数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,求出121n na =-,由分组求和的方法,即可求出结果. 【解析】由12n n n a a a +=+得12121n n n n a a a a ++==+,所以11211221n n n a a a +⎛⎫+=+=+ ⎪⎝⎭, 因此数列11n a ⎧⎫+⎨⎬⎩⎭是以2为公比的等比数列,又11a =,所以1112a +=,因此111222n n n a -+=⨯=,所以121n n a =-,因此()()2121222 (22212)n nn n n n S n +-=+++-=-=---.故答案为122n n +--.【名师点睛】求解本题的关键在于,根据12n n n a a a +=+,由构造法,得到111121n n a a +⎛⎫+=+ ⎪⎝⎭,再根据等比数列的求和公式,以及分组求和的方法求解即可. 4.数列{}n a 的通项公式22cos4n n a n n π=-,其前n 项和为n S ,则2021S =__________. 【试题来源】甘肃省永昌县第一中学2020-2021学年高三上学期第一次月考数学理试题 【答案】1010.【分析】由于22cos(1cos )cos 422n n n n a n n n n n πππ=-=+-=,可得数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项,从而可求得其结果 【解析】因为22cos (1cos )cos 422n n n n a n n n n n πππ=-=+-=,所以数列{}n a 的所有奇数项为0,前2021项的所有偶数项共有202010102=项, 所以2021246820182020S a a a a a a =++++⋅⋅⋅++246820182020=-+-+-⋅⋅⋅-+(24)(68)(20182020)=-++-++⋅⋅⋅+-+1010210102=⨯=.故答案为1010 5.2020年疫情期间,某医院30天每天因患新冠肺炎而入院就诊的人数依次构成数列{}n a ,已知11a =,22a =,且满足21(1)nn n a a +-=--,则该医院30天内因患新冠肺炎就诊的人数共有__________.【试题来源】山东省聊城市2020-2021学年高三上学期期中 【答案】255【分析】根据题目所给递推关系式,求得数列{}n a 项的规律,由此进行分组求和,求得数列前30项的和.【解析】由于()211nn n a a +-=--,当n 为偶数时,20n na a +-=,因此前30项中的偶数项构成常数列,各项都等于22a =,共有15项,和为15230⨯=;当n 为奇数时,22n n a a +-=;又11a =,所以前30项中的奇数项构成首项为1,公差为2的等差数列,共有15项,和为151415122252⨯⨯+⨯=. 故30天的总人数为30225255+=.故答案为255. 6.数列{}n a 的前n 项和为n S ,若()*1cos2n n a n n N π=+⋅∈,则2020S =__________.【试题来源】上海市复兴高级中学2021届高三上学期期中 【答案】3030【分析】根据题意,先确定cos2n π的周期,再求出一个周期的和,即可得出结果. 【解析】由()4coscos 2cos 222n n n ππππ+⎛⎫=+= ⎪⎝⎭,知cos 2n π的周期为4,又11cos12a π=+=,212cos 12a π=+=-, 3313cos12a π=+=, 414cos 214a π=+=+,则1234426a a a a +++=+=,所以20202020630304S =⨯=.故答案为3030.7.已知数列{}n a 的前n 项和为n S ,且21n n S a =-.则数列{}n S 的前n 项和n T =__________. 【试题来源】重庆市巴蜀中学2021届高三上学期适应性月考(四) 【答案】122n n +--【分析】通过前n 项和n S 与n a 的关系式以及等比数列的定义得出{}n a 及{}n S 的表达式,进而利用分组求和即可.【解析】由21n n S a =-,得111211a a a =-⇒=,由21n n S a =-,有1121(2)n n S a n --=-≥,两式相减,11222(2)n n n n n a a a a a n --=-⇒=, 故数列{}n a 是首项为1,公比为2的等比数列,12n na ,122112nn n S -==--,()12122212n n n T n n +-∴=-=---.8.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当[)0,1x ∈时,()sin f x x π=,当[)0,x ∈+∞时,函数()f x 的极大值点从小到大依次记为1a 、2a 、3a 、、n a 、,并记相应的极大值为1b 、2b 、3b 、、n b 、,则数列{}n n a b +前9项的和为__________.【试题来源】湖北省荆州中学2020-2021学年高三上学期8月月考 【答案】11032【分析】求出函数()y f x =在区间[)()1,n n n N*-∈上的解析式,利用导数求出函数()y f x =在区间[)()1,n n n N *-∈上的极大值点与极大值,可得出数列{}n n a b +的通项公式,再利用分组求和法可求得数列{}n n a b +的前9项的和. 【解析】函数()f x 的定义域为R ,满足()()12f x f x +=,则()()21=-f x f x ,且当[)0,1x ∈时,()sin f x x π=,则当[)()1,x n n n N *∈-∈,()[)10,1x n --∈,()()()()()2112122212sin 1n n f x f x f x f x n x n ππ--=-=-==--=--⎡⎤⎡⎤⎣⎦⎣⎦,()()12cos 1n f x x n πππ-'=--⎡⎤⎣⎦,当[)()1,x n n n N*∈-∈时,()[)10,1x n --∈,则()[)10,x n πππ--∈⎡⎤⎣⎦,令()0f x '=,可得()12x n πππ--=,解得12x n =-, 当112n x n -<<-时,()0f x '>,当12n x n -<<时,()0f x '<. 所以,函数()y f x =在12x n =-处取得极大值,即1122n n b f n -⎛⎫=-= ⎪⎝⎭,又12n a n =-,1122n n n a b n -∴+=-+,因此,数列{}n n a b +的前9项的和991199121103222122S ⎛⎫+-⨯ ⎪-⎝⎭=+=-. 【名师点睛】本题考查了数列的分组求和,同时也考查了利用导数求函数的极值点和极值,考查计算能力,属于中等题.9.在数列{}n a 中,若121,(1)2nn n a a a +=+-=,记n S 是数列{}n a 的前n 项和,则100S =__________.【试题来源】江苏省盐城市响水中学2020-2021学年高二上学期期中 【答案】2550【分析】当n 为奇数时,可得数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,可得偶数项的特征,将所求问题转化为奇数项和偶数项求和即可.【解析】因为121,(1)2nn n a a a +=+-=,所以当n 为奇数时,22n n a a +-=,即数列{}n a 的奇数项为公差为2的等差数列,当n 为偶数时,22n n a a ++=,所以135995049501225002a a a a ⨯++++=⨯+⨯=, ()()()()24681012485022550a a a a a a a a ++++++++=⨯=,所以1002500502550S =+=,故答案为2550.【名师点睛】(1)得到数列{}n a 的奇数项为公差是2的等差数列; (2)得到数列{}n a 的偶数项满足22n n a a ++=.10.已知数列{}n a 的前n 项和为n S ,21122n n a a a =+,=+,则5S 的值为__________. 【试题来源】河南省豫南九校2020-2021学年高二第一学期第二次联考试题 (理) 【答案】732【解析】122n n a a +=+,()1222n n a a +∴+=+,故数列{}2n a +是以2为公比,以223a +=为第二项的等比数列, 故2232n n a -+=⋅,故2322n n a -=⋅-,()5531273225122S -∴=-⨯=-,故答案为732. 【名师点睛】1n n a pa q +=+(1,0p q ≠≠的常数)递推关系求通项,构造等比数列是解题关键,属于基础题. 11.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为__________.【试题来源】江苏省宿迁中学2020-2021学年高三上学期期中巩固测试 【答案】3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案.【解析】由等比数列的前n 项和公式得()1314112821112n nn na q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦===---, 由于数列{}32n-是以4为首项,12为公比的等比数列,。

2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)

2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)

