二次函数的最值问题(典型例题)说课讲解

合集下载

二次函数的最值问题课件

二次函数的最值问题课件

顶点法
总结词
利用二次函数的顶点坐标求最值。
详细描述
根据二次函数的顶点公式$(h, k)$,代入原函数求出最值。当$a > 0$时,函数有最小值;当$a < 0$时,函数有 最大值。
导数法
总结词
通过求导数判断函数的单调性,进而 找到最值点。
详细描述
对二次函数求导得到$f'(x) = 2ax + b$,令导数等于0得到临界点$x = frac{b}{2a}$,通过判断单调性找到最 值点。
复杂的二次函数最值问题
总结词
运用配方法或公式法求最值
详细描述
对于复杂的二次函数,可以通过配方法或公式法求出最值 。配方法是通过配方将二次函数转化为顶点式,再利用顶 点式求最值;公式法是利用公式直接求出二次函数的最值 。
总结词
利用导数求最值
详细描述
对于复杂的二次函数,可以利用导数求出函数的极值点, 再根据极值点的位置和函数的单调性判断最值的位置,从 而求出最值。
总结词
结合实际背景求解
详细描述
对于实际应用中的二次函数最值问题,需要结合实际背景 进行分析。例如,在物理学中,可以利用二次函数的最值 求解物体的最大速度、最小压力等;在经济学中,可以利 用二次函数的最值求解成本最低、利润最大等问题。
06
总结与思考
二次函数最值问题的总结
定义与性质
二次函数最值问题主要研究的是 二次函数在特定条件下的最大值 或最小值。这些条件可能包括函 数的开口方向、顶点位置、定义
详细描述
二次函数是数学中常见的一种函数形式,其一般形式为 y=ax^2+bx+c,其中a、b、c为常数,且a≠0。a决定了抛 物线的开口方向和宽度,b决定了抛物线的左右位置,c决定 了抛物线的上下位置。

最新二次函数的最值问题举例(附练习、答案)

最新二次函数的最值问题举例(附练习、答案)

二次函数的最值问题举例(附练习、答案)二次函数y = ax2bx c (a = 0)是初中函数的主要内容,也是高中学习的重要基础. 在初x取任意实数时的最值情况(当a ■ 0时,函数在本节我们将在这个基础上继续学习当自变量x在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.2【例1】当-2弐x玄2时,求函数y=x -2x-3的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x的值.解:作出函数的图象.当x=1时,y mi n =-4,当x=-2时,y max=5.【例2】当1^x^2时,求函数y =-X2「x T的最大值和最小值.X = 1 时,y min = T ,当X = 2 时,y max = 一5 .由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:【例3】当x - 0时,求函数y = -x(2 - x)的取值范围.中阶段大家已经知道:二次函数在自变量b2a处取得最小值4ac - b24a,无最大值;当 a c 0时,函数在x = -亠-处取得最大值2a4ac -b24a无最小值.解:作出函数的图象.当解:作出函数y =-x(2 - x) n x? — 2x在x_0内的图象.可以看出:当x = 1时,ymin - -1,无最大值.所以,当X _ 0时,函数的取值范围是y _ -1 .1 25【例4】当t <x <t 1时,求函数y x「x 的最小值(其中t为常数).2 2分析:由于x所给的范围随着t的变化而变化,所以需要比较对称轴与其范围的相对位置.1 25解:函数y x2-X 的对称轴为x=1 .画出其草图.2 21 25(1)当对称轴在所给范围左侧•即t 1时:当X = t时,『min t -t-2 2⑵当对称轴在所给范围之间•即t乞1乞t • 1 = 0乞t乞1时:1 25当X=1 时,『min -1—? = 一3 ;⑶当对称轴在所给范围右侧.即t • 1 ::: 1= t ::: 0时:1 2 5 1 2当X=t 1 时,y min —(t 1) -(t 1)—?=?t -3 .1 2—t —3,t < 02综上所述:y二-3,0乞t乞1-1 -5,t A1.2 2在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量与每件的销售价x(元)满足一次函数m =162 -3x,30 _ x _ 54 .(1)写出商场卖这种商品每天的销售利润y与每件销售价x之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1)由已知得每件商品的销售利润为(x-30)元,m (件)那么m件的销售利润为y = m(x - 30),又m = 162 - 3x .2y = (x - 30)(162 - 3x)二-3x 252x - 4860,30 - x - 54(2)由⑴知对称轴为x=42,位于x的范围内,另抛物线开口向下.当x=42 时,y max - -3 421 2252 42 -4860 =432•当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组21.抛物线y =x —(m —4)x +2m -3,当m = _________ 时,图象的顶点在y轴上;当m = _______ 时, 图象的顶点在x轴上;当m = _____ 时,图象过原点.2•用一长度为I米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 _______ .3.求下列二次函数的最值:2(1) y = 2x -4x 5 ;(2) y = (1 - x)(x 2).24.求二次函数y = 2x -3x - 5在-2 _ x _ 2上的最大值和最小值,并求对应的x的值.25•对于函数y =2x • 4x -3,当x _0时,求y的取值范围.6.求函数y = 3 —€5x —3x —2的最大值和最小值.7 .已知关于x的函数y = x2• (2t T)x • t2-1,当t取何值时,y的最小值为0 ?B 组21 当a - -1时,求函数的最大值和最小值;2 当a为实数时,求函数的最大值.2.函数y =x2• 2x 3在m^x乞0上的最大值为3,最小值为2,求m的取值范围.23 .设a • 0,当-1乞x乞1时,函数y x - ax b 1的最小值是-4,最大值是0,求a,b的值.4.已知函数y = x2 2ax 1在-1空x乞2上的最大值为4,求a的值.25.求关于x的二次函数y=x -2tx 1在-1辽x^1上的最大值(t为常数).1 .已知关于x的函数y =x2• 2ax • 2在-5辽x乞5上.第五讲二次函数的最值问题答案ymin- 0 •(1)当 X =1 时,Y min =1 ;当 X 「-5 时, ⑵当 a - 0 时,Y max =2710a ;当 a 0 时,Y max =27 —10a •一2空m 乞一1 • a =2,b 一2 •1a 或 a - -1.4123 4567123 44 14或 2,I 2 2 —m 16(1)有最小值 3, 无最大值;(2)有最大值9-,无最小值•4 --5时,Y min3 ;当x 「2时, 8Y max =19 •ymin2i 或 1 时,Ymaxymax- 37 •5.当t <0时,y max =2 —2t,此时X = 1 ;当t 0 时,y max =2 • 2t,此时X = -1 .。

二次函数的最值问题(典型例题)

二次函数的最值问题(典型例题)

二次函数的最值问题【例题精讲】题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.【拓展练习】如图,在平面直角坐标系xOy 中,二次函数2y bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :y =+BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.练习一【例题精讲】若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.【拓展练习】题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.练习二金题精讲题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.【拓展练习】题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.讲义参考答案【例题精讲】答案:3--0或2或4【拓展练习】答案:(1) 2y=-;(2) (2);(3)8练习一答案【例题精讲】答案:a =【拓展练习】答案:(1) k≤2;(2)①k值为-1;②y的最大值为32,最小值为-3.详解:(1)当k=1时,函数为一次函数y= -2x+3,其图象与x轴有一个交点. 当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0.△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1.由题意得(k-1)x12+(k+2)=2kx1(*),将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=2kk1-,x1x2=k+2k1-,∴2k•2kk1-=4•k+2k1-,解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.②如图,∵k1= -1,y= -2x2+2x+1= -2(x-12)2+32,且-1≤x≤1,由图象知:当x= -1时,y最小= -3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.练习二答案课后练习详解【例题精讲】答案:2或-5.详解:配方y=(x+a)2-1,函数的对称轴为直线x= -a,顶点坐标为(-a,-1).①当0≤-a≤3即-3≤a≤0时,函数最小值为-1,不合题意;②当-a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;③当-a>3即a<-3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,解得a= -5.∴实数a的值为2或-5.【拓展练习】答案:有最大值,为8.详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值∴k-1<0,解得k<1.∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.∴最大值为8.。

二次函数的区间最值问题知识讲解

二次函数的区间最值问题知识讲解

二次函数最值问题
二次函数2
(0)y ax bx c
a =++≠ 是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2
b x a =-处取得最小值244a
c b a -,无最大值;当时0a <,函数在2b x a
=-处取得最大值2
44ac b a
-,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.在高中阶段,求二次函数的最值问题只需要记住“三点一轴”,即题目给出的x 的取值范围区间的两个端点,二次函数的顶点,以及二次函数的对称轴,注意结合图像学会用数形结合解题。

高中阶段的二次函数最值问题可以分为一下三个方面:1.定轴定区间。

2.动轴定区间。

3.定轴动区间。

下面我们来看例题。

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题

二次函数最值知识点总结典型例题及习题必修一二次函数在闭区间上的最值一、知识要点:对于一元二次函数在闭区间上的最值问题,关键在于讨论函数的对称轴与区间的相对位置关系。

一般分为对称轴在区间左侧、中间和右侧三种情况。

例如,对于函数f(x) = ax^2 + bx + c (a ≠ 0),求其在闭区间[x1.x2]上的最大值和最小值。

分析:将函数f(x)配方,得到其顶点为(-b/2a。

c - b^2/4a)。

因此,对称轴为x = -b/2a。

当a。

0时,函数f(x)的图像为开口向上的抛物线。

结合数形结合可得在闭区间[x1.x2]上f(x)的最值:1)当对称轴在[x1.x2]之外时,f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者。

2)当对称轴在[x1.x2]之间时,若x1 ≤ -b/2a ≤ x2,则f(x)的最小值为f(-b/2a),最大值为f(x1)和f(x2)中的较大者;若x1.-b/2a或x2 < -b/2a,则f(x)在闭区间[x1.x2]上单调递增或单调递减,最小值为f(x1),最大值为f(x2)。

当a < 0时,情况类似。

二、例题分析归类:一)正向型此类问题是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数和定义域区间都是给定的,我们称这种情况是“定二次函数在定区间上的最值”。

例如,对于函数y = -x^2 + 4x - 2在区间[0.3]上的最大值为2,最小值为-2.2.轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例如,对于函数f(x) = (x-1)^2 + 1,在区间[t。

t+1]上的最值为f(t)和f(t+1)中的较大者。

二次函数的最值问题(含答案)

二次函数的最值问题(含答案)

---二次函数的最值问题一、内容概述对二次函数2(0)y ax bx c a =++≠,若自变量为任意实数,则取最值情况为:(1)当0,2b a x a >=-时,244ac b y a -=最小值(2)当0,2b a x a <=-时,244ac b y a-=最大值若自变量x 的取值范围为()x αβαβ≤≤≠,则取最值分0a >和0a <两种情况,由α、β与2b a-的大小关系确定。

1.对于0a >:(1)当2baαβ<≤-,因为对称轴左侧y 随x 的增大而减小,所以y 的最大值为()y α,最小值为()y β。

这里()y α、()y β分别是y 在x α=与x β=时的函数值。

(2)当2baαβ-≤≤,因为对称轴右侧y 随x 的增大而增大,所以y 的最大值为()y β,最小值为()y α。

(3)当2b a αβ≤-≤,y 的最大值为()y α、 ()y β中较大者,y 的最小值为()2b y a-. 2.对于0a <(1)当2baαβ<≤-,y 的最大值为()y β,最小值为()y α。

(2)当2baαβ-≤≤,y 的最大值为()y α,最小值为()y β。

(3)当2b a αβ≤-≤,y 的最小值为()y α、 ()y β中较大者,y 的最大值为()2b y a-. 综上所述,求函数的最大、最小值,需比较三个函数值:()y α、()y β、()2b y a- 二、例题解析例1 已知12,x x 是方程22(2)(35)0x k x k k --+++=的两个实数根,求2212x x +的最大值和最小值。

解:由于题给出的二次方程有实根,所以0∆≥,解得443k -≤≤- ∴y =2212x x +=21212()2x x x x +-=2106k k ---∵函数y 在443k -≤≤-随着k 的增大而减小 ∴当4k =-时,8y =最大值;当43k =-时,509y =最小值例2 (1)求函数243y x x =--在区间25x -≤≤中的最大值和最小值。

《二次函数的最值问题》教案

《二次函数的最值问题》教案

二次函数的最值问题一、内容与内容解析1.内容含参二次函数在m x n ≤≤内的最值问题.2.内容解析本节课在讨论了影响0a >时二次函数在m x n ≤≤内最值的因素后对0a >时含参二次函数在m x n ≤≤内最值问题进行探究.主要的研究方法是从函数图像入手,通过几何画板动态演示,确定分类标准,进行分类讨论,进而对分类标准进行优化,得到解决此类问题的一般方法,并运用此方法解决相关的最值问题.基于以上分析,确定本节课的教学重点是:从函数图像入手,运用分类讨论思想求含参二次函数在m x n ≤≤内最值.二、目标和目标解析1.目标(1)通过复习二次函数图像的特征和性质,能够借助二次函数的图像研究二次函数的最值.(2)通过对二次函数在m x n ≤≤内最值问题初探、对含参二次函数在m x n ≤≤内最值问题的探究,经历直观感知、抽象概括、运算求解、反思与构建等思维过程,体会函数思想,分类讨论等数学思想方法,发展数学感知、数学表征、抽象概括、运算能力等.2.目标解析达成目标(1)的标志是:学生会借助二次函数的图像研究二次函数在m x n ≤≤内的最值,并能由此得到二次函数在m x n ≤≤内最值的影响因素,进一步体会函数思想.达成目标(2)的标志是:借助二次函数的图像求解含参二次函数在m x n ≤≤内最值,进一步体会函数思想和分类讨论的思想.三、教学问题诊断分析学生已学习了二次函数的概念、图像和性质,已经具备了一定的识图能力、分析图形特征的能力、数学说理能力,这为本节课的学习奠定了基础.但对于含参二次函数在m x n ≤≤内的图像及最值问题,由于其抽象程度较高,学生可能会在为什么要进行分类讨论以及如何确定分类标准这两个问题上产生一定的困难.基于以上分析,本节课的教学难点是:如何确定分类标准.四、教学过程设计引言:(展现生活实例,体现研究二次函数在m x n ≤≤内最值的必要性)本节课,我们将结合二次函数的相关知识深入研究二次函数的最值问题.1.复习导入,自主发现问题1如图,(5,),(8,),(1,),( 3.9,)A B C D A y B y C y D y --在二次函数2134y x x =--的图像上,请比较:(1)B y A y ;(2) D y C y ;(3)D y B y ;(4)C y A y .问题2根据问题1的结论填空:(1)二次函数2134y x x =--(58x ≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.(2)二次函数2134y x x =-- ( 3.91x -≤≤-),当x =时,y 取到最大值;当x =时,y 取到最小值.(3)二次函数2134y x x =--( 3.98x -≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.(4)二次函数2134y x x =--(15x -≤≤),当x =时,y 取到最大值;当x =时,y 取到最小值.师生活动: 教师提出问题,学生尝试用已有知识解决这些问题,并交流问题中蕴含的函数知识和对这些知识的理解.追问1:这些二次函数的图像是完整的抛物线吗?追问2:为什么有的(二次函数的)最值能在顶点处取到,有的却不能呢?追问3:通过对上面问题的研究,你认为二次函数在 内的最值的取得与什么有关?师生活动:通过对前面问题的研究,自主发现影响二次函数在 内的最值的因素:对称轴和m x n ≤≤的相对位置.若对称轴不在m x n ≤≤内时,最值在端点处取得;对称轴在m x n ≤≤内时,最值在顶点和端点处分别取得.遇到这类问题时,我们通常要结合函数图象进行分析.设计意图:引导学生通过观察函数图像,直观地发现对称轴和 的相对位置影响了二次函数的最值.为下一步解决0a >时含参二次函数在 内的最值问题做铺垫. 2.问题剖析,合作探究探究1:求二次函数2134y x tx =--(21x -≤≤)的最小值. 师生活动:教师引导学生先观察函数解析式,分析参数t 的变化对二次函数图像的影响,然后借助计算机软件,直观感受对称轴和m x n ≤≤的相对位置如何影响二次函数的最小值.最后全班交流,确定分类标准,学生独立补全解题过程.追问1:观察本题中的函数解析式与前面 有什么区别? m x n ≤≤2134y x x =--m x n ≤≤m x n ≤≤m x n ≤≤追问2:随着参数t 的变化,二次函数2134y x tx =--图象的开口方向和开口大小会改变吗?对称轴呢?追问3:二次函数2134y x tx =--(21x -≤≤)的最小值是唯一确定的吗? 师生活动:关注学生是否明确此处为什么要进行分类讨论,体会分类讨论的必要性. 追问4:如何确定分类标准?如何用数学符号表达这种关系呢?师生活动: 师生共同讨论写出分类标准.教师规范格式以后要求学生将过程补齐. 设计意图:探究0a >时含参二次函数在 内的最小值问题,让学生体会解决这一类问题的基本方法.培养学生直观感知、抽象概括、数学表征能力,激发自主学习的积极性和探究意识.引导观察,发现分类依据,培养探究意识.探究2:已知关于x 的二次函数y 1=x 2+bx +c (实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为x =1,求此二次函数的表达式;(2)若b 2﹣c =0,当b ﹣3≤x ≤b 时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数y 2=2x 2+x +m ,若在(1)的条件下,当0≤x ≤1时,总有y 2≥y 1,求实数m 的最小值.师生活动:要求学生独立解决,写出分析过程,小组内交流讨论,最后全班汇报交流.对于学生展示的分类方法,教师适当引导和纠正,让学生理解如何进行分类讨论(不重复,不遗漏),并对分类方法进行优化.最后共同归纳出求含参二次函数在m x n ≤≤内最值的一般方法:一般先确定对称轴与m x n ≤≤的相对位置关系,分别画出示意图,确定分类标准,再进行分类讨论.设计意图:在探究1的基础上进一步探究 时含参二次函数在 内的最大值问题,重点体会解题过程中分类标准的确定.师生活动:回顾探究1和探究2的过程,体会它们的相同与不同之处.追问1:为什么有时候分3类,有时候分2类就可以了?什么时候分2类,什么时候分3类呢?追问2:你能直接判断它们分别分几类进行讨论吗:师生活动:通过类比探究1和探究2归纳:求二次函数在m x n ≤≤上的最值不仅min 2min min 2min 10242,12,2211,2321111,1,2422(1)13()2111()42x t t t x y t t t x t y t t t x y t t t y t t t t =--=-=---==---==--⎧⎪--⎪⎪=---⎨⎪⎪--⎪⎩解:>,对称轴:(1)当2<即<时:(2)当2≤2≤即1≤≤时:,(3)当2>即>-时:<综上所述:1≤≤>-m x n≤≤m x n ≤≤0a >要看对称轴与m x n ≤≤的相对位置,还要看开口方向.开口向下时,可类比开口向上的数学模型进行讨论.设计意图:讨论0a >时含参二次函数在 内最小值的分类问题,体会开口方向对函数最值的影响.3.归纳总结师生共同回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课我们研究了哪些问题?(2)我们是如何分析、解决这些问题的?(3)在研究过程中你遇到的问题是什么?怎么解决的?设计意图:通过小结,理清本节课的研究内容和研究方法.让学生体会提出问题、分析问题、解决问题的方法.4.课外作业(1) 必做题:①求二次函数223y x ax =--+(45x -≤≤)的最值.②已知二次函数221y ax ax =++(12x -≤≤)有最大值4,求实数a 的值.(2) 选做题:求二次函数223y x x =-+(2t x t ≤≤+)上的最值.(3)兴趣作业:通过本节课的学习,你能自己提出一个二次函数最值相关的问题并进行解答吗?试试看,和同伴交流你的想法.设计意图:巩固本节课所学内容,利用前面归纳的结论来解决二次函数最值的相关问题,加深对含参二次函数在 内的最值问题的认识.体会函数思想.提升学生分析问题,解决问题的能力.m x n ≤≤m x n≤≤。

