数学分析 第二型曲线积分
G202第二型曲线积分
第20章 曲线积分
本章内容:
第一节、第一型曲线积分
(或称:关于弧长的曲线积分)
第二节、第二型曲线积分
(或称:关于坐标的曲线积分)
1
几类积分概况
积分学 定积分二重积分三重积分曲线积分 曲面积分 积分域 区间域 平面域 空间域 曲线域 曲面域
曲线积分
对弧长的曲线积分(第一型) 对坐标的曲线积分(第二型)
25
3. 计算
•
对有向光滑弧
L
:
x y
(t) (t)
,
t :
P[
(t),
(t )] (t )
Q[
(t),
(t)]
(t)d
t
• 对有向光滑弧 L : y (x) , x : a b
ab P[x, (x)] Q[x, (x)] (x)dx
26
• 对空间有向光滑弧 :
x (t) y (t), t : z (t)
T 0 k 1
P(k
, k )xk Q(k
,k )yk
记作 L P(x, y)dx Q(x, y)d y或L P(x, y)dx L Q(x, y)d y
都存在, 则称此极限为函数
在有向曲线弧 L 上
第二型曲线积分, 或对坐标的曲线积分. 其中
称为被积函数 , L 称为积分弧段 或 积分曲线 .
y B(1,1)
解法1 取 x 为积分变量, 则 L : AO OB
AO : y x, x :1 0
y x
OB : y x, x : 0 1
o y x x
xydx xydx xydx
L
AO
OB
解法2 取 y 为积分变量, 则
数学分析研究第二型曲线积分
§2 第二型曲线积分 教学目地与要求:掌握第二型曲线积分地定义和计算公式,了解第一、二型曲线积分地差别. 教学重点,难点:重点:第二型曲线积分地定义和计算公式 难点:第二型曲线积分地计算公式 教学内容:第二型曲线积分一 第二型曲线积分地意义在物理学中还碰到另一种类型地曲线积分问题.例如一质点受力),(y x F 地作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作地功(图220-).为此在曲线B A内插入1-n 个分点121,,,-n M M M ,与n M B M A ==,0一起把有向曲线B A分成n 个有向小曲线段),,2,1(1n i M M i i =-,若记小曲线段i i M M 1-地弧长为i s ∆,则分割T 地细度为i ni s T ∆=≤≤1max .设力),(y x F 在x 轴和y 轴方向地投影分别为),(y x P 与),(y x Q ,那么)),(),,((),(y x Q y x P y x F =.又设小曲线段i i M M 1-在x 轴与y 轴上地投影分别为1--=∆i i i x x x 与1--=∆i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 地坐标,记),(1i i M M y x L i i ∆∆=-,于是力),(y x F 在小曲线段i i M M 1-上所作地功i i i i i i M M i i i y Q x p L F W i i ∆+∆=⋅≈-),(),(),(1ηξηξηξ,其中),(i i ηξ为小曲线段i i M M 1-上任一点.因而力),(y x F 沿曲线B A所作地功近似地等于∑∑∑===∆+∆≈=ni i i i n i i i i n i i y Q x p W W 111),(),(ηξηξ当细度0→T 时,上式右边和式地极限就应该是所求地功.这种类型地和式地极限就是下面所要讨论地第二型曲线积分.定义1 设函数),(y x P 与),(y x Q 定义在平面有向可求长度曲线上.对L 地任一分割T ,它把L 分成n 个小曲线段),,2,1(1n i M M i i =-其中B M A M n ==,0.记各小曲线段i i M M 1-地弧长为i s ∆,分割T 地细度i ni s T ∆=≤≤1max .又设T 地分点i M 地坐标为),(i i y x ,并记.在每个小曲线段i i M M 1-上任取一点),(i i ηξ,若极限∑∑=→=→∆+∆ni iiiT ni iiiT yQ xp 11),(lim),(limηξηξ存在且与分割T 与点),(i i ηξ地取法无关,则称此极限为函数),(y x P ,),(y x Q 沿有向曲线L 上地第二型曲线积分,记为⎰+Ldy y x Q dx y x P ),(),(或⎰+ABdy y x Q dx y x P ),(),()1(上述积分也可写作⎰⎰+LLdy y x Q dx y x P ),(),(或 ⎰⎰+ABABdy y x Q dx y x P ),(),(为书写简洁起见,)1(式常简写成⎰+LQdy Pdx 或⎰+ABQdy Pdx若L 为封闭地有向曲线,则记为⎰+LQdy Pdx )2(若记),()),,(),,((),(dy dx ds y x Q y x P y x F ==,则)1(式可写成向量形式⎰⋅Lds F 或⎰⋅ABds F )3(于是,力)),(),,((),(y x Q y x P y x F =沿有向曲线B A L:对质点所作地功为⎰+=Ldy y x Q dx y x P W ),(),(.倘若L 为空间有向可求长度曲线,),,(),,,(),,,(z y x R z y x Q z y x P 为定义在L 上地函数,则可按上述办法类似地定义沿空间有向曲线L 上地第二型曲线积分,并记为⎰++Ldz z y x R dy z y x Q dx z y x P ),,(),,(),,(, )4(或简写成⎰++LRdz Qdy Pdx .当把)),(),,(),,((),(y x R y x Q y x P y x F =与),,(dz dy dx ds =看作三维向量时,)4(式也可表示成)3(式地向量形式.第二型曲线积分与曲线L 地方向有关.对同一曲线,当方向由A 到B 改变为由B 到A 时,每一小曲线段地方向都改变.从而所得地i i y x ∆∆,也随之改变符号,故有⎰⎰+-=+BAABQdy Pdx Qdy Pdx而第一型曲线积分地被积表达式只是函数),(y x f 与弧长地乘积,它与曲线L 地方向无关.这是两种类型曲线积分地一个重要区别.类似于第一型曲线积分,第二型曲线积分也有如下一些重要性质:1. 若),,2,1(k i dy Q dx P AB i i =+⎰存在,则dy Q c dx P c k i i i Lk i i i ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛∑⎰∑--11也存在,且()∑⎰∑⎰∑=--+=⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛ki Li k i i i L k i i i Qdy Pdx c dy Q c dx P c 111,其中),,2,1(k i c i =为常数.2. 若有向曲线L 是由有向曲线k L L L ,,21首尾相接而成,且),,2,1(k i Qdy Pdx iL =+⎰存在,则⎰+LQdyPdx 也存在, 且∑⎰⎰=+=+ki L LiQdy Pdx Qdy Pdx 1.二 第二型曲线积分地计算与第一型曲线积分一样,第二型曲线积分也可化为定积分来计算.设平面曲线⎩⎨⎧==)()(:t y t x L ψϕ,],[βα∈t 其中)(),(t t ψϕ在[]βα,上具有一阶连续导函数,且点A 与B 地坐标分别为()()()αψαϕ,与()()()βψβϕ,.又设),(y x P 与),(y x Q 为L 上地连续函数,则沿L 从A 到B 地第二型曲线积分()()()()()()()()[]dt t t t Q t t t P dy y x Q dx y x P L⎰⎰'+'=+βαψψϕϕψϕ,,),(),()6(仿照1中定理1.20地方法分别证明()()()()dt t t t P dx y x P L⎰⎰'=βαϕψϕ,),(,()()()()dt t t t Q dx y x Q L⎰⎰'=βαψψϕ,),(,由此便可得公式)6(,这里不再赘述了.对于沿封闭曲线地第二型曲线积分)2(地计算,可在L 上任意选取一点作为起点,沿L 所指定地方向前进,最后回到这一点.例1 计算⎰-+Ldy x y xydx )(,其中L 分别沿如图320-中路线(i)直线AB ;(ii)ACB (抛物线:1)1(22+-=x y ); (iii)ADBA (三角形周界) 解 (i)直线AB 地参数方程为⎩⎨⎧+=+=ty tx 211, ]1,0[∈t .故由公式)6(可得()()[]()6252512211)(1210=++=+++=-+⎰⎰⎰dt t t dt t t t dy x y xydx AB. (ii)曲线ACB 为抛物线21,1)1(22≤≤+-=x x y ,所以()[]()[](){}⎰⎰--+-++-=-+212214112112)(dxx x x x x dy x y xydx ACB()310123532102123=-+-=⎰dx x x x . (iii)这里L 是一条封闭曲线,故可从A 开始,应用上段地性质2,分别求沿DB AD ,和BA 上地线积分然后相加即可得到所求之曲线积分.由于沿直线)21(1,:≤≤==x y x x AD 地线积分为23)(21===-+⎰⎰⎰xdx xydx dy x y xydx ADAD. 沿直线)31(,2:≤≤==y y y x DB 地线积分为0)2()()(31=-=-=-+⎰⎰⎰dy y dy x y dy x y xydx DBDB.沿直线BA 地线积分可由(i)及公式)5(得到625)()(-=-+-=-+⎰⎰ABBAdy x y xydx dy x y xydx 所以38625023)()(-=⎪⎭⎫⎝⎛-++=-=-+⎰⎰DBLdy x y dy x y xydx例2 计算⎰+Lydx xdy ,这里:L (i)沿抛物线22x y =,从O 到B 地一段(图20-4);(ii)沿直线段x y OB 2:=;(iii)沿封闭曲线OABO .