2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q 点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f(x)=sin|x|2+cosxB. f(x)=sinx•ln|x|2+cosxC. f(x)=cosx•ln|x|2+cosxD. f(x)=cosxx5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1(R+r)2 + M2r2=(R+r)M1R3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为()A. √M2M1RB. √M22M1RC. √3M2M13 RD. √M23M13 R6.(单选题,5分)已知函数f(x)={x,0≤x≤1,ln(2x),1<x≤2,若存在实数x1,x2满足0≤x1<x2≤2,且f(x1)=f(x2),则x2-x1的最大值为()A. e2B. e2−1C.1-ln2D.2-ln47.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<08.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条9.(多选题,5分)5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出做出预测.由如图提供的信息可知()A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增12.(多选题,5分)关于函数f(x)=alnx+ 2x,下列判断正确的是()A.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(12,1)C.当a>e时,函数 f (x)有两个零点D.当f (x)的最小值为2时,a=213.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .16.(填空题,5分)若函数f(x)=x(x-1)(x-a),(a>1)的两个不同极值点x1,x2满足f(x1)+f(x2)≤0恒成立,则实数a的取值范围为___ .17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为: b̂=∑x i y i −nxyn i=1∑x i 2n i=1−nx2=i −x )i −y n i=1)∑(x −x )2n â=y −b̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.21.(问答题,12分)已知函数f(x)=x|2a-x|+2x,a∈R.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有3个不相等的实数根,求实数t的取值范围.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【正确答案】:A【解析】:由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】:解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.【点评】:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)【正确答案】:A【解析】:由题意推出∠QOx角的大小,然后求出Q点的坐标.【解答】:解:点P从(0,1)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,所以∠QOx= 2π3,所以Q(cos 2π3,sin 2π3),所以Q (−12,√32).故选:A.【点评】:本题通过角的终边的旋转,求出角的大小是解题的关键,考查计算能力,注意旋转方向.3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)【正确答案】:A【解析】:先求幂函数f(x),再利用导数判定函数g(x)的单调递增区间.【解答】:解:设幂函数f(x)=xα,它的图象过点(√22,12),∴(√22)α= 12,∴α=2;∴f(x)=x2;∴g(x)= x2e x ,g′(x)= x(2−x)e x,令g′(x)>0,即2-x>0,解得:0<x<2,故g(x)在(0,2)递增,故选:A.【点评】:本题考查了幂函数的定义以及利用导数判定函数的单调区间问题,是中档题.4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f (x )=sin|x|2+cosx B. f (x )=sinx•ln|x|2+cosxC. f (x )=cosx•ln|x|2+cosx D. f (x )=cosx x【正确答案】:B【解析】:根据题意,依次分析选项中函数是否符合函数的图象,综合即可得答案.【解答】:解:根据题意,依次分析选项: 对于A , f (x )=sin|x|2+cosx,其定义域为R ,不符合题意;排除A ;对于C ,f (x )= cosx•ln|x|2+cosx,其定义域为{x|x≠0},有f (-x )=cos (−x )ln|−x|2+cos (−x ) = cosx•ln|x|2+cosx=f (x ), 即函数f (x )为偶函数,其图象关于y 轴对称,不符合题意;排除C , 对于D ,f (x )= cosxx,其定义域为{x|x≠0}, 有f (-x )=cos (−x )x =- cosx x=-f (x ), 即函数f (x )为奇函数,其图象关于原点对称, 当x→+∞时,f (x )→0,不符合题意;排除D ; 故选:B .【点评】:本题考查根据函数的图象选择解析式,注意结合函数的奇偶性、定义域等性质运用排除法进行分析,属于基础题.5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r满足方程: M 1(R+r )2+ M 2r 2 =(R+r ) M1R 3 . 设α= rR .由于α的值很小,因此在近似计算中 3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( )A. √M2M1RB. √M22M 1RC. √3M2M 13RD. √M23M 13R【正确答案】:D【解析】:由α= rR.推导出 M 2M 1= 3α3+3α4+α5(1+α)2≈3α3,由此能求出r=αR= √M 23M 13R .【解答】:解:∵α= rR .∴r=αR ,r 满足方程: M 1(R+r )2 + M 2r 2 =(R+r ) M1R3 . ∴11+2•r R +r 2R2•M 1 + R 2r2•M 2 =(1+ r R)M 1,把 α=r R代入,得: 1(1−α)2•M 1+1α2•M 2 =(1+α)M 1, ∴ M 2α2 =[(1+α)- 1(1−α)2 ]M 1=(1+α)3−1(1+α)2•M 1 =α(α2+3α+3)(1+α)2M 1, ∴ M2M 1=3α3+3α4+α5(1+α)2≈3α3, ∴r=αR= √M23M 13R .故选:D .【点评】:本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题. 6.(单选题,5分)已知函数 f (x )={x ,0≤x ≤1,ln (2x ),1<x ≤2,若存在实数x 1,x 2满足0≤x 1<x 2≤2,且f (x 1)=f (x 2),则x 2-x 1的最大值为( ) A. e 2B. e 2−1C.1-ln2D.2-ln4【正确答案】:B【解析】:画出函数图象得到x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],根据函数的单调性求出其最大值即可.【解答】:解:画出函数f(x)的图象,如图示:结合f(x)的图象可知,因为x1=ln(2x2),所以x2∈(1,e2],则x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],则g′(x)=x−1x,所以g(x)在(1,e2]上单调递增,故g(x)max=g(e2)=e2−1,故选:B.【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及数形结合思想,转化思想,是一道常规题.7.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0【正确答案】:A【解析】:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),结合函数的单调性可得x,y的大小关系,结合选项即可判断.方法二:根据条件取x=-1,y=0,即可排除错误选项.【解答】:解:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y-x>0,由于y-x+1>1,故ln(y-x+1)>ln1=0.方法二:取x=-1,y=0,满足2x-2y<3-x-3-y,此时ln(y-x+1)=ln2>0,ln|x-y|=ln1=0,可排除BCD.故选:A.【点评】:本题主要考查了函数的单调性在比较变量大小中的应用,属于基础试题.8.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条【正确答案】:B【解析】:设AB方程为y=m,根据△ABC是等边三角形计算m的值,得出结论.【解答】:解:根据题意,设直线l的方程为y=m,则A(log2m,m),B(log2m-1,m),AB=1,设C(x,2x),∵△ABC是等边三角形,∴点C到直线AB的距离为√32,∴m-2x= √32,∴x=log2(m- √32),又x= 12(log2m+log2m-1)=log2m- 12,∴log 2(m- √32 )=log 2m- 12 =log 2 m √2∴m - √32 = m√2 ,解得m=2√3+√62, 故而符合条件的直线l 只有1条. 故选:B .【点评】:本题考查了指数函数图象与性质的应用问题,也考查了指数,对数的运算问题,属于中档题.9.(多选题,5分)5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G 经济产出做出预测.由如图提供的信息可知( ) A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 【正确答案】:ABD【解析】:根据统计图中的信息,逐个分析选项,即可判断出正误.【解答】:解:对于选项A:由图可知,运营商的经济产出逐年增加,所以选项A正确,对于选项B:由图可知,设备制造商的经济产出在2020~2023年间增长较快,后几年增长逐渐趋于平缓,所以选项B正确,对于选项C:由图可知,设备制造商在各年的总经济产出中在前期处于领先地位,而2029年、2030年信息服务商在总经济产出中处于领先地位,所以选项C错误,对于选项D:由图可知,在2020~2025年间信息服务商与运营商的经济产出的差距不大,后几年中信息服务商的经济产出增长速度明显高于运营商的经济产出增长速度,两种差距有逐步拉大的趋势,所以选项D正确,故选:ABD.【点评】:本题主要考查了简单的合情推理,考查了统计图的应用,考查了学生逻辑思维能力,是基础题.10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件【正确答案】:ACD【解析】:直接利用充分条件和必要条件判定A和B的结论,直接利用命题的否定的应用判定C的结论,直接利用奇函数的性质判定D的结论.【解答】:解:对于A:当“a>1”时,“a2>1”成立,但是当“a2>1”时,“a>1或a<-1”,故选项A正确.对于B:“(a-1)-2<(2a-3)-2”的充要条件是:a-1>2a-3,整理得a<2,故选项B错误.对于C:命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”.故选项C正确.对于D:函数y=f (x)的定义域为R,当“f(0)=0”时,函数f(x)不一定为奇函数,但是,当函数f(x)为奇函数,则f(0)=0,故选项D正确.故选:ACD.【点评】:本题考查的知识要点:充分条件和必要条件,奇函数的性质,命题的否定,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增【正确答案】:ABC【解析】:直接利用函数的周期确定B的结论,直接利用函数的对称性判定A的结论,直接利用函数的解析式的求法判定C的结论,直接利用函数的图象和偶函数的性质判定D的结论.【解答】:解:对于B:函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x),整理得f(x+2)=f(x),所以函数为周期为2的函数,故B正确.对于C:由于0<x<1,所以2<x+2<3,由于x∈(2,3)时,f(x)=log2(x-1),所以f(x)=f(x+2)=log2(x+1),设-1<x<0,则0<-x<1,由于f(x)=-f(-x)=-log2(-x+1),故C正确.对于A:根据函数的性质,函数的图象关于(1,0)对称,故A正确.对于选项D:函数 y=f (|x|)的图象是将函数y=f(x)的图象关于y轴对称,在(-1,0)上单调递减,故D错误.故选:ABC.【点评】:本题考查的知识要点:函数的性质,单调性,周期性,函数的解析式的求法,主要考查学生的运算能力和转换能力及思维能力,属于中档题.12.(多选题,5分)关于函数f(x)=alnx+ 2,下列判断正确的是()xA.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(1,1)2C.当a>e时,函数 f (x)有两个零点D.当f (x ) 的最小值为2时,a=2 【正确答案】:ABD【解析】:对于A ,代入a 的值,求出函数的导数,求出函数的单调区间,得到函数的最小值即可,对于B ,代入a 的值,求出函数的导数,得到函数的单调性,问题转化为关于x 的不等式组,解出即可,对于C ,求出函数的单调性,求出函数的最小值,根据a 的范围判断最小值的范围即可判断, 对于D ,由最小值是2,得到关于a 的方程,解出即可.【解答】:解:对于A :a=1时,f (x )=lnx+ 2x ,f′(x )= x−2x 2 , 令f′(x )>0,解得:x >2,令f′(x )<0,解得:0<x <2, 故f (x )在(0,2)递减,在(2,+∞)递增, 故f (x )≥f (2)=ln2+1, 故A 正确;对于B :a=-1时,f (x )=-lnx+ 2x,f′(x )= −x−2x 2 <0, f (x )在(0,+∞)递减,不等式f (2x-1)-f (x )>0,即f (2x-1)>f (x ),故 {2x −1>0x >02x −1<x ,解得: 12<x <1,故B 正确;对于C :f′(x )= a x- 2x2 =ax−2x 2, ∵a >e ,令ax-2>0,解得:x > 2a,令ax-2<0,解得:0<x < 2a, 故f (x )在(0, 2a )递减,在( 2a ,+∞)递增, 故f (x )min =f ( 2a )=aln 2a+ 22a=a (ln2-lna )+a=aln 2e a,∵0< 2e a <2,故1< 2e a <2时,ln 2ea >0,f (x )min >0,函数无零点, 故C 错误;对于D :结合C ,f (x )min =aln 2e a=2,解得:a=e , 故D 正确; 故选:ABD .【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道常规题.13.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .【正确答案】:[1]-2【解析】:由偶函数的定义可求得x>0时,f(x)的解析式,求得导数,由导数的几何意义,代入x=1,计算可得所求值.【解答】:解:f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,可得x>0时,-x<0,f(x)=f(-x)=lnx-3x,导数为f′(x)= 1x-3,则曲线y=f(x)在点(1,-3)处的切线斜率是k=1-3=-2.故答案为:-2.【点评】:本题考查函数的奇偶性和解析式的求法,以及导数的运用:求切线的斜率,考查转化思想和运算能力,属于中档题.14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .【正确答案】:[1]- 54【解析】:利用二倍角公式整理函数解析式,值函数的解析式关于cosx的一元二次函数,设cosx=t,函数的顶点为最低点,此时函数值为最小值.【解答】:解:y=cosx+cos2x=cosx+2cos2x-1,设cosx=t,则-1≤t≤1,函数f(t)min=f(- 14)= 12- 14-1=- 54,故答案为:- 54.【点评】:本题主要考查了二次函数的性质.考查了学生的换元思想的运用.15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .【正确答案】:[1]a>c>b【解析】:可以得出 log 49>32>1 , (827)−13=32,2-1.2<1,然后即可得出a ,b ,c 的大小关系.【解答】:解:∵ log 49>log 48=log 4432=32>1 , (827)−13=32 ,2-1.2<20=1,∴a >c >b .故答案为:a >c >b .【点评】:本题考查了对数的运算性质,分数指数幂的运算,对数函数和指数函数的单调性,考查了计算能力,属于基础题.16.(填空题,5分)若函数f (x )=x (x-1)(x-a ),(a >1)的两个不同极值点x 1,x 2满足f (x 1)+f (x 2)≤0恒成立,则实数a 的取值范围为___ . 【正确答案】:[1]a≥2【解析】:把x 1,x 2代入到f (x )中求出函数值代入不等式f (x 1)+f (x 2)≤0中,在利用根与系数的关系化简得到关于a 的不等式,求出解集即可.【解答】:解:因f (x 1)+f (x 2)≤0,故得不等式x 13+x 23-(1+a )(x 12+x 22)+a (x 1+x 2)≤0.即(x 1+x 2)[(x 1+x 2)2-3x 1x 2]-(1+a )[(x 1+x 2)2-2x 1x 2]+a (x 1+x 2)≤0. 由于f′(x )=3x 2-2(1+a )x+a .令f′(x )=0得方程3x 2-2(1+a )x+a=0. 因△=4(a 2-a+1)≥4a >0,故 {x 1+x 2=23(1+a )x 1x 2=a3 代入前面不等式, 两边除以(1+a ),并化简得 2a 2-5a+2≥0.解不等式得a≥2或a≤ 12 (舍去)因此,当a≥2时,不等式f (x 1)+f (x 2)≤0成立.【点评】:考查学生求导数及利用导数研究函数极值的能力,灵活运用一元二次方程根与系数的关系解决数学问题的能力.17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?【正确答案】:【解析】:由集合知识可以解出集合A,对集合B进行分类求解,再利用集合的子集,交集,补集解出.【解答】:解:由log2(x-1)>1得x-1>2即x>3,故A=(3,+∞)选① :A⊆B当a>2时,B=(-∞,4-a)∪(a,+∞),∵A⊆B∴2<a≤3;当a<2时,B=(-∞,a)∪(4-a,+∞),∵A⊆B∴4-a≤3即1≤a<2;当a=2时,B=(-∞,2)∪(2,+∞),此时A⊆B综上:1≤a≤3选② ③ :答案同①故答案为:1≤a≤3.【点评】:本题属于结构不良试题,补充条件后,试题完整,利用集合的相关知识解决,属于基础题.18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.【正确答案】:【解析】:(1)利用诱导公式,和同角三角函数的基本关系关系,可将f (α)的解析式化简为f (α)=-cosα;(2)由α是第三象限角,且 cos (3π2−α)=35 ,可得cosα=- 45 ,结合(1)中结论,可得答案.【解答】:解:(1)f (α)= sin (5π−α)cos (π+α)cos(3π2+α)cos(α+π2)tan (3π−α)sin(α−3π2)= sinα•(−cosα)•sinα(−sinα)•(−tanα)•cosα =-sinα•cosα•sinαsinα•sinα=-cosα (2)∵ cos (3π2−α) =-sinα= 35,∴sinα=- 35 ,又由α是第三象限角, ∴cosα=- 45 , 故f (α)=-cosα= 45【点评】:本题考查的知识点是三角函数的化简求值,熟练掌握和差角公式,诱导公式,同角三角函数的基本关系关系,是解答的关键.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为:b ̂=∑x i y i −nxyni=1∑xi 2n i=1−nx2=i −x )i −y ni=1)∑(x −x )2n a ̂=y −b ̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .【正确答案】:【解析】:(1)由已知求得 b ̂ 与 a ̂ 的值,可得线性回归方程,取x=7求得y 值得结论; (2)求出K 2的值,结合临界值表得结论.【解答】:解:(1) x =1+2+3+4+55=3 , y =3+6+9+15+275=12 ,∑x i 5i=1y i =1×3+2×6+3×9+4×15+5×27 =237.b ̂=i 5i=1i −5xy∑x 25−5(x )2= 237−5×3×1255−45=5.7 ,a ̂=y −b̂x =12−5.7×3=−5.1 , 则y 关于x 的线性回归方程为 y ̂=5.7x −5.1 . 取x=7,可得 y ̂=5.7×7−5.1=34.8 .故预测2025~2030年间该市机动车纯增数量的值约为34.8万辆; (2)根据2×2列联表,计算可得 K 2=220×(90×40−20×70)2110×110×160×60=556≈9.167>6.635, ∴有99%的把握认为“对限行的意见与是拥有私家车”有关.【点评】:本题考查线性回归方程的求法,考查独立性检验的应用,考查计算能力,是中档题. 20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.【正确答案】:【解析】:(1)由平面AA 1C 1C⊥平面AA 1B 1B ,推出OC⊥平面AA 1B 1B ,故OC⊥OB ;易证Rt△AOC≌Rt△BOC ,故OA=OB ,从而得AA 1⊥OB ,再由线面垂直的判定定理得证;(2)以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B ,故∠CBO 为直线BC 与平面ABB 1A 1所成角,可得OA=OB=OC=1,写出B 、A 1、B 1、D 的坐标,根据法向量的性质求得平面A 1B 1D 的法向量 m ⃗⃗ ,由OB⊥平面AA 1C 1C ,知平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ ,再由cos < m ⃗⃗ , n ⃗ >= m ⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |即可得解.【解答】:(1)证明:∵平面AA 1C 1C⊥平面AA 1B 1B ,平面AA 1C 1C∩平面AA 1B 1B=AA 1,OC⊥AA 1,∴OC⊥平面AA 1B 1B , ∴OC⊥OB ,∵CA=CB ,OC=OC ,∠COA=∠COB=90°, ∴Rt△AOC≌Rt△BOC , ∴OA=OB , ∵∠BAA 1=45°,∴∠ABO=∠BAA 1=45°,∠AOB=90°,即AA 1⊥OB , 又OC⊥AA 1,OB∩OC=O ,OB 、OC⊂平面BOC , ∴AA 1⊥平面BOC , ∴AA 1⊥BC .(2)解:以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B , ∵直线BC 与平面ABB 1A 1所成角为45°, ∴∠CBO=45°,∵AB= √2 ,∴OA=OB=OC=1,∴B (0,1,0),A 1(-1,0,0),B 1(-2,1,0),D (-1,0,1), ∴ A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1), B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,1), 设平面A 1B 1D 的法向量为 m ⃗⃗ =(x ,y ,z ),则 {m ⃗⃗ •A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0m ⃗⃗ •B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0 ,即 {z =0x −y +z =0 ,令x=1,则y=1,z=0,所以 m ⃗⃗ =(1,1,0),∵OB⊥平面AA 1C 1C ,∴平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ =(0,1,0), ∴cos < m ⃗⃗ , n ⃗ >= m⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |= √2×1= √22 , 由图可知,二面角B 1-A 1D-C 1为锐角, 故二面角B 1-A 1D-C 1的余弦值为 √22 .【点评】:本题考查空间中线与面的位置关系、二面角的求法,熟练掌握线面、面面垂直的判定定理与性质定理,以及利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.21.(问答题,12分)已知函数f (x )=x|2a-x|+2x ,a∈R . (1)若函数f (x )在R 上是增函数,求实数a 的取值范围;(2)若存在实数a∈[-2,2],使得关于x 的方程f (x )-tf (2a )=0有3个不相等的实数根,求实数t 的取值范围.【正确答案】:【解析】:(1)写出f (x )的分段函数,求出对称轴方程,由二次函数的单调性,可得a-1≤2a ,2a≤a+1,解不等式即可得到所求范围;(2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解.讨论 ① 当-1≤a≤1时, ② 当a >1时, ③ 当a <-1时,判断f (x )的单调性,结合函数和方程的转化思想,即可得到所求范围.【解答】:解:(1)∵ f (x )={x 2+(2−2a )x ,x ≥2a−x 2+(2+2a )x ,x <2a 为增函数,由于x≥2a 时,f (x )的对称轴为x=a-1; x <2a 时,f (x )的对称轴为x=a+1, ∴ {a −1≤2a 2a ≤a +1解得-1≤a≤1; (2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解. ① 当-1≤a≤1时,f (x )在R 上是增函数,关于x 的方程f (x )=tf (2a )不可能有3个不相等的实数根. ② 当1<a≤2时,2a >a+1>a-1,∴f (x )在(-∞,a+1)上单调递增,在(a+1,2a )上单调递减, 在(2a ,+∞)上单调递增,所以当f (2a )<tf (2a )<f (a+1)时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根,即4a <t•4a <(a+1)2. ∵a >1,∴ 1<t <14(a +1a +2) .设 ℎ(a )=14(a +1a +2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,∴1<t <h (a )max .又h (a )在(1,2]递增,所以 ℎ(a )max =98,∴ 1<t <98. ③ 当-2≤a <-1时,2a <a-1<a+1,所以f (x )在(-∞,2a )上单调递增, 在(2a ,a-1)上单调递减,在(a-1,+∞)上单调递增, 所以当f (a-1)<tf (2a )<f (2a )时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根, 即-(a-1)2<t•4a <4a .∵a <-1,∴ 1<t <−14(a +1a−2) . 设 g (a )=−14(a +1a −2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,所以1<t <g (a )max . 又可证 g (a )=−14(a +1a −2) 在[-2,-1)上单调递减, 所以 g (a )max =98 ,所以 1<t <98 ..综上,1<t<98【点评】:本题考查分段函数的单调性的判断和运用,注意运用二次函数的对称轴和区间的关系,考查存在性问题的解法,注意运用分类讨论的思想方法,以及函数方程的转化思想的运用,考查运算化简能力,属于中档题.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e【正确答案】:【解析】:(1)依题意,f(x)+f(-x)=0在定义域上恒成立,由此建立方程,解出即可;(2)求导后分m≤2及m>2讨论即可;(3)可知e x0+e−x0=m,进而得到f(x0),研究其单调性,结合已知可得x0≤1,由此可求得实数m的取值范围.【解答】:解:(1)由函数f(x)为奇函数,得f(x)+f(-x)=0在定义域上恒成立,∴e x-ae-x-mx+e-x-ae x+mx=0,化简可得(1-a)(e x+e-x)=0,故a=1;,(2)由(1)可得f(x)=e x-e-x-mx,则f′(x)=e x+e−x−m=e2x−me x+1e x① 当m≤2时,由于e2x-me x+1≥0恒成立,即f′(x)≥0恒成立,故不存在极小值;② 当m>2时,令e x=t,则方程t2-mt+1=0有两个不等的正根t1,t2(t1<t2),故可知函数f(x)=e x-e-x-mx在(-∞,lnt1),(lnt2,+∞)上单调递增,在(lnt1,lnt2)上单调递减,即在lnt2出取到极小值,所以,实数m的取值范围为(2,+∞);(3)由x0满足e x0+e−x0=m代入f(x)=e x-e-x-mx,消去m得f(x0)=(1−x0)e x0−(1+x0)e−x0,构造函数h(x)=(1-x)e x-(1+x)e-x,则h′(x)=x(e-x-e x),当x≥0时,e−x−e x=1−e2xe x≤0,故当x≥0时,h′(x)≤0恒成立,故函数h(x)在[0,+∞)上单调减函数,其中ℎ(1)=−2e ,则f(x0)≥−2e,可转化为h(x0)≥h(1),故x0≤1,由e x0+e−x0=m,设y=e x+e-x,可得当x≥0时,y′=e x-e-x≥0,∴y=e x+e-x在(0,1]上递增,故m≤e+1e,综上,实数m的取值范围为(2,e+1e].【点评】:本题考查利用导数研究函数的单调性,极值及最值,同时也涉及了奇函数的定义,考查转化思想及逻辑推理能力,属于中档题.。

2020-2021学年高二数学12月月考试题 (II)

2020-2021学年高二数学12月月考试题 (II)