微专题13 含参数二次函数的最值问题(解析版)

微专题13 含参数二次函数的最值问题(解析版)

微专题13 含参数二次函数的最值问题【方法技巧与总结】1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。

【题型归纳目录】 题型一:定轴定区间型 题型二:动轴定区间型 题型三:定轴动区间型 题型四:动轴动区间型题型五:根据二次函数的最值求参数 【典型例题】 题型一:定轴定区间型例1.(2022·全国·高一专题练习)函数()232f x x x =++在区间[] 55-,上的最大值、最小值分别是( ) A .1124-,B .212,C .1424-, D .最小值是14-,无最大值【答案】C【解析】22313224y x x x ⎛⎫=++=+- ⎪⎝⎭,抛物线的开口向上,对称轴为32x =-,∴在区间[]55-,上,当32x =-时,y 有最小值14-;5x =时,y 有最大值42,函数()232f x x x =++在区间[]55-,上的最大值、最小值分别是:42,14-. 故选:C .例2.(2022·全国·高一课前预习)函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1 D .以上都不对【答案】B【解析】因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,ymin =1,当x =-2时,ymax =(-2-1)2+1=10. 故选:B.例3.(2022·陕西·榆林市第十中学高一期中)若二次函数()()()24f x a x x =+-的图像经过点()0,4-,则函数()f x 在[]4,2-上的最小值为___________. 【答案】92-【解析】由题知,()()()002044f a =+-=-,解得12a = 则()()()211924(1)222f x x x x =+-=--,所以当1x =时,()f x 有最小值9(1)2f =-.故答案为:92-例4.(2022·全国·高一专题练习)已知函数242y x x =-+-,当14x ≤≤上时y 的最小值是________ 【答案】-2 【解析】2242(2)2y x x x =-+-=--+,则二次函数在(),2-∞上单调递增,在()2,+∞上单调递减, ∴在14x ≤≤上,当4x =时有最小值-2,故答案为:-2.例5.(2022·广西南宁·高一期末)已知函数2()25,[1,5]f x x x x =-+∈-.则函数的最大值和最小值之积为______ 【答案】80【解析】因为22()25(1)4f x x x x =-+=-+,所以当1x =时,min ()(1)4f x f ==,当5x =时,2max ()(5)(51)420f x f ==-+=,所以最大值和最小值之积为42080⨯=.故答案为:80题型二:动轴定区间型例6.(2022·全国·高一课时练习)已知函数()()20f x x mx m =->在区间[]0,2上的最小值为()g m .(1)求函数()g m 的解析式. (2)定义在()(),00,∞-+∞上的函数()h x 为偶函数,且当0x >时,()()h x g x =.若()()4h t h <,求实数t 的取值范围.【解析】(1)因为()()222024m m f x x mx x m ⎛⎫=-=--> ⎪⎝⎭,所以当04m <≤时,022m <≤,此时()224m m g m f ⎛⎫==- ⎪⎝⎭;当4m >时,22m >,此时函数()2224m m f x x ⎛⎫=-- ⎪⎝⎭在区间[]0,2上单调递减,所以()()242g m f m ==-.综上,()2,04442,4m m g m m m ⎧-<≤⎪=⎨⎪->⎩(2)因为0x >时,()()h x g x =,所以当0x >时,()2,04442,4x x h x x x ⎧-<≤⎪=⎨⎪->⎩,易知函数()h x 在()0,∞+上单调递减,因为定义在()(),00,∞-+∞上的函数()h x 为偶函数,且()()4h t h ≥,所以04t<<,解得40t -<<或04t <<,所以实数t 的取值范围为()()4,00,4-.例7.(2022·全国·高一单元测试)已知函数2()2(f x x mx m m =-++∈R).当[1,1]x ∈-时,设()f x 的最大值为M ,则M 的最小值为( ) A .14B .0C .14-D .1-【答案】C【解析】由22()()f x x m m m =--++,故()f x 在(,)m -∞上递增,在(,)m +∞上递减, 当1m ≤-,则[1,1]x ∈-上递减,故最大值(1)10M f m =-=--≥,当11m -<<,则最大值22111()()[,2)244M f m m m m ==+=+-∈-,当m 1≥,则[1,1]x ∈-上递增,故最大值(1)312M f m ==-≥, 综上,M 的最小值为14-.故选:C例8.(2022·全国·高一单元测试)已知函数()()2213f x x k x =-++.(1)若函数()f x 为偶函数,求实数k 的值;(2)若函数()f x 在区间[]1,3-上具有单调性,求实数k 的取值范围;(3)求函数()f x 在区间[]22-,上的最小值. 【解析】(1)因为定义在R 上的函数2()2(1)3f x x k x =-++为偶函数,所以R x ∀∈,都有()()f x f x -=成立,即R x ∀∈,都有222(1)32(1)3x k x x k x +++=-++成立,解得1k =-.(2)因为函数2()2(1)3f x x k x =-++图象的对称轴为1x k =+, 所以要使函数()f x 在[]1,3-上具有单调性, 则13k +≥,或11k +≤-,即2k ≥或2k ≤-, 则k 的取值范围为(][),22,-∞-+∞.(3)①若函数()f x 在[]22-,上单调递减,则12k +≥,即1k,此时函数()f x 在区间[]22-,上的最小值为()234f k=-.②若函数()f x 在[]22-,上单调递增,则12k +≤-,即3k ≤-,此时函数()f x 在区间[]22-,上的最小值为()2114f k -=+.③若函数()f x 在[]22-,上不单调,则212k -<+<,即31k -<<,此时函数()f x 在区间[]22-,上的最小值为2(1)22f k k k +=--.综上所述,函数()f x 在区间[]22-,上的最小值为2min 34,1()22,31114,3k k f x k k k k k -≥⎧⎪=---<<⎨⎪+≤-⎩. 例9.(2022·全国·高一专题练习)已知函数()221f x x mx =++.(1)若1m =,求()f x 在13x -≤≤上的最大值和最小值; (2)求()f x 在22x -≤≤上的最小值;(3)在区间12x -≤≤上的最大值为4,求实数m 的值. 【解析】(1)1m =时,()()22211f x x x x =++=+,结合函数图像得:()f x 在13x -≤≤上的最大值是316f =(),最小值是()10f -=;(2)()221f x x mx =++的对称轴是x m =-,①当2-<-m ,即2m >时,函数在22x -≤≤上递增, 当2x =-时,取到最小值()245f m -=-+;②当22m -≤-≤,即22m -≤≤时,函数在22x -≤≤上先递减后递增,当x m =-时,取到最小值()21f m m -=-+;③当2m ->,即2m <-时,函数在22x -≤≤上递减, 当2x =时,取到最小值()245f m =+,综上所得,当2m >时,最小值()245f m -=-+;当22m -≤≤时,取到最小值()21f m m -=-+;当2m <-时,取到最小值()245f m =+.(3)由(2)的讨论思路结合函数图像在12x -≤≤内的 可能情况知()1f -,2f ()中必有一个是最大值;若()12241f m m -=-==-,,代回验证: ()()22211f x x x x =-+=-,符合()1f -最大;若2544f m =+=(),14m =-,代回验证: ()2211151()2416f x x x x =-+=-+,符合2f ()最大;1m ∴=-或14-.例10.(2022·广东湛江·高一期末)已知函数()()f x x x a =-.其中a R ∈,且0a >. (1)求函数()f x 的单调区间; (2)求函数()f x 在1,12⎡⎤-⎢⎥⎣⎦上的最小值.【解析】(1)由题知,函数22,0()(),0x ax x f x x x a x ax x ⎧-≥⎪=-=⎨-+<⎪⎩,其中0a > 当0x ≥时,222()()24a a f x x ax x =-=--则函数()f x 在区间(0,)2a 单调递减,在区间(,)2a+∞单调递增; 当0x <时,222()()24a a f x x ax x =-+=--+,则函数()f x 在区间(,0)-∞递增∴综上,函数()f x 的单调递增区间为(,0)-∞,(,)2a +∞,单调递减区间为(0,)2a.(2)因为0a >,所以当12a ≥即2a ≥时,函数()f x 在1[,0]2-递增,在(0,1]递减且 11()242af -=--,(1)1f a =-,若1()(1)2f f -≥,即52a ≥时,min ()(1)1f x f a ==-,若1()(1)2f f -<,即522a ≤<时,min 11()()242a f x f =-=--,当012a <<即02a <<时,函数()f x 在1[,0]2-递增,在(0,]2a 递减,在(,1]2a 递增,且11()242a f -=--, 2()24a a f =-,而02a <<时,21424a a --<-,即1()()22a f f -<,所以02a <<时,min 11()()242af x f =-=--,∴综上所述,当502a ≤<时,min 1()42a f x =--;当52a ≥时, min ()1f x a =-.例11.(2022·上海师大附中高一期末)已知函数2(1)h x ax x=+(常数a R ∈). (1)当2a =时,用定义证明()y h x =在区间[]1,2上是严格增函数; (2)根据a 的不同取值,判断函数()y h x =的奇偶性,并说明理由;(3)令1()()2f x h x x a x=--+,设()f x 在区间[]1,2上的最小值为()g a ,求()g a 的表达式.【解析】(1)当2a =时,函数21()2f x x x =+,设[]12,1,2x x ∈且12x x <,则222221212121211111()()222()()f x f x x x x x x x x x -=+--=-+- 1221212121121212()()()[2()]x x x x x x x x x x x x x x -=-++=-+-, 因为12x x <,可得210x x -> 又由[]12,1,2x x ∈,可得()2111124,1x x x x +><,所以211112()0x x x x +->所以21()()0f x f x ->,即12()()f x f x <, 所以函数()y f x =是[]1,2上是严格增函数.(2)由函数21()f x ax x=+的定义域为(,0)(0,)-∞+∞关于原点对称, 当0a =时,函数1()f x x =,可得11()()f x f x x x-==-=--,此时函数()f x 为奇函数; 当0a ≠时,2211()()f x a x ax x x-=⋅-+=--,此时()()f x f x -≠-且()()f x f x -≠, 所以0a ≠时,函数()y f x =为非奇非偶函数.(3)2211()()2221f x h x x a ax x a ax x a x x x=--+=+--+=-+,当0a =时, ()f x x =-,函数()f x 在区间[1,2]的最小值为(2)2f =-; 当0a >时,函数的对称轴为:12x a=. 若112024a a ≥⇒<≤,()f x 在区间[1,2]的最小值为(2)62,()62f a g a a =-∴=-; 若11112242a a <<⇒<<,()f x 在区间[1,2]的最小值为 111()2,()2244f a g a a a a a=-+∴=-+; 若11122a a ≤⇒≥,()f x 在区间[1,2]的最小值为(1)31,()31f a g a a =-∴=-;当0a <时, 102x a=<,()f x 在区间[1,2]的最小值为(2)62,()62f a g a a =-∴=-. 综上所述:162,4111()2,442131,2a a g a a a aa a ⎧-≤⎪⎪⎪=-+<<⎨⎪⎪-≥⎪⎩;例12.(2022·全国·高一专题练习)已知函数()21f x x x a x R a R =+-+∈∈,,. (1)当1a =时,求函数()f x 的最小值 (2)求函数()f x 的最小值为()g a .【解析】(1)()22211121x x x f x x x x x x ⎧+≥=+-+=⎨-+<⎩,,, 由()()()2211124f x x x f x x x ⎛⎫=+⇒=+-≥ ⎪⎝⎭,可知()2f x ≥;由()()22172(1)24f x x x f x x x ⎛⎫=-+⇒=-+< ⎪⎝⎭,可知()74f x ≥.所以()min 1724f x f ⎛⎫== ⎪⎝⎭.(2)()2211x x a x af x x x a x a ⎧+-+≥=⎨-++<⎩,,,1)当12a ≥,()f x 在12⎛⎫-∞ ⎪⎝⎭,单调递减,在12a ⎛⎫ ⎪⎝⎭,单调递增,故()min 1324f x f a ⎛⎫==+ ⎪⎝⎭;2)当1122a -<<,()f x 在()a -∞,单调递减,在()a ∞+,单调递增,()()2min 1f x f a a ==+ , 3)当12a ≤-,()f x 在12⎛⎫-∞ ⎪⎝⎭,-单调递减,在12⎛⎫+∞ ⎪⎝⎭-,单调递增,()min 1324f x f a ⎛⎫=-=- ⎪⎝⎭;所以()23142111223142a a g a a a a a ⎧+≥⎪⎪⎪=+-<<⎨⎪⎪-≤-⎪⎩,,, 例13.(2022·全国·高一课时练习)已知函数()f x 是定义在R 上的偶函数,且当0x ≤时,()22f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示,请根据图象.(1)补充完整图象并写出函数()()f x x R ∈的增区间; (2)写出函数()()f x x R ∈的解析式;(3)若函数()()[]()211,2g x f x ax x =-+∈,求函数()g x 的最小值. 【解析】(1)因为函数()f x 是定义在R 上的偶函数,所以函数()f x 的图象关于y 轴对称,由对称性即可补充完整图象,如图所示:由图可知,函数()f x 的递增区间为(1,0)-和(1,)+∞;(2)根据题意,当0x >时,0x -<,所以22()()22f x x x x x -=--=-, 因为函数()f x 是定义在R 上的偶函数,所以()2()()20f x f x x x x =-=->,所以222,0()2,0x x x f x x x x ⎧+=⎨->⎩,(3)当[]1,2x ∈时,222()221(1)2g x x x ax x a a a =--+=----,对称轴为1x a =+,当11a +,即0a 时,()g x 在[]1,2上递增,所以()min ()12g x g a ==-; 当12a +,即1a 时,()g x 在[]1,2上递减,所以()min ()214g x g a ==-; 当112a <+<,即01a <<时,()g x 在[]1,1a +上递减,在[]1,2a +上递增,所以m n 2i ()(1)2g x a a g a =+=--,综上,函数()g x 的最小值2min2,0()2,0114,1a a g x a a a a a -⎧⎪=--<<⎨⎪-⎩. 例14.(2022·安徽·合肥市第十中学高一期中)设函数2()43f x x ax =-+ (1)函数f (x )在区间[1,3]有单调性,求实数a 的取值范围; (2)求函数f (x )在区间[1,3]上的最小值h (a ).【解析】(1)22()(2)34f x x a a =-+-,()f x 在区间[1,3]上单调,则21a ≤或23a ≥,所以12a ≤或32a ≥; (2)12a ≤时,21a ≤,()f x 在[1,3]上是增函数,()(1)44h a f a ==-, 1322a <<时,2()(2)34h a f a a ==-, 32a ≥时()f x 在[1,3]上是减函数,()(3)1212h a f a ==-, 综上,2144,213()34,2231212,2a a h a a a a a ⎧-≤⎪⎪⎪=-<<⎨⎪⎪->⎪⎩,题型三:定轴动区间型例15.(2022·全国·高一单元测试)已知函数()22f x x mx n =++的图象过点(0,1)-,且满足()()12f f -=.