解 (i) []23662)4(1212===+=+⎰⎰⎰dx x dx x x x ydx xdy L. (ii)2214)22(1=⋅=+=+⎰⎰dx x x ydx xdy L. (iii)在OA 一段上,;10,0≤≤=x y 在AB 一段上,;20,1≤≤=y x 在BO 一段上与(ii)一样是x y 2=从1=x 到0=x 地一段.所以,001==+⎰⎰oOAdx ydx xdy,2121==+⎰⎰dx ydx xdy AB,2-=+-=+⎰⎰OBBOydx xdy ydx xdy (见(ii)).因此0220=-+=++=+⎰⎰⎰⎰BOABOALydx xdy .对于沿空间有向曲线地第二型曲线积分地计算公式也与)6(式相仿.设空间有向光滑曲线L 地参量方程为:L ⎪⎩⎪⎨⎧===),(),(),(t z z t y y t x x βα≤≤t , 起点为))(),(),((αααz y x ,终点为))(),(),((βββz y x ,则[]⎰⎰'+'+'=++βαdtt z t z t y t x R t y t z t y t x Q t x t z t y t x P Rdz Qdy Pdx L)())(),(),(()())(),(),(()())(),(),((.)7(这里要注意曲线方向与积分上下限地确定应该一致. 例3 计算第二型曲线积分 ⎰+-+=Ldz x dy x y xydx I 2)(,其中L 是螺旋曲线bt z t a y t a x ===,sin ,cos ,从0=t 到π=t 上地一段.解 由公式)7(,()21)cos cos sin cos sin cos (202222223a dt b a t t a t a t t a I t =+-+-=⎰ππ0222332sin 21)1(21sin 21sin 31⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++--=t t b a t a t aπ)1(212b a +=. 例4 求在力),,(z y x x y F ++-作用下,(i)质点由A 沿螺旋线1L 到B 所作地功(图520-),其中π20,,sin ,cos :1≤≤===t bt z t a y t a x L ;(ii)质点由A 沿直线2L 到B 所作地功.解 如本节开头所述,在空间曲线L 上力F 所做地功为⎰⎰+++-=⋅=LLdy z y x xdy ydx ds F W )(.(i)由于bdt dz tdt a dy tdt a dx ==-=,cos ,sin ,所以⎰-=+++--=πππ202222222)(2)sin cos cos sin (a b dt b t ab t ab t a t a W t .(ii)2L 地参量方程为b t t z y a x π20,,0,≤≤===.由于,,0,0dt dz dy dx ===所以)(2)(20b a b dt t a W bπππ+=+=⎰.复习思考题、作业题: 1 (1)(4), 2版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.LDAYt 。
9.1 第二型曲线积分
τ =
dx dy dz ds + ds + ds
=1
d r 是沿弧长增加方向的单位切向量 因此 τ = ds
一、第二型曲线积分的定义
3.定义 3.定义
问题: 问题:设一个质点在引力场
F = { P( M),Q( M), R( M)} = { P( x, y, z),Q( x, y, z), R( x, y, z)}
存在,并且与 的分割方式以及诸点的取法无关 存在 并且与L的分割方式以及诸点的取法无关 则 并且与 的分割方式以及诸点的取法无关,则 沿定向曲线L的第二型曲线积分 的第二型曲线积分,记作 称上式为 沿定向曲线 的第二型曲线积分 记作
λ→0 i =1
n
∫
L
A( M) dr
一、第二型曲线积分的定义
即
特殊情形
(1) L : y = y( x )
则 =
x起点为 a,终点为 b.
∫ ∫
b a
L
Pdx + Q dy
{ P [ x , y ( x )] + Q [ x , y ( x )] y ′ ( x )}d x
起点为c, (2)L: x = x ( y ) y起点为 ,终点为 ) 起点为 终点为d.
2 2 1
0
y = x2
B(1,1)
= 4 ∫ x 3 dx
1
0
A(1,0)
= 1
计算 ∫ y 2dx , 其中L为 例4
L
(1) 半径为 a、圆心为原点、按逆时针方向绕行 的上半圆周; (2) 从点 A( a, 0) 沿 x 轴到点 B( a,0) 的直线段.
解
x = a cos θ (1) L : , θ: → π 0 y = a sin θ
第二类曲线积分的计算方法
第二类曲线积分的计算方法曲线积分是微积分中的一个重要概念,它是对曲线上某个向量场的积分。
曲线积分分为第一类和第二类曲线积分,其中第二类曲线积分是指对曲线上的标量场进行积分。
本文将介绍第二类曲线积分的计算方法。
第二类曲线积分的定义设曲线C是一个光滑曲线,f(x,y,z)是定义在C上的连续函数,则曲线积分的定义为:∫Cf(x,y,z)ds其中,ds表示曲线C上的弧长元素,即ds=√(dx^2+dy^2+dz^2)。
第二类曲线积分的计算方法第二类曲线积分的计算方法有两种,一种是参数化计算法,另一种是向量场计算法。
1. 参数化计算法参数化计算法是指将曲线C表示为参数方程形式,然后将曲线积分转化为对参数t的积分。
具体步骤如下:(1)将曲线C表示为参数方程形式:x=x(t),y=y(t),z=z(t),a≤t≤b(2)计算ds:ds=√(dx^2+dy^2+dz^2)=√(x'(t)^2+y'(t)^2+z'(t)^2)dt(3)将f(x,y,z)表示为f(x(t),y(t),z(t)),然后将曲线积分转化为对参数t的积分:∫Cf(x,y,z)ds=∫bf(x(t),y(t),z(t))√(x'(t)^2+y'(t)^2+z'(t)^2)dt2. 向量场计算法向量场计算法是指将曲线C上的标量场f(x,y,z)转化为向量场F(x,y,z)=(f(x,y,z),0,0),然后计算向量场F(x,y,z)沿曲线C的线积分。
具体步骤如下:(1)将曲线C表示为参数方程形式:x=x(t),y=y(t),z=z(t),a≤t≤b(2)计算曲线C的切向量T(t):T(t)=(x'(t),y'(t),z'(t))(3)计算向量场F(x,y,z)在曲线C上的投影:F(x(t),y(t),z(t))·T(t)=f(x(t),y(t),z(t))x'(t)(4)计算向量场F(x,y,z)沿曲线C的线积分:∫CF(x,y,z)·ds=∫bF(x(t),y(t),z(t))·T(t)ds=∫bf(x(t),y(t),z(t))x'(t)dt两种方法的比较参数化计算法和向量场计算法都可以用来计算第二类曲线积分,但是它们的适用范围不同。
数学分析20.2第二型曲线积分(含习题及参考答案)
第二十章 曲线积分 2第二型曲线积分一、第二型曲线积分的定义引例:如图,一质点受力F(x,y)的作用沿平面曲线L 从点A 移动到点B ,求力F(x,y)所作的功.在曲线⌒AB 内插入n-1个分点M 1, M 2, …, M n-1, 与A=M 0, B=M n 一起把有向曲线⌒AB分成 n 个有向小弧段⌒M i-1M i (i=1,2,…,n).若记小弧段⌒M i-1M i 的弧长为△s i ,则分割T 的细度为T =i ni s ∆≤≤1max .设力F(x,y)在x 轴和y 轴方面的投影分别为P(x,y)与Q(x,y),则 F(x,y)=(P(x,y),Q(x,y)). 又设小弧段⌒M i-1M i 在x 轴与y 轴上的投影分别为 △x i =x i -x i-1与△y i =y i -y i-1,(x i ,y i )与(x i-1,y i-1)分别为分点M i 与M i-1的坐标. 记ii M ML 1-=(△x i ,△y i ),于是力F(x,y)在小弧段⌒M i-1M i 上所作的功为W i ≈F(ξi ,ηi )·ii M ML 1-=P(ξi ,ηi )△x i +Q(ξi ,ηi )△y i ,其中(ξi ,ηi )是⌒M i-1M i 上任一点.因而力F(x,y)沿曲线⌒AB所作的功近似地等于 W=∑=n i i W 1≈∑=∆n i i i i x P 1),(ηξ+∑=∆ni i i i y Q 1),(ηξ.定义1:设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L :⌒AB 上.对L 的任一分割T 把L 分成n 个小弧段⌒M i-1M i (i=1,2,…,n), A=M 0, B=M n . 记各小弧段⌒M i-1M i 的弧长为△s i ,分割T 的细度为T =i ni s ∆≤≤1max .又设T 的分点M i 的坐标为(x i ,y i ),并记△x i =x i -x i-1,△y i =y i -y i-1(i=1,2,…,n). 在每个小弧段⌒M i-1M i 上任取一点(ξi ,ηi ),若存在极限∑=→∆ni iiiT xP 1),(limηξ+∑=→∆ni i i i T y Q 1),(lim ηξ且与分割T 与点(ξi ,ηi )的取法无关,则称此极限为函数P(x,y), Q(x,y)沿有向曲线L 上的第二型曲线积分, 记作:⎰L dx y x P ),(+Q(x,y)dy 或⎰AB dx y x P ),(+Q(x,y)dy ,也可简写为⎰LPdx +Qdy 或⎰ABPdx +Qdy ,若L 为封闭的有向曲线,则记为⎰LPdx +Qdy.若记F(x,y)=(P(x,y),Q(x,y)),ds=(dx,dy),则有向量形式:⎰⋅L ds F 或⎰⋅AB ds F . 