S ←9i ←1While S ≥0 S ←S -ii ←i +1End While Print i(第4题)2020-2021学年高二数学12月月考试题 (II)一、填空题(每小题5分共70分)1.命题“,x R ∀∈20x >”的否定是 ▲ . 2.若点(1,1)到直线cos sin 2x y αα+=的距离为d ,则d 的最大值是 ▲ .3. 右图是xx 年“隆力奇”杯第13届CCTV 青年歌手电视大奖赛上,某一位选手的部分得分的 茎叶统计图,则该选手的所有得分数据的中位数与众数之和为 ▲ .4.右图是一个算法的伪代码,则输出的i 的值为 ▲ . 5.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按 000,001,…,799进行编号,如果从随机数表第8行第18列的数开始向右读,请你依次写出最先检测的3袋牛奶的编号 ▲ . (下面摘取了一随机数表的第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 1206 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 6258 7973 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 0279 54 6.函数21()2ln 2f x x x x =-+的极值点是____▲_______. 7.在平面直角坐标系xOy 中,若抛物线)0(22>=p px y 上横坐标为1的点到焦点的距离 为4,则该抛物线的准线方程为 ▲ .8.已知样本7,8,9,x ,y 的平均数是8,标准差为2,则xy 的值是 ▲ __. 9. 已知条件a x p >:,条件021:>+-x xq . 若p 是q 的必要不充分条件,则实数a 的取值范 围是 ▲ .10.若函数()(1)(2)(3)(4)f x x x x x =----,则(2)=f ' ▲ .7 88 4 4 4 6 7 9 2 4 7 第3题图11.已知直线2y x =-与x 轴交于P 点,与双曲线C :2213y x -=交于A 、B 两点,则||||PA PB += ▲ .12.已知函数1()sin cos f x x x =+,函数1()n f x +是函数()n f x 的导函数,即'''*21321()=(),()=(),,()=(),n n f x f x f x f x f x f x n N +∈,则122019()()()=222f f f πππ+++▲ .13.设F 是椭圆C :221(0)x y m n m n+=>>的右焦点,C 的一个动点到F 的最大距离为d ,若C 的右准线上存在点P ,使得PF d =,则椭圆C 的离心率的取值范围是 ▲ . 14.若函数()xf x e =,g()ln x a x =的图像关于直线y x =对称. 则在区间),21(+∞上不等式2)()1(x x g x f <+-的解集为 ▲ .二、解答题(共90分)15.(14分)从扬州中学参加xx 全国高中数学联赛预赛的500名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.(1)根据表中已知数据,你认为在①、②、③处的数值分别为 ▲ , ▲ , ▲ .(2)补全在区间 [70,140] 上的频率分布直方图; (3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?分组频数频率 [70,80) 0.08 [80,90) 0.10 [90,100)③ [100,110) 16①[110,120)0.08 [120,130) ② 0.04[130,140]0.02 合计 50分数708090100110120130140组距频率040.0036.0032.0028.0024.0020.0016.0012.0008.0004.016. (14分)已知0,1c c >≠且,设p :函数xy c =在R 上单调递减;q :函数2()21f x x cx =-+在1(,)2+∞上为增函数.(1)若p 为真,q ⌝为假,求实数c 的取值范围;(2)若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围.17.(14分)先后2次抛掷一枚骰子,将得到的点数分别记为a,b .(1)求直线ax +by +5=0与圆x 2+y 2=1相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.18. (16分)某小区为解决居民停车难的问题,经业主委员会协调,现决定将某闲置区域改建为停车场. 如图,已知该闲置区域是一边靠道路且边界近似于抛物线)11(12≤≤--=x x y 的区域,现规划改建为一个三角形形状的停车场,要求三角形的一边为原有道路,另外两条边均与抛物线相切.(1)设AC AB ,分别与抛物线相切于点),(),,(2211y x Q y x P ,试用Q P ,的横坐标表示停车场的面积;(2)请问如何设计,既能充分利用该闲置区域,又对周边绿化影响最小?19.(16分)如图,椭圆2222:1(0)x y E a b a b+=>>经过点(0,1)A -,右准线:2l x =,设O 为坐标原点,若不与坐标轴垂直的直线与椭圆E 交于不同两点,P Q (均异于点A ),直线AP 交l 于M (点M 在x 轴下方). (1)求椭圆E 的标准方程;(2)过右焦点F 作OM 的垂线与以OM 为直径的圆H 交于,C D 两点,若6CD =,求圆H 的方程;(3)若直线AP 与AQ 的斜率之和为2,证明:直线PQ 过定点,并求出该定点.20.(16分)已知函数32()(63)x f x x x x t e =-++,t R ∈. (1)若函数()y f x =有三个极值点,求t 的取值范围;(2)若()f x 依次在,,()x a x b x c a b c ===<<处取到极值,且22a c b +=,求()f x ;(3)若存在实数[0,2]t ∈,使对任意的[1,]x m ∈,不等式()f x x ≤恒成立,试求正整数m 的 最大值.MlxyFOAPQ(第19题图)高二数学参考答案1.,x R ∃∈使得20x ≤ 2.2+ 2 3. 170 4. 5 5. 719,050,717 6. 1 7.3x =- 8. 60 9. 2a ≤- 10. 2 11.62 12.-1 13. 1,12⎡⎫⎪⎢⎣⎭14.()1,+∞15. 解:(1)0.32;2;0.36 (2)如图.(3)在随机抽取的50名同学中有7名 出线,75007050⨯=. 答:在参加的500名中大概有70名同学出线. 16.解:函数xy c =在R 上单调递减,01c ∴<<即:01p c <<2分函数2()21f x x cx =-+在1(,)2+∞上为增函数,12c ∴≤即21:≤c q 4分(1)p 为真,q ⌝为假由0110122c c c <<⎧⎪⇒<≤⎨≤⎪⎩ 所以实数c 的取值范围是1{|0}2c c <≤ (2)又“p 或q ”为假,“p 且q ”为真,∴p 真q 假或p 假q 真所以由112c c >⎧⎪⎨≤⎪⎩或0112c c <<⎧⎪⎨>⎪⎩解得112c <<, 所以实数c 的取值范围是1{|1}2c c <<17.解:(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵直线ax +by +c =0与圆x 2+y 2=1相切的充要条件是2251a b =+即:a 2+b 2=25,由于a,b ∈{1,2,3,4,5,6}∴满足条件的情况只有a =3,b =4,c =5;或a =4,b =3,c =5两种情况.∴直线ax +by +c =0与圆x 2+y 2=1相切的概率是213618= (2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.∵三角形的一边长为5 ∴当a =1时,b =5,(1,5,5) 1种 当a =2时,b =5,(2,5,5) 1种 当a =3时,b =3,5,(3,3,5),(3,5,5) 2种当a =4时,b =4,5,(4,4,5),(4,5,5) 2种 当a =5时,b =1,2,3,4,5,6, (5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5) 6种当a =6时,b =5,6,(6,5,5),(6,6,5) 2种 故满足条件的不同情况共有14种 答:三条线段能围成不同的等腰三角形的概率为1873614=.18解(1)因AC AB ,为分别与抛物线)11(12≤≤--=x x y 相切于),(),,(2211y x Q y x P不妨设11x ≤-<0<12≤x则直线AB :12121++-=x x x y 直线AC :12222++-=x x x y可得)0,21(),0,21(),1,2(2221122121x x C x x B x x x x A ++-+所以停车场的面积ABC S ∆=22221121212211211(1)()11()(1)2224x x x x x x x x x x x x ++--=--=其中[)(]1,0,0,121∈-∈x x(2)ABC S ∆=[][]21221122122121)(1)(41)1)((41x x x x x x x x x x x x --+-+⋅=--⋅ []21221)(121x x x x --+⋅≥,当且仅当021=+x x 时等号成立 令t x x =-21,则tt t t t t f 12)1()(322++=+=(01t <≤), 22123)(t t t f -+=',令33,0)(=='t t f 得当0<t <33时,)(t f '<0,)(t f 单调递减; 当1>t >33时,)(t f '>0,)(t f 单调递增 所以938),9316)33()(min mi ===∆ABC n S f t f 故(,所以当AC AB ,分别与闲置区的抛物线的边界相切于点)3233(),3233(,,Q P -时,既能充分利用该闲置区域,又对周边绿化影响最小19.解(1)由222212b aca b c =⎧⎪⎪=⎨⎪⎪=+⎩,解得2,1a b ==.所以椭圆E 的标准方程为2212x y +=.(2)设(2,)M m ,由CD OM ⊥得12CD OMk k m=-=-, 则CD 方程为2(1)y x m=--,即220x my +-=. 因为圆心(1,)2m H ,则圆心H 到直线CD 的距离为2222|22|2424m m d m m+-==++. 圆半径为2422OM m r +==,且622CD =,由222()2CD d r +=,代入得2m =±. 因为点M 在x 轴下方,所以2m =-,此时圆H 方程为22(1)(1)2x y -++=. (3)设PQ 方程为:(1)y kx b b =+≠-,(0,1)A -,令1122(,),(,)P x y Q x y , 由直线AP 与AQ 的斜率之和为2得1212112y y x x +++=, 由1122,y kx b y kx b =+=+得1212(1)()22b x x k x x +++=,①联立方程2212y kx b x y =+⎧⎪⎨+=⎪⎩,得222(12)4220k x kbx b +++-=, 所以122412kbx x k -+=+,21222212b x x k -=+代入①得,(1)(1)0b b k ++-=,由1b ≠-得10b k +-=,即1b k =-,所以PQ 方程为1(1)1y kx k k x =+-=-+,所以直线PQ 过定点,定点为(1,1). 20解(1)①23232()(3123)(63)(393)x x f x x x e x x x t x x x t e '=-++-++=--++∵()f x 有3个极值点,∴323930x x x t --++=有3个不同的根,令32()393g x x x x t =--++,则2()3693(1)(3)g x x x x x '=--=+-, 从而函数()g x 在(,1)-∞-,(3,)+∞上递增,在(1,3)-上递减. ∵()g x 有3个零点,∴(1)0(3)0g g ->⎧⎨<⎩,∴824t -<<.(2),,a b c 是()f x 的三个极值点∴3232393()()()()()x x x t x a x b x c x a b c x ab bc ac x abc --++=---=-+++++-----6分∴23932a b c ab ac bc t abc a c b ++=⎧⎪++=-⎪⎨+=-⎪⎪+=⎩,∴1b =或32-(舍∵(1,3)b ∈-)∴12311238a b c t ⎧=-⎪=⎪⎨=+⎪⎪=⎩,所以,32()(638)x f x x x x e =-++.(3)不等式()f x x ≤,等价于32(63)x x x x t e x -++≤,即3263x t xe x x x -≤-+-. 转化为存在实数[0,2]t ∈,使对任意的[1,]x m ∈,不等式3263x t xe x x x -≤-+-恒成立. 即不等式32063x xe x x x -≤-+-在[1,]x m ∈上恒成立. 即不等式2063x e x x -≤-+-在[1,]x m ∈上恒成立. 设2()63x x e x x ϕ-=-+-,则()26x x e x ϕ-'=--+. 设()()26x r x x e x ϕ-'==--+,则()2x r x e -'=-.因为1x m ≤≤,有()0r x '<. 所以()r x 在区间[1,]m 上是减函数. 又1(1)40r e -=->,2(2)20r e -=->,()3330r -=-<, 故存在()02,3x ∈,使得00()()0r x x ϕ'==.当01x x ≤<时,有()0x ϕ'>,当0x x >时,有()0x ϕ'<. 从而()y x ϕ=在区间0[1,]x 上递增,在区间0[,)x +∞上递减. 又1(1)40e ϕ-=+>,2(2)50e ϕ-=+>,3(3)60e ϕ-=+>,4(4)50e ϕ-=+>,5(5)20e ϕ-=+>,6(6)30e ϕ-=-<.所以,当15x ≤≤时,恒有()0x ϕ>;当6x ≥时,恒有()0x ϕ<.故使命题成立的正整数m的最大值为5.【感谢您的阅览,下载后可自由编辑和修改,关注我每天更新】。

扬州中学高三12月月考试题(数学)

扬州中学高三12月月考试题(数学)

扬州中学2008—2009学年度第一学期月考 高 三 数 学 试 卷 08.12一、填空题:(本大题共14小题,每小题5分,共70分.)1.35cos()3π-的值是 ▲ . 2. 当}21,1,2,1{-∈n 时,幂函数y=x n 的图象不可能经过第___▲______象限3.已知复数12312,1,32z i z i z i =-+=-=-,它们所对应的点分别为A ,B ,C .若OC xOA yOB =+,则x y +的值是 ▲ . 4.已知向量a bP a b=+,其中a 、b 均为非零向量,则P 的取值范围是 ▲ . 5.命题“∃x ∈R ,x 2-2x+l ≤0”的否定形式为 ▲ .. 6.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0x A ay c ⋅++= 与sin sin 0bx y B C -⋅+=的位置关系是 ▲ .7.在小时候,我们就用手指练习过数数. 一个小朋友按 如图所示的规则练习数数,数到2008时对应的指头是 ▲ .(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).8.已知等差数列{}n a 满足:6,821-=-=a a .若将541,,a a a 都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为 ▲ .9.若向量)1,3(=a ,(sin , cos )b m αα=-,(R ∈α),且b a //,则m 的最小值为_▲____ 10 已知函数()35xf x x =+-的零点[]0,x a b ∈,且1b a -=,a ,b N *∈,则a b +=▲ .11.已知{}n a 是首项为a,公差为1的等差数列,1n n na b a +=.若对任意的*n N ∈,都有8n b b ≥成立,则实数a 的取值范围是 ▲12.已知2()2f x x x =-,则满足条件()()0()()0f x f y f x f y +≤⎧⎨-≥⎩的点(,)x y 所形成区域的面积为▲ .13. 若函数1()ax f x e b=-的图象在x=0处的切线l 与圆C: 221x y +=相离,则P(a ,b)与圆C 的位置关系是 ▲ .14.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。