(1)求函数()f x 的解析式;(2)求函数()f x 在[],2a a +上的最小值;【解析】(1)因为函数2()2f x x mx n =++的图象过点(0,1)-,所以1n =- 又(1)(2)f f -=, 所以1224m-+=-, 解得2m =-,所以2()221f x x x =--;(2)2213()221222f x x x x ⎛⎫=--=--⎪⎝⎭,[,2]x a a ∈+,当122a +≤时,即32a ≤-时,函数()f x 在[],2a a +上单调递减,所以2min [()](2)263f x f a a a =+=++,当122a a <<+时,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,所以min 13[()]22f x f ⎛⎫==- ⎪⎝⎭;当12a ≥时,函数()f x 在[],2a a +上单调递增, 所以2min [()]()221f x f a a a ==--.综上:2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩例16.(2022·江苏·高一单元测试)二次函数()f x 满足()()12f x f x x +-=且()01f =. (1)求()f x 的解析式;(2)当[]11x ∈-,时,不等式()2f x x m >+恒成立,求实数m 的取值范围.(3)设函数()f x 在区间[]1a a +,上的最小值为()g a ,求()g a 的表达式. 【解析】(1)设()2f x ax bx c=++,0a ≠.则()()21(1)1f x a x b x c +=++++.从而,()()()(()221[1)12f x f x a x b x c ax bx c ax a b ⎤+-=++++-++=++⎦,又()()12f x f x x +-=,22101a a a b b ==⎧⎧∴⇒⎨⎨+==-⎩⎩, 又()01f c ==,()21f x x x ∴=-+.(2)因为当[]11x ∈-,时,不等式()2f x x m >+恒成立, 所以231m x x <-+在[]11x ∈-,上恒成立. 令()231g x x x =-+,[]11x ∈-,, ()min m g x ∴<.当[]11x ∈-,时,()231g x x x =-+单调递减,∴当1x =时,()()11min g x g ==-,所以1m <-. (3)当112a +≤,即12a ≤-时,()f x 在[]1a a +,单调递减,()2min ()11f x f a a a ∴=+=++;当112a a <<+,即1122a -<<时,则()f x 在12a ⎡⎤⎢⎥⎣⎦,单调递减,112a ⎛⎤+ ⎥⎝⎦,单调递增, min 13()24f x f ⎛⎫∴== ⎪⎝⎭;当12a ≥时,则()f x 在[]1a a +,单调递增, ()2min ()1f x f a a a ∴==-+.()2211,2311,42211,2a a a g a a a a a ⎧++≤-⎪⎪⎪∴=-<<⎨⎪⎪-+≥⎪⎩.例17.(2022·全国·高一期中)已知二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+.(1)求函数()f x 的解析式;(2)当[,2]x t t ∈+(R t ∈)时,求函数()f x 的最小值()g t (用t 表示).【解析】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+, 所以2c =,且22(1)(1)()21a x b x c ax bx c x ++++-++=+,由22(1)(1)()21a x b x c ax bx c x ++++-++=+,得221ax b a x ++=+,所以221a b a =⎧⎨+=⎩,得10a b =⎧⎨=⎩,所以2()2f x x =+.(2)因为2()2f x x =+是图象的对称轴为直线0x =,且开口向上的二次函数,当0t ≥时,2()2f x x =+在[,2]x t t ∈+上单调递增,则2min ()()2f x f t t ==+;当20t +≤,即2t ≤-时,2()2f x x =+在[,2]x t t ∈+上单调递减,则22min ()(2)(2)246f x f t t t t =+=++=++;当01t t <<+,即20t -<<时,min ()(0)2f x f ==,综上222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩例18.(2022·全国·高一专题练习)已知函数()222f x x ax =++.(1)当1a =时,求函数()f x 在区间[)23-,上的值域; (2)当1a =-时,求函数()f x 在区间[]1t t +,上的最大值;(3)求()f x 在[]55-,上的最大值与最小值. 【解析】(1)当1a =时,()()222211f x x x x =++=++,函数在[)21-,-上单调递减,在()1,3-上单调递增, ()()min 11317x f x f ∴===-,,,∴函数()f x 在区间[)23-,上的值域是[)1,17;(2)当1a =-时,()()222211f x x x x =-+=-+,12t ,函数()f x 在区间[]1t t +,上的最大值()()211f t t =-+; 12t ≥,函数()f x 在区间[]1t t +,上的最大值()211f t t +=+; ∴函数()f x 在区间[]1t t +,上的最大值221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,;(3)函数()()222222f x x ax x a a =++=++- 的对称轴为x a =-,①当5a -<-,即5a >时,函数y 在[]55-,上是增函数, 当5x =-时,函数y 取得最小值为2710a -;当5x =时,函数y 取得最大值为2710a +. ②当50a -≤<,即05a <≤时,当x a =-时,函数y 取得最小值为22-a ;当5x =时,函数y 取得最大值为2710a +. ③当05a ≤≤-,即50a ≤≤-时,x =-a 时,函数y 取得最小值为22a -;当5x =-时,函数y 取得最大值为2710a -.④当5a >-,即5a <-时,函数y 在[]55-,上是减函数, 故当5x =-时,函数y 取得最大值为2710a -;当5x =时,函数y 取得最小值为2710a +. 综上,当5a >时,函数的最大值为2710a +,最小值为2710a -,当05a <≤时,函数的最大值为2710a +,最小值为22-a ,当50a ≤≤-时,函数的最大值为2710a -,最小值为22a -,当5a <-时,函数的最大值为2710a -,最小值为2710a +例19.(2022·江苏南通·高一开学考试)已知关于x 的函数22 4.y x mx =-+ (1)当23x -≤≤时,求函数224y x mx =-+的最大值; (2)当23x -≤≤时,若函数最小值为2,求m 的值.【解析】(1)因为22224()4y x mx x m m =-+=-+-,对称轴为x m =,开口向上,若12m <,则当3x =时,函数224y x mx =-+有最大值为136m -, 若12m ≥,则当2x =-时,函数224y x mx =-+有最大值为84.m + (2)若2m <-,则当2x =-时函数224y x mx =-+有最小值为84m +,即842m +=,32m =-,不符合条件;若23m -≤≤,则当x m =时函数224y x mx =-+有最小值为242m -=, 可得2m =若3m >,则当3x =时函数224y x mx =-+有最小值为136m -, 即1362m -=,解得1136m =<,不符合条件; 综上,m 的值为 2.±例20.(2022·全国·高一专题练习)已知()f x 是二次函数,不等式()0f x <的解集是()05,,且()f x 在区间[]2-,4上的最大值是28. (1)求()f x 的解析式;(2)设函数()f x 在[]1x t t ∈+,上的最小值为()g t ,求()g t 的表达式. 【解析】(1)()f x 是二次函数,且()0f x <的解集是()05,,∴可设()()5(0)f x ax x a =>-,对称轴为 2.5x =,()f x ∴在区间[]24-,上的最大值是()214f a -=.由已知得14282a a =∴=,, ()()()225210f x x x x x x ∴=-=∈-R .(2)由(1)得()()22 2.512.5f x x =--,函数图象的开口向上,对称轴为 2.5x =(讨论对称轴 2.5x =与闭区间[] 1t t +,的相对位置) ①当1 2.5t +≤时,即 1.5t ≤时,()f x 在[] 1t t +,上单调递减,(对称轴在区间右侧) 此时()f x 的最小值()()()()22121101268g t f t t t t t =+=+-+=--;②当 2.5t ≥时,()f x 在[] 1t t +,上单调递增,(对称轴在区间左侧)此时()f x 的最小值()()2210g t f t t t ==-;③当1.5 2.5t <<时,函数()y f x =在对称轴处取得最小值(对称轴在区间中间)此时,()()2.512.5g t f ==-综上所述,得()g t 的表达式为:()22268 1.512.51.5 2.5210 2.5t t t g t t t t t ⎧--≤⎪=-<<⎨⎪-≥⎩,,,. 题型四:动轴动区间型例21.(2022·江苏·楚州中学高一期中)已知函数2()2(0)f x x ax a =-> (1)当2a =时,解关于x 的不等式3()5f x -<<(2)函数()y f x =在[],2t t +的最大值为0,最小值是-4,求实数a 和t 的值.【解析】(1)不等式为2345x x -<-<,即22450430x x x x ⎧--<⎨-+>⎩,由2450x x --<可得15x -<<;由2430x x -+>可得1x <或3x >, 故原不等式解集为()()1,13,5-⋃. (2)因为()()2222f x x ax x a a =-=--由于(0)(2)0f f a ==,由题意0=t 或22t a +=,若0t =时, 则1a t ≥+,且()()min 4f x f a ==-或()()min 24f x f ==-,当()24f a a =-=-时,2a =±,2a =-不满足题意,舍去;当()2444f a =-=-时,2a =;若22t a +=,则1a t ≤+,且()()min 4f x f a ==-或()()min 224f x f a =-=-当()24f a a =-=-时,2a =±,当2,2a t ==,符合题意; 当2a =-,与题设矛盾,故舍去;当()()()222222224f a a a a -=---=-时,2,2a t ==; 综上所述:2,0a t ==或2,2a t ==,符合题意.例22.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【解析】(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.例23.(2022·四川巴中·高一期中)已知a R ∈,函数()f x x x a =-. (1)设1a =,判断函数()f x 的奇偶性,请说明理由;(2)设0a ≠,函数()f x 在区间(),m n 上既有最大值又有最小值,请分别求出m ,n 的取值范围.(只要写出结果,不需要写出解题过程)【解析】(1)当1a =时,()22,11,1x x x f x x x x x x ⎧-≥=-=⎨-+<⎩,其图象如图所示:由图象知:函数()f x 既不是奇函数也不偶函数;(2)()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,当0a >时,由()224a x ax x a -=≥,解得12x +=,因为函数()f x 在区间(),m n 上既有最大值又有最小值, 如图所示:所以02a m ≤<,12a n +<≤, 当0a <时,由()224a x ax x a -+=-<,解得12x +=,因为函数()f x 在区间(),m n 上既有最大值又有最小值, 如图所示:12m a +≤<,02a n <≤.例24.(2022·江苏苏州·高一期末)已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值. 【解析】(1)因为f (x )为奇函数,所以f (﹣0)=﹣f (0), 所以f (0)=0,即n =0,所以f (x )=x |x ﹣m |, 又f (﹣1)=﹣f (1),所以|1﹣m |=|1+m |,解得m =0, 此时f (x )=x |x |,对∀x ∈R ,f (﹣x )=﹣x |x |=﹣f (x ), 所以f (x )为奇函数,故m =0.(2)f (x )=x |x ﹣1|+n =22,1,1x x n x x x n x ⎧-++⎨-+>⎩所以f (x )在10,2⎡⎤⎢⎥⎣⎦和[1,n ]上单调递增,在1,12⎡⎤⎢⎥⎣⎦上单调递减,其中211(),()24f n f n n =+=,2111212()()(24f n f n n n n +--=--=,令214n n >+得,12n +>12n +>1()()2f n f >,2max ()f x n =.121n +<≤时1()()2f n f ≤,所以max 1()4f x n =+,因此y =f (x )在[0,n ]上的最大值为2112,14212,n n n n ⎧++⎪⎪⎨+⎪⎪⎩.例25.(2022·浙江·磐安县第二中学高一开学考试)已知R a ∈,函数()f x x x a =-,(1)当2a =时,写出函数()y f x =的单调递增区间; (2)当2a >时,求函数()f x 在区间[]1,2上的最小值;(3)设0a ≠,函数()f x 在(),m n 上既有最大值又有最小值,请分别求出,m n 的取值范围(用a 表示)【解析】(1)当2a =时,(2),2()2(2),2x x x f x x x x x x -⎧=-=⎨-<⎩由二次函数的性质知,单调递增区间为(-∞,1],[2,)∞+.(2)因为2a >,[1x ∈,2]时,所以222()()()24a a f x x a x x ax x =-=-+=--+当3122a <,即23a <时,()min f x f =(2)24a =-当322a >,即3a >时,()min f x f =(1)1a =-∴24,23()1,3min a a f x a a -<⎧=⎨->⎩ (3)(),()(),x x a x a f x x a x x a -⎧=⎨-<⎩①当0a >时,图象如上图左所示由24()a y y x x a ⎧=⎪⎨⎪=-⎩得(21)a x +=02a m <,212a n a +<②当0a <时,图象如上图右所示由24()a y y x a x ⎧=-⎪⎨⎪=-⎩得(12)x +=∴12m a +<,02a n < 例26.(2022·全国·高一课时练习)已知函数()()2222f x x a x a =-++,()()22228g x x a x a =-+--+.设()()(){}1max ,H x f x g x =,()()(){}2min ,H x f x g x =.记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=______.【答案】16-【解析】()()2244f x x a a =-+--⎡⎤⎣⎦,()()22124g x x a a =---+-⎡⎤⎣⎦, 令()()f x g x =,得2x a =+或2=-x a .因为()()(){}1max ,H x f x g x =,()()(){}2min ,H x f x g x =,所以()1H x 的最小值(2)44A f a a =+=--,()2H x 的最大值(2)124B g a a =-=-, 所以()()4412416A B a a -=----=-. 故答案为:16-.例27.(2022·浙江·温州市第二十二中学高一开学考试)函数()f x x x a =-, (1)若()f x 在R 上是奇函数,求a 的值;(2)当2a =时,求()f x 在区间(0,4]上的最大值和最小值;(3)设0a >,当m x n <<时,函数()f x 既有最大值又有最小值,求m n 、的取值范围(用a 表示) 【解析】(1)因为()f x 在R 上是奇函数,所以()()f x f x -=-恒成立,即x x a x x a -+=--恒成立.所以x a x a +=-恒成立, 所以0a =.(2)当2a =时,()()222,(02)22,24x x x f x x x x x x ⎧-+<≤⎪=-=⎨-<≤⎪⎩ 函数22y x x =-+在()0,1上单调递增,在()1,2上单调递减,所以22y x x =-+在(]0,2上的值得范围为[]0,1,其中2x =时,()0f x =, 函数22y x x =-在(]2,4上单调递增,所以函数22y x x =-在(]2,4上的值域为(]0,8,其中当4x =时,()8f x =; 所以当4x =时,max ()8f x =,当2x =时,min ()0f x =.