若L 为空间有向可求长度曲线,P(x,y,z), Q(x,y,z), R(x,y,z)为定义在L 的函数,可类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为:⎰Ldx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz 或⎰ABdx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz ,也可简写为⎰L Pdx +Qdy+Rdz 或⎰AB Pdx +Qdy+Rdz.当把F(x,y)=(P(x,y),Q(x,y),R(x,y))与ds=(dx,dy,dz)看作三维向量时,有 向量形式⎰⋅L ds F 或⎰⋅AB ds F .注:第二型曲线积分与曲线L 的方向有关,对同一曲线,当方向由A 到B 改变由B 到A 时,每一小曲线段的方向都改变,从而所得△x i ,△y i 也随之变号,故有⎰AB Pdx +Qdy= -⎰BA Pdx +Qdy.性质:1、若⎰L i dx P +Q i dy 存在,c i (i=1,2,…,k)为常数,则dx P c L k i i i ⎰∑⎪⎭⎫ ⎝⎛=1+dy Q c k i i i ⎪⎭⎫ ⎝⎛∑=1也存在,且 dx P c L k i i i ⎰∑⎪⎭⎫⎝⎛=1+dy Q c k i i i ⎪⎭⎫⎝⎛∑=1=()dy Q dx P c iLiki i +⎰∑=1.2、若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL Pdx +Qdy(i=1,2,…,k)存在,则⎰LPdx +Qdy 也存在,且⎰LPdx +Qdy =∑⎰=ki L iPdx 1+Qdy.二、第二型曲线积分的计算 设平面曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],其中φ(t),ψ(t)在[α,β]上具有一阶连续导函数,且 点A 与B 的坐标分别为(φ(α),ψ(α))与(φ(β),ψ(β)). 又设P(x,y)与Q(x,y)为定义在L 上的连续函数,则 沿L 从A 到B 的第二型曲线积分⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),(([.注:1、对沿封闭曲线L 的第二型曲线积分的计算,可在L 上任取一点作为起点,沿L 所指定的方向前进,最后回到这一点.2、设空间有向光滑曲线L 的参量方程为x=x(t), y=y(t), z=z(t), t ∈[α,β], 起点为(x(α),y(α),z(α)),终点为(x(β),y(β),z(β)),则Rdz Qdy Pdx L ++⎰=⎰'+'+'βαdt t z t z t y t x R t y t z t y t x P t x t z t y t x P )]())(),(),(()())(),(),(()())(),(),(([.例1:计算⎰L xydx +(y-x)dy ,其中L 分别沿如图中路线: (1)直线AB ;(2)ACB(抛物线:y=2(x-1)2+1); (3)ADBA(三角形周界).解:(1)方法一:L:⎩⎨⎧+=+=ty tx 211, t ∈[0,1],∴⎰L xydx +(y-x)dy=⎰+++10]2)21)(1[(dt t t t =625. 方法二:L: y=2x-1, x ∈[1,2],∴⎰L xydx +(y-x)dy=⎰-+-21)]1(2)12([dx x x x =625. (2)⎰L xydx +(y-x)dy=⎰+--++-2122)]352)(44()342([dx x x x x x x=⎰-+-2123)12353210(dx x x x =610.(3)⎰L xydx +(y-x)dy=⎰AD xydx +(y-x)dy+⎰DB xydx +(y-x)dy+⎰BA xydx +(y-x)dy. 又⎰AD xydx +(y-x)dy=⎰21xdx =23;⎰DBxydx +(y-x)dy=⎰-31)2(dy y =0;⎰BAxydx +(y-x)dy=-625;∴⎰L xydx +(y-x)dy=23+0-625=-38.例2:计算ydx xdy L +⎰,这里L(如图) (1)沿抛物线y=2x 2, 从O 到B 的一段; (2)沿直线段OB :y=2x ; (3)沿封闭曲线OABO.解:(1)ydx xdy L +⎰=⎰+1022)24(dx x x =2. (2)ydx xdy L +⎰=⎰+10)22(dx x x =2. (3)ydx xdy OA +⎰=⎰100dx =0;ydx xdy AB+⎰=⎰2dy =2;ydx xdy BO+⎰=-2;∴⎰+L ydx xdy =ydx xdy OA +⎰+ydx xdy AB +⎰+ydx xdy BO +⎰=0+2-2=0.例3:计算第二型曲线积分⎰+-+L dz x dy y x xydx 2)(,L 是螺旋线:x=acost, y=asint, z=bt 从t=0到t=π上的一段. 解:⎰+-+L dzx dy y x xydx 2)(=dt t b a t t t a t t a ⎰+-+-π022223]cos )sin (cos cos cos sin [=⎰⎰⎰-++-πππ222223cos sin cos )1(cos sin tdtt a atdt b a tdt t a=⎰+π022cos )1(tdt b a =21a 2(1+b)π.例4:(如图)求在力F(y,-x,x+y+z)作用下, (1)质点由A 沿螺旋线L 1到B 所作的功. 其中L 1: x=acost, y=asint, z=bt, 0≤t ≤2π; (2)质点由A 沿直线L 2到B 所作的功. 解:(1)W=⎰+++-L dzz y x xdy ydx )(=dt bt t a t a b t a t a ⎰+++--π202222)]sin cos (cos sin [=dt t b t ab t ab a ⎰+++-π2022)sin cos (=-2πa 2+2π2b 2=2π(πb 2-a 2).(2)∵L 2: x=a,y=0,z=bt ,0≤t ≤2π;∴W=⎰+++-L dz z y x xdy ydx )(=dt bt a b ⎰+π20)(=2πb(a+πb)三、两类曲线积分的联系设L 为从A 到B 的有向光滑曲线,它以弧长s 为参数,于是L: ⎩⎨⎧==)()(s y y s x x , 0≤s ≤l ,其中l 为曲线L 的全长,且点A,B 的坐标分别为(x(0),y(0))与(x(l),y(l)). 曲线L 上每一点的切线方向指向弧长增加的一方.现以(),()分别表示切线方向t 与x 轴与y 轴的夹角,则在曲线上的每一点的切线方向余弦为dsdx=cos(),dsdy=cos().若P(x,y), Q(x,y)为曲线L 上的连续函数,则由⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'lds s y s y s x Q s x s y s x P 0)]())(),(()())(),(([得⎰LPdx +Qdy=⎰ls y s x P 0))(),(([cos()+))(),((s y s x Q cos()]ds=⎰L y x P ),([cos()+),(y x Q cos()]ds.最后得到一个根据第一型曲线积分化为定积分的等式. 即两类曲线积分之间的转换公式.注:当⎰L Pdx +Qdy 的方向改变时,⎰Ly x P ),([cos()+),(y x Q cos()]ds 中的夹角与原夹角相差弧度π,从而cos()和cos()也随之变号.因此,一旦方向确定,两类曲线积分之间的转换公式总是成立.习题1、计算第二型曲线积分:(1)⎰-L ydx xdy , 其中L (如图)(i)沿抛物线y=2x 2, 从O 到B 的一段; (ii)沿直线段OB :y=2x ; (iii)沿封闭曲线OABO.(2)⎰+-L dy dx y a )2(, 其中L 为摆线a(t-sint),y=a(1-cost) (0≤t ≤2π),沿t 增加方向的一段; (3)⎰++-Lyx ydy xdx 22, 其中L 为圆周x 2+y 2=a 2依逆时针方向; (4)⎰+L xdy ydx sin , 其中L 为y=sinx(0≤x ≤π)与x 轴所围的闭曲线,依顺时针方向;(5)⎰++L zdz ydy xdx , 其中L 为从(1,1,1)到(2,3,4)的直线段. 解:(1)(i)ydx xdy L -⎰=⎰-1022)24(dx x x =32. (ii)⎰-L ydx xdy =⎰-10)22(dx x x =0.(iii)ydx xdy OA -⎰=⎰100dx =0;ydx xdy AB -⎰=⎰20dy =2;ydx xdy BO -⎰=-32; ∴⎰-L ydx xdy =ydx xdy OA -⎰+ydx xdy AB -⎰+ydx xdy BO -⎰=0+2-32=34.(2)⎰+-L dy dx y a )2(=⎰+---π20}sin )cos 1)](cos 1(2[{dt t a t t a a a =dt t a dt t a ⎰⎰+-ππ202022sin )cos 1(=πa 2.(3)由圆的参数方程:x=acost, y=asint, (0≤t ≤2π)得⎰++-L y x ydyxdx 22=⎰+π20222)cos sin sin cos (adt t t a t t a =0. (4)记点A(π,0)则⎰+Lxdy ydx sin =⎰⎰⋂+++OAAOxdyydx xdy ydx sin sin=⎰⎰++000)cos sin (sin ππdx dx x x x =-cosx π0=2.