江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高二上学期11月期中考试数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试卷高 二 数 学 2024.11一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.圆的圆心和半径分别是( )A .,1B .,3C .,2D .,22.经过两点,的直线的斜率为( )A .B .C .D .3.椭圆x 225+y 216=1的焦点为为椭圆上一点,若,则( )A .B .C .D .4.已知双曲线的离心率大于实轴长,则的取值范围是( )A .B .C .D.5.两平行直线与之间的距离为( )ABCD6.已知圆关于直线对称,则实数( )A .1或B .1C .3D .或37.已知抛物线C :y 2=2px (p >0)的焦点为,若抛物线上一点满足|MF |=2,∠OFM =60°,则( )A .3B .4C .6D .88.如图,双曲线的左右焦点分别为、,过的直线与该双曲线的两支分别交于、两点(在线段上),⊙与⊙分别为与的内切圆,其半径分别为、,则的取值范围是( )A .B .C .D .(0,+∞)二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是( )A .若,且直线不经过第二象限,则,.()()22232x y +++=()2,3-()2,3-()2,3--()2.3-(2,7)A (4,6)B 12-2-12212,,F F P 13PF =2PF =435722:1y C x m -=m (3,)+∞)+∞(0,3)320mx y --=4670x y --=22:330C x y mx y +-++=:0l mx y m +-=m =3-1-F M p =2218y x -=1F 2F 1F l A B A 1F B 1O 2O 12AF F △2ABF △1r 2r 12r r 1132⎛⎫ ⎪⎝⎭,1233⎛⎫⎪⎝⎭,1223⎛⎫ ⎪⎝⎭,0abc ≠0ax by c ++=0ab >0bc <B .方程()表示的直线都经过点.C .,直线不可能与轴垂直.D .直线的横、纵截距相等.10.已知曲线.点,,则以下说法正确的是( )A .曲线C 关于原点对称B .曲线C 存在点P,使得C .直线与曲线C 没有交点D .点Q 是曲线C 上在第三象限内的一点,过点Q 向作垂线,垂足分别为A ,B ,则.11.已知集合.由集合中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论,正确的有( )A .白色“水滴”区域(含边界)任意两点间距离的最大值为B .在阴影部分任取一点,则到坐标轴的距离小于等于3.C .阴影部分的面积为.D .阴影部分的内外边界曲线长为.三、填空题:本题共3小题,每小题5分,共15分.12.若双曲线的离心率为2,则其两条渐近线所成的锐角的大小为 .13.已知椭圆的左、右焦点分别为F 1、F 2,过点的直线交椭圆于A 、B 两点,若,则该椭圆的离心率为 .14.已知为曲线y =1+4―x 2上的动点,则的最大值为 .四、解答题:本题共5小题,共77分.解答题写出文字说明、证明过程或演算步骤.15.已知△ABC 的顶点坐标是为的中点.(1)求中线的方程;(2)求经过点且与直线平行的直线方程.16.已知双曲线C :x 2a2―y 2b 2=1(a >0,b >0)的离心率为为双曲线的右焦点,且点到直线的()()21250x y λλ++--=R λ∈()2,1m ∈R 220m x y ++=y 3310x y +-=:44C x x y y =-1F 2(0,F 124PF PF -=2y x =2y x =±45QA QB ⋅=(){}22,(cos )(sin )4,0πP x y x y θθθ=-+-=≤≤∣P 1M M 8π8π()222210,0y x a b a b -=>>22221(0)x y a b a b+=>>2F 1AB F B ⊥,14sin 5F AB ∠=(),P a b 223a b a b --++()()()2,0,6,2,2,3,A B C M --AB CM B AC ()5,,03F c F 2a x c=距离为.(1)求双曲线的方程;(2)若点,点为双曲线左支上一点,求的最小值.17.已知,是抛物线:上的两点.(1)求抛物线的方程;(2)若斜率为的直线经过的焦点,且与交于,两点,求的最小值.18.椭圆与椭圆:有相同的焦点,且经过点.(1)求椭圆的方程;(2)椭圆的右焦点为,设动直线与坐标轴不垂直,与椭圆交于不同的,两点,且直线和的斜率互为相反数.①证明:动直线恒过轴上的某个定点,并求出该定点的坐标.②求△OMN 面积的最大值.19.定义:M 是圆C 上一动点,N 是圆C 外一点,记的最大值为m ,的最小值为n ,若,则称N 为圆C 的“黄金点”;若G 同时是圆E 和圆F 的“黄金点”,则称G 为圆“”的“钻石点”.已知圆165C ()12,0A P C PA PF +()6,2A m +()24,8B m +C ()221y px p =>C ()0k k ≠l C C P Q 2PQ k +C 1C 2212x y +=31,2Q ⎛⎫ ⎪⎝⎭C C B l l C M N BM BN l x MN MN 2m n =E F -A :,P 为圆A 的“黄金点”(1)求点P 所在曲线的方程.(2)已知圆B :,P ,Q 均为圆“”的“钻石点”.①求直线的方程.②若圆H 是以线段为直径的圆,直线l :与圆H 交于I ,J 两点,对于任意的实数k ,在y 轴上是否存在一点W ,使得y 轴平分?若存在,求出点W 的坐标;若不存在,请说明理由.()()221113x y +++=()()22221x y -+-=A B -PQ PQ 13y kx =+IWJ ∠江苏省扬州中学2024-2025学年第一学期期中试卷高二数学(参考答案)2024.11参考答案:题号12345678910答案C A D A C C A C BD CD 题号11 答案ABD8.【详解】设,∴S △AF 1F 2=12r 1(8+2m )=(4+m )r 1,S △ABF 2=12r 2(2m +2p )=(m +p )r 2,.在△与△中:,即,,当双曲线的斜率为正的渐近线时,取最大,此时,,当与轴重合时,取最小,此时,经上述分析得:,.故选:C.10.【详解】当时,曲线,即;当时,曲线,即;不存在;时,曲线,即;时,曲线,即;画出图形如右:对于A ,由图可得A 错误,故A 错误;对于B ,方程是以为上下焦点的双曲线,当时,曲线C 存在点P ,使得,故B 错误;对于C ,一三象限曲线的渐近线方程为,所以直线与曲线C 没有交点,故C 正确;对于D ,设,设点在直线上,点在直线,11222,,6,2,2AF m BA p F F AF m BF m p ====+=+-()()11224m r S m S p m p r +∴==+12AF F 2AF B 122cos cos F AF F AB ∠=-∠()()()()()2222222262222224m m m p m p m p m m m pm++-++-+-=-⇒=⋅⋅+⋅+⋅-32212324444444m m r m mp m m m r p mp m m m++-∴===+++--//l m p →+∞404m m ∴-=⇒=l x m 2m =()2,4m ∈1212,23r r ⎛⎫∴∈ ⎪⎝⎭0,0x y ≥>22:44C x y =-2214y x -=0,0x y ≥<22:44C x y =--2214y x +=-0,0x y ≤≥22:44C x y -=-2214y x +=0,0x y <≤22:44C x y -=--2214y x -=2214y x -=12,F F 0,0x y ≥>214PF PF -=2y x =2y x =()00,Q x y A 2y x =B 2y x =-又点Q 是曲线C 上在第三象限内的一点,代入曲线方程可得,故D 正确;故选:CD.11.【详解】对于A ,由于,令时,整理得,解得,“水滴”图形与轴相交,最高点记为A ,则点A 的坐标为,点,白色“水滴”区域(含边界)任意两点间距离的最大值为,故A 正确;对于B ,由于,整理得:,所以,所以到坐标轴的距离为或,因为,所以,,所以到坐标轴的距离小于等于3,故B正确;对于C ,由于,令时,整理得,解得,因为表示以为圆心,半径为的圆,则,且,则在x 轴上以及x 轴上方,故白色“水滴”的下半部分的边界为以为圆心,半径为1的半圆,阴影的上半部分的外边界是以为圆心,半径为3的半圆,根据对称可知:白色“水滴”在第一象限的边界是以以为圆心,半径为2的圆弧,设,则,即AN 所对的圆心角为,同理AM 所在圆的半径为2,所对的圆心角为,阴影部分在第四象限的外边界为以为圆心,半径为2的圆弧,设,可得,DG 所对的圆心角为,同理DH 所在圆的半径为2,所对的圆心角为,故白色“水滴”图形由一个等腰三角形,两个全等的弓形,和一个半圆组成,22004455x y QA QB -⋅==22(cos )(sin )4x y θθ-+-=0x =[]32sin 0,2y yθ=-∈[1]y ∈- y (0,1)B -||1AB =22(cos )(sin )4x y θθ-+-=2cos cos 2sin sin x y αθαθ=+⎧⎨=+⎩2cos cos ,2sin sin )(M αθαθ++M ||2cos cos αθ+|2sin sin |αθ+cos [1,1],sin [0,1]θθ∈-∈2cos cos ||2cos ||cos |213|αθαθ+≤+≤+=|2sin sin ||2sin ||sin |213αθαθ+≤+≤+=M 22(cos )(sin )4x y θθ-+-=0y =[]32cos 2,2y yθ=-∈-[3,1][1,3]x ∈-- 22(cos )(sin )4x y -+-=θθ()cos ,sin Q θθ2r =13r OQ OP OQ r =-≤≤+=0πθ≤≤()cos ,sin Q θθO O ()1,0M -()1,0N 2AN AM MN ===π3π3()1,0N ()()3,0,3,0G H -π1,3ON OD OND ==∠=2π32π3所以它的面积是.轴上方的半圆(包含阴影和水滴的上半部分)的面积为,第四象限的阴影和水滴部分面积可以看作是一个直角三角形和一个扇形的面积的和,且等于所以阴影部分的面积为C 错误;对于D ,轴上方的阴影部分的内外边界曲线长为,轴下方的阴影部分的内外边界曲线长为,所以阴影部分的内外边界曲线长为,故D 正确.故选:ABD.12.13【详解】如图,设,因为,所以.由椭圆定义可知,,由,可得,所以.在Rt △F 1BF 2中,由,可得,即得,故得14.【详解】曲线,由于在曲线上,令,则,(其中),,又,,当时取得最大值15.【详解】(1)因为,所以,212π111π2π1222326S S S S ⎛=++=⨯⨯+⨯+⨯=⎝V 弓形半圆x 219π3π22⨯=2114π21π323⨯⨯+=941116π2(πππ2363++-=+x 1π4132π3223πππ2333⨯⨯+⨯⨯=+=x 111112π1(2π2π2)2π2233⨯⨯+⨯⨯-⨯⨯=13π11π8π33+=π314BF t =1AB F B ⊥,14sin 5F AB ∠=15,3AF t AB t ==21212=25,224AF a AF a t BF a BF a t =--=-=-22493AB AF BF a t t =+=-=13t a =1242,33BF a BF a ==2221212||||||F F BF BF =+222424(()33a a c =+2295c a =c e a ==9+1y =()()22141x y y +-=≥(),P a b ()2cos ,0π12sin a b θθθ=⎧≤≤⎨=+⎩()()222232cos 12sin 32cos 12sin a b a b θθθθ--++=---+++2cos 2sin 454sin 42sin 2cos 54sin θθθθθθ=--++=+-++()96sin 2cos 9θθθϕ=+-=+-sin ϕ=cos ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭[][]0,π,πθθϕϕϕ∈∴-∈-- π,02ϕ⎛⎫-∈- ⎪⎝⎭ππ,π2ϕ⎛⎫-∈ ⎪⎝⎭∴π2θϕ-=223a b a b --++9+()()2,0,6,2A B -()4,1M -故的方程是,即;(2)因为直线的斜率,所以经过点且与直线平行的直线方程为,即.16.【详解】(1)由题意知,解得,则,所以双曲线的方程为.(2)记双曲线的左焦点为,则,可得,当三点共线时,最小,且最小值为.故的最小值为.17.【详解】(1)∵,是抛物线C :上的两点,∴,则,整理得,解得, 当时,,解得,不合题意;当时,,解得.故抛物线C 方程为y 2=6x .(2)由(1)知C 的焦点为,故直线l 的方程为,联立,得,必有,设,,则,∴, ∴,即所以的最小值为18.【详解】(1)椭圆:的焦点坐标为,所以椭圆的焦点坐标也为,即得焦距为,∵椭圆过点,∴,CM 143124y x +-=+--2350x y +-=AC 303224ACk -==---B AC ()3264y x +=--34100x y +-=253165c a a c c ⎧=⎪⎪⎨⎪-=⎪⎩35a c =⎧⎨=⎩4b ==C 221916x y -=C 0F ()05,0F -0026PA PF PA PF a PA PF +=++=++0,,P F A 0PA PF +017AF =PA PF +17623+=()6,2A m +()24,8B m +()221y px p =>()()22212,848m p m p⎧+=⎪⎨+=⎪⎩()()22842m m +=+216m =4m =±4m =-()21224p m =+=113p =<4m =()212236p m =+=31p =>3,02⎛⎫⎪⎝⎭32y k x ⎛⎫=- ⎪⎝⎭2632y xy k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩()222293604k x k x k -++=0∆>()11,P x y ()22,Q x y 212236k x x k ++=2122236636k PQ x x p k k+=++=+=+222666PQ k k k +=++≥+226k k=2k =2PQ k +6+1C 2212x y +=()1,0±C ()1,0±22c =C 31,2Q ⎛⎫⎪⎝⎭24a +=∴,,∴椭圆的标准方程为.(2)①设直线:(),由,得,设M (x 1,y 1),N (x 2,y 2),所以,,所以,因为直线和的斜率互为相反数,所以,所以,所以,所以.即,所以,因为,所以,所以动直线恒过轴上的定点②由①知,,且,即,又S △OMN =12⋅|OT |⋅|y 1―y 2|=12⋅4⋅(y 1+y 2)2―4y1y 2令,则,∴S △OMN=24⋅n (3n +16)2≤24⋅n (2⋅3n⋅16)2=24⋅n 4⋅3n ⋅16=3(当且仅当时取“=”)∴(S △OMN )max =3.19.【详解】(1)因为点P 为圆A 的“黄金点”,即,所以点P的轨迹是以AP 所在曲线的方程为(2)①因为P 为圆B 的“黄金点”,则所以,即点P 在圆上,则P 是圆和的交点.因为P ,Q 均为圆“”的“钻石点”,所以直线即为圆和的公共弦所在直线,2a =b =22143x y +=l x my t =+0m ≠223412x my t x y =+⎧⎨+=⎩()2223463120m y mty t +++-=122634mt y y m +=-+212231234t y y m -=+()()()()1221121212111111MF NF y x y x y yk k x x x x -+-+=+=----()()()()1221121111y my t y my t x x +-++-=--BM BN 0MB NB k k =+()()()()12211211011y my t y my t x x +-++-=--()()1221110y my t y my t +-++-=()()1212210my y t y y +-+=()22231262103434t mtm t m m --⨯+-⨯=++()640m t -=0m ≠4t =l x ()4,0T 1222434m y y m +=-+1223634y y m =+()()22Δ24434360m m =-+⋅>24m >224==240n m =->24m n =+316n ==PA =()()2211 3.x y +++=()121PB PB +=-||3PB =()()22229x y -+-=()()22113x y +++=()()22229x y -+-=A B -PQ ()()22113x y +++=()()22229x y -+-=两圆方程相减可得,故直线的方程为.②设的圆心为的圆心为,半径为.直线的方程为,得的中点坐标为,点S 到直线,则,所以圆H 的方程为.假设轴上存在点满足题意,设,.若轴平分,则,即,整理得又,所以代入上式可得,整理得①,由可得,所以x 1+x 2=―23k k 2+1,x 1x 2=―89k 2+1,代入①并整理得,此式对任意的都成立,所以.故轴上存在点,使得轴平分.0x y +=PQ 0x y +=22(1)(1)3x y +++=(11),S --()()22229x y -+-=(2,2)T 3ST y x =PQ (0,0)0x y +==12PQ ==221x y +=y (0),W t ()()1122,,,I x y J x y 120x x ≠y IWJ ∠0IM JW k k +=12120y t y tx x --+=()()21120.x y t x y t -+-=11223,113y kx y kx =+=+211211)33(()0x kx t x kx t +-++-=()12121203kx x t x x ⎛⎫+-+= ⎪⎝⎭22131y kx x y ⎧=+⎪⎨⎪+=⎩()22281039k x kx ++-=2203k kt -+=k 3t =y ()0,3W y IWJ ∠。