(3)()()()22,,x ax x a f x x x a x ax x a ⎧-+≤⎪=-=⎨->⎪⎩ 因为0a >,所以函数2y x ax =-+在,2a ⎛⎫-∞ ⎪⎝⎭上单调递增,在,2a a ⎛⎫⎪⎝⎭上单调递减,函数2y x ax =-在(),a +∞上单调递增,当2a x =时,24a y =当x a >时,令224a x ax -=,可得12x +=因为当0a >,m x n <<时,函数()f x 既有最大值又有最小值, 所以120,2m a a n +<<≤≤. 题型五:根据二次函数的最值求参数例28.(2022·全国·高一专题练习)已知抛物线2y x bx c =-++与x 轴的一个交点为(1,0)-,且经过点(2,)c .(1)求抛物线与x 轴的另一个交点坐标.(2)当2t x t ≤≤-时,函数的最大值为M ,最小值为N ,若3M N -=,求t 的值. 【解析】(1)方法一:∵抛物线经过(2,c )和(0,c ), ∴抛物线的对称轴为直线1x =, ∴(-1,0)的对称点为(3,0),即抛物线与x 轴的另一个交点坐标为(3,0);方法二:将(-1,0),(2,c )分别代入2y x bx c =-++得0142b c c b c =--+⎧⎨=-++⎩,解得23b c =⎧⎨=⎩, ∴抛物线的表达式为2y x 2x 3=-++,令0y =得,2023x x =-++,解得11x =-,23x =, ∴抛物线与x 轴的另一个交点坐标为(3,0). (2)∵2t t ≤-,∴1t ≤,21t -≥,∴当2t x t ≤≤-时,当1x =时取得最大值4,即4M =,当x t =或2x t =-时取得最小值N , ∵3M N -=,∴1N =,令1y =得,2123x x =-++,解得131x =(舍去),231x =-, ∴31t =-.例29.(2022·全国·高一专题练习)若函数f (x )=ax 2+2ax +1在[-1,2]上有最大值4,则a 的值为( ) A .38B .-3C .38或-3D .4【答案】C【解析】由题意得f (x )=a (x +1)2+1-a .①当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;②当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得38a =;③当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3. 故选:C .例30.(2022·全国·高一课时练习)函数()f x x x a =-在区间()0,1上既有最大值又有最小值,则实数a 的取值范围是( ) A .)222,0⎡-⎣B .()0,222C .2⎡⎫⎪⎢⎪⎣⎭D .)222,1⎡⎣【答案】D【解析】易得函数()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,若0a =,则()22,0,0x x f x x x ⎧≥=⎨-<⎩,且函数()f x 在()0,1上单调递增,所以函数()f x 在()0,1上无最值.若0a <,作出函数()f x 的大致图像,如图1所示,易得函数()f x 在区间()0,1上无最值.若0a >,作出函数()f x 的大致图像,如图2所示,要使函数()f x 在区间()0,1上既有最大值又有最小值,则()0112a a f f <<⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,即2201122a a a a <<⎧⎪⎨⎛⎫-≤-+ ⎪⎪⎝⎭⎩,解得:2221a ≤<. 综上,实数a 的取值范围是)222,1⎡⎣.故选: D.例31.(2022·上海交大附中高一阶段练习)已知二次函数[]224,0,y x x x m =-+∈的最小值是3,最大值是4,则实数m 的取值范围是___________. 【答案】[]1,2【解析】二次函数()2224133y x x x =-+=-+≥, 由2244x x -+=解得0x =或2x =,画出二次函数()2240y x x x =-+≥的图象如下图所示,由图可知,m 的取值范围是[]1,2. 故答案为:[]1,2例32.(2022·湖北黄石·高一期末)已知函数21()2f x x x =-+.若()f x 的定义域为[,]m n ,值域为[2,2]m n ,则m n +=__________. 【答案】2-【解析】因为()22111()1222f x x x x =-+=--+,对称轴为1x =,当1m n ≤<时:()f x 在[,]m n 上单调递减,所以221()221()22f m m m n f n n n m⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,无解;当1m n <≤时:()f x 在[,]m n 上单调递增,所以221()221()22f m m m m f n n n n⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,解得:2m =-或0m =,2n =-或0n =,又1m n <≤,所以2m =-,0n =; 当1m n <<时:()f x 在[,1]m 上单调递增,在[1,]n 上单调递减,此时111(1)12224f n n =-+==⇒=,与1n >矛盾;综上所述:2m =-,0n =,此时2m n +=- 故答案为:2-. 【过关测试】 一、单选题1.(2022·甘肃·民勤县第一中学高一阶段练习)有如下命题:①若幂函数()y f x =的图象过点12,2⎛⎫⎪⎝⎭,则()132f >; ②函数()()110,1x f x a a a -=+>≠的图象恒过定点()1,2; ③函数()1221log f x x x =--有两个零点; ④若函数()224f x x x =-+在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2.其中真命题的序号为( ). A .①②B .②④C .①④D .②③【答案】B【解析】①设幂函数为()a f x x =,因为()y f x =的图象过点12,2⎛⎫ ⎪⎝⎭,所以122a=,解得1a =-,则()1f x x =,在(),0∞-上递减,在()0,∞+上递减,所以()()1322f f <=,故错误; ②令10x -=,解得1x =,此时2y =,所以函数()()110,1x f x a a a -=+>≠的图象恒过定点()1,2,故正确; ③令()1221log 0f x x x =--=,得1221log x x -=,在同一坐标系中作出1221,log y x y x =-=的图象,如图所示,由图象知:1221,log y x y x =-=有1个交点,即函数()1221log f x x x =--有1个零点,故错误; ④函数()224f x x x =-+的图象,如图所示:,由图象知:若()f x 在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2,故正确. 故选:B2.(2022·全国·高一专题练习)若函数2()23f x x bx a =-+在区间[0,1]上的最大值是M ,最小值m ,则M m -( )A .与a 无关,且与b 有关B .与a 有关,且与b 无关C .与a 有关,且与b 有关D .与a 无关,且与b 无关【答案】A【解析】函数2()23f x x bx a =-+的图象开口朝上,且对称轴为直线x b =, ①当1b >时,()f x 在[0,1]上单调递减,则(0)3M f a ==,()1123m f b a ==-+, 此时21M m b -=-,故M m -的值与a 无关,与b 有关,②当0b <时,()f x 在[0,1]上单调递增,则(1)123M f b a ==-+,()03m f a ==, 此时12M m b -=-,故M m -的值与a 无关,与b 有关,③当01b ≤≤时,()23m f b a b ==-,若102b ≤≤时,(1)(0)f f ≥,有(1)123M f b a ==-+,221M m b b ∴-=-+,故M m -的值与a 无关,与b 有关, 若12b >时,(1)(0)f f <,有(0)3M f a ==, 2M m b ∴-=,故M m -的值与a 无关,与b 有关, 综上:M m -的值与a 无关,与b 有关. 故选:A.3.(2022·河南·郏县第一高级中学高一开学考试)已知()f x 为奇函数,且当0x >时,2()42f x x x =-+,则()f x 在区间[]4,2--上( ) A .单调递增且最大值为2 B .单调递增且最小值为2 C .单调递减且最大值为-2 D .单调递减且最小值为-2【答案】A【解析】因为2()42f x x x =-+的图象开口向上,且对称轴为2x =,所以()f x 在区间[2,4]上单调递增,最小值为(2)2f =-,最大值为(4)2f =, 又因为()f x 是奇函数,所以()f x 在区间[]4,2--上单调递增,且最小值为-2,最大值为2. 故选:A4.(2022·黑龙江·哈尔滨德强学校高一期中)已知函数()22f x x x a a =-++在区间[0,2]上的最大值是1,则a 的取值范围是( ) A .10,2⎡⎤⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .110,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】将函数()()()22211f x x x a a x a a =-++=-+-+的图象向左平移一个单位,得到函数()21g x x a a =+-+.则()f x 在区间[0,2]上的最大值是1,只需函数()g x 在区间[-1,1]上的最大值是1. 由11x -≤≤,201x ≤≤,当10a -≥,1a ≥时,()22121211g x x a a x a a =+-+=+-≥-≥,此时函数()g x 的最小值为1,不合题意;当11a -≤-,0a ≤时,()()22111g x x a a x =-+-+=-+≤,符合题意;当110a -<-<,01a <<时,()()()22221,011,11x a a x a g x x a a a x ⎧-+-+≤≤-⎪=⎨+-+-<≤⎪⎩,化简得()22221,0121,11x x a g x x a a x ⎧-≤≤-=⎨+--<≤⎩ 又由当201x a ≤≤-时,根据二次函数的性质,()g x 的值域为()()2111a g x --≤≤,当211a x -<≤时,()()21212a a g x a -+-≤≤,必有21a ≤,可得102a <≤. 综上,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.故选:B.5.(2022·湖北·恩施土家族苗族高中高一阶段练习)已知函数2y x ax b =++(,R a b ∈)的最小值为0,若关于x 的不等式2x ax b c 的解集为{}|4x m x m <<+,则实数c 的值为( ) A .9 B .8 C .6 D .4【答案】D【解析】∵函数2y x ax b =++(,R a b ∈)的最小值为0, ∴2404b a -=,∴24a b =, ∴函数222224a y x ax b x ax x a ⎛⎫=++=++=+ ⎪⎝⎭,其图像的对称轴为2a x =-.∵不等式2x ax b c 的解集为{}|4x m x m <<+, ∴方程2204a c x ax ++-=的根为m ,4m +,∴4m m a ++=-,解得42a m --=,22a m ∴+=-, 又∵2204a m am c ++-=,∴222442a a c m am m ⎛⎫=++=+= ⎪⎝⎭.故A ,B ,C 错误.故选:D .6.(2022·河南·濮阳一高高一期中(理))已知定义域为R 的函数()f x 满足()()13f x f x +=,且当(]01x ∈,时,()()41f x x x =-,则当(]20x ∈-,时,()f x 的最小值为( ) A .181-B .127-C .19-D .13-【答案】D【解析】当(]01x ∈,时,()()22141444()12f x x x x x x =-=-=--,易知当12x =时,min ()1f x =-, 因为()()13f x f x +=,所以()()113f x f x -=, 所以当()10x ∈-,时,()min 11133y =⨯-=-;当(]21x ∈--,时,()2min 11()139y =⨯-=-,综上,当(]20x ∈-,时,min 13y =-.故选:D .7.(2022·河北省博野中学高一开学考试)已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两个实数根,则(m +2)(n +2)的最小值是( ). A .7 B .11 C .12 D .16【答案】D【解析】∵m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两个实数根, ∴m +n =2t ,mn =t 2﹣2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t +4)=8t ﹣16≥0, ∴t ≥2,∴(t +1)2+7≥(2+1)2+7=16. 故选:D .8.(2022·陕西商洛·高一期末)若函数()2f x x bx c =++满足()10f =,()18f -=,则下列判断错误的是( ) A .1b c +=-B .()30f =C .()f x 图象的对称轴为直线4x =D .f (x )的最小值为-1【答案】C【解析】由题得1018b c b c ++=⎧⎨-+=⎩,解得4b =-,3c =,所以()()224321f x x x x =-+=--, 因为(1)0,1f b c =∴+=-,所以选项A 正确;所以(3)=0f ,所以选项B 正确;因为min ()1f x =-,所以选项D 正确; 因为()f x 的对称轴为2x =,所以选项C 错误. 故选:C 二、多选题9.(2022·全国·高一课时练习)设函数()21,21,ax x af x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( ) A .2 B .-1 C .0 D .1【答案】BC【解析】当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.10.(2022·全国·高一课时练习)定义在R 上的奇函数()f x 在(),0∞-上的解析式()()1f x x x =+,则()f x 在[)0,∞+上正确的结论是( ) A .()00f = B .()10f =C .最大值14D .最小值14-【答案】ABC【解析】由题可知,函数()f x 为定义在R 上的奇函数,则()()f x f x -=-, 已知()f x 在(),0∞-上的解析式()()1f x x x =+,则当0x >时,0x -<,则()()()1f x x x f x -=--=-,所以当[)0,x ∈+∞时,()()2211124f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,可知()00f =,()10f =,且最大值为14,无最小值,所以()f x 在[)0,∞+上正确的结论是ABC. 故选:ABC.11.(2022·浙江省龙游中学高一期中)已知函数()221f x x mx =-+,则下列结论有可能正确的是( )A .()f x 在区间[]1,2上无最大值B .()f x 在区间[]1,2上最小值为()f mC .()f x 在区间[]1,2上既有最大值又有最小值D .()f x 在区间[]1,2上最大值()1f ,有最小值()2f 【答案】BCD【解析】二次函数()f x 图象的对称轴为直线x m =.①当1m 时,函数()f x 在区间[]1,2上单调递增,则()()min 1f x f =,()()max 2f x f =; ②当12m <<时,函数()f x 在区间[)1,m 上单调递减,在区间(],2m 上单调递增,则()()min f x f m =,()()(){}()()max31,22max 1,232,12f m f x f f f m ⎧≤<⎪⎪==⎨⎪<<⎪⎩;③当2m ≥时,函数()f x 在区间[]1,2上单调递减,此时()()max 1f x f =,()()min 2f x f =. 故A 错误,BCD 可能正确. 故选:BCD.12.(2022·全国·高一单元测试)若[]()()11,9f x x x =+∈,()22()()g x f x f x =+,那么( )A .()g x 有最小值6B .()g x 有最小值12C .()g x 有最大值26D .()g x 有最大值182【答案】AC【解析】因为[]()()11,9f x x x =+∈,()22()()g x f x f x =+,所以21919x x ≤≤⎧⎨≤≤⎩,解得13x ≤≤,即函数()g x 的定义域为[]1,3, 所以()22221322222()112g x x x x x x ⎛⎫++=++ ⎪⎝⎭=+++=,所以()213222g x x ⎛⎫=++ ⎪⎝⎭在[]1,3上单调递增,所。