(5)L 的参数方程为:x=t, y=2t-1, z=3t-2, (1≤t ≤2), ∴⎰++L zdz ydy xdx =⎰-+-+21)6924(dt t t t =⎰-21)814(dt t =13.2、设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比. 若由质点与(a,0)沿椭圆移动到(0,b),求力所作的功. 解:椭圆的参数方程为x=acost, y=bsint, 0≤t ≤2π.F=k ⎪⎪⎭⎫⎝⎛+-+-+222222,y x y y x x y x =(-kx,-ky), k>0. ∴力所作的功W=⎰L Pdx +Qdy=⎰+-L ydy xdx k )(=-k ⎰+-2022)cos sin sin cos (πdt t t b t t a =2k(a 2-b 2).3、设一质点受力作用,力的方向指向原点,大小与质点到xy 平面的距离成反比. 若质点沿直线x=at, y=bt, z=ct(c ≠0)从M(a,b,c)移动到N(2a,2b,2c),求力所作的功.解:F=zk , k ≠0. 由力的方向指向原点,故其方向余弦为:cos α=r x -, cos β=r y -, cos γ=r z-, 其中r=222z y x ++F 的三个分力为P=-r x z k , Q=-r y z k , P=-rz z k =-r k, ∴力所作的功为W=-dz r kdy rz ky dx rz kx L ++⎰=-k ⎰++++21222222)(dt tc b a ct t c b a =c c b a k 222++'ln2.4、证明曲线积分的估计公式:⎰+ABQdy Pdx ≤LM, 其中L 为AB 的弧长,M=22),(maxQ P ABy x +∈.利用上述不等式估计积分I R =⎰=+++-222222)(R yx y xy x xdyydx ,并证明+∞→R lim I R =0. 证:(1)∵⎰+AB Qdy Pdx =⎰⎪⎭⎫⎝⎛+AB ds dy Q dsdx Pds 且 ds dy Q ds dx P +≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222)(ds dy ds dx Q P ≤22Q P +,从而 ⎰+ABQdy Pdx ≤⎰+ABdsdyQ ds dx Pds ≤⎰+AB Q P 22ds ≤⎰AB M ds=LM. (2)42222)(max222y xy x y x R y x +++=+=4222)21(R R R -=34R ; 由(1)知222)(y xy x xdyydx ++-≤2πR·34R =28R π.∵|I R |≤28R π→0 (R →+∞), ∴+∞→R lim I R =0.5、计算沿空间曲线的第二型积分:(1)⎰L xyzdz , 其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8封限;(2)⎰-+-+-L dz y x dy x z dx z y )()()(222222, 其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zz 平面部分.解:(1)曲线L 的参数方程为:x=cost, y=z=t sin 22, 0≤t ≤2π, 当t 从0增加到2π时,点(x,y,z)依次经过1,2,7,8卦限,于是⎰Lxyzdz =⎰π20224sin cos 2tdt t =162π.(2)(如图)设I=⎰-+-+-L dz y x dy x z dx z y )()()(222222=⎰1L +⎰2L +⎰3L ,其中L 1: ⎪⎩⎪⎨⎧===0sin cos z y x θθ(0≤θ≤2π); L 2: ⎪⎩⎪⎨⎧===ϕϕsin cos 0z y x (0≤φ≤2π); L 3: ⎪⎩⎪⎨⎧===ψψcos 0sin z y x (0≤ψ≤2π); 则⎰-+-+-1)()()(222222L dz y x dy x z dx z y =⎰--2033)cos sin (πθθθd =-32-32=-34.同理⎰2L =⎰3L =-34,∴I=-34-34-34=-4.。
数学分析 第二型曲线积分 课件(完整资料).doc
【最新整理,下载后即可编辑】§2 第二型曲线积分 教学目的与要求:掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别.教学重点,难点:重点:第二型曲线积分的定义和计算公式 难点:第二型曲线积分的计算公式 教学内容:第二型曲线积分一 第二型曲线积分的意义在物理学中还碰到另一种类型的曲线积分问题。
例如一质点受力),(y x F 的作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作的功(图220-)。
为此在曲线B A内插入1-n 个分点121,,,-n M M M ,与n M B M A ==,0一起把有向曲线B A分成n 个有向小曲线段),,2,1(1n i M M i i =-,若记小曲线段i i M M 1-的弧长为i s ∆,则分割T 的细度为i ni s T ∆=≤≤1max 。
设力),(y x F 在x 轴和y 轴方向的投影分别为),(y x P 与),(y x Q ,那么)),(),,((),(y x Q y x P y x F =。
又设小曲线段i i M M 1-在x 轴与y 轴上的投影分别为1--=∆i i i x x x 与1--=∆i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 的坐标,记),(1i i M M y x L i i∆∆=-,于是力),(y x F 在小曲线段i i M M 1-上所作的功 i i i i i i M M i i i y Q x p L F W ii ∆+∆=⋅≈-),(),(),(1ηξηξηξ,其中),(i i ηξ为小曲线段i i M M 1-上任一点。
因而力),(y x F 沿曲线B A所作的功近似的等于∑∑∑===∆+∆≈=ni i i i ni i i i ni i y Q x p W W 111),(),(ηξηξ当细度0→T 时,上式右边和式的极限就应该是所求的功。
第二型曲线积分的对称性
第二型曲线积分的对称性
第二型曲线积分的对称性
1. 什么是第二型曲线积分?
第二型曲线积分是一种常见的数学方法,用于计算函数曲线上某一段不断变化的值。
曲线积分又称为曲面积或曲线下积分,是数学积分的一种,它的原理是将一个范围内的曲面拆分成等份,然后进行积分计算,从而获得此区域的面积。
2. 第二型曲线积分的对称性
第二型曲线积分有很多特性,其中之一就是具有对称性。
当一个函数有某种特殊的对称特性时,即它可以被分解为两部分,这两部分完全相同或一致,那么我们就可以利用第二型曲线积分的对称性来计算函数曲线上某一段不断变化的值。
以给定函数y=x^2为例,在x区间为[a,b]时,对称公式为:
积分结果=[1/3(b^3-a^3)]/2
也就是说,在[a,b]范围内,只需要计算(b-a)的三次方,根据给定的常数1/3乘以结果,就可以得出曲面积的结果。
3. 第二型曲线积分的应用
第二型曲线积分可以让我们更快捷、更准确地计算函数曲线上某一段不断变化的值,它被广泛应用于物理,化学,数学等诸多领域当中,帮助我们更精准的计算空间曲面的曲线积分。
综上,第二型曲线积分具有对称性,可以帮助我们更精确地计算出某一段区域的曲面积,它在物理、化学和数学等领域的应用极为广泛。
数学分析20.2第二型曲线积分(含习题及参考答案)
第二十章 曲线积分 2第二型曲线积分一、第二型曲线积分的定义引例:如图,一质点受力F(x,y)的作用沿平面曲线L 从点A 移动到点B ,求力F(x,y)所作的功.在曲线⌒AB 内插入n-1个分点M 1, M 2, …, M n-1, 与A=M 0, B=M n 一起把有向曲线⌒AB分成 n 个有向小弧段⌒M i-1M i (i=1,2,…,n).若记小弧段⌒M i-1M i 的弧长为△s i ,则分割T 的细度为T =i ni s ∆≤≤1max .设力F(x,y)在x 轴和y 轴方面的投影分别为P(x,y)与Q(x,y),则 F(x,y)=(P(x,y),Q(x,y)). 又设小弧段⌒M i-1M i 在x 轴与y 轴上的投影分别为 △x i =x i -x i-1与△y i =y i -y i-1,(x i ,y i )与(x i-1,y i-1)分别为分点M i 与M i-1的坐标. 记ii M ML 1-=(△x i ,△y i ),于是力F(x,y)在小弧段⌒M i-1M i 上所作的功为W i ≈F(ξi ,ηi )·ii M ML 1-=P(ξi ,ηi )△x i +Q(ξi ,ηi )△y i ,其中(ξi ,ηi )是⌒M i-1M i 上任一点.因而力F(x,y)沿曲线⌒AB所作的功近似地等于 W=∑=n i i W 1≈∑=∆n i i i i x P 1),(ηξ+∑=∆ni i i i y Q 1),(ηξ.定义1:设函数P(x,y)与Q(x,y)定义在平面有向可求长度曲线L :⌒AB 上.对L 的任一分割T 把L 分成n 个小弧段⌒M i-1M i (i=1,2,…,n), A=M 0, B=M n . 记各小弧段⌒M i-1M i 的弧长为△s i ,分割T 的细度为T =i ni s ∆≤≤1max .又设T 的分点M i 的坐标为(x i ,y i ),并记△x i =x i -x i-1,△y i =y i -y i-1(i=1,2,…,n). 在每个小弧段⌒M i-1M i 上任取一点(ξi ,ηi ),若存在极限∑=→∆ni iiiT xP 1),(limηξ+∑=→∆ni i i i T y Q 1),(lim ηξ且与分割T 与点(ξi ,ηi )的取法无关,则称此极限为函数P(x,y), Q(x,y)沿有向曲线L 上的第二型曲线积分, 记作:⎰L dx y x P ),(+Q(x,y)dy 或⎰AB dx y x P ),(+Q(x,y)dy ,也可简写为⎰LPdx +Qdy 或⎰ABPdx +Qdy ,若L 为封闭的有向曲线,则记为⎰LPdx +Qdy.