专题03 复数必刷100题(原卷版)

专题03 复数必刷100题(原卷版)

专题03 复数必刷100题任务一:善良模式(基础)1-50题一、单选题1.(四川省资阳市2021-2022学年高三第一次诊断考试数学(文)试题)已知复数2i1i-=-()A.3i22+B.13i22-C.33i22-D.1i22+2.(广东省清远市博爱学校2022届高三上学期11月月考数学试题)在复平面内,复数3i1iz+=-(其中i为虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(山西省太原市第五中学2022届高三上学期第四次模块诊断数学(文)试题)已知复数z满足i2z z+=,则复数z的虚部为()A.1 B.i-C.i D.1-4.(四川省成都市第七中学2021-2022学年高三上学期期中考试文科数学试题)复数43i2iz-=+(其中i为虚数单位)的虚部为()A.2-B.1-C.1D.25.(云南省师范大学附属中学2022届高三高考适应性月考卷(四)数学(理)试题)复数i(,)a b a b+∈R 与1i+之积为实数的充要条件是()A.0a b==B.0ab=C.0a b+=D.0a b-=6.(四川省南充市2022届高考适应性考试(零诊)理科数学试题)已知2(1i)34iz-=+,其中i为虚数单位,则复数z在复平面内对应的点在第()象限A.一B.二C.三D.四7.(黑龙江省大庆市东风中学2021-2022学年高三上学期10月质量检测数学(文)试题)设复数1z =(i 是虚数单位),则z z +的值为( ) A .B .C .1D .28.(江苏省南京市中华中学2021-2022学年高三上学期10月阶段检测数学试题)设4-,则z 的共轭复数的虚部为( ) A .32 B .3i 2C .32-D .3i 2-9.(西南四省名校2021-2022学年高三上学期第一次大联考数学(理)试题)已知复数2,2,d q =⎧⎨=⎩,则z 的虚部为( ) A .1- B .i -C .1D .2i -10.(广东省深圳市普通中学2022届高三上学期质量评估(新高考I 卷)数学试题)若复数1ii iz a +=-+为纯虚数,则实数a 的值为( ) A .1- B .12-C .0D .111.(广东省深圳市罗湖区2022届高三上学期第一次质量检测数学试题)已知复数1(2)i z a a=+-(i 为虚数单位)在复平面内所对应的点在直线y x =上,若a ∈R ,则z =( ) AB .2C D .1012.(全国2022届高三第一次学业质量联合检测文科数学(老高考)试题)复数112i1iz +=+在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限13.(神州智达省级联测2021-2022学年高三上学期第一次考试数学试题)在复平面内,点A 和C 对应的复数分别为42i -和24i -+,若四边形OABC 为平行四边形,O (为坐标原点),则点B 对应的复数为( ) A .1i + B .1i - C .22i - D .22i +14.(广东省广州市西关外国语学校2022届高三上学期8月月考数学试题)已知复数()()1i 12i z =--,其中i 是虚数单位,则z 的共轭复数虚部为( ) A .3- B .3C .3i -D .3i15.(广东省深圳市龙岗布吉中学2020-2021学年高一下学期中数学试题)已知i 是虚数单位,则复数202120212i 2i z -=+对应的点所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限16.(湖南省岳阳市岳阳县第一中学2021-2022学年高三上学期入学考试数学试题)已知复数122,i(R)1iz z a a ==+∈+,若12,z z 在复平面内对应的向量分别为12,OZ OZ (O 为直角坐标系的坐标原点),且12||2OZ OZ +=,则a =( ) A .1 B .-3 C .1或-3 D .-1或317.(甘肃省天水市秦州区2020-2021学年高二下学期第一阶段检测数学(文)试题)关于复数z 的方程31z -=在复平面上表示的图形是( )A .椭圆B .圆C .抛物线D .双曲线18.(江苏省无锡市辅仁高级中学2020-2021学年高一下学期期中数学试题)欧拉是一位杰出的数学家,为数学发展作出了巨大贡献,著名的欧拉公式:i cos isin e θθθ=+,将三角函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.结合欧拉公式,复数i412i 1iz π-=+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限19.(福建省2021届高三高考考前适应性练习卷(二)数学试题)法国数学家棣莫弗(1667-1754)发现的公式()cos isin cos isin nx x nx nx +=+推动了复数领域的研究.根据该公式,可得4ππcos isin 88⎛⎫+=⎪⎝⎭( ). A .1 B .i C .1- D .i -20.(福建省三明第一中学2021届高三5月校模拟考数学试题)复数z 满足21z -=,则z 的最大值为( ) A .1 BC .3D21.(重庆一中2021届高三高考数学押题卷试题(三))系数的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker ,1823﹣1891)说“上帝创造了整数,其它一切都是人造的”设为虚数单位,复数Z 满足()202012Z i i =+,则Z 的共轭复数是( ) A .2i + B .2i - C .12i - D .12i +22.(福建省福州市八县(市、区)一中2022届高三上学期期中联考数学试题)下面是关于复数2i1iz =-(i 为虚数单位)的命题,其中真命题为( ) A .2z =B .复数z 在复平面内对应点在直线y x =上C .Z 的共轭复数为1i --D .z 的虚部为1-23.(江苏省南通市如皋市2021-2022学年高三上学期教学质量调研(一)数学试题)已知复数z 满足1i z z -=-,则在复平面上z 对应点的轨迹为( )A .直线B .线段C .圆D .等腰三角形24.(北京一零一中学2022届高三9月开学练习数学试题)已知复数z 满足z +z =0,且z ·z =4,则z=( ) A .±2 B .2C .2i ±D .2i25.(第十章复数10.1复数及其几何意义10.1.2复数的几何意义)向量1OZ 对应的复数是54i -,向量2OZ 对应的复数是54i -+,则1OZ +2OZ 对应的复数是( )A .108i -+B .108i -C .0D .108i +26.(广东省肇庆市2022届高三上学期一模考前训练(二)数学试题)已知i 为虚数单位,复数112i z =-,22i z =+,则复数12z z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限27.(福建省泉州科技中学2022届高三上学期第一次月考数学试题)若1i Z =+,则20202021()()Z Z ZZ --+的虚部为( ) A .i B .i - C .1 D .1-28.(河南省部分名校2021-2022学年高三上学期第一次阶段性测试文科数学试题)已知i 为虚数单位,复数z 满足1i 1iz +=+,则|z |等于( ) A .12BCD29.(河南省许昌市2022届高三第一次质量检测(一模)理科数学试题)已知复数z 满足12(1i)iz +=+,其中i 为虚数单位,则复数z 在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限30.(广西南宁市2022届高三高中毕业班上学期摸底测试数学(理)试题)已知复数13i z =+和21i z =+,则1122z z z z +=( ) A .34i + B .43i + C .36i + D .63i +二、多选题31.(河北省石家庄市藁城新冀明中学2022届高三上学期第一次月考数学试题)设()1i 2i z -=+,则下列叙述中正确的是( )A .z 的虚部为32-B .13i 22z =- C .∣z ∣D .在复平面内,复数z 对应的点位于第四象限32.(广东省珠海市艺术高级中学2020-2021学年高二下学期期中数学试题)若复数35i1iz -=-,则( ) A.z =B .z 的实部与虚部之差为3C .4i z =+D .z 在复平面内对应的点位于第四象限33.(重庆市第八中学2021届高三下学期高考适应性考试(三)数学试题)已知复数20211i 11iz +=+-(i 为虚数单位)、则下列说法正确的是( ) A .z 的实部为1 B .z 的虚部为1-C.z =D .1i z =+34.(湖南师范大学附属中学2020-2021学年高一下学期第一次大练习数学试题)已知i 为虚数单位,以下四个说法中正确的是( ) A .2340i i i i +++= B .复数3z i =-的虚部为i -C .若2(12)z i =+,则复平面内z 对应的点位于第二象限D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线35.(2021届新高考同一套题信息原创卷(四))已知,a b ∈R ,()1i 32i a b --=-,()1i a b z -=+,则( ) A .z 的虚部是2i B .2z =C .2i z =-D .z 对应的点在第二象限36.(在线数学135高一下)下面关于复数()1z i i =-+(i 是虚数单位)的叙述中正确的是( )A .z 的虚部为i -B .z =C .22z i =D .z 的共轭复数为1i +37.(云南省曲靖市罗平县第二中学2020-2021学年高一下期期末测试数学试题)已知复数21iz =+,则正确的是( ) A .z 的实部为﹣1 B .z 在复平面内对应的点位于第四象限 C .z 的虚部为﹣i D .z 的共轭复数为1i +38.(河北省唐山市英才国际学校2020-2021学年高一下学期期中数学试题)复数1i z =-,则( ) A .z 在复平面内对应的点的坐标为()1,1- B .z 在复平面内对应的点的坐标为()1,1 C .2z = D .z =39.(2021·湖北·高三月考)设1z ,2z 是复数,则( ) A .1212z z z z -=-B .若12z z ∈R ,则12z z =C .若120z z -=,则12z z =D .若22120z z +=,则120z z ==40.(2021·山东临沂·高三月考)已知m ,n R ∈,复数2i z m =+,()235i i z z n +=+,则( )A .1m =-B .1n =C .i m n +=D .m ni +在复平面内对应的点所在象限是第二象限第II 卷(非选择题)三、填空题41.(山西省新绛中学2022届高三上学期10月月考数学(文)试题)已知1?21z i +=,则z 的最大值为_______.42.(北京市第十三中学2022届高三上学期期中考试数学试题)在复平面内,复数z 所对应的点的坐标为(1,1)-,则z z ⋅=_____________.43.(安徽省合肥市庐阳高级中学2020-2021学年高三上学期10月第一次质检理科数学试题)复数z 满足22i z z =++,则1i z -+的最小值为___________.44.(广东省湛江市第二十一中学2022届高三上学期9月第2次月考数学试题)已知复数3i1iz +=+,则z =__________.45.(天津市第二中学2021-2022学年高三上学期期中数学试题)若复数z 满足ii i1z +=(i 为虚数单位),则z =_____.46.(上海市交通大学附属中学2022届高三上学期10月月考数学试题)若复数z 满足3iiz +=(其中i 是虚数单位),z 为z 的共轭复数,则z =___________.47.(上海市向明中学2022届高三上学期9月月考数学试题)已知复数()()()13i 1i 12i z +-=-,则z=___________.48.(双师301高一下)若复数()i z a a =+∈R 与它的共轭复数z 所对应的向量互相垂直,则a =_______.49.(2021·上海·格致中学高三期中)定义运算()(),,a b c d ad bc =-,则满足()(),1,232i z z =+的复数z =______.50.(2021·全国·高三月考(理))已知复数z 满足||||z i z i ++-=z 的最小值是_______.任务二:中立模式(中档)1-30题一、单选题1.(云南省昆明市第一中学2022届高三上学期第三次双基检测数学(理)试题)已知i 为虚数单位,则232021i i i i +++⋅⋅⋅+=( )A .iB .i -C .1D .-12.(辽宁省名校联盟2021-2022学年高三上学期10月联合考试数学试题)已知复数202120221111i i i i z -+⎛⎫⎛⎫=+ ⎪ ⎪+-⎝⎭⎝⎭,则z 的共轭复数z =( )A .1i +B .1i -C .1i -+D .1i --3.(上海市曹杨第二中学2022届高三上学期10月月考数学试题)设b 、c ∈R ,若2i -(i 为虚数单位)是一元二次方程20x bx c ++=的一个虚根,则( ) A .4b =,5c = B .4b =,3c = C .4b =-,5c = D .4b =-,3c =4.(第3章本章复习课-2020-2021学年高二数学(理)课时同步练(人教A 版选修2-2))若1是关于x 的实系数方程20x bx c ++=的一个复数根,则( ) A .2,3b c == B .2,1b c ==- C .2,1b c =-=- D .2,3b c =-=5.(专题1.3集合与幂指对函数相结合问题-备战2022年高考数学一轮复习一网打尽之重点难点突破)设集合{}22||cos sin |,M y y x x x R ==-∈,1N x =<⎧⎫⎨⎬⎩⎭,i 为虚数单位,x ∈R ,则M ∩N 为( ) A .(0,1) B .(0,1]C .[0,1)D .[0,1]6.(考点38复数-备战2022年高考数学一轮复习考点帮(新高考地区专用))若2ii(,,)1ia x y a x y +=+∈+R ,且1xy >,则实数a 的取值范围是( ) A .)+∞B .(,)-∞-⋃+∞C .()-⋃+∞ D .(,2)(2,)-∞-+∞7.(四川省成都市树德中学2021-2022学年高三上学期入学考试文科数学试题)已知复数()2231i z a a a =-+-,R a ∈,则“0a =”是“z 为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件8.(第25讲数系的扩充与复数的引入(练)-2022年高考数学一轮复习讲练测(课标全国版))设复数1i1iz -=+,()202020191f x x x x =++++,则()f z =( )A .iB .i -C .1D .1-9.(河北正中实验中学2021届高三上学期第二次月考数学试题)棣莫弗定理:若两个复数111cos isin z θθ=+,222cos isin z θθ=+,则()()121212cos isin z z θθθθ⋅=+++,已知1i2a =,2021b a =,则a b +的值为( )A .i - B .i C .D10.(第25讲数系的扩充与复数的引入(讲)-2022年高考数学一轮复习讲练测(课标全国版))欧拉公式i co sin s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限11.(山东省济宁邹城市2021-2022学年高三上学期期中考试数学试题)定义运算a bad bc c d=-,若复数z 满足i 11i 1z z -=-,则z =( ) A .1i + B .1i - C .i - D .i12.(上海市徐汇中学2022届高三上学期期中数学试题)已知方程()20x x m m R ++=∈有两个虚根,αβ,若3αβ-=,则m 的值是( ) A .2-或52B .2-C .52 D .52-13.(专题12.3复数的几何意义(重点练)-2020-2021学年高一数学十分钟同步课堂专练(苏教版2019必修第二册))若z 是复数,|z +2-2i|=2,则|z +1-i|+|z |的最大值是( ) AB .C .2D .414.(专题07复数-备战2022年高考数学一轮复习核心知识全覆盖(新高考地区专用))如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B .12C .2D15.(百师联盟2021届高三二轮复习联考(三)数学(理)全国Ⅰ卷试题)已知i 是虚数单位,复数z 的共轭复数为z ,下列说法正确的是( )A .如果12z z +∈R ,则1z ,2z 互为共轭复数B .如果复数1z ,2z 满足1212z z z z +=-,则120z z ⋅=C .如果2z z =,则1z =D .1212z z z z =16.(黑龙江省哈尔滨市第六中学2021届高三第四次模拟数学(理)试题)设z 为复数,则下列命题中错误的是( ) A .2z zz = B .若1z =,则i z +的最大值为2 C .22z z = D .若11z -=,则02z ≤≤17.(陕西省汉中市2021-2022学年高三上学期第一次校际联考文科数学试题)设复数1z ,2z 满足121z z ==,1212z z -=-,则12z z +=( )A .1B .12CD18.(江苏省常州市前黄高级中学2021届高三下学期学情检测(三)数学试题)设12,z z 为复数,则下列四个结论中不正确的是( ) A .1212z z z z +=+ B .1212||||||z z z z ⋅=⋅ C .11z z +一定是实数 D .22z z -一定是纯虚数19.(重庆市名校联盟2021届高三三模数学试题)若复数z 满足|1||12|z i i -+=-,其中i 为虚数单位,则z 对应的点(x ,y )满足方程( )A .22(1)(1)x y -++=B .22(1)(1)5x y -++= C .22(1)(1)x y ++-D .22(1)(1)5x y ++-=20.(陕西省西安中学2021届高三下学期第六次模拟数学(文)试题)已知复数122(z i i =-为虚数单位)在复平面内对应的点为1P ,复数2z 满足21z i -=,则下列结论不正确的是( ) A .1P 点的坐标为()2,2- B .122z i =+C .21z z -1 D .21z z -的最小值为二、多选题21.(江苏省扬州市公道中学2020-2021学年高二下学期第二次学情测试数学试题)在下列命题中,正确命题的个数为( ) A .两个复数不能比较大小;B .若22(1)(32)i x x x -+++是纯虚数,则实数1x =±;C .z R ∈的一个充要条件是z z =;D .||1z =的充要条件是1z z=.22.(江苏省常州市溧阳市2020-2021学年高一下学期期末数学试题)下列结论正确的是( ) A .若复数z 满足0z z +=,则z 为纯虚数B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 满足1R z ∈,则z R ∈D .若复数z 满足3i 1z -=,则||[2,4]z ∈23.(第七章复数7.2复数的四则运算7.2.1复数的加、减运算及其几何意义)已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( ) A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z24.(山东省济南市2020届高三6月针对性训练(仿真模拟)数学试题)已知复数ππ1cos 2sin 222z i θθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为1225.(2021·安徽·六安一中高一期末)设复数z 的共轭复数为z ,i 为虚数单位,则下列命题正确的是( )A .若0z z ⋅=,则0z =B .若z z R -∈,则z R ∈C .若2cos isin55z ππ=+,则1z =D .若12i 3i z z --=++,则z 的最小值是12第II 卷(非选择题)三、填空题26.(福建省仙游第一中学2020-2021学年高一下学期第一次月考数学试题)若12400z z ==,且12z z +=12z z -=___________.27.(重庆市万州纯阳中学2020-2021学年高二下学期第一次月考数学试题)已知复数z 满足21i z z -=--,则2i z z -+的最小值为_______.28.(江苏省南通市如东县2020-2021学年高一下学期期中数学试题)设复数1z ,2z ,满足13z =,22z =,124z z i +=,则12z z -=__________.29.(上海市2022届高三上学期一模暨春考模拟卷(五)数学试题)已知复数1z ,2z ,3z 满足1231z z z ===, 123||z z z r ++=(其中r 是给定的实数),则312231z z z z z z ++的实部是___________(用含有r 的式子表示).30.(2020·上海·高三专题练习)若z a bi =+,21zR z ∈+,则实数a ,b 应满足的条件为________.任务三:邪恶模式(困难)1-20题一、单选题1.(2022·全国·高三专题练习)已知复数()()cos sin 1i k k k z R θθθ=++∈对应复平面内的动点为()1,2k Z k =,模为1的纯虚数3z 对应复平面内的点为3Z ,若313212Z Z Z Z =,则12z z -=( )A .1 BCD .32.(2022·上海·高三专题练习)已知1z 、2z C ∈,且141z i -=,222z z i -=-(i 是虚数单位),则12z z -的最小值为( ) A .4 B .3 C .2 D .13.(2021·全国·高三专题练习(理))已知i 为虚数单位,则复数22019202012i 3i 2020i 2021i z =+++++的虚部为( )A .1011-B .1010-C .1010D .10114.(2022·全国·高三专题练习)瑞士数学家欧拉被认为是历史上最伟大的数学家之一,他发现了欧拉公式cos sin ix e x i x =+()x ∈R ,它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系.特别是当x π=时,得到一个令人着迷的优美恒等式10i e π+=,这个恒等式将数学中五个重要的数(自然对数的底e ,圆周率π,虚数单位i ,自然数的单位1和数字0)联系到了一起,若i e α表示的复数对应的点在第二象限,则α可以为( ) A .3πB .23π C .32π D .116π5.(2021·江苏·高三月考)若存在复数z 同时满足1z i -=,33z i t -+=,则实数t 的取值范围是( ) A .[0,4] B .(4,6) C .[4,6] D .(6,)+∞6.(2022·全国·高三专题练习(理))已知复数z 的模为1,复数23w z z =+.则在复平面内,复数w 所对应的点与点()4,0的距离的最大值是( ) A .6 B .254C .D .7.(2022·江苏·高三专题练习)已知复数123,,z z z 满足:1233421, 41, 1z i z i z z i +-=-=-=-,那么3132+z z z z --的最小值为( )A .2 B .C .2 D .8.(2020·全国·高三专题练习)设复数21ix i=-(i 是虚数单位),则112233202020202020202020202020C x C x C x C x +++⋅⋅⋅+=( )A .1i +B .i -C .iD .09.(2022·全国·高三专题练习)若集合()(){}|cos arcsin cos arccos ,,1N z z t i t t R t ==+⋅∈≤⎤⎦,1|,,1,01t t M z z i t R t t t t +⎧⎫==+∈≠-≠⎨⎬+⎩⎭,则MN 中元素的个数为( )A .0B .1C .2D .410.(2021·全国·高三专题练习(理))已知复数z 满足z z ⋅=4且z z ++|z |=0,则z 2019的值为 A .﹣1 B .﹣22019C .1D .2201911.(2020·湖南·湘潭一中高三月考(理))设i 是虚数单位,则2320192342020i i i i +++⋅⋅⋅+的值为( ) A .10101010i -- B .10111010i -- C .10111012i -- D .10111010i -12.(2019·贵州·贵阳一中高三月考(文))已知复数232019i i i i 1iz ++++=+,z 是z 的共轭复数,则z z ⋅=( )A .0B .12C .1D .2二、多选题13.(2021·全国·高三专题练习)下列说法正确的是() A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虚部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件14.(2021·山东山东·高三月考)欧拉公式cos sin xi e x i x =+(其中i 为虚数单位,x ∈R )是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天骄,依据欧拉公式,下列选项正确的是( ) A .复数2i e 对应的点位于第三象限 B .π2i e 为纯虚数Cxi 的模长等于12D .π6i e 的共轭复数为1215.(2020·湖北·武汉大学高三)设复数z 的实部和虚部都是整数,则( )A .2z z -的实部都能被2 整除B .3z z -的实部都能被3 整除C .4z z -的实部都能被4 整除D .5z z -的实部都能被5 整除16.(2020·湖北·武汉大学高三)设12z z ,( ) AB .没有最小值C .最大值为2D .没有最大值第II 卷(非选择题)三、填空题17.(2021·全国·高三专题练习)在复平面内,等腰直角三角形12OZ Z 以2OZ 为斜边(其中O 为坐标原点),若2Z对应的复数21z =+,则直角顶点1Z 对应的复数1z =_____________.18.(2021·全国·高三专题练习)若复数z 满足2z =,则33z z ++-的取值范围是______.19.(2022·全国·高三专题练习)设复数1z =在复平面上对应的向量为OZ ,将OZ 绕原点O 逆时针旋转n 个56π角后得到向量()*1OZ n N ∈,向量1OZ 所对应的复数为1z ,若10z <,则自然数n 的最小数值为___________20.(2020·上海市奉贤区曙光中学高三期中)已知z C ∈,函数()()()13log 312x z f x x x R =++∈为偶函数,则212z z --=________.。