二次函数中的线段最值问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

二次函数中的线段最值问题(解析版)-2023年中考数学重难点解题大招复习讲义-函数

例题精讲【例1】.如图,已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B左侧),与y 轴交于点C,连接BC,点P是线段BC上方抛物线上一点,过点P作PM⊥BC于点M,求线段PM的最大值.解:过P点作PQ∥y轴交BC于Q,如图,当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则B(3,0),A(﹣1,0),当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线BC的解析式为y=kx+b,把B(3,0),C(0,3)代入得,,解得,∴直线BC的解析式为y=﹣x+3,∵OB=OC=3,∴△OBC为等腰直角三角形,∴∠OCB=45°,∵PQ∥y轴,∴∠PQM=45°,∵PM⊥BC,∴△PMQ为等腰直角三角形,∴PM=PQ,设P(t,﹣t2+2t+3)(0<t<3),则Q(t,﹣t+3),∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∴PM=(﹣t2+3t)=﹣(t﹣)2+,当t=时,PM的最大值为.变式训练【变1-1】.如图,抛物线y=x2+bx+c经过点B(3,0)、C(0,﹣2),直线L:y=﹣x ﹣交y轴于点E,且与抛物线交于A、D两点,P为抛物线上一动点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线L下方时,过点P作PN∥y轴交L于点N,求PN的最大值.(3)当点P在直线L下方时,过点P作PM∥x轴交L于点M,求PM的最大值.解:(1)把B(3,0),C(0,﹣2)代入y=x2+bx+c得,,∴∴抛物线的解析式为:y=x2﹣x﹣2;(2)设P(m,m2﹣m﹣2),∵PN∥y轴,N在直线AD上,∴N(m,﹣m﹣),∴PN=﹣m﹣﹣m2+m+2=﹣m2+m+.∴当m=时,PN的最大值是;(3)设P(m,m2﹣m﹣2),∵PM∥x轴,M在直线AD上,M与P纵坐标相同,把y=m2﹣m﹣2,代入y=﹣x﹣中,得x=﹣m2+2m+2∴M(﹣m2+2m+2,m2﹣m﹣2)∴PM=﹣m2+2m+2﹣m=﹣m2+m+2∴当m=时,PM的最大值是.【变1-2】.如图,抛物线y=+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)线段BC上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值.解:(1)抛物线y=﹣+mx+n与x轴交于A,B两点,与y轴交于点C,A(﹣1,0),C(0,2).∴,解得:,故抛物线解析式为:y=﹣x2+x+2;(2)令y=0,则﹣x2+x+2=0,解得x1=﹣1,x2=4,∴B(4,0),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=﹣x+2,设P(m,﹣m+2);则Q(m,﹣m2+m+2),则PQ=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2,此时PQ的最大值为2.【例2】.已知:如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D.(1)求此函数的关系式;(2)在对称轴上找一点P,使△BCP的周长最小,求出P点坐标;(3)在AC下方的抛物线上有一点N,过点N作直线l∥y轴,交AC与点M,当点N坐标为多少时,线段MN的长度最大?最大是多少?解:(1)如图1,∵OA=OC=3,∴A(﹣3,0),C(0,﹣3),∵抛物线y=x2+bx+c经过点A(﹣3,0),C(0,﹣3),∴将A(﹣3,0),C(0,﹣3),分别代入抛物线y=x2+bx+c,得,解得.故此抛物线的函数关系式为:y=x2+2x﹣3;(2)如图,连接AP,BP,BC,AC,AC与抛物线对称轴交于点P′,∵抛物线的解析式为:y=x2+2x﹣3,∴抛物线的对称轴为直线x=﹣1,∵B是抛物线与x轴的另一个交点,A(﹣3,0),∴B(1,0),∴BC===,∵点A,B关于抛物线对称轴对称,∴AP=BP,∴PB+PC的最小值即为PA+PC的最小值,此时PA+PC+BC最小,即△BCP的周长最小,∴当P、A、C三点共线时,△BCP的周长最小,即P在P′所在的位置,设直线AC的解析式为y=kx+b1,∴,解得:,∴直线AC的解析式为:y=﹣x﹣3,∴当x=﹣1时,y=﹣2,∴点P的坐标为(﹣1,﹣2);(3)如图3,设N(t,t2+2t﹣3),则M(t,﹣t﹣3),∴MN=﹣t﹣3﹣(t2+2t﹣3)=﹣t2﹣3t=﹣(t+)2+,∵﹣1<0,∴当t=﹣,即点N的坐标为(﹣,)时,线段MN的长度最大,最大值为.变式训练【变2-1】.如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.解:(1)∵B点坐标为(1,0),∴OB=1,又∵OA=OC=3OB,∴OA=OC=3,∴A(﹣3,0),C(0,﹣3),将A,B,C三点代入解析式得,,解得,∴抛物线的解析式为:y=x2+2x﹣3;(2)由(1)知抛物线的解析式为y=x2+2x﹣3,∴对称轴为直线x=﹣=﹣1,当x=﹣1时,y=(﹣1)2+2×(﹣1)﹣3=﹣4,∴D点的坐标为(﹣1,﹣4),∴|AD|==2,|AC|==3,|CD|==,∵|AD|2=|AC|2+|CD|2,∴△ACD是直角三角形,S△ABC=|AC|•|CD|=×=3;(3)设直线AC的解析式为y=sx+t,代入A,C点坐标,得,解得,∴直线AC的解析式为y=﹣x﹣3,如右图,过点P作y轴的平行线交AC于点H,∵OA=OC,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHE=∠OCA=45°,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),∴PH=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x,∴PE=PH•sin∠PHE=(﹣x2﹣3x)×=﹣(x+)2+,∴当x=﹣时,PE有最大值为,此时P点的坐标为(﹣,﹣).【变2-2】.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P 在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD边上的高为?若存在,直接写出点Q的坐标;若不存在,请说明理由.解:(1)由二次函数顶点C(1,4),设y=a(x﹣1)2+4,将B(3,0)代入得:4a+4=0,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3,答:二次函数的解析式为y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中,令x=0得y=3,∴D(0,3),设直线BD解析式为y=kx+3,将B(3,0)代入得:3k+3=0,解得k=﹣1,∴直线BD解析式为y=﹣x+3,设P(m,﹣m+3),则M(m,﹣m2+2m+3),∴PM=﹣m2+2m+3+m﹣3=﹣m2+3m=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PM取最大值,最大值为;(3)存在点Q,使△BDQ中BD边上的高为,理由如下:过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,如图:设Q(x,﹣x2+2x+3),则G(x,﹣x+3),∴QG=|﹣x2+2x+3﹣(﹣x+3)|=|﹣x2+3x|,∵OB=OD,∴∠OBD=45°,∴∠BGE=45°=∠QGH,∴△QGH是等腰直角三角形,当△BDQ中BD边上的高为时,即QH=HG=,∴QG=2,∵点Q在第一象限,QG=|﹣x2+3x|,∴﹣x2+3x=2,解得x=1或x=2,∴Q(1,4)或(2,3),综上可知存在满足条件的点Q,坐标为(1,4)或(2,3).1.已知抛物线的顶点A(﹣1,4),且经过点B(﹣2,3),与x轴分别交于C,D两点.(1)求直线OB和该抛物线的解析式;(2)如图1,点M是抛物线上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,求MN的最大值;(3)如图2,AE∥x轴交x轴于点E,点P是抛物线上A、D之间的一个动点,直线PC、PD与AE分别交于F、G,当点P运动时,求tan∠PCD+tan∠PDC的值.解:(1)设直线OB的解析式为y=kx,∵B(﹣2,3),∴﹣2k=3,∴k=﹣,∴直线OB的解析式为y=﹣x,∵抛物线的顶点为A(﹣1,4),∴设抛物线对应的函数表达式为y=a(x+1)2+4.将B(﹣2,3)代入y=a(x+1)2+4,得:3=a+4,解得:a=﹣1,∴抛物线对应的函数表达式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3.(2)设M(t,﹣t2﹣2t+3),MN=s,则N的横坐标为t﹣s,纵坐标为﹣(t﹣s),∵,∴x1=﹣2,x2=,∵点M是直线OB的上方抛物线上的点,∴﹣2<t<,∵MN∥x轴,∴﹣t2﹣2t+3=﹣(t﹣s),∴s=﹣+2=﹣,∵﹣2<t<,∴当t=﹣时,MN的最大值为;(3)解:过点P作PQ∥y轴交x轴于Q,设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,CQ=t+3,DQ=1﹣t,∴tan∠PCD+tan∠PDC=,=,=,=1﹣t+t+3,=4.2.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种情况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);②当PB=BN时,即=,解得:n=±,此时点P的坐标为(2,﹣)或(2,);③当PN=BN时,即=,解得:n=,此时点P的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,)、(2,﹣)、(2,)、(2,)或(2,).3.已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M 的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.解:(1)由抛物线的顶点D的坐标(﹣1,4)可设其解析式为y=a(x+1)2+4,将点C(﹣3,0)代入,得:4a+4=0,解得a=﹣1,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)连接BC,交DH于点M,此时△ABM的周长最小,当y=0时,﹣(x+1)2+4=0,解得x=﹣3或x=1,则A(1,0),C(﹣3,0),当x=0时,y=3,则B(0,3),设直线BC的解析式为y=kx+b,将B(0,3),C(﹣3,0)代入得,解得:,∴直线BC解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,所以点M坐标为(﹣1,2);(3)由题意知E(m,﹣m2﹣2m+3),F(m,m+3),则EF=EP﹣FP=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∴当m=﹣时,线段EF最长.4.在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.解:(1)∵直线y=mx﹣2m与x轴,y轴分别交于A,B两点,∴A(2,0),B(0,﹣2m);∵y=﹣(x﹣m)2+2,∴抛物线的顶点为D(m,2),令x=0,则y=﹣m2+2,∴C(0,﹣m2+2).①当m=2时,﹣2m=﹣4,﹣m2+2=﹣2,∴B(0,﹣4),C(0,﹣2),D(2,2).②由上可知,直线AB的解析式为:y=2x﹣4,抛物线的解析式为:y=﹣x2+4x﹣2.如图,过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,∴P(t,﹣t2+4t﹣2),E(t,2t﹣4).∴PE=﹣t2+4t﹣2﹣(2t﹣4)=﹣t2+2t+2,∴△PAB的面积为:×(2﹣0)×(﹣t2+2t+2)=﹣(t﹣1)2+3,∵﹣1<0,∴当t=1时,△PAB的面积的最大值为3.此时P(1,1).(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①∵y轴上有一点M(0,m),点C在线段MB上,∴需要分两种情况:当m≥﹣m2+2≥﹣2m时,可得≤m≤1+,当m≤﹣m2+2≤﹣2m时,可得﹣3≤m≤1﹣,∴m的取值范围为:≤m≤1+或﹣3≤m≤1﹣.②当≤m≤1+时,∵BC=﹣m2+2﹣(﹣2m)=﹣m2+2m+2=﹣(m﹣1)2+3,∴当m=1时,BC的最大值为3;当m≤﹣m2+2≤﹣2m时,即﹣3≤m≤1﹣,∴BC=﹣2m﹣(﹣m2+2)=m2﹣2m﹣2=(m﹣1)2﹣3,当m=﹣3时,点M与点C重合,BC的最大值为13.∴当m=﹣3时,BC的最大值为13.5.如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO =BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.解:(1)在抛物线y=ax2+bx+3中,令x=0,得y=3,∴C(0,3),∴CO=3,∵CO=BO,∴BO=3,∴B(3,0),∵A(﹣1,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),∴,解得:,∴直线BC的解析式为y=﹣x+3,∵抛物线y=﹣x2+2x+3的顶点D坐标为(1,4),∴当x=1时,y=﹣1+3=2,∴E(1,2),∴DE=2;(3)∵PF∥DE,∴∠CED=∠CFP,当=时,△PCF∽△CDE,由D(1,4),C(0,3),E(1,2),利用勾股定理,可得CE==,DE=4﹣2=2,设点P坐标为(t,﹣t2+2t+3),点F坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,CF==t,∴=,∵t≠0,∴t=2,当t=2时,﹣t2+2t+3=﹣22+2×2+3=3,∴点P坐标为(2,3).6.如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m 的代数式表示n,并求出n的最大值.解:(1)①四边形OABC是边长为3的正方形,∴A(3,0),B(3,3),C(0,3);②把A(3,0),C(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:;(2)∵AP⊥PM,∴∠APM=90°,∴∠APB+∠CPM=90°,∵∠B=∠APB+∠BAP=90°,∴∠BAP=∠CPM,∵∠B=∠PCM=90°,∴△MCP∽△PBA,∴=,即=,∴3n=m(3﹣m),∴n=﹣m2+m=﹣(m﹣)2+(0≤m≤3),∵﹣<0,∴当m=时,n的值最大,最大值是.7.已知二次函数y=x2﹣x﹣2的图象和x轴相交于点A、B,与y轴相交于点C,过直线BC 的下方抛物线上一动点P作PQ∥AC交线段BC于点Q,再过P作PE⊥x轴于点E,交BC于点D.(1)求直线AC的解析式;(2)求△PQD周长的最大值;(3)当△PQD的周长最大时,在y轴上有两个动点M、N(M在N的上方),且MN=1,求PN+MN+AM的最小值.解:(1)对于二次函数y=x2﹣x﹣2,令x=0得y=﹣2,令y=0,得x2﹣x﹣2=0,解得x=﹣1或2,∴A(﹣1,0),B(2,0),C(0,﹣2),设直线AC的解析式为y=kx+b,则有,解得,∴直线AC的解析式为y=﹣2x﹣2.(2))∵B(2,0),C(0,﹣2),∴直线BC的解析式为y=x﹣2,OB=OC=2,∴∠OCB=∠OBC=45°,∵PE⊥x轴,∴∠DEB=90°,∴∠EDB=∠QDP=∠EBD=45°,∵PQ∥AC,∴∠PQC=∠ACQ,∴∠PQD,∠PDQ是定值,∴PD最长时,△PDQ的最长最大,设P(m,m2﹣m﹣2),则D(m,m﹣2),∴PD=m﹣2﹣(m2﹣m﹣2)=﹣m2+2m=﹣(m﹣1)2+1,∵﹣1<0,∴m=1时,PD的值最大,PD最大值为1,此时P(1,﹣2),D(1,﹣1),∴直线PQ的解析式为y=﹣2x,由,解得,∴Q(,﹣),∴PD=1,PQ=,DQ=,∴△PDQ的最长的最大值为1++.(3)如图2中,作PP′∥y轴,使得PP′=MN=1,连接AP′交y轴于M,此时PN+NM+AM的值最小.由(2)可知P(1,﹣2),∴P′(1,﹣1),∵A(﹣1,0),∴直线AP′的解析式为y=﹣x﹣,∴M(0,﹣),N(0,﹣),∴AM==,PN==,∴AM+MN+PN的最小值为+1.8.如图,抛物线y=ax2﹣3ax﹣4a(a<0)与x轴交于A,B两点,直线y=x+经过点A,与抛物线的另一个交点为点C,点C的横坐标为3,线段PQ在线段AB上移动,PQ =1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D,G.(1)求抛物线的解析式;(2)当四边形DEFG为平行四边形时,求出此时点P、Q的坐标;(3)在线段PQ的移动过程中,以D、E、F、G为顶点的四边形面积是否有最大值,若有求出最大值,若没有请说明理由.解:(1)∵点C的横坐标为3,∴y=×3+=2,∴点C的坐标为(3,2),把点C(3,2)代入抛物线,可得2=9a﹣9a﹣4a,解得:a=,∴抛物线的解析式为y=;(2)设点P(m,0),Q(m+1,0),由题意,点D(m,m+)m,E(m,),G(m+1,m+1),F(m+1,),∵四边形DEFG为平行四边形,∴ED=FG,∴()﹣(m+)=()﹣(m+1),即=,∴m=0.5,∴P(0.5,0)、Q(1.5,0);(3)设以D、E、F、G为顶点的四边形面积为S,由(2)可得,S=()×1÷2=(﹣m2+m+)=,∴当m=时,S最大值为,∴以D、E、F、G为顶点的四边形面积有最大值,最大值为.9.如图所示,二次函数y=ax2﹣x+c的图象经过点A(0,1),B(﹣3,),A点在y 轴上,过点B作BC⊥x轴,垂足为点C.(1)求直线AB的解析式和二次函数的解析式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)点N是二次函数图象上一点(点N在AB上方),是否存在点N,使得BM与NC 相互垂直平分?若存在,求出所有满足条件的N点的坐标;若不存在,说明理由.解:(1)设直线AB的解析式为:y=kx+b,∴,∴,∴直线AB的解析式为:y=﹣x+1;把A(0,1),B(﹣3,)代入y=ax2﹣x+c得,,∴二次函数的解析式为:y=﹣x2﹣x+1;(2)设点N的坐标为(m,﹣m2﹣m+1)(﹣3<m<0),则点M的坐标为(m,﹣m+1),∴MN=﹣m2﹣m+1﹣(﹣m+1)=﹣m2﹣m+1=﹣(m+)2+,∴当m=﹣时,MN取最大值,最大值为;(3)假设存在,设点N的坐标为(m,﹣m2﹣m+1)(﹣3<m<0),连接BN、CM,如图所示.若要BM与NC相互垂直平分,只需四边形BCMN为菱形即可.∵点B坐标为(﹣3,),点C的坐标为(﹣3,0),∴BC=.∵四边形BCMN为菱形,∴MN=﹣m2﹣m=BC=,解得:m1=﹣2,m2=﹣1.当m=﹣2时,点N的坐标为(﹣2,),∴BN==,BC=,BN≠BC,故m=﹣2(舍去);当m=﹣1时,点N的坐标为(﹣1,4),∴BN==,BC=,BN=BC,∴点N(﹣1,4)符合题意.故存在点N,使得BM与NC相互垂直平分,点N的坐标为(﹣1,4).10.如图所示,抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图,直线BC下方的抛物线上有一点D,过点D作DE⊥BC于点E,作DF平行x轴交直线BC点F,求△DEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P 是抛物线上一点,且位于抛物线对称轴的右侧,是否存在以点P、M、N、Q为顶点且以PM为边的正方形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.解:(1)∵抛物线y=ax2+bx﹣3交x轴交于A(﹣1,0),B(3,0)两点,∴解得:∴抛物线的解析式为y=x2﹣2x﹣3(2)∵抛物线y=x2﹣2x﹣3与y轴交于点C∴点C坐标为(0,﹣3)∴直线BC解析式为:y=x﹣3∵点B(3,0),点C(0,﹣3)∴OB=OC=3,∴∠OBC=∠OCB=45°∵DF∥AB,∴∠EFD=45°=∠OBC,∵DE⊥BC,∴∠EFD=∠EDF=45°,∴DE=EF,∴DF=EF,∴EF=DE=DF,∴△DEF周长=DE+EF+DF=(1+)DF,设点D(a,a2﹣2a﹣3),则F(a2﹣2a,a2﹣2a﹣3)∴DF=a﹣a2+2a=﹣a2+3a=﹣(a﹣)2+∴当a=时,DF有最大值为,即△DEF周长有最大值为(1+)×=,(3)存在,如图1,过点M作GH⊥OC,过点P作PH⊥GH,连接MN,PM,∵抛物线的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4∴点M(1,4)∵以点P、M、N、Q为顶点且以PM为边的正方形,∴PM=MN,∠PMN=90°,∴∠PMH+∠NMG=90°,且∠PMH+∠MPH=90°,∴∠NMG=∠MPH,且MN=PM,∠H=∠NGM=90°,∴△MNG≌△PMH(AAS)∴GM=PH=1,∴点P的纵坐标为﹣3,∴﹣3=x2﹣2x﹣3∴x=0(不合题意舍去),x=2,∴点P的横坐标为2,如图2,过点P作GH⊥AB,过点N作NG⊥GH,过点M作MH⊥GH,易证:△NGP≌△PHM,可得NG=PH,GP=MH,设点P横坐标为a,(a>1)∴NG=PH=a,∴点P纵坐标为﹣4+a,∴﹣4+a=a2﹣2a﹣3∴x=(不合题意舍去),x=综上所述:点P的横坐标为2或11.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE 长度的最大值;(2)在抛物线上是否存在点Q,使得△BDQ中BD边上的高为.若存在,请求出点Q的坐标;若不存在,请说明理由;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.解:(1)令y=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0);将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,则C(2,﹣3),设直线AC的表达式为y=kx+b,则,解得,∴直线AC的函数解析式是y=﹣x﹣1,设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2,∴当x=时,PE的最大值=;(2)存在,点Q的坐标为:(﹣1,0)或(4,5);令x=0,则y=x2﹣2x﹣3=﹣3,即D(0,﹣3),由B(3,0),D(0,﹣3)得到直线BD的解析式是y=x﹣3,如上图,过点Q作QE⊥BD交BD的延长线于点E,则QE=2,过点Q作QN⊥x轴于点N,交BD于点H,由直线BD的表达式知,∠HBN=45°=∠QHE,则QH=QE==4,设点Q(m,m,m2﹣2m﹣3),则点H(m,m﹣3),则QH=|y Q﹣y H|=4,即m2﹣2m﹣3﹣(m﹣3)=±4,解得m=﹣1或4,∴Q的坐标为:(﹣1,0)或(4,5);(3)存在,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣,0),理由:设点F的坐标为(x,0),点G的坐标为(m,m2﹣2m﹣3),而点A、C的坐标分别为(﹣1,0)、(2,﹣3),①当AC为平行四边形的对角线时,由中点坐标公式得:,解得(舍去),故点F的坐标为(1,0);②当AF为平行四边形的对角线时,由中点坐标公式得解得,即点F的坐标为(4+,0)或(4﹣,0);③当AG为平行四边形的对角线时,由中点坐标公式得,解得(舍去),故点F的坐标为(﹣3,0),综上,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣,0).12.已知抛物线y=ax2+2x+c(a≠0)与x轴交于点A(﹣1,0)和点B,与直线y=﹣x+3交于点B和点C,M为抛物线的顶点,直线ME是抛物线的对称轴.(1)求抛物线的解析式及点M的坐标.(2)点P为直线BC上方抛物线上一点,设d为点P到直线CB的距离,当d有最大值时,求点P的坐标.(3)若点F为直线BC上一点,作点A关于y轴的对称点A',连接A'C,A'F,当△FA'C 是直角三角形时,直接写出点F的坐标.解:(1)直线y=﹣x+3过点B和点C,则点B、C的坐标分别为:(3,0)、(0,3),抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣2a=2,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3,函数的对称轴为:x=1,当x=1时,y=4,故点M(1,4);(2)过点P作y轴的平行线交BC于点H,过点P作PD⊥BC于点D,OC=OB=3,则∠DPH=∠CBA=45°,设点P(x,﹣x2+2x+3),则点H(x,﹣x+3),d=PD=PH=(﹣x2+2x+3+x﹣3)=(﹣x2+3x),∵<0,故d有最大值,此时x=,则点P(,);(3)点A关于y轴的对称点A'(1,0),设点F(m,3﹣m),而点C(0,3),A′C2=10,A′F2=(m﹣1)2+(3﹣m)2,FC2=2m2,由题目知,∠A′CF≠90°,则当△FA'C是直角三角形时,分以下两种情况:当CF为斜边时,即10+(m﹣1)2+(3﹣m)2=2m2,解得:m=;当A′C为斜边时,同理可得:m=2,故点F的坐标为:(,)或(2,1).13.如图①,已知抛物线C1:y=a(x+1)2﹣4的顶点为C,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.(1)求点C的坐标及a的值;(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P 作y轴的平行线,交CE于点F.①求线段PF长的最大值;②若PE=EF,求点P的坐标.解:(1)顶点C为(﹣1,﹣4).∵点B(1,0)在抛物线C1上,∴0=a(1+1)2﹣4,解得,a=1;(2)①∵C2与C1关于x轴对称,∴抛物线C2的表达式为y=﹣(x+1)2+4,抛物线C3由C2平移得到,∴抛物线C3为y=﹣(x﹣3)2+4=﹣x2+6x﹣5,∴E(5,0),设直线CE的解析式为:y=kx+b,则,解得,∴直线CE的解析式为y=x﹣,设P(x,﹣x2+6x﹣5),则F(x,x﹣),∴PF=(﹣x2+6x﹣5)﹣(x﹣)=﹣x2+x﹣=﹣(x﹣)2+,∴当x=时,PF有最大值为;②若PE=EF,∵PF⊥x轴,∴x轴平分PF,∴﹣x2+6x﹣5=﹣x+,解得x1=,x2=5(舍去)∴P(,).14.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a>0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M 和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M 和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).15.已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.解:【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x﹣6),将点C的坐标代入上式得:﹣2=a(4﹣2)•(4﹣6),解得:a=,故抛物线的表达式为:…①;【尝试探索】①点C′(4,2),由点B、C′的坐标可得,直线BC′的表达式为:y=﹣x+6…②,四边形MNDC′是平行四边形,则MN=DC′=2,设点N的坐标为:(x,k2﹣4k+6),则点M(k,﹣k+6),即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3或3,故k的值为:;②联立①②并解得:x=0或6,故抛物线C与直线BC′围成的封闭图形对应的k值取值范围为:0≤k≤6,MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,∵0,故MN有最大值,最大值为;【拓展延伸】由点A、C′的坐标得,直线AC′表达式为:y=x﹣2…③,联立①③并解得:x=2或8,即封闭区间对应的x取值范围为:2≤x≤8,(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4(舍去4﹣2),即x=4+2,则t=3+4+2=7+2,故t的取值范围为:2≤t≤.。