若记F(x,y)=(P(x,y),Q(x,y)),ds=(dx,dy),则有向量形式:⎰⋅L ds F 或⎰⋅AB ds F . 若L 为空间有向可求长度曲线,P(x,y,z), Q(x,y,z), R(x,y,z)为定义在L 的函数,可类似地定义沿空间有向曲线L 上的第二型曲线积分,并记为:⎰Ldx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz 或⎰ABdx z y x P ),,(+Q(x,y,z)dy+R(x,y,z)dz ,也可简写为⎰L Pdx +Qdy+Rdz 或⎰AB Pdx +Qdy+Rdz.当把F(x,y)=(P(x,y),Q(x,y),R(x,y))与ds=(dx,dy,dz)看作三维向量时,有 向量形式⎰⋅L ds F 或⎰⋅AB ds F .注:第二型曲线积分与曲线L 的方向有关,对同一曲线,当方向由A 到B 改变由B 到A 时,每一小曲线段的方向都改变,从而所得△x i ,△y i 也随之变号,故有⎰AB Pdx +Qdy= -⎰BA Pdx +Qdy.性质:1、若⎰L i dx P +Q i dy 存在,c i (i=1,2,…,k)为常数,则dx P c L k i i i ⎰∑⎪⎭⎫ ⎝⎛=1+dy Q c k i i i ⎪⎭⎫ ⎝⎛∑=1也存在,且 dx P c L k i i i ⎰∑⎪⎭⎫⎝⎛=1+dy Q c k i i i ⎪⎭⎫⎝⎛∑=1=()dy Q dx P c iLiki i +⎰∑=1.2、若有向曲线L 是由有向曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL Pdx +Qdy(i=1,2,…,k)存在,则⎰LPdx +Qdy 也存在,且⎰LPdx +Qdy =∑⎰=ki L iPdx 1+Qdy.二、第二型曲线积分的计算 设平面曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],其中φ(t),ψ(t)在[α,β]上具有一阶连续导函数,且 点A 与B 的坐标分别为(φ(α),ψ(α))与(φ(β),ψ(β)). 又设P(x,y)与Q(x,y)为定义在L 上的连续函数,则 沿L 从A 到B 的第二型曲线积分⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'βαψψϕϕψϕdt t t t Q t t t P )]())(),(()())(),(([.注:1、对沿封闭曲线L 的第二型曲线积分的计算,可在L 上任取一点作为起点,沿L 所指定的方向前进,最后回到这一点.2、设空间有向光滑曲线L 的参量方程为x=x(t), y=y(t), z=z(t), t ∈[α,β], 起点为(x(α),y(α),z(α)),终点为(x(β),y(β),z(β)),则Rdz Qdy Pdx L ++⎰=⎰'+'+'βαdt t z t z t y t x R t y t z t y t x P t x t z t y t x P )]())(),(),(()())(),(),(()())(),(),(([.例1:计算⎰L xydx +(y-x)dy ,其中L 分别沿如图中路线: (1)直线AB ;(2)ACB(抛物线:y=2(x-1)2+1); (3)ADBA(三角形周界).解:(1)方法一:L:⎩⎨⎧+=+=ty tx 211, t ∈[0,1],∴⎰L xydx +(y-x)dy=⎰+++10]2)21)(1[(dt t t t =625. 方法二:L: y=2x-1, x ∈[1,2],∴⎰L xydx +(y-x)dy=⎰-+-21)]1(2)12([dx x x x =625. (2)⎰L xydx +(y-x)dy=⎰+--++-2122)]352)(44()342([dx x x x x x x=⎰-+-2123)12353210(dx x x x =610.(3)⎰L xydx +(y-x)dy=⎰AD xydx +(y-x)dy+⎰DB xydx +(y-x)dy+⎰BA xydx +(y-x)dy. 又⎰AD xydx +(y-x)dy=⎰21xdx =23;⎰DBxydx +(y-x)dy=⎰-31)2(dy y =0;⎰BAxydx +(y-x)dy=-625;∴⎰L xydx +(y-x)dy=23+0-625=-38.例2:计算ydx xdy L +⎰,这里L(如图) (1)沿抛物线y=2x 2, 从O 到B 的一段; (2)沿直线段OB :y=2x ; (3)沿封闭曲线OABO.解:(1)ydx xdy L +⎰=⎰+1022)24(dx x x =2. (2)ydx xdy L +⎰=⎰+10)22(dx x x =2. (3)ydx xdy OA +⎰=⎰100dx =0;ydx xdy AB+⎰=⎰2dy =2;ydx xdy BO+⎰=-2;∴⎰+L ydx xdy =ydx xdy OA +⎰+ydx xdy AB +⎰+ydx xdy BO +⎰=0+2-2=0.例3:计算第二型曲线积分⎰+-+L dz x dy y x xydx 2)(,L 是螺旋线:x=acost, y=asint, z=bt 从t=0到t=π上的一段. 解:⎰+-+L dzx dy y x xydx 2)(=dt t b a t t t a t t a ⎰+-+-π022223]cos )sin (cos cos cos sin [=⎰⎰⎰-++-πππ222223cos sin cos )1(cos sin tdtt a atdt b a tdt t a=⎰+π022cos )1(tdt b a =21a 2(1+b)π.例4:(如图)求在力F(y,-x,x+y+z)作用下, (1)质点由A 沿螺旋线L 1到B 所作的功. 其中L 1: x=acost, y=asint, z=bt, 0≤t ≤2π; (2)质点由A 沿直线L 2到B 所作的功. 解:(1)W=⎰+++-L dzz y x xdy ydx )(=dt bt t a t a b t a t a ⎰+++--π202222)]sin cos (cos sin [=dt t b t ab t ab a ⎰+++-π2022)sin cos (=-2πa 2+2π2b 2=2π(πb 2-a 2).(2)∵L 2: x=a,y=0,z=bt ,0≤t ≤2π;∴W=⎰+++-L dz z y x xdy ydx )(=dt bt a b ⎰+π20)(=2πb(a+πb)三、两类曲线积分的联系设L 为从A 到B 的有向光滑曲线,它以弧长s 为参数,于是L: ⎩⎨⎧==)()(s y y s x x , 0≤s ≤l ,其中l 为曲线L 的全长,且点A,B 的坐标分别为(x(0),y(0))与(x(l),y(l)). 曲线L 上每一点的切线方向指向弧长增加的一方.现以(),()分别表示切线方向t 与x 轴与y 轴的夹角,则在曲线上的每一点的切线方向余弦为dsdx=cos(),dsdy=cos().若P(x,y), Q(x,y)为曲线L 上的连续函数,则由⎰Ldx y x P ),(+Q(x,y)dy=⎰'+'lds s y s y s x Q s x s y s x P 0)]())(),(()())(),(([得⎰LPdx +Qdy=⎰ls y s x P 0))(),(([cos()+))(),((s y s x Q cos()]ds=⎰L y x P ),([cos()+),(y x Q cos()]ds.最后得到一个根据第一型曲线积分化为定积分的等式. 即两类曲线积分之间的转换公式.注:当⎰L Pdx +Qdy 的方向改变时,⎰Ly x P ),([cos()+),(y x Q cos()]ds 中的夹角与原夹角相差弧度π,从而cos()和cos()也随之变号.因此,一旦方向确定,两类曲线积分之间的转换公式总是成立.习题1、计算第二型曲线积分:(1)⎰-L ydx xdy , 其中L (如图)(i)沿抛物线y=2x 2, 从O 到B 的一段; (ii)沿直线段OB :y=2x ; (iii)沿封闭曲线OABO.(2)⎰+-L dy dx y a )2(, 其中L 为摆线a(t-sint),y=a(1-cost) (0≤t ≤2π),沿t 增加方向的一段; (3)⎰++-Lyx ydy xdx 22, 其中L 为圆周x 2+y 2=a 2依逆时针方向; (4)⎰+L xdy ydx sin , 其中L 为y=sinx(0≤x ≤π)与x 轴所围的闭曲线,依顺时针方向;(5)⎰++L zdz ydy xdx , 其中L 为从(1,1,1)到(2,3,4)的直线段. 解:(1)(i)ydx xdy L -⎰=⎰-1022)24(dx x x =32. (ii)⎰-L ydx xdy =⎰-10)22(dx x x =0.(iii)ydx xdy OA -⎰=⎰100dx =0;ydx xdy AB -⎰=⎰20dy =2;ydx xdy BO -⎰=-32; ∴⎰-L ydx xdy =ydx xdy OA -⎰+ydx xdy AB -⎰+ydx xdy BO -⎰=0+2-32=34.(2)⎰+-L dy dx y a )2(=⎰+---π20}sin )cos 1)](cos 1(2[{dt t a t t a a a =dt t a dt t a ⎰⎰+-ππ202022sin )cos 1(=πa 2.