扬州中学2022-2023学年高二上学期10月月考数学数据含答案

扬州中学2022-2023学年高二上学期10月月考数学数据含答案

江苏省扬州中学2022-2023学年第一学期10月月考高二数学试卷满分:150分;考试时间:120分钟第I 卷(选择题)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合要求.) 1.经过两点(4,21)A y +,(2,3)B −的直线的倾斜角为3π4,则y =( ) A .1−B .3−C .0D .22.已知,a b 是单位向量,且()2b a b ⊥+,则a 与b 的夹角为( ) A .π6B .π3C .5π6D .2π33.下列说法中错误的是( )A .平面上任意一条直线都可以用一个关于x ,y 的二元一次方程0Ax By C ++=(A ,B 不同时为0)表示 B .当0C =时,方程0Ax By C ++=(A ,B 不同时为0)表示的直线过原点 C .当0A =,0B ≠,0C ≠时,方程0Ax By C ++=表示的直线与x 轴平行D .任何一条直线的一般式方程都能与其他两种形式互化4.若某平面截球得到直径为6的圆面,球心到这个圆面的距离是4,则此球的体积为( ) A .1003πB .2083πC .5003πD .4163π5.过点()2,3M 作圆224x y +=的两条切线,设切点分别为A 、B ,则直线AB 的方程为( ) A .220x y +−= B .2340x y +−=C .2340x y −−=D .3260x y +−=6.将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是( ) A .712π B .4π C .12π D .6π7.已知圆()()()22:140C x y m m ++−=>和两点()2,0A −,()10B ,,若圆C 上存在点P ,使得2PA PB =,则m 的取值范围是( ) A .[8,64] B .[9,64] C .[8,49]D .[9,49]8.已知函数f (x )={2x ,x ≤0,lnx,x >0, g (x )=|x(x −2)|,若方程()()()0f g x g x m +−=的所有实根之和为4,则实数m 的取值范围是( ) A .m >1 B .m ≥1C .m <1D .m ≤1二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知复数z 满足(i 1)2z −=,给出下列四个命题其中正确的是( ) A .z 的虚部为1−B .||2z =C .1i z =+D .22i z =10.已知直线l 过点()11P -,,且与直线1l :230x y −+=及x 轴围成一个底边在x 轴上的等腰三角形,则下列说法正确的是( )A .直线l 与直线1l 的倾斜角互补B .直线l 在x 轴上的截距为12 C .直线l 在y 轴上的截距为-1D .这样的直线l 有两条11.已知圆O :224x y +=和圆C :()()22231x y -+-=.现给出如下结论,其中正确的是( ) A .圆O 与圆C 有四条公切线B .过C 且在两坐标轴上截距相等的直线方程为5x y +=或10x y −+= C .过C 且与圆O 相切的直线方程为916300x y −+=D .P 、Q 分别为圆O 和圆C 上的动点,则PQ 3312.在正方体ABCD —1111D C B A 中,12AA =,点P 在线段1BC 上运动,点Q 在线段1AA 上运动,则下列说法中正确的有( )A.当P 为1BC 中点时,三棱锥P -1ABB B .线段PQ 长度的最小值为2 C .三棱锥1D -APC 的体积为定值D .平面BPQ 截该正方体所得截而可能为三角形、四边形、五边形第II 卷(非选择题)三、填空题(本大题共4小题,每小题5分,共20分.)13.若直线4y x b =+与坐标轴围成的面积为9,则b =__________.14.已知函数()22,0x x f x −<⎧=⎨,则不等式()()2134f a f a +>−的解集为___________.15.“康威圆定理”是英国数学家约翰·康威引以为豪的研究成果之一.定理的内容是这样的:如图,△ABC 的三条边长分别为BC a =,AC b =,AB c =.延长线段CA 至点1A ,使得1AA a =,以此类推得到点2121,,,A B B C 和2C ,那么这六个点共圆,这个圆称为康威圆.已知4,3,5a b c ===,则由△ABC 生成的康威圆的半径为___________.16.已知直线l :40x y −+=与x 轴相交于点A ,过直线l 上的动点P 作圆224x y +=的两条切线,切点分别为C ,D 两点,记M 是CD 的中点,则AM 的最小值为__________.四、解答题(本大题共6小题,计70分.) 17.(本小题满分10分)在平面直角坐标系中,直线l 过点()1,2A . (1)若直线l 的倾斜角为4π,求直线l 的方程; (2)直线:2m y x b =+,若直线m 与直线l 关于直线1x =对称,求b 的值与直线l 的一般式方程.18.(本小题满分12分)已知圆221:230C x y x +−−=与圆222:4230C x y x y +−++=相交于A 、B 两点.(1)求公共弦AB 所在直线方程;(2)求过两圆交点A 、B ,且过原点的圆的方程.19.(本小题满分12分)已知圆C 与直线30x −=相切于点(P ,且与直线50x +=也相切. (1)求圆C 的方程;(2)若直线:30l mx y ++=与圆C 交于A ,B 两点,且0CA CB ⋅<,求实数m 的范围.20.(本小题满分12分)在△ABC 中,内角A B C ,,所对的边分别为a b c ,,,且sin(2)sin sin A B B A +=−. (1)求C 的大小;(2)若CD 平分ACB ∠交AB 于D 且CD =△ABC 面积的最小值.21.(本小题满分12分)为了选择奥赛培训对象,今年5月我校进行一次数学竞赛,从参加竞赛的同学中,选取50名同学将其成绩分成六组:第1组[)40,50,第2组[)50,60,第3组[)60,70,第4组[)70,80,第5组[)80,90,第6组[]90,100,得到频率分布直方图(如图),观察图形中的信息,回答下列问题:(1)利用组中值估计本次考试成绩的平均数;(2)从频率分布直方图中,估计第65百分位数是多少;(3)已知学生成绩评定等级有优秀、良好、一般三个等级,其中成绩不小于90分时为优秀等级,若从第5组和第6组两组学生中,随机抽取2人,求所抽取的2人中至少1人成绩优秀的概率.22.(本小题满分12分)已知圆22:16O x y +=,点P 是圆O 上的动点,过点P 作x 轴的垂线,垂足为Q . (1)已知直线l :(2)(21)690m x m y m +++−−=与圆22:16O x y +=相切,求直线l 的方程; (2)若点M 满足2QP QM =,求点M 的轨迹方程;(3)若过点(2,1)N 且斜率分别为12,k k 的两条直线与(2)中M 的轨迹分别交于点A 、B ,C 、D ,并满足NA NB NC ND ⋅=⋅,求12k k +的值.参考答案:1.B 2.D 3.D 4.C 5.B 6.C 7.D 8.C 【详解】令(),0t g x t =≥,当1m =时,方程为()10f t t +−=,即()1f t t =-, 作出函数()y f t =及1y t =−的图象,由图象可知方程的根为0=t 或1t =,即()20x x −=或()21x x −=,作出函数()()2g x x x =−的图象,结合图象可得所有根的和为5,不合题意,故BD 错误;当0m =时,方程为()0f t t +=,即()f t t =−,由图象可知方程的根01t <<,即()()20,1x x t −=∈,结合函数()()2g x x x =−的图象,可得方程有四个根,所有根的和为4,满足题意,故A 错误.9.AD 10.AC 11.AD 12.ABC【详解】对于A ,当P 为1BC 中点时,∵11BCC B 是正方形,∴11B P BC ⊥,∵AB ⊥平面11BCC B ,1B P ⊂平面11BCC B ,∴AB ⊥1B P , ∵AB ∩1BC =B ,AB 、1BC ⊂平面ABP ,∴1B P ⊥平面ABP , ∵1B P ⊂平面AP 1B ,∴平面AP 1B ⊥平面ABP ,易知Rt △ABP 外接圆圆心为AP 中点,Rt △AP 1B 外接圆圆心为1AB 中点,则过Rt △ABP 外接圆圆心作平面ABP 的垂线,过Rt △AP 1B 外接圆圆心作平面AP 1B 的垂线,易知两垂线交点为1AB 中点,则三棱锥P -1ABB 的外接球球心即为1AB 中点,外接球半径即为12AB A 正确; 对于B ,如图过P 作PG ⊥BC 于G ,过Q 作QE ⊥PG 于E ,易知PQ ≥QE =AG ≥AB ,故线段PQ 长度的最小值为AB =2,故B 正确; 对于C ,∵1BC ∥1AD ,1AD ⊂平面1ACD ,1BC ⊄平面1ACD ,∴1BC ∥平面1ACD , ∵P ∈1BC ,故P 到平面1ACD 的距离为定值,又1ACD S 为定值,则11D APC P ACD V V −−=为定值,故C 正确;对于D ,易知,截面BPQ 与平面11BCC B 的交线始终为1BC ,连接1AD ,易知1BC ∥1AD ,过Q 作QF ∥1AD 交11A D 于F ,连接1FC 、QB ,则1BQFC 即为截面,其最多为四边形:当Q 与1A 重合,P 与1C 重合,此时截面BPQ 为三角形:平面BPQ 截该正方体所得截面不可能为五边形,故D 错误﹒ 故选:ABC ﹒13.± 14.()5,+∞ 15【详解】设M 是圆心,因为122121AC A B B C ==,因此M 到直线,,AB BC CA 的距离相等,从而M 是直角ABC 的内心,作MN AC ⊥于N ,连接2MC ,则34512MN CN +−===, 2156NC =+=,所以2MC ==16.【详解】由题意设点(),4P t t +,()11,C x y ,()22,D x y , 因为PD ,PC 是圆的切线,所以OD PD ⊥,OC PC ⊥, 所以,C D 在以OP 为直径的圆上,其圆的方程为:()222244()()224t t t t x y +++−+−=,又,C D 在圆224x y +=上, 将两个圆的方程作差得直线CD 的方程为:()440tx t y ++=-, 即()()410t x y y ++=-,所以直线CD 恒过定点()1,1Q -, 又因为OM CD ⊥,M ,Q ,C ,D 四点共线,所以OM MQ ⊥, 即M 在以OQ 为直径的圆22111()()222x y ++−=上,其圆心为11',22O ⎛⎫− ⎪⎝⎭,半径为2r =,如图所示:所以'minAMAO r ==-所以AM 的最小值为17.(1)10x y −+=(2)0b =,直线l 的方程为240x y +−= (1)因为直线l 的倾斜角为4π, 所以直线l 的斜率为tan14π=,因为直线l 过点()1,2A ,所以直线l 的方程为21y x −=−,即10x y −+= (2)因为()1,2A 在对称轴1x =上, 所以点()1,2A 也在直线:2m y x b =+上, 所以22b =+,得0b =所以直线m 为2y x =,过原点(0,0)O , 则(0,0)O 关于直线1x =的对称点为(2,0)B , 所以点(2,0)B 在直线l 上, 所以直线l 的斜率为20212−=−−, 所以直线l 的方程为22(1)y x −=−−,即240x y +−= 18.(1)30x y −−= (2)2230x y x y +−+= (1)22230x y x +−−=,①224230x y x y +−++=,②①-②得2260x y −−=即公共弦AB 所在直线方程为30x y −−=.(2)设圆的方程为()2222234230x y x x y x y λ+−−++−++=即22(1)(1)(24)2330x y x y λλλλλ+++−++−+= 因为圆过原点,所以330λ−+=,1λ= 所以圆的方程为2230x y x y +−+= 19.(1)()2214x y ++=(2)1m >或7m <−(1)解:设圆C 的方程为()222()x a y b r −+−=,由题意得(2221b a r a b r ⎧⎛⨯=−⎪ ⎝⎪⎪⎪=⎨⎪⎪⎪+=⎪⎩,即(22222(1))54a r b b a a r ⎧⎪⎪+=⎨⎪+=⎩+⎪, 解得1a =−,0b =,2r =, 即圆C 的方程为()2214x y ++=. (2)解:由题意,得ACB ∠为钝角或平角, 当A ,B ,C 共线时,3m =,此时ACB ∠为平角; 当A ,B ,C 不共线时,3m ≠,ACB ∠为钝角, 设圆心C 到直线l 的距离为d ,则02d r <<,于是,有0<<,解之得1m >或7m <−,且3m ≠;综上,实数m 的取值范围是1m >或7m <−. 20.(1)π3C=;(1)依题意,sin(2)sin sin A B B A +=−,则()sin()sin sin A B A C A A ++=+−, 故()sin(π)sin sin A C C A A +−=+−,则()sin()sin sin C A C A A −=+−,sin cos cos sin sin cos cos sin sin C A C A C A C A A −=+−, 2cos sin sin C A A =,由于0,πA C <<,所以sin 0A >,所以1cos 2C =,则C 为锐角,且π3C =. (2)依题意CD 平分ACB ∠,在三角形ACD中,由正弦定理得πsin sin 6AD A =,在三角形BCDπsin 6BD =,所以sin sin AD A BD B ⋅=⋅,由正弦定理得AD bBD a=. 在三角形ACD中,由余弦定理得222π3cos336AD b b b =+−⋅=−+, 在三角形BCD中,由余弦定理得222π3cos 336BD a a a =+−⋅=−+,所以2222223333AD b b b BD a a a −+==−+,整理得()()0a b ab a b +−−=, 所以a b =或a b ab +=.当a b =时,三角形ABC 是等边三角形,CD AB ⊥,1AD BD ==,2AB AC BC ===,所以1π22sin 23ABCS=⨯⨯⨯= 当a b ab +=时,2,4ab a b ab =+≥≥, 当且仅当2a b ==时等号成立,所以三角形11sin 422ABCSab C =≥⨯ 综上所述,三角形ABC21.(1)66.8 (2)73 (3)57(1)由频率分布直方图可知平均数()450.01550.026650.02750.03850.008950.0061066.8x =⨯+⨯+⨯+⨯+⨯+⨯⨯=.(2)成绩在[)40,70的频率为()0.010.0260.02100.56++⨯=,成绩在[)40,80的频率为0.560.03100.86+⨯=,∴第65百分位数位于[)70,80,设其为x ,则()0.56700.030.65x +−⨯=,解得:73x =,∴第65百分位数为73.(3)第5组的人数为:500.008104⨯⨯=人,可记为,,,A B C D ;第6组的人数为:500.006103⨯⨯=人,可记为,,a b c ;则从中任取2人,有(),A B ,(),A C ,(),A D ,(),A a ,(),A b ,(),A c ,(),B C ,(),B D ,(),B a ,(),B b ,(),B c ,(),C D ,(),C a ,(),C b ,(),C c ,(),D a ,(),D b ,(),D c ,(),a b ,(),a c ,(),b c ,共21种情况;其中至少1人成绩优秀的情况有:(),A a ,(),A b ,(),A c ,(),B a ,(),B b ,(),B c ,(),C a ,(),C b ,(),C c ,(),D a ,(),D b ,(),D c ,(),a b ,(),a c ,(),b c ,共15种情况;∴至少1人成绩优秀的概率155217p ==. 22..(1)158680x y +−=或40x −= (2)221164x y += (3)0(1)圆22:16O x y +=,圆心()0,0,半径为4,直线l :(2)(21)690m x m y m +++−−=与圆22:16O x y +=相切,4=,解得122m =或12m =−,故直线l 的方程为158680x y +−=或40x −=.(2)设(,),(,)M x y P x y '',则2x x y y =⎧⎨=''⎩,又点P 在圆O 上,2216x y ''+=,即()22216x y +=,化简得221164x y +=. (3)设1122(,),(,)A x y B x y ,AB 所在直线方程为11(2)y k x −=−,联立得1221(2)1164y k x x y −=−⎧⎪⎨+=⎪⎩,化简得()2221111148(12)4(12)160k x k k x k ++−+−−=,则()()21111212221181241216,1414k k k x x x x k k −−−+=−=++,NA NB ⋅=()2112122k x x =+−−()()()()()()221111221121212221118141216812124124141414k k k k k x xx x kk k k +−−−=+−++=+++=+++,同理()22228114k NC ND k +⋅=+,由NA NB NC ND ⋅=⋅可得()()2212221281811414k k k k ++=++,化简2212k k =,又12k k ≠,故12k k =−,即120k k +=.。

江苏省扬州中学2024-2025学年高二上学期10月月考试题英语

江苏省扬州中学2024-2025学年高二上学期10月月考试题英语

江苏省扬州中学2023~2024学年高二第一学期检测英语试卷 2024.10(考试时间:120分钟满分:150分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1. Who is the man probably talking to?A. A shop assistant.B. His wife.C. His co­worker.2. What are the speakers mainly discussing?A. The woman's photo.B. A scenic spot.C. A TV drama.3. What does the man mean?A. E­merce is a doubleedged sword.B. Local specialties should be exported.C. mercials are of no use.4. What will the man do next?A. Close a window.B. Catch a mouse.C. Leave the room.5. When does the conversation take place?A. On Friday.B. On Saturday.C. On Sunday.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

江苏省扬州中学-学年高二12月月考数学试题Word版含答案

江苏省扬州中学-学年高二12月月考数学试题Word版含答案

江苏省扬州中学高二年级12月质量检测数 学(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.)1.命题“02,2>+∈∀x R x ”的否定是______命题.(填“真”或“假”之一).2.双曲线191622=-y x 的两条渐近线的方程为 .3.“1m =-”是“直线(21)10mx m y +-+=和直线330x my ++=垂直的” 条件.(填“充要条件”、“ 充分不必要条件”、“必要不充分条件”、“既不充分也不必要条件”之一)4.已知函数)1(2)('2--=xf x x f ,则)1('-f = .5.若抛物线28y x =的焦点F 与双曲线2213x y n-=的一个焦点重合,则的值为 . 6.已知函数x a x x f sin )(+=在),(+∞-∞上单调递增,则实数的取值范围是 . 7. 若函数x a ax x x f )2(ln )(2+-+=在21=x 处取得极大值,则正数的取值范围是 .8. 若中心在原点,以坐标轴为对称轴的圆锥曲线C ,且过点(2,3),则曲线C 的方程为 .9.在平面直角坐标系xoy 中,记曲线)2,(2-≠∈-=m R x xmx y 在1=x 处的切线为直线.若直线在两坐标轴上的截距之和为12,则m 的值为 . 10.设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的的取值范围是 . 11.在平面直角坐标系xO y中,圆C 的方程为(x -1)2+(y -1)2=9,直线l :y =kx+3与圆C 相交于A ,B两点,M 为弦AB 上一动点,以M为圆心,2为半径的圆与圆C 总有公共点,则实数k 的取值范围为 .12.双曲线)0,0(12222>>=-b a by a x 的右焦点为F ,直线x y 34=与双曲线相交于B A ,两点.若BF AF ⊥,则双曲线的渐近线方程为 .2016.1213.已知函数2)(1-+=-x e x f x (为自然对数的底数).3)(2+--=a ax x x g .若存在实数21,x x ,使得0)()(21==x g x f .且121≤-x x ,则实数的取值范围是 .14.设函数axee xf 2)(-=,若)(x f 在区间)3,1(a --内的图象上存在两点,在这两点处的切线互相垂直,则实数的取值范围是 .二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知命题p :函数6)34()(23++++=x a ax x x f 在),(+∞-∞上有极值,命题:双曲线1522=-ax y 的离心率)2,1(∈e .若q p ∨是真命题,q p ∧是假命题,求实数的取值范围.16.(本小题满分14分)设函数()2ln 2x f x k x =-,0k >.(1)求()f x 的单调区间和极值;(2)证明:若()f x 存在零点,则()f x在区间(上仅有一个零点.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,已知圆22:40C x y x +-=及点(1,0)A -,(1,2)B . (1)若直线平行于AB ,与圆C 相交于M ,N 两点,MN AB =,求直线的方程;(2)在圆C 上是否存在点P ,使得2212PA PB +=?若存在,求点P 的个数;若不存在,说明理由.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆:E 22221(0)x y a b a b+=>>的左顶点为A ,与轴平行的直线与椭圆E 交于B 、C 两点,过B 、C 两点且分别与直线AB 、AC 垂直的直线相交于点D .已知椭圆E 的离心率为53,右焦点到右准线的距离为455. (1)求椭圆E 的标准方程;(2)证明点D 在一条定直线上运动,并求出该直线的方程;(3)求BCD ∆面积的最大值.19.(本小题满分16分)如图所示,有一块矩形空地ABCD ,AB =k m,BC =km ,根据周边环境及地形实际,当地政府规划在该空地内建一个筝形商业区AEFG ,筝形的顶点,,,A E F G 为商业区的四个入口,其中入口F 在边BC 上(不包含顶点),入口,E G 分别在边,AB AD 上,且满足点,A F 恰好关于直线EG 对称,矩形内筝形外的区域均为绿化区. (1)请确定入口F 的选址范围;(2)设商业区的面积为1S ,绿化区的面积为2S ,商业区的环境舒适度指数为21S S ,则入口F 如何选址可使得该商业区的环境舒适度指数最大?xyDCOBA20.(本小题满分16分)设函数()ln f x x ax =-()a R ∈.(1)若直线31y x =-是函数()f x 图象的一条切线,求实数的值;(2)若函数()f x 在21,e ⎡⎤⎣⎦上的最大值为1ae -(为自然对数的底数),求实数的值;(3)若关于的方程()()22ln 23ln x x t x x t x t --+--=-有且仅有唯一的实数根,求实数的取值范围.参考答案:1.假 2.xy 43±= 3. 充分不必要 4. 32- 5. 1 6. [1,1]- 7. (0,2) 8.225x y -= 9. -3或-4 10.(,1)(0,1)-∞-11.1-错误!,+∞) 12. 2y x =±13. 12,3]. 14.解:当x≥2a 时,f (x)=|e x ﹣e 2a|=e x ﹣e2a ,此时为增函数, 当x<2a 时,f(x)=|ex ﹣e 2a|=﹣e x+e 2a ,此时为减函数, 即当x=2a 时,函数取得最小值0,设两个切点为M (x 1,f(x 1)),N((x 2,f(x 2)), 由图象知,当两个切线垂直时,必有,x1<2a <x 2, 即﹣1<2a<3﹣a,得﹣<a<1,∵k 1k 2=f′(x 1)f′(x2)=e x1•(﹣e x 2)=﹣e x 1+x2=﹣1, 则ex1+x2=1,即x 1+x 2=0,∵﹣1<x 1<0,∴0<x2<1,且x 2>2a , ∴2a<1,解得a <, 综上﹣<a <, 故答案为:(﹣,).15.解:命题p:f′(x)=3x2+2ax+a+, ∵函数f(x)在(﹣∞,+∞)上有极值, ∴f′(x )=0有两个不等实数根,∴△=4a2﹣4×3(a+)=4a 2﹣4(3a+4)>0, 解得a>4或a<﹣1; 命题q :双曲线的离心率e∈(1,2),为真命题,则∈(1,2),解得0<a<15.∵命题“p ∧q”为假命题,“p∨q”为真命题, ∴p 与q 必然一真一假, 则或,解得:a≥15或0<a≤4或a <﹣1. 16.所以,()f x 的单调递减区间是k ,单调递增区间是()k +∞;()f x 在x k =(1ln )2k k f k -=. (Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )(2k k f k -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥. 当k e =时,()f x 在区间)e 上单调递减,且(0f e =, 所以x e =()f x 在区间e 上的唯一零点.当k e >时,()f x 在区间e 上单调递减,且1(1)02f =>,(02e kf e -=<, 所以()f x 在区间e 上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间e 上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题. 17..(2)假设圆C 上存在点P ,设(,)P x y ,则22(2)4x y -+=,222222(1)(0)(1)(2)12PA PB x y x y +=++-+-+-=,即22230x y y +--=,即22(1)4x y +-=, 0因为22|22|(20)(01)22--+-<+,……………………………………12分所以圆22(2)4x y -+=与圆22(1)4x y +-=相交,所以点P 的个数为.…………………………………………………………14分18. 解:(1)由题意得53c a =,2455a c c -=,解得3,5a c ==,所以224b a c =-=,所以椭圆E 的标准方程为22194x y +=.………4分(2)设0000(,),(,)B x y C x y -,显然直线,,,AB AC BD CD 的斜率都存在,设为1234,,,k k k k ,则001200,33y y k k x x ==+-+,00340033,x x k k y y +-=-=, 所以直线,BD CD 的方程为:0000000033(),()x x y x x y y x x y y y +-=--+=++,消去y 得0000000033()()x x x x y x x y y y +---+=++,化简得3x =, 故点D 在定直线3x =上运动. ……10分(3)由(2)得点D 的纵坐标为2000000039(3)D x x y x y y y y --=++=+,又2200194x y +=, 所以220994y x -=-,则20000009354(3)4D y x y x y y y y y --=++=+=-,所以点D 到直线BC 的距离为00005944D y y y y y -=--=, 将0y y =代入22194x y +=得x =±, 所以BCD ∆面积0119224ABCS BC h y ∆=⋅=⨯22000112727442224y y y -+=≤⋅=,当且仅当2200144y y -=,即0y =时等号成立,故0y =,BCD ∆面积的最大值为274. ……16分 19.解:(1)以A为原点,AB 所在直线为轴,建立如图所示平面直角坐标系,则()0,0A ,设()2,2F a (024a <<),则AF 的中点为()1,a ,斜率为, 而EG AF ⊥,故EG 的斜率为1a-, 则EG 的方程为()11y a x a-=--, 令0x =,得1G y a a=+; ………2分 令0y =,得21E x a =+; … …4分由04020<<4G E y x BF BF <≤⎧⎪<≤⎨⎪⎩,得220102a a a ⎧-≤≤+⎪<≤⎨⎪<<⎩, 21a ∴≤≤,即入口F 的选址需满足BF的长度范围是[42]-(单位:km).……6分 (2)因为()23111212AEG S S AE AG a a a a a a∆⎛⎫==⋅=++=++ ⎪⎝⎭, 故该商业区的环境舒适度指数121111811ABCD ABCD S S S S S S S S -==-=-, ……9分 所以要使21S S 最大,只需1S 最小. 设()3112,[2S f a a a a a==++∈ ……10分 则()()())()2224222222111311132132a a a a a f a a a a a a -++-++-'=+-===令()0f a '=,得a =a =(舍), ………12分()(),,a f a f a '的情况如下表:22⎛ ⎝⎭⎫⎪⎪⎝⎭ 1 ()f a '0 +()f a减极小增故当3a =,即入口F满足BF =km 时,该商业区的环境舒适度指数最大16分 20.解:(1)()ln f x ax x=-+,()1f x ax'∴=-, 设切点横坐标为0x ,则000013,ln 31,a x ax x x ⎧-=⎪⎨⎪-+=-⎩…………2分消去,得0ln 0x =,故01x =,得 2.a =- ………4分 (2)()22111,1,1,f x a x e x e x'=-≤≤≤≤ ①当21a e≤时,()0f x '≥在21,e ⎡⎤⎣⎦上恒成立,()f x 在21,e ⎡⎤⎣⎦上单调递增,则()()22max 21f x f e ae ae ==-=-,得2211a e e e =>-,舍去; ……………5分 ②当1a ≥时,()0f x '≤在21,e ⎡⎤⎣⎦上恒成立,()f x 在21,e ⎡⎤⎣⎦上单调递减,则()()max 11f x f a ae ==-=-,得111a e =<-,舍去; ………6分 ③当211a e <<时,由()201f x x e '⎧>⎪⎨≤≤⎪⎩,得11x a ≤<;由()201f x x e'⎧<⎪⎨≤≤⎪⎩,得21x e a <≤,故()f x 在11,a ⎡⎤⎢⎥⎣⎦上单调递增,在21,e a⎡⎤⎢⎥⎣⎦上单调递减,则()max 11ln 1f x f a ae a ⎛⎫==--=-⎪⎝⎭,得2ln 0ae a --=, ……8分 设()212ln ,,1g a ae a a e ⎛⎫=--∈ ⎪⎝⎭,则()211,,1g a e a a e ⎛⎫'=-∈ ⎪⎝⎭当211,a e e ⎛⎫∈⎪⎝⎭时,()10g a e a '=-<,()g a 单调递减, 当1,1a e ⎛⎫∈ ⎪⎝⎭时()10g a e a'=->,()g a 单调递增, 故()min 10g a g e ⎛⎫== ⎪⎝⎭,2ln 0ae a ∴--=的解为1a e=. 综上①②③,1a e=. ……………10分(3)方程()()22ln 23ln x x t x x t x t --+--=-可化为()()()()2211ln 2323ln 22x x t x x t x t x t --+--=-+-, 令()1ln 2h x x x =+,故原方程可化为()()223h x x t h x t --=-,………12分 由(2)可知()h x 在()0,+∞上单调递增,故2230x x t x tx t ⎧--=-⎨->⎩有且仅有唯一实数根,即方程20x x t --=(※)在(),t +∞上有且仅有唯一实数根, ……………13分①当410t ∆=+=,即14t =-时,方程(※)的实数根为1124x =>-,满足题意;---- ②当0∆>,即14t >-时,方程(※)有两个不等实数根,记为12,,x x 不妨设12,,x t x t ≤> Ⅰ)若1,x t =2,x t >代入方程(※)得220t t -=,得0t =或2t =,当0t =时方程(※)的两根为0,1,符合题意;当2t =时方程(※)的两根为2,1-,不合题意,舍去; Ⅱ)若12,,x t x t <>设()2x x x t ϕ=--,则()0t ϕ<,得02t <<; 综合①②,实数的取值范围为02t ≤<或14t =-.…………16分。