二次函数的最值问题(详案)

二次函数的最值问题(详案)

二次函数的最值问题执教: 位育中学 左双奇教学目标:在教师的引导下,学生通过自己由浅入深的探究,掌握求各种二次函数最值的方法,感受数学知识结构本身的魅力,体验探究的艰辛和成功的喜悦。

教学重点、难点:重点是理解和掌握由二次函数对称轴相对于闭区间的位置,来求二次函数在闭区间上的最值的方法。

难点是怎样寻求适当方法求二次函数的最值。

教学过程:基本问题:二次函数122++-=x x y 有最大值吗?有最小值吗? 分别在区间:(1)[-2,0] (2)[-1,2] (3)[0,3] (4)[2,3]上探求函数的最大值和最小值. 通过学生的主动探究,教师引出函数的最值的定义:()()()()()()()()()()()()0min 000max 0000,,,.,,,.,x f y x f y x f x f x f x x f y x f y x f x f x f x x f x x f y ==≥==≤=记作的最小值叫做函数那么都成立不等式如果对于定义域内任意记作的最大值叫做函数那么都成立不等式如果对于定义域内任意处的函数值是在设函数一般地教师引导学生分析出函数最大值定义的两层含义:(1) 值域中的任意函数值不大于最大值。

(2) 值域中至少存在一个函数值等于最大值。

对于最小值让学生说出其中的两层含义。

通过此基本问题的解答,学生在教师的引导下得到以下关于二次函数最值的三点重要结论:1.开口方向一定的二次函数在闭区间上的最值与对称轴相对于闭区间的位置有关.2.闭区间上二次函数的最值只可能在区间的两个端点及图象的顶点处取得.3.二次函数在某一闭区间上的最大值不大于其在整个实数集上的最大值.问题1:二次函数y=122++-ax x 在[-1.5,2]上的最大值是多少?.453123223232232312max --=+⎪⎭⎫ ⎝⎛-⋅+⎪⎭⎫ ⎝⎛--=-=∴⎥⎦⎤⎢⎣⎡--<a a y x a 时,上单调递减,函数在时,)当(解:问题2:二次函数()1122+-+=x a ax y 在[-1.5,2]上有最大值3,求a. .取到的端点处或图象顶点处区间)该在函数的定义域(闭解:二次函数的最值应 .,]2,23[,47,137323231)12(2349,,232max 符合题意单调递减上函数在对称轴此时则函数有最大值时若-∴-=+--=-=∴=+--=-=x x x y a a a y x ()2max 12232a y a x a +==≤≤-时,时,当34,22,23,2)3(max -==⎥⎦⎤⎢⎣⎡->a y x a 时上单调递增函数在时当.02)23(00,121,,2131)12(24,,22max 符合题意且对称轴为此时则函数有最大值时若∴-<--=+==∴=+-+==x x y a a a y x .3221,.],2,23[2,2122121014434211221222max -=∴-∉--=+--=-==++∴=--=-=或综上所述不符合题意,对称轴为,此时,)(时,函数有最大值,则若a x x x y a a a aa y a a x 针对学生不进行检验,教师引导学生挖掘为什么要检验的深层原因。

九年级《二次函数的最值问题》说课稿

九年级《二次函数的最值问题》说课稿

九年级《二次函数的最值问题》说课稿尊敬的各位同事们,大家好!我今天要说的课是九年级数学中的《二次函数的最值问题》。

这是我们数学课程中的一个重要内容,也是学生们需要掌握的重要知识点。

一、教学内容与目标本节课的主要内容是探讨二次函数的最值问题。

我们将通过观察和分析二次函数的图形,理解二次函数的最值是什么,以及如何求出最值。

教学目标是让学生们能够理解最值的概念,掌握求二次函数最值的基本方法,并且能够在实际问题中应用。

二、教学方法与手段为了帮助学生们理解二次函数的最值问题,我将采用以下教学方法和手段:1.讲解与演示:首先,我将详细讲解二次函数的最值是什么,让学生们理解最值的定义和求解方法。

同时,我会在黑板上演示求解二次函数最值的步骤,让学生们明确如何操作。

2.互动与讨论:在讲解和演示之后,我将邀请学生们进行小组讨论,让每个人都有机会发表自己的看法和解决问题。

通过这种方式,我们可以激发学生们的学习热情,同时也能够帮助他们更好地理解和掌握二次函数的最值问题。

3.实例解析:在学生们对二次函数的最值有了基本的认识之后,我将举一些实例,让学生们通过解决实际问题来进一步加深对最值的理解。

4.归纳总结与作业:课程的最后,我将对本节课的内容进行归纳总结,再次强调二次函数最值的重要性和求解方法。

同时,我会布置一些相关的练习题,让学生们在课后进一步巩固所学的知识。

三、教学步骤设计1.导入新课:首先,我会回顾之前所学的知识点,即二次函数的性质和图像,为接下来的新课做铺垫。

然后,我会提出一些与最值相关的问题,引导学生们思考并激发他们的学习兴趣。

2.新课教学:在新课教学过程中,我将重点讲解二次函数最值的定义、特点和求解方法。

同时,为了使学生们更好地理解这些知识点,我会在黑板上演示求解二次函数最值的步骤,并详细解释每一步的目的和意义。

3.互动环节:在教学过程中,我将积极与学生进行互动,鼓励他们提问和发表自己的看法。

通过讨论和交流,我可以了解学生们对二次函数最值的掌握情况,并及时调整教学策略,使教学效果达到最佳。

二次函数的最值问题(典型例题)

二次函数的最值问题(典型例题)

二次函数的最值问题【例题精讲】题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.【拓展练习】如图,在平面直角坐标系xOy 中,二次函数232y x bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333y x =+交BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.练习一【例题精讲】若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.【拓展练习】题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.练习二金题精讲题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.【拓展练习】题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.讲义参考答案【例题精讲】答案:3--0或2或4【拓展练习】答案:(1) 222y x =--;(2) (2);(3)8练习一答案 【例题精讲】答案:a = .【拓展练习】答案:(1) k ≤2;(2)①k 值为-1;②y 的最大值为32,最小值为-3. 详解:(1)当k =1时,函数为一次函数y = -2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y =0得(k -1)x 2-2kx +k +2=0.△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k ≠1.综上所述,k 的取值范围是k ≤2.(2)①∵x 1≠x 2,由(1)知k <2且k ≠1.由题意得(k -1)x 12+(k +2)=2kx 1(*),将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得:2k (x 1+x 2)=4x 1x 2.又∵x1+x2=2kk1-,x1x2=k+2k1-,∴2k•2kk1-=4•k+2k1-,解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.②如图,∵k1= -1,y= -2x2+2x+1= -2(x-12)2+32,且-1≤x≤1,由图象知:当x= -1时,y最小= -3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.练习二答案课后练习详解【例题精讲】答案:2或-5.详解:配方y=(x+a)2-1,函数的对称轴为直线x= -a,顶点坐标为(-a,-1).①当0≤-a≤3即-3≤a≤0时,函数最小值为-1,不合题意;②当-a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;③当-a>3即a<-3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,解得a= -5.∴实数a的值为2或-5.【拓展练习】答案:有最大值,为8.详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值∴k-1<0,解得k<1.∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.∴最大值为8.。

二次函数中的最值问题(解析版)

二次函数中的最值问题(解析版)