(3)由圆的参数方程:x=acost, y=asint, (0≤t ≤2π)得⎰++-L y x ydyxdx 22=⎰+π20222)cos sin sin cos (adt t t a t t a =0. (4)记点A(π,0)则⎰+Lxdy ydx sin =⎰⎰⋂+++OAAOxdyydx xdy ydx sin sin=⎰⎰++000)cos sin (sin ππdx dx x x x =-cosx π0=2.(5)L 的参数方程为:x=t, y=2t-1, z=3t-2, (1≤t ≤2), ∴⎰++L zdz ydy xdx =⎰-+-+21)6924(dt t t t =⎰-21)814(dt t =13.2、设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比. 若由质点与(a,0)沿椭圆移动到(0,b),求力所作的功. 解:椭圆的参数方程为x=acost, y=bsint, 0≤t ≤2π.F=k ⎪⎪⎭⎫⎝⎛+-+-+222222,y x y y x x y x =(-kx,-ky), k>0. ∴力所作的功W=⎰L Pdx +Qdy=⎰+-L ydy xdx k )(=-k ⎰+-2022)cos sin sin cos (πdt t t b t t a =2k(a 2-b 2).3、设一质点受力作用,力的方向指向原点,大小与质点到xy 平面的距离成反比. 若质点沿直线x=at, y=bt, z=ct(c ≠0)从M(a,b,c)移动到N(2a,2b,2c),求力所作的功.解:F=zk , k ≠0. 由力的方向指向原点,故其方向余弦为:cos α=r x -, cos β=r y -, cos γ=r z-, 其中r=222z y x ++F 的三个分力为P=-r x z k , Q=-r y z k , P=-rz z k =-r k, ∴力所作的功为W=-dz r kdy rz ky dx rz kx L ++⎰=-k ⎰++++21222222)(dt tc b a ct t c b a =c c b a k 222++'ln2.4、证明曲线积分的估计公式:⎰+ABQdy Pdx ≤LM, 其中L 为AB 的弧长,M=22),(maxQ P ABy x +∈.利用上述不等式估计积分I R =⎰=+++-222222)(R yx y xy x xdyydx ,并证明+∞→R lim I R =0. 证:(1)∵⎰+AB Qdy Pdx =⎰⎪⎭⎫⎝⎛+AB ds dy Q dsdx Pds 且 ds dy Q ds dx P +≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+2222)(ds dy ds dx Q P ≤22Q P +,从而 ⎰+ABQdy Pdx ≤⎰+ABdsdyQ ds dx Pds ≤⎰+AB Q P 22ds ≤⎰AB M ds=LM. (2)42222)(max222y xy x y x R y x +++=+=4222)21(R R R -=34R ; 由(1)知222)(y xy x xdyydx ++-≤2πR·34R =28R π.∵|I R |≤28R π→0 (R →+∞), ∴+∞→R lim I R =0.5、计算沿空间曲线的第二型积分:(1)⎰L xyzdz , 其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8封限;(2)⎰-+-+-L dz y x dy x z dx z y )()()(222222, 其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zz 平面部分.解:(1)曲线L 的参数方程为:x=cost, y=z=t sin 22, 0≤t ≤2π, 当t 从0增加到2π时,点(x,y,z)依次经过1,2,7,8卦限,于是⎰Lxyzdz =⎰π20224sin cos 2tdt t =162π.(2)(如图)设I=⎰-+-+-L dz y x dy x z dx z y )()()(222222=⎰1L +⎰2L +⎰3L ,其中L 1: ⎪⎩⎪⎨⎧===0sin cos z y x θθ(0≤θ≤2π); L 2: ⎪⎩⎪⎨⎧===ϕϕsin cos 0z y x (0≤φ≤2π); L 3: ⎪⎩⎪⎨⎧===ψψcos 0sin z y x (0≤ψ≤2π); 则⎰-+-+-1)()()(222222L dz y x dy x z dx z y =⎰--2033)cos sin (πθθθd =-32-32=-34.同理⎰2L =⎰3L =-34,∴I=-34-34-34=-4.。
第二型曲线积分格林公式课件
第二型曲线积分定义为在给定曲线L上,对标量函数f(x,y)进行积分, 即∫Lf(x,y)ds,其中ds是曲线L上任意两点间的弧长。
性质
总结词
第二型曲线积分具有可加性、对称性和绝对性等性质。
详细描述
可加性是指如果曲线L被分成n个小的弧段,则在每个小弧段上的积分等于整个曲 线上的积分;对称性是指如果曲线L关于某一直线对称,则在对称轴一侧的积分 等于另一侧的积分的相反数;绝对性是指对于任意实数k,有 ∫L(k×f(x,y))ds=k×∫Lf(x,y)ds。
第二型曲线积分格林公式课 件
目录
• 第二型曲线积分的定义与性质 • 格林公式及其性质 • 第二型曲线积分与格林公式的联系
目录
• 第二型曲线积分与格林公式的实例分 析
• 第二型曲线积分与格林公式的扩展与 应用
01
第二型曲线积分的定义与 性质
定义
01
总结词
02
详细描述
第二型曲线积分是通过在给定曲线上的积分来计算面积的方法。
02
格林公式及其性质
格林公式
总结词
格林公式是数学分析中的一个重要公式,用于计算第二型曲线积分。
详细描述
格林公式给出了一个封闭曲线上的第二型曲线积分与该曲线所围成的区域上的二重积分之间的关系。 它是由英国数学家格林在1838年提出的,是解决复杂积分问题的一个重要工具。
格林公式的性质
总结词
格林公式的性质包括线性性、可加性、对称性等。
在物理学中的应用
利用第二型曲线积分与格林公式的理论,解决物理中的电磁学、力学等问题。
在工程领域的应用
将第二型曲线积分与格林公式的理论应用到工程领域,如流体动力学、控制理 论等。
第二型曲线积分与格林公式的未来发展
计算第二型曲线积分的基本方法(一)
计算第二型曲线积分的基本方法(一)计算第二型曲线积分的基本1. 什么是第二型曲线积分?第二型曲线积分是微积分中的一个重要概念,用于计算沿曲线的矢量场在曲线上的积分值。
它可以帮助我们理解和计算流体力学、电磁学等领域的相关问题。
2. 常用的计算方法参数方程法第一种常用的计算第二型曲线积分的方法是使用参数方程。
首先,我们需要将曲线表示为参数方程的形式,即x和y的函数关系。
然后,将矢量场的函数表达式中的x和y替换为参数方程的形式。
接下来,对参数t进行积分,计算得到曲线上的积分值。
标量场的方法第二种常用的计算方法是使用标量场。
将矢量场的函数表达式转化为标量字段的形式,再计算该标量场沿曲线的曲线积分。
这种方法常用于计算与位移、功率等有关的问题。
Green公式Green公式是计算第二型曲线积分的重要工具。
它将曲线积分转化为对曲线所围成的区域上的面积分。
利用这个公式,我们可以将曲线积分转化为更容易计算的面积分,进而求得答案。
Stokes公式Stokes公式是计算第二型曲线积分的另一个重要工具。
它将曲线积分转化为对曲线所围成的曲面上的面积分。
通过应用Stokes公式,我们可以将曲线积分转化为更容易计算的面积分问题。
3. 注意事项参数方程的选取在使用参数方程法计算第二型曲线积分时,需要选择一个合适的参数方程。
参数方程选取不当可能导致计算复杂度增加或无法得到正确的结果。
曲线的方向第二型曲线积分对曲线的方向敏感。
因此,在计算过程中要注意曲线的方向,并根据具体问题选择合适的曲线方向。
曲线的闭合性若曲线是闭合的,则可以利用Green公式或Stokes公式将曲线积分转化为面积分。
若曲线不闭合,则需要通过参数方程法或其他方法进行计算。
4. 总结第二型曲线积分是微积分中的重要概念,应用于多个领域中。
我们可以利用参数方程法、标量场的方法、Green公式和Stokes公式等多种方法对第二型曲线积分进行计算。
在实际计算过程中,需要注意参数方程的选取、曲线的方向和曲线的闭合性等因素。
第二类曲线积分
B
yy
1) “分割” 把L分成 n 个小弧段, F 沿 M k 1M k 所做的功为 ΔWk , 则
z
F (ξ k , η k , ζ k )
A
L
M k 1
Mk
B
x
F ( x, y, z ) = ( P( x, y, z ) , Q( x, y, z ), R ( x, y, z ))
W = ∑ ΔWk
L 称为积分弧段 或 积分曲线 .
华东理工大学《数学分析》电子课件(§21.3)
华东理工大学《数学分析》电子课件(§21.3)
7 / 20
3. 性质 (1) 若 L 可分成 k 条有向光滑曲线弧 Li ( i = 1, 则 ∫L P ( x, y, z ) d x + Q( x, y, z )d y + R( x, y, z ) d z
A(1, 1) 到 B (1, 1) 的一段.
解法1 取 x 为参数, 则 L : AO + OB
y
B ( 1,1 )
y= x
x = x(t ) 定义且连续, L 的参数方程为 y = y (t ) t : α → β , z = z (t )
AO : y = x , x : 1 → 0 OB : y = x , x : 0 →1
称为对 y 的曲线积分;
(其中λ 为 n 个小弧段的 最大长度) 记作
z
∫
L
R( x, y, z ) d z = lim ∑ R(ξ k ,ηk , ζ k )Δzk ,
λ →0
k =1
n
F (ξ k , η k , ζ k )
记作
L
M k 1
Mk
二类型曲线积分——对坐标的线积分
R
0
R Rx 2 2 R2 x dx R 4 2 2x
2 2 故:I I 1 I 2 R 2
x
y
L1
本节结束
其它的自学!