扬州中学2023-2024学年高二上学期12月月考试题 语文试题(含答案)

扬州中学2023-2024学年高二上学期12月月考试题 语文试题(含答案)

扬州中学2023—2024 学年第一学期12 月月考试题高二语文2023.12试卷满分:150 分,考试时间:150 分钟一、现代文阅读(35 分)(一)现代文阅读Ⅰ(本题共5 小题,19 分)阅读下面的文字,完成 1~5题。

材料一:按照中国的传统,学习哲学不是一个专门的行业,人人都应当读经书,正如在西方传统看来,人人都要进教堂。

读哲学是为了使人得以成为人,而不是成为某种人。

有些哲学著作,像孟子的和荀子的,与西方哲学著作相比,它们的表达还是不够明晰。

这是由于中国哲学家惯于用名言隽语、比喻例证的形式表达自己的思想。

《老子》全书都是名言隽语,《庄子》各篇大都充满比喻例证。

甚至在上面提到的孟子、荀子著作,与西方哲学著作相比,还是有过多的名言隽语、比喻例证。

名言隽语一定很简短;比喻例证一定无联系。

一个人若不能读哲学著作原文,要想对它们完全理解、充分欣赏,是很困难的,对于一切哲学著作来说都是如此。

这是由于语言的障碍。

加以中国哲学著作富于暗示的特点,使语言障碍更加令人望而生畏了。

中国哲学家的言论、著作富于暗示之处,简直是无法翻译的。

只读译文的人,就丢掉了它的暗示,这就意味着丢掉了许多。

一种翻译,终究不过是一种解释。

比方说,有人翻译一句《老子》,他就是对此句的意义作出自己的解释。

但是这句译文只能传达一个意思,而在实际上,除了译者传达的这个意思,原文还可能含有许多别的意思。

原文是富于暗示的,而译文则不是,也不可能是。

所以译文把原文固有的丰富内容丢掉了许多。

《老子》《论语》现在已经有多种译本。

每个译者都觉得别人的翻译不能令人满意。

但是无论译得多好,译本也一定比原本贫乏。

需要把一切译本,包括已经译出的和其他尚未译出的,都结合起来,才能把《老子》《论语》原本的丰富内容显示出来。

(摘编自冯友兰《中国哲学简史》,有删改)材料二:“中国有无哲学”的问题本身可以溯源于三十年代金岳霖《冯友兰中国哲学史审查报告》中所区分的“在中国的哲学史”还是“中国哲学的史”。

2024学年江苏省扬州中学高二上学期期中考数学试题及答案

2024学年江苏省扬州中学高二上学期期中考数学试题及答案

江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π62. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 83. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 164. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A. 1,2⎛⎫+∞⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10B. 16C. 20D. 266. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A 小于1B. 等于1C. 大于1D. 与M 点的位置有关.7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB +的最大值为( )A. 12B. C. 10D. 6二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A. 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =- B. 121=x x C. 254PQ =D. 1l 与2l 之间的距离为412. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 最小值为6.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.15. 阿基米德是古希腊著名数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.的的四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上的椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8xty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .21.已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB(O 为坐标原点),求此时直线l 的斜率k 的值.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.的的江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1. 经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π6【答案】B 【解析】【分析】求出直线AB 的斜率,利用直线的斜率与倾斜角的关系可得出结果.【详解】设直线AB 的倾斜角为α,则0πα≤<,且tan α==,故π3α=.故选:B.2. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 8【答案】B 【解析】【分析】根据抛物线的准线求得p 的值【详解】由题意可得:22p-=,则4p =-故选:B3. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 16【答案】A【解析】【分析】根据题意,可设12cos ,5sin x y θθ==,得到13sin()x y θϕ+=+,求得x y +的取值范围,即可求解.【详解】由椭圆22114425x y +=,可设12cos ,5sin x y θθ==,其中[]0,2πθ∈,则12cos 5sin 13sin()x y θθθϕ=+=++,其中12tan 5ϕ=,因为1sin()1θϕ-≤+≤,所以1313x y -≤+≤,即x y +的取值范围为[]13,13-,结合选项,可得A 符合题意.故选:A.4. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A 1,2⎛⎫+∞ ⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭【答案】C 【解析】【分析】利用表示圆的条件和点和圆的位置关系进行计算.【详解】依题意,方程220x y x y a +-++=可以表示圆,则22(1)140a -+->,得12a <;由点()2,1在圆220x y x y a +-++=的外部可知:2221210a +-++>,得4a >-.故142a -<<.故选:C5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10 B. 16C. 20D. 26【答案】C 【解析】【分析】由椭圆的定义可得122MF MF a +=,122NF NF a +=,代入即可求出答案.【详解】由椭圆的定义可得:122MF MF a +=,122NF NF a +=,.则2MNF 的周长为:22112244520MN MF NF MF NF MF NF a ++=+++==⨯=.故选:C .6. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A. 小于1 B. 等于1C. 大于1D. 与M 点的位置有关【答案】B 【解析】【分析】求出,A B 的坐标,由对称性可得OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,由正弦定理得到12sin OM R OAB =∠,22sin OMR OBA=∠,故12R R =,故面积比值为1.【详解】由题意得,抛物线2:16C y x =的焦点坐标为()4,0F ,将4x =代入2:16C y x =中,8y =±,不妨令()()4,8,4,8A B -,由对称性可知,A B 两点关于y 轴对称,OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,当点M 在A 点上方时,()12sin sin πsin OM OM OM R OAM OAB OAB===∠-∠∠,当点M 在A 点上方时,12sin OMR OAB=∠,同理22sin OMR OBA=∠,因为OBA OAB ∠=∠,所以12R R =,所以圆1C 圆2C 面积的比值为1.故选:B7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=【答案】B 【解析】【分析】首先根据题意得到22222b c a c a b=⎧⎪⎪=⎨⎪=+⎪⎩,再解方程组即可.【详解】设双曲线的一个焦点为()0,c ,一条渐近线方程为a y x b=,则焦点到渐近线的距离2d b ===,所以2222224234b a ca b c a b=⎧⎧⎪=⎪⎪=⇒⎨⎨⎪⎪=⎩=+⎪⎩,即双曲线方程为:223144y x -=.故选:B8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB + 的最大值为( )A. 12B. C. 10D. 6【答案】A 【解析】【分析】设AB 中点(),P x y ,根据垂径定理可得点P 的轨迹方程,进而可得MP的取值范围,又2MA MB MP +=,即可得解.【详解】设AB 中点(),P x y ,则()6,CP x y =- ,()4,NP x y =-,所以()()2640CP NP x x y ⋅=--+= ,即()2251x y -+=,所以点P 的轨迹为以()5,0E 为圆心,1为半径的圆,所以11ME MP ME -≤≤+,5ME ==,所以46MP ≤≤,又2MA MB MP +=,所以MA MB +的最大值为12,故选:A.二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=【答案】ABD 【解析】【分析】坐标代入方程检验判断A ,根据垂直的条件判断B ,求出两坐标轴上截距判断C ,求出平行线间距离判断D .【详解】选项A ,把坐标(0,1)代入直线方程而立,A 正确;选项B ,1a =-时直线l 方程为10x y -+=,斜率是1,直线0x y +=斜率是1-,两直线垂直,B 正确;选项C ,0a =时直线方程为10x y -+=,在x 轴上截距为=1x -,在y 轴上截距为1y =,不相等,C 错;选项D ,211a a ++=即0a =或1-时,直线l 方程为10x y -+=与直线0x y -=平行,距离为d ==D 正确.故选:ABD .10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上【答案】ABD.【解析】【分析】逐项代入分析即可求解.【详解】根据222a b c =+之间的关系即可求解,故选项A 正确;根据2221,22,2c e b a b c a ====+即可求解,故选项B 正确;12BF F △是等边三角形,且椭圆E 的离心率为12,只能确定12,2c a c e a ===,不能求椭圆E 标准方程,故选项C 不正确;设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上,所以()2222224,09c c b c b a =-+=+==,即可求出椭圆E 标准方程,故选项D 正确.故选:ABD.11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =-B. 121=x xC. 254PQ = D. 1l 与2l 之间的距离为4【答案】BC【解析】【分析】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =,由韦达定理得124y y =-,进而求得121=x x ,可判断B ;先求点P 的坐标,再结合124y y =-可得点Q 的坐标,然后利用斜率公式即可判断A ;根据抛物线的定义可知12Q x p P x ++=,可判断C ;由于1l 与2l 平行,所以1l 与2l 之间的距离12d y y =-,可判断D .【详解】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =得2440y my --=,则124y y =-,所以()212121616y y x x ==,所以121=x x ,故B 正确;点P 与M 均在直线1l 上,则点P 的坐标为(1,14),由124y y =-得24y =-,则点Q 的坐标为(4,4)-,则4141344PQ k --==--,故A 错误;由抛物线的定义可知,121254244PQ x x p =++=++=,故C 正确;1l 与2l 平行,1l ∴与2l 之间的距离125d y y =-=,故D 错误.故选:BC.12. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8B. 212PF PF OP -为定值C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 的最小值为6.【答案】AB【解析】【分析】设00(,)P x y ,由2221208PF PF x -=,可判定A 正确;化简2122PF PF OP -=,可判定B 正确;设直线l 的方程为x my n =+,联立方程组,结合Δ0=,得到2213n m =-,在化简123y y =-,可判定C 不正确;根据通经长和实轴长,可判定D 错误.【详解】由题意,双曲线2213y x -=,可得1,a b ==2c ==,所以焦点12(2,0),(2,0)F F -,且1222PF PF a -==,设00(,)P x y ,则01x ≥,且220013y x -=,即220033=-y x ,双曲线C的两条渐近线的方程为y =,对于A 中,由()][()22222212000002288PF PF x y x y x ⎡⎤-=++--+=≥⎣⎦,所以A 正确;对于B中,2221200()PF PF OP x y -=-+2200(33)x x =-+-2000(21)(21)(43)2x x x =+---=(定值),所以B 正确;对于C 中,不妨设1122(,),(,)M x y N x y ,直线l 的方程为x my n =+,联立方程组2213x my n y x =+⎧⎪⎨-=⎪⎩,整理得222(31)6330m y mny n -++-=,若直线l 与双曲线C 相切,则22223612(31)(1)0m n m n ∆=---=,整理得2213n m =-,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =M的纵坐标为1y =,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =N的纵坐标为2y =,则点,M N的纵坐标之积为21222233(13)33113y n m mm y ---===-=--所以C 不正确;对于D 中,若点Q 在双曲线的右支上,则通经最短,其中通经长为226b a=,若点Q 在双曲线的左支上,则实轴最短,实轴长为226a =<,所以D 错误.故选:AB.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.【答案】y =【解析】【分析】由c e a ===b a =,即可求出双曲线的渐近线方程.【详解】因为双曲线22221x y a b-=()0,0a b >>c e a ===222b a =,所以b a =,双曲线22221x y a b-=()0,0a b >>渐近线方程为:b y x a =±=.故答案为:y =14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.【答案】1,14⎛⎫-⎪⎝⎭##()0.25,1-【解析】【分析】作出图象,结合题意可知A ,P 及P 到准线的垂足三点共线时,所求距离之和最小,此时P 点的纵坐标为1,代入抛物线即可求得P 点的坐标.【详解】根据题意,由y 2=-4x 得p =2,焦点坐标为(-1,0),作出图象,如图,.因为PF 等于P 到准线的距离PQ ,所以PF PA PQ PA AQ +=+≥,可知当A ,P 及P 到准线垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,此时点P 的纵坐标为1,将y =1代入抛物线方程求得14x =-,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭.故答案为:1,14⎛⎫- ⎪⎝⎭.15. 阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.【答案】【解析】【分析】利用作差法构建斜率、中点坐标相关方程2121221212y y x x b x x y y a-+=-⋅-+,再结合222a c b -=即可求解出a 、b ,进而求出面积.【详解】设()11,A x y ,()22,B x y ,记AB 的中点为M ,即(2,1)M -,因为AB 的中点为M ,所以由中点坐标公式得121242x x y y +=⎧⎨+=-⎩,因为直线AB 过椭圆焦点()3,0F ,所以直线AB 斜率为121201132y y k x x --===--,又因为A ,B 在椭圆22221x y a b+=上,的所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22221212220x x y y a b --+=,整理得2121221212y y x x b x x y y a-+=-⋅-+,代值化简得222b a =,因为椭圆22221x y a b+=的焦点为()3,0F ,所以22a b 9-=,得a =,3b =,由题意可知,椭圆的面积为ab π=.故答案为:.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.【答案】【解析】【分析】根据题意可设1(,)C ma a ,2(,)C mb b ,(0)m >,由P 在两圆上,将坐标代入对应圆的方程整理,易知,a b 是22(64)130m r m r -++=的两个根,进而求直线12C C 的斜率,再根据直线12C C 、(0)y kx k =>倾斜角的关系求k 值.【详解】由题设,圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,且一个交点P (3,2),∴1C 和2C 在第一象限,若,a b 分别是圆1C 和圆2C 的半径,可令1(,)C ma a ,2(,)C mb b ,(0)m >,∴222222(3)+(2){(3)+(2)ma a a mb b b --=--=,易知:,a b 是22(64)130m r m r -++=的两个根,又132ab =,∴213132m =,可得m =12C C k =,而直线12C C 的倾斜角是直线(0)y kx k =>的一半,∴1212221C C C C k k k ==-.故答案为:【点睛】关键点点睛:分析圆心的坐标并设1(,)C ma a ,2(,)C mb b ,结合已知确定,a b 为方程的两个根,应用韦达定理求参数m ,进而求12C C 斜率,由倾斜角的关系及二倍角正切公式求k 值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.【答案】(1)163m = (2)4m =-,()±【解析】【分析】(1)根据题中条件及离心率公式直接计算即可;(2)根据题中条件得4m =-,进一步计算得到c 的值,即可求解.【小问1详解】因为方程为焦点在y 轴上的椭圆,所以22,4a m b ==则离心率12c e a ===,解得163m =故163m =【小问2详解】由题意得 4m =-,c ===故焦点坐标为()±18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.【答案】(1)250x y +-=(2)2340x y -+=【解析】的.【分析】(1)联立方程求得交点坐标,再由两点式求出直线方程.(2)根据直线垂直进行解设方程,再利用交点坐标即可得出结果.【小问1详解】由341102380x y x y +-=⎧⎨+-=⎩得12x y =⎧⎨=⎩,即直线1l 和2l 的交点为(1,2)M .直线l 还经过点()3,1P ,∴l 的方程为211231y x --=--,即250x y +-=.【小问2详解】由直线l 与直线3250x y ++=垂直,可设它的方程为230x y n -+=.再把点(1,2)M 的坐标代入,可得260n -+=,解得4n =,故直线l 的方程为2340x y -+=.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上的截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.【答案】(1)()22116x y -+=(2)3x =或3490x y --=【解析】【分析】(1)根据题意,设圆的一般式方程,代入计算,即可得到结果;(2)根据题意,分直线的斜率存在与不存在讨论,结合点到直线的距离公式列出方程,即可得到结果.【小问1详解】设圆C 的方程为()2222040x y Dx Ey F D E F ++++=+->,令0y =,可得20x Dx F ++=,则122x x D +=-=,将()()1,4,5,0A B 代入可得,116402550D E F D F ++++=⎧⎨++=⎩,解得2015D E F =-⎧⎪=⎨⎪=-⎩,所以圆C 方程为222150x y x +--=,即()22116x y -+=.【小问2详解】圆C 的圆心()1,0C ,圆M 的圆心与()1,0C 关于10x y -+=对称,∴设圆M 的圆心为(),M a b 则11022111a b b a +⎧-+=⎪⎪⎨⎪⨯=-⎪-⎩,解得12a b =-⎧⎨=⎩,圆M 的标准方程为:()()221216x y ++-=,若过点()3,0的直线斜率不存在,则方程为3x =,此时圆心()1,2C -到直线3x =的距离为314r +==,满足题意;若过点()3,0且与圆C 相切的直线斜率存在,则设切线方程为()3y k x =-,即30kx y k --=,则圆心到直线30kx y k --=4,解得34k =,所以切线方程为39044x y --=,即3490x y --=,综上,过点()3,0且与圆C 相切的直线方程为3x =或3490x y --=.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8x ty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .【答案】(1)28y x =(2)见解析.【解析】【分析】(1)根据双曲线方程求出其焦点坐标,即也是抛物线焦点,得到抛物线方程.(2)直线l 与抛物线联立后,利用韦达定理求出0OA OB ⋅= 即可得证.【小问1详解】由双曲线方程()2211551x y m m m -=<<--知其焦点在x 轴上且焦点坐标为1(2,0)F -,2(2,0)F ,所以2(2,0)F 为抛物线C :()220y px p =>的焦点,得242p p =⇒=,所以抛物线C 的方程为28y x =.【小问2详解】设11(,)A x y ,22(,)B x y 联立22886408x ty y ty y x=+⎧⇒--=⎨=⎩,2644640t ∆=+⨯>由韦达定理得128y y t +=,1264y y =-所以12121212(8)(8)OA OB x x y y ty ty y y ⋅=+=+++ 21212(1)8()64t y y t y y =++++2(1)(64)8(8)640t t t =+-++=所以OA OB ⊥ ,所以以AB 为直径的圆经过原点O .得证21. 已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=的左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB (O 为坐标原点),求此时直线l 的斜率k 的值.【答案】(11k <<(2)k =【解析】【分析】(1)设点坐标,联立方程组,根据根与系数的关系求解;(2)通过OAB 面积求解出12x x -,从而求解出k 的值.【小问1详解】依题意,设()()1122,,,A x y B x y ,联立方程组22330y kx x y ⎧=+⎪⎨--=⎪⎩,整理得:()221390,k x ---=因为直线:R)l y kx k =∈,与双曲线22:13x C y -=的左支交于A ,B 两点,所以()2212212130361090130k k x x k x x ⎧-≠⎪=->⎪⎪⎪-⎨=>⎪-⎪⎪+=<⎪⎩ ,解得210,13k k ><<1k <<,【小问2详解】设点O到直线:R)l y kx k =∈的距离为d,则d =,212OAB S AB d x ==-=- ,又因为S =,所以1212,5x x -=又因为12125x x -==,代入12212913x x k x x -⎧=⎪-⎪⎨⎪+=⎪⎩125,整理得4236210k k+-=1k <<,解得k =,此时直线l的斜率k.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.【答案】(1)22:184x y C += (2)存在,1y =【解析】【分析】(1)由椭圆离心率可得222a b =,再将(2代入椭圆的方程可得228,4a b ==,即可求出椭圆的方程;(2)设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立直线MN 和椭圆的方程求出两根之积和两根之和,设直线AN 的方程和直线BM 的方程,两式联立求得交点的纵坐标的表达式,将两根之积和两根之和代入可证得交点在一条定直线上.【小问1详解】,即c e a ===,所以2212b a =,所以222a b =,又因为椭圆()2222:10x y C a b a b +=>>过点(2,所以224212b b +=,解得:228,4a b ==,所以椭圆C 方程为22184x y +=.【小问2详解】因为()()0,2,0,2A B -,设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立方程221844x y y kx ⎧+=⎪⎨⎪=+⎩,得()221216240k x kx +++=,()()222Δ164241264960,k k k =-⨯⋅+=->得232k >则1212221624,1212k x x x x k k -+=⋅=++直线AN 的方程为:2222y y x x --= ,直线BM 的方程为:1122y y x x ++=,联立两直线方程消元:()()2112112122222226y x kx x x y y y x kx x x -+-==+++ 法1:由()221216240k x kx +++=解得:12x x ==,代入化简,2123y y -===-+,解得:1y =,即直线,BM AN 的交点在定直线1y =上.法2:由韦达定理得1221612k x x k-=-+代入化简()()22222222224162824211212242324612612k k x k k x y k k k y k k x x k -⎛⎫+- ⎪--+-++⎝⎭===-+++++,得1y =,即直线,BM AN 的交点在定直线1y =上.法3:由1212221624,1212k x x x x k k -+=⋅=++,得()121232x x kx x -+=⋅代入化简()()1211223221232362x x x y y x x x -++-==-+-++,得1y =,即直线,BM AN 的交点在定直线1y =上.法4: 代()11,M x y 点进椭圆方程得2211184x y +=化简得()()221111221844y y x y +-=-=进而得到()()1111222y x y x -=+,代入化简()()121222222y y y y x x ----=+⋅转化为韦达定理代入()()()()1212121222222222y y kx kx y y x x x x ----++-==+⋅⋅()22221212122241622422412122412k k k k x x k x x k k x x k ⎛⎫-⋅-⋅+ ⎪⎡⎤-+++++⎣⎦⎝⎭==⋅+22222243248211224312k k k k k -++-⋅+=-+,得1y =,即直线,BM AN 的交点在定直线1y =上.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定直线问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量之间的关系,同时得到韦达定理的形式;③利用韦达定理表示出已知的等量关系,化简整理得到所求定直线.。