二次函数中的最值问题1.(2023•巴中模拟)如图1,已知抛物线y =ax 2+bx +1经过点A (-1,0)和点B ,且与y 轴交于点C ;直线y =-12x +m 经过B 点和点C .(1)求直线和抛物线的解析式.(2)若点P 为直线BC 上方的抛物线上一点,过点P 作PE ⊥BC 于点E ,作PF ⎳y 轴,交直线BC 于点F ,当ΔPEF 的周长最大时,求点P 的坐标.(3)在第(2)问的条件下,直线CP 上有一动点Q ,连接BQ ,求BQ +55CQ 的最小值.【解答】解:(1)∵抛物线y =ax 2+bx +1与y 轴交于点C ,∴C (0,1),∵直线y =-12x +m 经过点B 和点C ,∴m =1,∴直线的解析式为y =-12x +1,令y =0,则0=-12x +1,解得x =2,∴B (2,0),∵抛物线y =ax 2+bx +1经过点A (-1,0)和点B ,∴a -b +1=04a +2b +1=0 ,解得a =-12b =12,∴抛物线的解析式为y =-12x 2+12x +1;(2)如图1,设点P p ,-12p 2+12p +1 ,则F p ,-12p +1 ,∴PF =-12p 2+12p +1--12p +1 =-12p 2+p =-12(p -1)2+12,∵PE ⊥BC ,PF ⎳y 轴,∴∠PEF=∠BOC=90°,∠PFE=∠BCO,∴ΔPFE∽ΔBCO,∴PE BO =EFOC=PFBC,∴PE2=EF1=PF12+22,∴PE=255PF,EF=55PF,∴ΔPEF的周长为:PF+PE+EF=PF+255PF+55PF=5+355PF=5+355-12(p-1)2+12=-5+3510(p-1)2+5+3510,∴当p=1时,ΔPEF的周长有最大值,此时,点P的坐标为(1,1);(3)如图2,作点B关于CP的对称点M,作MN⊥BC于N,交CP于Q,∴MQ=BQ,∵点P的坐标为(1,1),C(0,1),B(2,0),∴CP⎳x轴,M(2,2),∴∠QCN=∠CBO,∵MN⊥BC,∴∠QNC=∠COB∠=90°,∴ΔQNC∽ΔCOB,∴QNCQ=COBC=112+22=15=55,∴QN=55CQ,∴BQ+55CQ的最小值为MQ+QN,即MN的值,∵CP⎳x轴,BM⊥CP,∴BM⎳y轴,∴∠MBN=∠BCO,∵∠MNB=∠BOC=90°,∴MNBO =BMCB,∴MN2=212+22,∴MN=455,∴BQ+55CQ的最小值为455.2.(2023•海宁市校级一模)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B 两点,与y轴交于点C,其中点A的坐标为(-1,0),点C的坐标为(0,-3).(1)求抛物线的解析式;(2)如图1,E为ΔABC边AB上的一动点,F为BC边上的一动点,D点坐标为(0,-2),求ΔDEF 周长的最小值.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(-1,0),点C(0,-3).∴1-b+c=0 c=-3,∴b=-2 c=-3 ,∴抛物线的解析式为y=x2-2x-3;(2)如图,设D1为D关于直线AB的对称点,D2为D关于直线BC的对称点,连接D1E,D2F,D1 D2.由对称性可知DE=D1E,DF=D2F,ΔDEF的周长=D1E+EF+D2F,∴当D1,E.F.D2共线时,ΔDEF的周长最小,最小值为D1D2的长,令y=0,则x2-2x-3=0,解得x=-1或3,∴B(3,0),∴OB=OC=3,∴ΔBOC是等腰直角三角形,∵BC垂直平分DD2,且D(0,-2),∴D2(1,-3),∵D,D1关于x轴对称,∴D1(0,2),∴D1D2=D2C2+D1C2=52+12=26,∴ΔDEF的周长的最小值为26.3.(2023•庐阳区校级一模)已知抛物线y=x2-(m+1)x+m2-2.(1)当m=1时,求此抛物线的对称轴和顶点坐标;(2)若该抛物线y=x2-(m+1)x+m2-2与直线y1=x+2m+1的一个交点P在y轴正半轴上.①求此抛物线的解析式;②当n≤x≤n+1时,求y的最小值(用含n的式子表示).【解答】解:(1)当m=1时,y=x2-2x-1=(x-1)2-2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,-2);(2)①将x=0代入y1=x+2m+1得y1=2m+1,∴点P坐标为(0,2m+1),将(0,2m+1)代入y=x2-(m+1)x+m2-2得2m+1=m2-2,解得m=3或m=-1,当m=-1时,2m+1=-1,点P在y轴负半轴,不符合题意,当m=3时,2m+1=7,点P在y轴正半轴,符合题意.∴抛物线的解析式为y=x2-4x+7.②∵y=x2-4x+7=(x-2)2+3,∴抛物线开口向上,顶点坐标为(2,3),将x=n代入y=x2-4x+7得y=n2-4n+7,将x=n+1代入y=x2-4x+7得y=n2-2n+4,当n+1<2时,n<1,y=n2-2n+4为函数最小值;当n>2时,y=n2-4n+7为函数最小值;当1≤n≤2时,y=3为函数最小值.4.(2023•连云港一模)如图,已知抛物线y=12x2+bx+c经过点A(-6,0),B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一动点.①当点P在直线AC下方时,过点P作PE⎳x轴,交直线AC于点E,作PF⎳y轴.交直线AC于点F,求EF的最大值;②若∠PCB=3∠OCB,求点P的横坐标.【解答】解:(1)设抛物线的表达式为:y=a(x-x1)(x-x2),则y=12(x+6)(x-2)=12x2+2x-6①;(2)由抛物线的表达式知,点C (0,-6),由A 、C 的表达式知,直线AC 的表达式为:y =-x -6,设点F (x ,-x +6),点P x ,12x 2+2x -6 ,则PF =(-x +6)-12x 2+2x -6 =-12(x -3)2+92≤92,即PF 的最大值为92,由直线AC 的表达式知,其和x 轴负半轴的夹角为45°,即∠OAC =45°=∠PEF ,则PE =PF ,则EF =2PF ,则EF 的最大值为922;(3)作点B 关于y 轴的对称点N ,则∠NCB =2∠OCB ,∵∠PCB =3∠OCB ,∴∠PCO =∠NCB ,则ON =OB =2,BN =CB =62+22=40,过点B 作BM ⊥NC 于点M ,则S ΔCBN =12×BN ×CO =12×CN ×BM ,即4×6=40×BM ,则BM =2440,则sin ∠NCB =BM CB =244040=35,则tan ∠NCB =34=tan ∠PCO ,故直线PC 的表达式为:y =-34x -6②,联立①②得:12x 2+2x -6=-34x -6,解得:x =-112,即点P 的横坐标为-112.5.(2023•东港区校级一模)如图1.抛物线y =ax 2+2x +c ,交x 轴于A 、B 两点,交y 轴于点C .当y ≥0时-1≤x ≤3.(1)求抛物线的表达式;(2)若点D 是抛物线上第一象限的点.①如图1连接AD ,交线段BC 于点G ,若DG AG=12时,求D 点的坐标;②如图2,在①条件下,当点D 靠近抛物线对称轴时,过点D 作DP ⊥x 轴,点H 是DP 上一点,连接AH ,求AH +1010DH 的最小值;(3)如图3,点D 是抛物线上第一象限的点,F 为抛物线顶点,直线EF 垂直于x 轴于点E ,直线AD,BD分别与抛物线对称轴交于M、N两点试问,EM+EN是否为定值?如果是,请直接写出这个定值:如果不是,请说明理由.【解答】解:(1)当y≥0时,-1≤x≤3,则抛物线和x轴的交点坐标为:(-1,0)、(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),即-2a=2,则a=-1,则抛物线的表达式为:y=-x2+2x+3;(2)①如图1,分别过点A、D作y轴的平行线分别交B、C于点R、T,由点C、B的坐标得,直线CB的表达式为:y=-x+3,当x=-1时,y=4,即AR=4,∵AP⎳y轴⎳DT,∴ΔRGA∽ΔTGD,∴DG AG =DTAR=12=DTAR=DT4,则DT=2,设点D的坐标为:(x,-x2+2x+3),点T(x,-x+3),则DT=(-x2+2x+3)-(-x+3)=2,解得:x=1或2,即点D的坐标为:(1,4)或(2,3);②如图2,∵点D靠近抛物线对称轴,则点D(2,3),在RtΔPBD中,PB=3-2=1,PD=3,则sin∠PDB=132+12=1010,则sin∠PBD=310,过点H作HN⊥BD于点N,则HN=DH sin∠PD=10DH 10,故当A、H、N共线时,AH+1010DH=AH+NH最小,则AN=AB sin∠PBD=4×310=6105;(3)设点D(m,-m2+2m+3),由A、D的坐标得,直线AD的表达式为:y=-(m-3)(x+1),当x=1时,y=-2(m-3)=-2m+6=EM;由点B、D的坐标得,直线BD的表达式为:y=-(m+1)(x-3),当x=1时,y=2m+2=EN,则EM+EN=8为定值.6.(2023•灞桥区校级模拟)已知抛物线L:y=ax2+bx+c(a≠0)经过点A(1,0)、B(-3,0)、C(0, 3).(1)求抛物线L的表达式;(2)将抛物线L绕原点旋转180度后,得到抛物线L ,点N是抛物线L 第一象限的点,其横坐标为4,点M是抛物线L 的顶点,点D是抛物线L 与y轴的交点,过点D作直线l⎳x轴,动点P(m,-3)在直线上,点Q(m,0)在x轴上,连接PM,PQ,NQ,请问当m为何值时,PM+PQ+QN的和有最小值,并求出这个最小值.【解答】解:(1)∵抛物线L:y=ax2+bx+c(a≠0)经过点A(1,0)、B(-3,0)、C(0,3),∴a+b+c=09a-3b+c=0 c=3,解得:a=-1 b=-2 c=3,∴抛物线L的表达式为y=-x2-2x+3;(2)∵y=-x2-2x+3=-(x+1)2+4,∴抛物线L的顶点坐标为(-1,4),∵将抛物线L绕原点旋转180度后,得到抛物线L′:y=(x -1)2-4=x2-2x-3,∴抛物线L 的顶点M(1,-4),当x=0时,y=-3,∴D(0,-3),当x=4时,y=16-8-3=5,∴N(4,5),如图,过点N作NH⊥x轴于点H,则NH=5,OH=4,∴ON=NH2+OH2=52+42=41,则O′N′=ON=41,∵P(m,-3),Q(m,0),∴PQ=3,∴PM+PQ+ON=PM+3+41,当且仅当PM最小时,PM+PQ+ON的和最小,∵PM⊥直线l时,PM的最小值为1,此时m=1,∴PM+PQ+ON=PM+3+41=4+41,∴当m=1时,PM+PQ+ON的和最小,最小值为4+41.7.(2023•香洲区校级一模)如图,在平面直角坐标系中,抛物线y=ax2+bx-5与x轴交于A,B 两点,与y轴交于C点,连接AC,D是直线AC下方抛物线上一动点,连接DB,分别交AC和对称轴于点E、F.其中a,b是方程组2a-b=-2a+2b=9的解.(1)求抛物线的解析式;(2)求DEBE的最大值;(3)连接CF,BC.是否存在点D,使得ΔBCF为直角三角形,若存在,求出点P的坐标,若不存在,请说明理由.【解答】解:(1)解方程组2a-b=-2a+2b=9得:a=1b=4,故抛物线的表达式为:y=x2+4x-5;(2)对于y=x2+4x-5,当x=0时,y=-5,即点C(0,-5),令y=x2+4x-5=0,则x=-5或1,即点A、B的坐标分别为:(-5,0)、(1,0),由点A、C的坐标得,直线AC的表达式为:y=-x-5,分别过点B、D作y轴的平行线分别交AC于点G、H,当x=1时,y=-x-5=-6,即BH=6,设点G(x,-x-1),则点D(x,x2+4x-5),则GD=(-x-1)-(x2+4x-5)=-x2-5x,∵DG⎳y轴⎳BH,∴ΔGED∽ΔHEB,∴DE BE =DGBH=16DG=16(-x2-5x)=-16(x2+5x),∵-16<0,故DEBE有最大值,当x=-52时,DEBE的最大值为:2524;(3)存在,理由:由抛物线的表达式知,其对称轴为x=-2,故设点F(-2,m),由点B、C、F的坐标得:BC2=1+25=26,BF2=(1+2)2+m2=m2+9,CF2=(m+5)2+4,当BC是斜边时,则26=m2+9+(m+5)2+4,解得:m=-2或-3,即点F的坐标为:(-2,-2)或(-2,-3);当BF是斜边时,则m2+9=(m+5)2+4+26,解得:m=-4.6,即点F(-2,-4.6);当CF为斜边时,则26+m2+9=(m+5)2+4,解得:m=0.6,即点F(-2,0.6),综上,点F的坐标为:(-2,-2)或(-2,-3)或(-2,-4.6)或(-2,0.6).8.(2023•遵义模拟)如图,二次函数y=ax2-2ax+c的图象与x轴交于A、B(3,0)两点,与y轴相交于点C(0,-3).(1)求二次函数的解析式;(2)若点P是对称轴上一动点,当|PB-PC|有最大值时,求点P的坐标.【解答】解:(1)∵二次函数y=ax2-2ax+c的图象经过B(3,0)和C(0,-3),∴9a-6a+c=0 c=-3,解得a=1c=-3 ,∴二次函数的解析式为y=x2-2x-3;(2)令y=0,则x2-2x-3=0,解得x1=-1,x2=3,∴A(-1,0),B(3,0),∴对称轴为x=-1+32=1,∵点P在x=1上,A,B关于直线x=1对称,∴PA=PB,∴求|PB-PC|有最大值就是求|PA-PC|的最大值,∵PA-PC≤AC,即当A,C,P在同一条直线上时取等号,连接AC并延长交对称轴x=1于点P,设直线AC的解析式为y=kx+b,把A(-1,0),C(0,-3)代入解析式得:-k+b=0 b=-3,解得k=-3 b=-3 ,∴直线AC的解析式为y=-3x-3,∴当x=1时,y=-3-3=-6,∴P(1,-6).9.(2023•浠水县一模)如图,已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点(点A在点B的左侧),与y轴交于点C.(1)求抛物线的解析式;(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点D是第一象限内抛物线上的一个动点(不与点C、B重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把ΔBDF的面积分成两部分,若SΔBDE:SΔBEF=3:2,请求出点D的坐标.【解答】解:(1)将A(-1,0),B(5,0)代入y=-x2+bx+c,得:-1-b+c=0-25+5b+c=0,解得:b=4 c=5,∴抛物线的解析式为y=-x2+4x+5;(2)∵抛物线的对称轴为直线x=-42×(-1)=2,点B是点A关于函数对称轴的对称点,∴PA+PC=PB+PC,∴当点P在BC上时,PA+PC的值最小,连接BC交抛物线对称轴于点P,则点P为所求点,令x=0,则y=5,∴点C的坐标为(0,5),∵B(5,0),设直线BC的解析式为y=kx+5,∴5k+5=0,解得:k=-1,∴直线BC的解析式为y=-x+5,当x=2时,y=-x+5=3,∴点P(2,3);(3)如图,设点D(m,-m2+4m+5),则点E(m,-m+5),∵SΔBDE:SΔBEF=3:2,∴DE DF =35,即-x2+4x+5-(-x+5)-x2+4x+5=35,解得:x=32或5(舍去),经检验,x=32是原方程的解,∴点D32,35 4.10.(2023•济阳区一模)如图1,在平面直角坐标系中,抛物线y=a(x-3)2+4过原点,与x轴的正半轴交于点A,已知B点为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求a的值,并直接写出A、B两点的坐标;(2)若P点是该抛物线对称轴上一点,且∠BOP=45°,求点P的坐标;(3)如图2,若C点为线段BD上一点,求3BC+5AC的最小值.【解答】解:(1)将点O的坐标代入抛物线表达式得:0=a(0-3)2+4,解得:a=-9,则抛物线的表达式为:y=-49(x-3)2+4,则点B(3,4),由抛物线的对称性知,点A(6,0);(2)过点P作PH⊥OB于点H,在RtΔOBD中,由点B的坐标得,OB=5,则tan∠OBD=ODBD=34=tanα,则sinα=35,设PH=3x,则BH=4x,PB=5x,∵∠BOP=45°,则PH=OH=3x,则OB=5=BH+OH=3x+4x,则x=5 7,则PD=BD-BP=4-5x=3 7,即点P的坐标为:3,3 7;(3)由(2)知,sin∠OBD=sinα=35,如图2,过点C作CN⊥OB于点N,则CN=BC sinα=35 BC,则AC+35BC=AC+CN,即当A、C、N共线时,AC+35BC最小,则3BC+5AC=5AC+35 BC最小,∵SΔOAB=12×OA⋅BD=12×OB×AN,即6×4=5×AN,解得:AN=5,故3BC+5AC最小值=5AC+35 BC=5AN=24.11.(2023•甘井子区校级模拟)如图抛物线y=ax2+bx-4与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.(1)求抛物线解析式.(2)连接BC,点P为BC下方上一动点,连接BP,CP.当ΔPBC的面积最大时,求点P的坐标和ΔPBC面积的最大值.(3)点N为线段OC上一点,连接AN,求AN+12CN的最小值.【解答】解:(1)∵抛物线y=ax2+bx-4与x轴交于A(-1,0),B(4,0)两点,∴a-b-4=016a+4b-4=0 ,解得:a=1 b=-3,所以抛物线的解析式为:y=x2-3x-4;(2)y=x2-3x-4,当x=0时,y=-4,∴C(0,-4),设直线BC的解析式为:y=kx+m(k≠0),则:m=-44k+m=0,解得:m=-4 k=1,∴直线BC的解析式为:y=x-4,过点P作PD⊥x轴于点D,交BC于点E,设P(t,t2-3t-4),则:E(t,t -4),∴PE=t-4-(t2-3t-4)=-t2+4t,∴SΔBPC=12PE⋅|x B-x C|=12(-t2+4t)×4=2(-t2+4t)=-2(t-2)2+8;∵-2<0,∵点P为BC下方抛物线上一动点,∴0<t<4,∴当t=2时,SΔBPC的面积最大为8,此时P(2,4-6-4),即:P(2,-6);(3)过点C在y轴右侧作直线CF交x轴于点F,使∠OCF=30°,过点N作NM⊥CF于点M,则:MN=12 CN,∴AN+12CN=AN+MN≥AM,∴当A,N,M三点共线时,AN+12CN的值最小,即为AM的长,如图:∵A(-1,0),C(0,-4),∴OA=1,OC=4,∵∠FCO=30°,∴∠AFM=60°,CF=OCcos30°=833,OF=12CF=433,∴AF=OA+OF=1+433,∴AM=AF⋅sin60°=1+433×32=32+2;∴AN+12CN的最小值为32+2.12.(2023•历下区一模)已知抛物线y=ax2+bx+4过A(-1,0),B(4,0)两点,交y轴于点C.(1)求抛物线的表达式和对称轴;(2)如图1,若点P是线段OC上的一动点,连接AP、BP,将ΔABP沿直线BP翻折,得到△A′BP,当点A′落在该抛物线的对称轴上时,求点P的坐标;(3)如图2,点M在直线BC上方的抛物线上,过点M作直线BC的垂线,分别交直线BC、线段AC于点N、点E,过点E作EH⊥x轴,求EH+2EM的最大值.