返回(Return)
继续下一节(Continue)
x z R从A出发经第一卦限到 B再经第四卦限回到 A点 解:设L位于第一卦限内的部分 为L1 , 位于第四卦限内的部分
I1
0
R 2 x 2 x( R x) ( R x) x dx R 2 x ( R x )
R Rx 2 R 2 x dx R R 4 2 2x
二、二型线积分的计算
x x(t ) t — 起点参数值 定 设有平面光滑曲线 L: ;如果P( x, y )、 理 y y (t ) t — 终点参数值 1 (t )、y (t )在与之间连续,则: Q( x, y )在L上连续且x Pdx Qdy
第二节
二类(型)曲线积分 ——对坐标的线积分
一、二型线积分的概念与性质 1. 概念 F {P( x, y),Q( x, y)}沿光滑曲线 引例 设在XOY平面内有一变力: L 弧AB从A将物体移至 B,求变力F沿曲线L所作的功W。 解: (1) 已知常力 F0沿直线 l 所作的功 W F l ;
Γ
Γ
Q( x, y, z ) cos ds Q( x, y, z )dy
Γ
Γ
R( x, y, z ) cosds R( x, y, z )dz
Γ
分别叫做对X、Y、Z坐标的二型曲线积分
Γ
Pdx Qdy Rdz Pdx Qdy Rdz
第2节_第二型曲线积分
2 1
A(1,1)
1
L
xy dx ( y x ) dy
2
x
{ x[2( x 1)2 1] 1 [2( x 1)2 1 x] 4( x 1)]dx
2 1
10 (10x 32x 35x 12) dx 3
3 2
首页
×
例1 计算
AB BA
而第一型曲线积分的被积分表达式是函数值与弧长的 乘积,它与曲线 L 的方向无关. 这是两类曲线积分的 一个重要区别.
首页
×
第二型曲线积分的性质 1. 若第二型曲线积分 存在,则
L
P1dx Q1dy ,
L
P2dx Q2dy
L
P1dx Q1dy P2dx Q2dy ( P1 P2 )dx (Q1 Q2 )dy
1
x 2, y y (1 y 3)
A(1,1) D( 2,1)
1
所以
DB
xy dx ( y x ) dy
3 1
2
x
( y x ) dy ( y 2) dy 0 DB
首页
×
沿直线 BA 的线积分:
BA
xy dx ( y x ) dy
25 xy dx ( y x ) dy AB 6
1. 分割: 插入分点 Mi ( xi , yi ), i 0, 1, 2, , n
2. 近似代替 Wi F ( i ,i ) M i 1 M i M i 1 M i ( xi xi 1 , yi yi 1 ) (xi , yi )
第讲第二型曲线积分
第讲 第二型曲线积分一、目的要求1、理解第二型曲线积分的概念,知道第一型曲线积分与第二型曲线积分的区别.2、掌握第二型曲线积分的计算.3、掌握格林公式并会运用平面曲线积分与路径无关的四个等价条件.4、会求全微分的原函数.二、内容理解与典型错误分析问题1 第一型曲线积分与第二型曲线积分有什么区别?常用的计算第二型曲线积分方法有哪些?第一型曲线积分与第二型曲线积分都定义在曲线C 上,即变量z y x ,,受到C 的约束,被积函数只依赖于一个变量,所以计算曲线积分时都可以将曲线方程代入,曲线积分都可以化为定积分来计算,两型曲线积分也可以互化。
另外曲线积分都满足积分路径可加性.从物理背景来看,两者的区别是:第一型曲线积分是标量函数沿曲线的迭加;第二型曲线积分是向量函数沿曲线的迭加,由此得出的其它区别还有:第一型曲线积分i ni i i i d Cs f ds z y x f ∆=∑⎰=→1),,(lim ),,(ζηξ其中i s ∆为小弧段的长度,恒为正; 第二型曲线积分dz z y x R dy z y x Q dx z y x P C⎰++),,(),,(),,(i ni i i i d x P ∆=∑=→1),,([lim ζηξ]),,(),,(i i i i i i i i z R y Q ∆+∆+ζηξζηξ其中i x ∆、i y ∆,i z ∆表示有向小弧段在x 、y 、z 轴上的投影,正负由曲线C 的方向决定,可正可负.可以看出它们的区别在于第一型曲线积分与路径C 的方向无关,化为定积分后一定是下限小于上限;第二型曲线积分与路径C 的方向有关,化为定积分后,积分下限对应于C 的起点,积分上限对应于C 的终点,上限可能小于下限.计算第二型曲线积分的方法有:化为定积分、用格林公式、利用路径无关条件或原函数.常见错误:⎰+-Cydy x dx xy 2)1(,其中C :由点)2,0(A 到)0,1(B 沿椭圆4422=+y x错解:令⎩⎨⎧==t y t x sin 2cos ,原式=⎰+-202)sin 2(sin cos 2cos )1cos sin 2(πt td t t d t t =34错误原因:起点A 对应的是2π=t ,终点B 对应的是0=t ,应该是从2π到0的定积分. 正解:令⎩⎨⎧==ty t x sin 2cos ,原式=⎰+-022)sin 2(sin cos 2cos )1cos sin 2(πt td t t d t t =34-问题2 怎么用对称性来简化第二型曲线积分的计算?若曲线C 关于0=x 对称,1C 表示C 的0≥x 部分,正向不变, 则当),,(z y x f 关于x 为奇函数即),,(),,(z y x f z y x f -=-时,⎰=C dx z y x f 0),,(,⎰⎰=CC dy z y x f dy z y x f 1),,(2),,(,⎰⎰=CC dz z y x f dz z y x f 1),,(2),,(;则当),,(z y x f 关于x 为偶函数即),,(),,(z y x f z y x f =-时,⎰=Cdy z y x f 0),,(,⎰=Cdz z y x f 0),,(,⎰⎰=CC dx z y x f dx z y x f 1),,(2),,(.若C 关于0,0==z y 对称,也有类似的结论. 例如:曲线C :沿22x a y -=,从)0,(a A 到)0,(a B -,求dy x dx x y C ⎰++4)1sin (解:原式=a dx C2-=⎰问题3 格林公式有何作用?使用时要注意什么?格林公式建立了平面上第二型曲线积分与二重积分的联系,通常用来将平面上第二型曲线积分化成二重积分计算,这时要求满足定理的条件:封闭、正向、偏导连续。
第二型曲线积分、格林公式-PPT
公式中定积分的下限、上限分别为对应于有向曲线
弧 C 的起点、终点的参数值,下限不一定小于上限。 11
例.计算 xydx ,其中 C 为抛物线 y2 x 上从点 A(1, - 1) C
到点 B(1, 1) 的一段弧。
C
-1
-1
5
12
例.计算曲线积分 C ( x y)dx ( x - y)dy ,
路径 C 是(1)圆弧 AB;(2)折线 AOB。
y
B(0, 1)
(1) ( x y)dx ( x - y)dy AB
x
o
A(1,0)
2 [(cost sint )(-sint ) (cost - sint )cost]dt
y) (0, 0) 时, P
-
x2
y
y2
,Q
x2
x
y2
,
Q x
y2 - x2 ( x2 y2 )2
P y
,
21
课堂练习
计算 I
C
xdy - ydx x2 9y2
,其中
C
是以点
A(2, 0)
为圆心,半径为 R(R 2) 的圆周,取逆时针方向。
解:
P
x
2
-y 9
y
2
,Q x x2 9y2
z z(t) ,曲线 C 的起点 A 对应 t ,终点 B 对应 t ,当
t 单调地由 变到 时,动点 M( x, y, z) 描出由点 A 到点 B 的
曲线弧 C。设 A( x, y, z) {P( x, y, z), Q( x, y, z), R( x, y, z)} 在 C 上
第二型曲线积分格林公式
i 1
i 1
取极限:令 d m1ianx{si } ,则力场 F 所作的功为
n
W
lim d 0
i 1
F (i ,i , i ) [siTi (i ,i , i )]
n
lim
d 0
i 1
F (i
,i
,
i
) Ti
( i
,i
,
i
)si
。
2、第二型曲线积分的定义
设 C 是向量场 A( x, y, z) 所在空间中一条以 A 为起点,B 为
终点的有向光滑曲线弧。用分点 A Ao , A1, A2 , An-1, An B ,
⌒
⌒
把 C 任意分成 n 个有向小弧段 Ai-1 Ai (i 1,2,, n), Ai-1 Ai
⌒
的长度记为 si,令d m1ianx{si } , Mi (i ,i , i ) Ai-1 Ai ,
n
作和式 A(i ,i , i ) Ti (i ,i , i )si ,其中Ti T(i ,i , i )
C
C1
C2
其C 中 C1C2,C1与 C2首 尾(对相 积分弧段接 的可加性. )
(3) A ds - A ds 。
C-
C
(方向性)
其中C-是与C反方向的有向曲线弧。
4、第二型曲线积分的计算
定理 1.1 设有向光滑曲线弧 C 的参数方程为 x x(t) , y y(t) ,
z z(t) ,曲线 C 的起点 A 对应 t ,终点 B 对应 t ,当 t 单调地由 变到 时,动点 M( x, y, z) 描出由点 A 到点 B 的
第二型曲线积分格林公式
一、第二型曲线积分
§10.2第二型曲线积分(1)
ab P[x, (x)] Q[x, (x)] (x)dx
• 对空间有向光滑弧 :
x (t) y (t), t : z (t)
P
[
(t
),
(t
)
,
(t)]
(t)
Q[ (t), (t), (t)] (t)
R[ (t), (t), (t)](t)d t
4. 两类曲线积分的联系
L P d x Q d y
单位圆周 C 的参数方程为 y 1 , z sin t
N (0,1,1)
o
y
起点 M t 0 ,终点 N t ,
M (1,1,0)
2x
W
C
k
( xdx x2 y
ydy)
2
k
2
0
cos t(sint) cos2 t 1
0dt
k [ln(cos2 t 1]2 k ln 2.