江苏省扬州中学2022-2023学年高一上学期12月月考数学试卷及答案

江苏省扬州中学2022-2023学年高一上学期12月月考数学试卷及答案

扬州中学高一数学月考试卷2022.12一、 单项选择题:本大题共8小题,每小题5分,计40分.在每小题所给的A.B.C.D.四个选项中,只有一项是正确的,请在答题卡上将正确选项按填涂要求涂黑.1.已知集合 {}{},0,1,2,3,4A xx N B =∈=, 则 ,A B 间的关系是 ( ▲ ) A . A B=B .B A⊆C .A B∈D .A B⊆2.下列选项中与角1680α=︒终边相同的角是( ▲ ) A.120︒B.240−︒C.120−︒D.60︒3.命题“1x ∀>,210x −>”的否定形式是( ▲ ) A.1x ∀>,210x −≤ B.1x ∀≤,210x −≤C.1x ∃>,210x −≤ D.1x ∃≤,210x −≤4.已知 1.4 2.25log 0.6,3,0.9a b c ===,则a 、b 、c 的大小关系为( ▲ )A.a b c<< B.a c b<< C.c a b << D.b c a <<5.如果点(sin ,cos )P θθ位于第四象限,那么角θ所在的象限是( ▲)A .第一象限B .第二象限C .第三象限D .第四象限6.国棋起源于中国,春秋战国时期已有记载,隋唐时经朝鲜传入日本,后流传到欧美各国.围棋蕴含着中华文化的丰富内涵,它是中国文化与文明的体现.围棋使用方形格状棋盘及黑白二色圆形棋子进行对弈,棋盘上有纵横各19条线段形成361个交叉点,棋子走在交叉点上,双方交替行棋,落子后不能移动,以围地多者为胜.围棋状态空间的复杂度上限为3613P =,据资料显示字宙中可观测物质原子总数约为8010Q =,则下列数中最接近数值PQ的是( ▲ )(参考数据:lg30.477≈) A .8910B .9010C .9110D .21097.函数xx xx e e e e y −−−+=的图象大致为( ▲ )8.设0a >,0b >,且22a b +=,则22aa a b++ ( ▲ ) A .有最小值为4 B.有最小值为1 C .有最小值为143D .无最小值二、多项选择题:本大题共4小题,每小题5分,共计20分.在每小题所给的A.B.C.D.四个选项中,有多项是正确的,全部选对的得5分,部分选对的得2分,有选错的得0分.请在答题卡上将正确选项按填涂要求涂黑.9. 下列说法正确是( ▲ ) A. 42403π︒=B. 1弧度的角比1︒的角大C. 用弧度制量角时,角的大小与圆的半径有关D. 扇形的周长为6厘米,面积为2平方厘米,则扇形的圆心角的弧度数为410. 已知函数()ln f x x =,0a b <<,且()()f a f b =,下列结论正确的是( ▲ )A.1b a >B. 2a b +> C 23b a+>D. ()()22118a b +++>11. 已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪−<⎩下列说法正确的是( ▲ )A. 函数sgn()y x =图像的对称中心坐标是(0,0)B. 对任意1,sgn(ln )1x x >=C. 函数sgn()x y e x ⋅−=的值域为(,1)−∞D. 对任意的,sgn()x R x x x ∈⋅= 12. 给出下列四个结论,其中所有正确结论的序号是( ▲ ) A. “3x >”是“24x >”的充分不必要条件.B. 函数()log (1)1(0,1)a f x x a a =−+>≠过定点(2,1)C. 若函数()f x 满足(2)(14),f x f x −+=+则()f x 的图像关于直线8x =对称D. 函数()f x 的定义域为D ,若满足:(1)()f x 在D 内是单调函数;(2)存在,22m n D ⎡⎤⊆⎢⎥⎣⎦,使得()f x 在,22m n ⎡⎤⎢⎥⎣⎦上的值域为[,]m n ,那么就称函数()f x 为“梦想函数”.若函数()()log (0,1)x a f x a t a a =+>≠是“梦想函数”,则t 的取值范围是1,04⎡⎫−⎪⎢⎣⎭三、填空题:本大题共4小题,每小题5分,计20分.只要求写出最后结果,并将正确结果填写到答题卡相应位置.13. 若幂函数()y f x =的图像经过点49,316⎛⎫⎪⎝⎭,则()2f −= ▲ . 14. 求值:()1202129.6log 44⎛⎫−−− ⎪⎝⎭= ▲ . 15. 若函数()f x 在R 上是单调函数,且满足对任意x ∈R ,都有()3o 1l g x f f x −=⎡⎤⎣⎦,则函数()f x 的零点是 ▲ .16. 已知定义在实数集R 上的偶函数()f x 在区间(],0−∞上单调递增,且()20f −=. 若A 是ABC 的一个内角,且满足()12sin 21f f A ⎛⎫<⎪+⎝⎭,则A 的取值范围为 ▲ . 四、解答题:本大题共6题,计70分.17. 已知角的终边经过点()4,3P −,(1)求()tan sin cos 2αππαα⎛⎫−−+ ⎪⎝⎭的值;(2)求22sin sin cos 2cos αααα++的值.α18. 设全集,已知集合,.(1)若,求;(2)若,求实数的取值范围.19.设是上的奇函数,,当时,. (1)求的值; (2)求时,的解析式;(3)当时,求方程的所有实根之和. (写出正确答案即可)20. 设12()2x x mf x n+−+=+(0,0m n >>)是奇函数.(1)求m 与n 的值;(2)如果对任意x R ∈,不等式2(2cos )(4sin 7)0f a x f x ++−>恒成立,求实数a 的取值范围.21.已知函数()11lg+−=x xx f . (1) 求不等式(())(lg3)0f f x f +>的解集;(2) 函数()),1,0(2≠>−=a a a x g x若存在[),1,0,21∈x x 使得)()(21x g x f =成立,求实数a 的取值范围;22. 已知函数.(1)若关于的方程有两个不同的实数解,求实数的值; (2)求函数在区间上的最大值.R U ={}1≤−=a x x A {}0)1)(4(≤−−=x x x B 4=a B A ⋃A B A = a ()f x (,)−∞+∞(2)()f x f x +=−01x ≤≤()f x x =()f π13x −≤≤()f x 44x −≤≤()(0)f x m m =<2()1,()|1|f x x g x a x =−=−x |()|()f x g x =a ()|()|()h x f x g x =+[2,2]−高一数学12月月考答案一、单项选择题:1.D .2. C3.C4.B5.B6.D7.A8.B二、多项选择题:9.AB10.BCD11..ABD12. ABC三、填空题:13.14 14. 32−15.13. 16. 73311,,124412ππππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭四、解答题:17.解:由题意3sin 5α=,4cos 5α=−,则: (1)原式=sin 15cos sin sin 2cos 8ααααα==−+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省扬州中学2020-2021学年高二上学期12月月
考数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列命题为真命题的是( )
A.,使B.,有
C.,有D.,有
2. 已知双曲线的离心率为,则实数的值为()
C.D.
A.B.
3. 平行六面体中,,,
,则对角线的长为()
A.B.12 C.D.13
4. 已知双曲线右支上一点到右焦点的距离为,则该点到左准线的距离为()
A.B.C.D.
5. 若直线过抛物线的焦点,与抛物线相交于两点,且,则线段的中点到轴的距离为()
A.B.C.D.
6. 北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石
板(不含天心石)()
A.3699块B.3474块C.3402块D.3339块
7. 数列是等比数列,公比为,且.则“”是
“”的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
8. 关于的不等式恰有2个整数解,则实数的取值范围是()
A.B.
C.D.
二、多选题
9. 已知数列,则前六项适合的通项公式为()
A.
B.
D.
C.
10. 已知命题不存在过点的直线与椭圆相切.则命题是真命题的一个充分不必要条件是()
A.B.C.D.
11. 下列条件中,使点与三点一定共面的是()
A.B.
C.D.
12. 以下命题正确的是()
A.直线l的方向向量为,直线m的方向向量,则
B.直线l的方向向量,平面的法向量,则
C.两个不同平面,的法向量分别为,,则
D.平面经过三点,,,向量是平面的法向量,则
三、填空题
13. 以为一个焦点,渐近线是的双曲线方程是_____________
14. 已知正实数满足,则的最大值为_________
15. 已知正方体中,是的中点,直线与平面所成角的正弦值为_____________
四、双空题
16. 数列满足:其中为数列的前项
和,则_______,若不等式对恒成立,则实数的最小值为_____.
五、解答题
17. 已知集合,集合. (1)当时,求;
(2)命题,命题,若q是p的必要条件,求实数a的取值范围.
18. 设等比数列的公比不为1,为,的等差中项.
(1)数列的公比;
(2)若,设,求.
19. 已知抛物线,过点作斜率为的直线与抛物线交于不同的两点,.
(1)求的取值范围;
(2)若为直角三角形,且,求的值.
20. 各项为正的数列满足,
(1)当时,求证:数列是等比数列,并求其公比;
(2)当时,令,记数列的前n项和为,数列的前n 项之积为,求证:对任意正整数n,为定值.
21. 如图,已知正方形和矩形所在的平面互相垂直,,
,是线段的中点.
(1)若,求二面角的大小;
(2)若线段上总存在一点,使得,求的最大值.
22. 已知中心在原点,焦点在轴上的椭圆的离心率为,过左焦点且垂直于轴的直线交椭圆于两点,且.
(Ⅰ)求的方程;
(Ⅱ)若直线是圆上的点处的切线,点是直线上任一点,过点作椭圆的切线,切点分别为,设切线的斜率都存在.求证:直线过定点,并求出该定点的坐标.。

相关文档
最新文档