例 6.把第二型曲线积分C P(x, y)dxQ(x, y)dy
化为第一型曲线积分,其中 C 为沿抛物线 y x2 从点(0,0)到点(1,1)的弧线段。
解: y x2 , ds 1[ y(x)]2 dx 1 4x 2 dx ,则
cos dx 1 , ds 14x2
cos sin
1cos2
2
02
三、两类曲线积分之间的联系
∵单位切向量T
1
{dx,dy,dz}{cos,cos,cos}
,
ds
∴ dx cosds ,dy cosds ,dz cosds 。
∴ C ATds C PdxQdy Rdz 。
C(PcosQcos Rcos)ds
其中 cos , cos , cos 是 C 上点(x, y, z) 处对于
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解. 根据库仑定律, (x, y , z) 处的单位正电荷在静电场中所受的力为
F
=
q
r r3
=
∇φ,
其中
φ
=
−
q r
.
因此 F
沿σ
所作的功为
qx
qy
qz
W = σ r 3 dx + r 3 dy + r 3 dz
β
β
= F (σ) · σ (t) dt = φ ◦ σ dt
α
α
qqΒιβλιοθήκη = −.r (α) r (β)
曲线的方向
因此, 为了使第二型曲线积分有意义, 我们总是要给曲线指定一个方向, 这个方 向是由某个参数决定的. 给定了方向的曲线称为有向曲线.
其实, 一元函数的 Riemann 积分也可以看成是第二型曲线积分, 这里的曲线就 是给定了方向的区间.
如果 σ 为一条闭曲线(环路), 即 σ(α) = σ(β), 则选定了方向以后, 不论从曲线上 哪一点出发, 沿此闭曲线的第二型曲线积分的值不变, 这样的积分常记为
第二型曲线积分和第一型曲线积分有一个重要的区别, 这个区别和曲线的方向 有关. 设 φ : [γ, δ] → [α, β] 为严格单调的可逆连续映射, 则复合映射 σ ◦ φ 也是参数曲 线, 它和 σ 的像完全相同, 只是选取了不同的参数而已.
曲线的方向
第二型曲线积分和第一型曲线积分有一个重要的区别, 这个区别和曲线的方向 有关. 设 φ : [γ, δ] → [α, β] 为严格单调的可逆连续映射, 则复合映射 σ ◦ φ 也是参数曲 线, 它和 σ 的像完全相同, 只是选取了不同的参数而已. 如果 φ 严格单调递增, 则称这两个参数是同向的; 如果 φ 严格单调递减, 则称这 两个参数是反向的(不同向).
数学分析(二): 多元微积分
梅加强 副教授 南京大学数学系
内容提要:
4.2 第二型曲线积分
4.2 第二型曲线积分
内容提要: 第二型曲线积分;
4.2 第二型曲线积分
内容提要: 第二型曲线积分; 曲线的方向.
第二型曲线积分
问题: 设质点在力场 F 中沿一条曲线 σ 运动, 求力场 F 对该质点所做的功.
其中 C 为圆周 x2 + y 2 = a2, 方向为逆时针方向.
例子
例1
计算第二型曲线积分
y
x
I = C x 2 + y 2 dx − x 2 + y 2 dy ,
其中 C 为圆周 x2 + y 2 = a2, 方向为逆时针方向.
解.
按给定的方向, C 的参数表示可取为 σ(t) = (a cos t, a sin t), t ∈ 0, 2π . 此时 dx = x (t) dt, dy = y (t) dt. 所求积分为
曲线的方向
因此, 为了使第二型曲线积分有意义, 我们总是要给曲线指定一个方向, 这个方 向是由某个参数决定的. 给定了方向的曲线称为有向曲线.
曲线的方向
因此, 为了使第二型曲线积分有意义, 我们总是要给曲线指定一个方向, 这个方 向是由某个参数决定的. 给定了方向的曲线称为有向曲线.
其实, 一元函数的 Riemann 积分也可以看成是第二型曲线积分, 这里的曲线就 是给定了方向的区间.
任取 [α, β] 的一个分割 π : α = t0 < t1 < t2 < · · · < tm = β, 考虑和
m
fi (σ(ξj ))(xi (tj ) − xi (tj−1)), (ξj ∈ [tj−1, tj ])
(1)
j =1
如果分割的模趋于零时上式极限存在且与 {ξj } 的选取无关, 则称此极限为 fi dxi 沿曲线 σ 的第二型曲线积分, 记为 σ fi dxi .
曲线的方向
第二型曲线积分和第一型曲线积分有一个重要的区别, 这个区别和曲线的方向 有关. 设 φ : [γ, δ] → [α, β] 为严格单调的可逆连续映射, 则复合映射 σ ◦ φ 也是参数曲 线, 它和 σ 的像完全相同, 只是选取了不同的参数而已. 如果 φ 严格单调递增, 则称这两个参数是同向的; 如果 φ 严格单调递减, 则称这 两个参数是反向的(不同向). 从 (1) 不难看出, 对于同向的两个参数, 第二曲线积分的值不变; 而对于反向的两 个参数,第二型曲线积分的值正好相差一个符号!
f1 dx1 + · · · + fn dxn.
σ
单位圆周 S1 就是平面上的一条闭曲线, 如果用参数方程
σ(t) = (cos t, sin t), t ∈ [0, 2π] 表示, 则 S1 的方向就是所谓逆时针方向.
例子
例1
计算第二型曲线积分
y
x
I = C x 2 + y 2 dx − x 2 + y 2 dy ,
我们可以将这个问题转化为曲线上的一个积分问题. 设 σ : [α, β] → Rn 为参数 曲线, f 是定义在 σ 上的取值在 Rn 中的一个向量值函数, 其分量记为 fi .
任取 [α, β] 的一个分割 π : α = t0 < t1 < t2 < · · · < tm = β, 考虑和
m
fi (σ(ξj ))(xi (tj ) − xi (tj−1)), (ξj ∈ [tj−1, tj ])
(1)
j =1
如果分割的模趋于零时上式极限存在且与 {ξj } 的选取无关, 则称此极限为 fi dxi 沿曲线 σ 的第二型曲线积分, 记为 σ fi dxi .
第二型曲线积分
问题: 设质点在力场 F 中沿一条曲线 σ 运动, 求力场 F 对该质点所做的功.
我们可以将这个问题转化为曲线上的一个积分问题. 设 σ : [α, β] → Rn 为参数 曲线, f 是定义在 σ 上的取值在 Rn 中的一个向量值函数, 其分量记为 fi .
曲线的方向
第二型曲线积分和第一型曲线积分有一个重要的区别, 这个区别和曲线的方向 有关. 设 φ : [γ, δ] → [α, β] 为严格单调的可逆连续映射, 则复合映射 σ ◦ φ 也是参数曲 线, 它和 σ 的像完全相同, 只是选取了不同的参数而已. 如果 φ 严格单调递增, 则称这两个参数是同向的; 如果 φ 严格单调递减, 则称这 两个参数是反向的(不同向). 从 (1) 不难看出, 对于同向的两个参数, 第二曲线积分的值不变; 而对于反向的两 个参数,第二型曲线积分的值正好相差一个符号! 这和第一型曲线积分不同, 比如曲线的长度就不依赖于参数的选取.
这说明, 静电场所作的功只与电荷的起始位置和终点位置有关, 与运动路径无关.
f1 dx1 + · · · + fn dxn.
σ
曲线的方向
因此, 为了使第二型曲线积分有意义, 我们总是要给曲线指定一个方向, 这个方 向是由某个参数决定的. 给定了方向的曲线称为有向曲线.
其实, 一元函数的 Riemann 积分也可以看成是第二型曲线积分, 这里的曲线就 是给定了方向的区间.
如果 σ 为一条闭曲线(环路), 即 σ(α) = σ(β), 则选定了方向以后, 不论从曲线上 哪一点出发, 沿此闭曲线的第二型曲线积分的值不变, 这样的积分常记为
2π 1
I=
0
a2 a sin t(a cos t) − a cos t(a sin t) dt = −2π.
例子
例2 考虑位于原点处的电荷 q 产生的静电场, 计算单位正电荷沿连续可微曲线 σ 从点 A = σ(α) 运动到点 B = σ(β) 时电场所作的功 W .
例子
例2
考虑位于原点处的电荷 q 产生的静电场, 计算单位正电荷沿连续可微曲线 σ 从点 A = σ(α) 运动到点 B = σ(β) 时电场所作的功 W .
如果每一个 fi dxi 沿 σ 的第二型曲线积分都存在, 则记
f1 dx1 + · · · + fn dxn = f1 dx1 + · · · + fn dxn,
σ
σ
σ
称为 f 沿 σ 的第二型曲线积分.
曲线的方向
第二型曲线积分和第一型曲线积分有一个重要的区别, 这个区别和曲线的方向 有关.
曲线的方向
第二型曲线积分
问题: 设质点在力场 F 中沿一条曲线 σ 运动, 求力场 F 对该质点所做的功.
我们可以将这个问题转化为曲线上的一个积分问题. 设 σ : [α, β] → Rn 为参数 曲线, f 是定义在 σ 上的取值在 Rn 中的一个向量值函数, 其分量记为 fi .
第二型曲线积分
问题: 设质点在力场 F 中沿一条曲线 σ 运动, 求力场 F 对该质点所做的功.