【解答】解:(1)设抛物线的表达式为:y=a(x-x1)(x-x2),则y=a(x+1)(x-4)=a(x2-3x-4),则-4a=4,解得:a=-1,故抛物线的表达式为:y=-x2+3x+4①,其对称轴为:x=3 2;(2)将ΔABP沿直线BP翻折,得到△A′BP,则AB=AB′=5,PA= PA′,由抛物线的对称轴为:x=32知,BH=AH=4-32=52=12A′B,则∠HA′B=30°,则∠A′BH=60°,∴A′H=A′B sin60°=532,则点A′32,532,设点P的坐标为(0,y),点A(-1,0),由PA=PA′得:1+y2=322+y-5322,解得:y=43 3,即点P的坐标为:0,43 3;(3)由B、C的坐标知,BC和x轴负半轴的夹角为45°,∵MN⊥BC,则直线MN和x轴的夹角为45°,设点M的坐标为:(m,-m2+3m+4),则设直线MN的表达式为:y=(x-m)-m2+3m+4=x-m2+2m+4②,联立①②得:-x2+3x+4x-m2+2m+4=0,整理得:(x-1)2=(m-1)2,解得:x=m或x=2-m,即点E的横坐标为:2-m,EH即为点E的纵坐标;∵直线MN和x轴的夹角为45°,则EM=2(x M-x E)=2(m-2+m)=(2m-2)2,则EH+2EM=EH+2(2m-2)=-(2-m)2+3(2-m)+4+2(2m-2)=-m2+5m+2=-(m-2.5)2+334≤334,故EH+2EM有最大值为33 4.13.(2023•莱芜区一模)抛物线y=-12x2+(a-1)x+2a与x轴交于A(b,0),B(4,0)两点,与y轴交于点C(0,c),点P是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a,b,c的值;(2)如图1,连接BC、AP,交点为M,连接PB,若SΔPMBSΔAMB=14,求点P的坐标;(3)如图2,在(2)的条件下,过点P作x轴的垂线交x轴于点E,将线段OE绕点O逆时针旋转得到OE,旋转角为α(0°<α<90°),连接EB,E′C,求E B+34E C的最小值.【解答】解:(1)将B(4,0)代入y=-12x2+(a-1)x+2a,得-8+4(a-1)+2a=0,∴a=2,∴抛物线的解析式为y=-12x2+x+4,令x=0,则y=4,∴c=4,令y=0,则0=-12x2+x+4,∴x1=4,x2=-2,∴A(-2,0),即b=-2;(2)过点P作PD⊥x轴,交BC于点D,过点A作y轴的平行线交BC的延长线于H,设l BC:y=kx+b,将(0,4),(4,0)代入得b=4,k=-1,∴l BC:y=-x+4,设P m,-12m2+m+4,则D(m,-m+4),PD=y P-y D=-12m2+m+4-(-m+1)=-12m2+2m,∵PD⎳HA,∴ΔAMH∽ΔPMD,∴PM MA =PD HA,将x=-2代入y=-x+4,∴HA=6,∵S1S2=12PM⋅h12AM⋅h=PMAM=14,∴S1S2=PDHA=PD6=14,∴PD=32,∴3 2=12m2+2m,∴m1=1(舍),m2=3,∴P3,52;(3)在y轴上取一点F,使得OF=94,连接BF,在BF上取一点E′,使得OE′=OE,∵OE′=3,OF⋅OC=94×4=9,∴OE2=OF⋅OC,∴OE′OF =OC OE′,∵∠COE′=∠FOE,∴ΔFOE ′∽△E ′OC ,∴FE ′CE ′=OE ′OC =34,∴FE ′=34CE ′,∴E ′B +34E ′C =BE ′+E ′F =BF ,此时E B +34E C 最小,最小值为:BF =42+94 2=3374.14.(2023•福安市二模)如图①,y =-14(x +2)(x -t )交x 轴于A 、B 两点,交y 轴的正半轴于C ,S ΔABC =12,D 为抛物线的顶点,E 是线段AB 上异于A ,B 一个动点,F 在BD 上.(1)直接写出t =6,∠DAB =;(2)若∠ADE =∠DEF 时,求S ΔDEF 的最大值;(3)如图②,CE 的延长线交AG 于G ,若tan ∠BAG =12,记S ΔBCE =S 1,S ΔAEG =S 2,求S 1+S 2的最小值.【解答】解:(1)∵y =-14(x +2)(x -t )交x 轴于AB 两点,交y 轴的正半轴于C ,∴A (-2,0),B (t ,0),C 0,12t ,∴AB =t -(-2)=t +2,OC =12t ,∵S ΔABC =12,∴12AB ⋅OC =12,即12(t +2)×12t =12,解得:t 1=6,t 2=-8,∵点C 在y 轴的正半轴上,∴12t >0,∴t >0,∴t =6,∵y =-14(x +2)(x -6)=-14(x -2)2+4,∴抛物线的顶点D (2,4),如图1,过点D 作DH ⊥x 轴于点H ,则DH =4,AH =2-(-2)=4,∴tan ∠DAB =DH AH =44=1,∴∠DAB =45°,故答案为:6,45°;(2)设E (x ,0),且-2<x <6,则AE =x +2,BE =6-x ,如图2,过点D 作DH ⊥AB 于点H ,则DH =4,∵AH =BH =4=DH ,∴ΔADH 、ΔBDH 、ΔABD 都是等腰直角三角形,∴BD =42,∠ABD =45°,∵∠ADE =∠DEF ,∴AD ⎳EF ,∴∠BFE =∠BDA =90°,∴ΔBEF 是等腰直角三角形,∴EF =BF =22BE =22(6-x ),∴DF =BD -BF =42-22(6-x )=22x +2,∴S ΔDEF =12DF ⋅EF =12×22x +2 ×22(6-x )=-14(x -2)2+4,∵-14<0,∴当x =2时,S ΔDEF 取得最大值4;(3)设E (x ,0),且-2<x <6,则AE =x +2,BE =6-x ,∴S 1=12BE ⋅OC =32(6-x ),∵tan ∠CBO =OC OB =36=12,tan ∠BAG =12,∴∠CBO =∠BAG ,∵AG ⎳BC ,∴ΔAEG ∽ΔBEC ,∴S 2S 1=SΔAEG S ΔBEC =AE BE 2=x +26-x 2,∴S 2=x +26-x 2⋅S 1=x +26-x 2×32(6-x )=3(x +2)22(6-x ),∴S 1+S 2=32(6-x )+3(x +2)22(6-x )=-24+3(6-x )+966-x ,∵当a >0,b >0时,a +b ≥2ab ,当且仅当a =b 时,a +b =2ab ,∴3(6-x)+966-x ≥23(6-x)×966-x=242,∴S1+S2=-24+3(6-x)+966-x≥-24+242,∴当且仅当3(6-x)=966-x,即x=6-42时,S1+S2=242-24为最小值.15.(2023•江油市模拟)抛物线y=ax2+114x-6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx-6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求二次函数与一次函数的解析式;(2)如图1,连接AC,AP,PC,若ΔAPC是以CP为斜边的直角三角形,求点P的坐标;(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12PQ的最大值.【解答】解:(1)将B(8,0)代入y=ax2+114x-6,∴64a+22-6=0,∴a=-14,∴y=-14x2+114x-6;(2)作PM⊥x轴交于M,∵P点横坐标为m,∴P m,-14m2+114m-6,∴PM=14m2-114m+6,AM=m-3,在RtΔCOA和RtΔAMP中,∵∠OAC+∠PAM=90°,∠APM+∠PAM=90°,∴∠OAC=∠APM,∴ΔCOA∽ΔAMP,∴OA OC =PMAM,即OA⋅MA=CO⋅PM,3(m-3)=614m2-114m+6,解得m=3(舍)或m=10,∴P10,-72;(3)作PN⊥x轴交BC于N,过点N作NE⊥y轴交于E,∴PN=-14m2+114m-6-34m-6=-14m2+2m,∵PN⊥x轴,∴PN⎳OC,∴∠PNQ=∠OCB,∴RtΔPQN∽RtΔBOC,∴PN BC =NQOC=PQOB,∵OB=8,OC=6,BC=10,∴QN=35PN,PQ=45PN,由ΔCNE∽ΔCBO,∴CN=54EN=54m,∴CQ+12PQ=CN+NQ+12PQ=CN+PN,∴CQ+12PQ=54m-14m2+2m=-14m2+134m=-14m-1322+16916,当m=132时,CQ+12PQ的最大值是16916.16.(2023•乳山市模拟)抛物线y=-x2+bx+c与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴、x轴、y轴分别交于点G,N,H,设点D的横坐标为m.①当DF+2HF取最大值时,求点F的坐标;②连接EG,若∠GEH=45°,求m的值.【解答】解:(1)由题意得,-1-b +c =0-9+3b +c =0 ,∴b =2c =3 ,∴抛物线的解析式为:y =-x 2+2x +3;(2)如图1,作FM ⊥CH 于M ,∵点C (0,3),B (3,0),∴OC =OB =3,∵∠BOC =90°,∴∠OCB =∠OBC =45°,∵HF ⊥BC ,DE ⊥AB ,∴∠CFH =∠BEF =90°,∴∠CHF =90°-∠OCB =45°,∠EFB =90°-∠OBC =45°,∴CF =FH ,EF =BE =3-m ,∴CH =2FM =2m ,CH =2FH ,∵DF =DE -EF =(-m 2+2m +3)-(3-m )=-m 2+3m ,∴DF +2HF =-m 2+3m +2m =-m 2+5m =-m -52 2+254,∴当m =52时,DF +2HF 取最大值254,∴点F 的横坐标为52,∵过点C (0,3),B (3,0)的直线的解析式为y =-x +3,点F 在直线CB上,∴点F 的纵坐标为12,∴点F 的坐标为52,12;②如图2,作FM ⊥CH 于M ,作HN ⊥抛物线的对称轴:x =1,可得:ΔGHN 是等腰直角三角形,∴GH =2HN =2,∵OM =EF =BE =3-m ,HM =FM =m ,∴OH =HM -OM =2m -3,∴EH 2=OE 2+OH 2=m 2+(2m -3)2=5m 2-12m +9,∵∠CFH =90°,∠BFE =45°,∴∠HFE =45°,∴∠HEG =∠HFE =45°,∵∠EHG =∠FHE ,∴ΔEHG ∽ΔFHE ,∴EH FH =GH EH,∴EH2=GH⋅FH,∵GH=2,FH=2m,∴5m2-12m+9=2m,∴m1=1(舍去),m2=95,∴当∠GEF=45°时,m=95.17.(2023•姑苏区校级模拟)如图(1),二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y 轴交于C点,点B的坐标为(3,0),点C的坐标为(0,-3),直线l经过B,C两点.(1)求二次函数的表达式;(2)点P为直线l上的一点,过点P作x轴的垂线与该二次函数的图象相交于点M,再过点M作y 轴的垂线与该二次函数的图象相交于另一点N,当PM=MN时,求点P的横坐标;(3)如图(2),点C关于x轴的对称点为点D,点P为线段上BC的一个动点,连接AP;点Q为线段AP上一点,且AQ=3PQ,连接DQ,求3AP+4DQ的最小值 810 (直接写出答案).【解答】解:(1)把B(3,0),C(0,-3)代入y=x2+bx+c得:9+3b+c=0c=-3,解得b=-2 c=-3 ,∴二次函数的表达式为y=x2-2x-3;(2)如图:由B(3,0),C(0,-3)得直线BC解析式为y=x-3,∵y=x2-2x-3=(x-1)2-4,∴抛物线对称轴为直线x=1,设P(m,m-3),则M(m,m2-2m-3),N(2-m,m2-2m-3),∴PM=|m2-3m|,MN=|2-2m|,∵PM=MN,∴|m2-3m|=|2-2m|,解得m=2或m=-1或m=5+172或m=5-172;∴点P的横坐标为2或-1或5+172或5-172;(3)过Q作QG⎳BC交x轴于G,作A关于QG的对称点A ,连接A Q,A A,A D,A G,如图:∵C(0,-3),C,D关于x轴对称,∴D(0,3),在y=x2-2x-3中,令y=0得x=-1或x=3,∴A(-1,0),B(3,0),∴AB=4,∵AQ=3PQ,QG⎳BC,∴AG=3BG,∴AG=3,BG=1,∴G(2,0),∴AG=3,∵OB=OC,∴∠OBC=45°,∵A关于QG的对称点为A ,∴AQ=A Q,∴DQ+AQ=DQ+A Q≥A D,∴3AP+4DQ=434AP+DQ=4(AQ+DQ)≥4A D,∵∠QGA=∠CBO=45°,AA ⊥QG,∴∠A AG=45°,∵AG=A G=3,∴∠AA G=45°,∴∠AGA =90°,∴A (2,-3),∴A D=22+(-3-3)2=210,又3AP+4DQ≥4A D,∴3AP+4DQ≥810,∴3AP+4DQ的最小值为810.故答案为:810.18.(2023•宿迁模拟)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴相交于点A,B(A在B的左边),与y轴相交于点C,已知A(1,0)、B(3,0),C(0,3),M是y轴上的动点(M位于点C下方),过点M的直线l垂直于y轴,与抛物线相交于两点P、Q(P在Q的左边),与直线BC交于点N.(1)求抛物线的表达式;(2)如图1,四边形PMGH是正方形,连接CP,ΔPNC的面积为S1,正方形PMGH的面积为S2,求S1S2的取值范围;(3)如图2,以点O为圆心,OA为半径作⊙O.①动点F在⊙O上,连接BF、CF,请直接写出BF+13CF的最小值为 823 ;②点P是y轴上的一动点,连接PA、PB,当sin∠APB的值最大时,请直接写出P的坐标.【解答】解:(1)把A(1,0)、B(3,0),C(0,3)代入y=ax2+bx+c得:a+b+c=09a+3b+c=0c=3,解得a=1b=-4 c=3 ,∴抛物线的表达式为y=x2-4x+3;(2)设M(0,m),m<3,由B(3,0),C(0,3)可得直线BC表达式为y=-x+3,∵MN⎳x轴,∴N(3-m,m),∴MN=3-m.设点P(t,t2-4t+3),则t2-4t+3=m,即3-m=-t2+4t,∴PM=t,PN=MN-PM=3-m-t=-t2+3t,CM=3-m=-t2+4t.∴S1=12PN⋅CM=12(-t2+3t)(-t2+4t),S2=PM2=t2,∴S1S2=12(t2-7t+12)=12t-722-18,∵y=x2-4x+3=(x+2)2-1,∴抛物线的顶点坐标为(2,-1),∵m<3,∴-1<m<3.∴0<t <2.∵12>0,∴当t <72时,S 1S 2的值随t 的增大而减小,∴当t =0时,S 1S 2的值最大=6,当t =2时,S 1S 2的值最小=1,∴S 1S 2的取值范围为1<S 1S 2<6;(3)①连接OF ,在y 轴上取点W 0,13,连接WF ,BW ,如图:∵⊙O 的半径OA =1,∴OF =1,∴OF OC =13,OW OF =131=13,∴OF OC =OW OF,∵∠COF =∠FOW ,∴ΔCOF ∽ΔFOW ,∴WF CF =OF OC =13,∴WF =13CF ,∴BF +13CF =BF +WF ,∵当W ,F ,B 共线时,BF +WF 最小,∴当W ,F ,B 共线时,BF +13CF 最小,最小值即为BW 的长度,∵W 0,13,B (3,0),∴BW =32+13 2=823,∴BF +13CF 的最小值为823,故答案为:823;②作ΔABP 的外接圆T ,作TK ⊥x 轴于K ,连接AT ,BT ,PT ,则AK =BK =1,则∠APB =12∠ATB ,∴当∠ATB 最大时,∠APB 最大,sin ∠APB 也最大;∵AT =BT =PT ,∴当AT 最小时,PT 最小,此时∠APB 最大,∵当PT ⊥y 轴时,PT 最小,∴此时∠APB 最大,sin ∠APB 最大,∵PT=OK=OA+AK=2,∴AT=2,∴TK=AT2-AK2=22-12=3,∴P(0,3).19.(2023•浠水县二模)如图1,抛物线y=ax2+3x-6与x轴交于A、B(6,0)两点,与y轴交于点C,直线y=x+b经过点B.点P在抛物线上,设点P的横坐标为m.(1)①求抛物线的表达式和b的值;②连接AC、AP、PC,若ΔAPC是以CP为斜边的直角三角形,求点P的坐标;(2)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+PQ的最大值.【解答】解:(1)①将B(6,0)代入y=ax2+3x-6,∴36a+18-6=0,∴a=-13,∴y=-13x2+3x-6,∵直线y=x+b经过点B(6,0),∴6+b=0,∴b=-6;②作PM⊥x轴交于M,∵y=-13x2+3x-6,令x=0,则y=-6,即C(0,-6),令y=0,则-13x2+3x-6=0,解得:x1=3,x2=6,∴A(3,0),∴OA=3,OC=6,设点P的横坐标为m,∴P m,-13m2+3m-6,∴PM=13m2-3m+6,AM=m-3,∵ΔAPC是以CP为斜边的直角三角形,∴∠CAP=90°,∴∠OAC+∠PAM=90°,∵∠APM+∠PAM=90°,∴∠OAC=∠APM,∵∠AOC=∠AMP=90°,∴ΔCOA∽ΔAMP,∴OA MP =OC MA,∴OA⋅MA=OC⋅MP,∴3(m-3)=6×13m2-3m+6,整理得:2m2-21m+45=0,解得:m1=152,m2=3(舍)∴P152,-94;(2)作PN⊥x轴交BC于N,过点N作NE⊥y轴于E,设直线BC的解析式为y=kx+b0,由题意得:6k+b0=0b0=-6,解得:k=1 b0=?6,∴直线BC的解析式为y=x-6,设点P的横坐标为m,则P m,-13m2+3m-6,N(m,m-6),∴PN=-13m2+3m-6-(m-6)=-13m2+2m,∵PN⊥x轴,∴PN⎳OC,∴∠PNQ=∠OCB,∵∠PQN=∠BOC=90°,∴RtΔPQN∽RtΔBOC,∴PN BC =NQOC=PQOB,∵OB=6,OC=6,由勾股定理的:BC=OB2+OC2=62,∴PN 62=NQ6=PQ6,∴NQ=22PN,PQ=22PN,∴NQ=PQ=22×-13m2+2m=-26m2+2m,∵∠CEN=∠BOC=90°,∠ECN=∠OCB,∴ΔCNE∽ΔCBO,∴CN BC =EN OB,∴CN 62=m6,∴CN=2m,∴CQ+PQ=CN+NQ+PQ=2m+-26m2+2m+-26m2+2m=-23m2+32m=-23(m2-9m)=-23m-922+2724,当m=92时,CQ+PQ的最大值是2724.20.(2023•杏花岭区校级模拟)综合与探究:如图1,经过原点O的抛物线y=-2x2+8x与x轴的另一个交点为A,直线l与抛物线交于A,B 两点,已知点B的横坐标为1,点M为抛物线上一动点.(1)求出A,B两点的坐标及直线l的函数表达式.(2)如图2,若点M是直线l上方的抛物线上的一个动点,直线OM交直线l于点C,设点M的横坐标为m,求MCOC的最大值.(3)如图3,连接OB,抛物线上是否存在一点M,使得∠MAO=∠BOA,若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)在y=-2x2+8x中,令y=0得0=-2x2+8x,解得x=0或x=4,∴A(4,0),在y=-2x2+8x中,令x=1得y=6,∴B(1,6),设直线AB函数表达式为y=kx+b,把A(4,0),B(1,6)代入得:4k +b =0k +b =6 ,解得k =-2b =8,∴直线AB 函数表达式为y =-2x +8;∴A 的坐标为(4,0),B 的坐标为(1,6),直线AB 函数表达式为y =-2x +8;(2)过M 作MK ⊥x 轴于K ,过C 作CT ⊥x 轴于T ,如图:∵点M 的横坐标为m ,∴M (m ,-2m 2+8m ),K (m ,0),设直线OM 函数表达式为y =k x ,把M (m ,-2m 2+8m )代入得:k m =-2m 2+8m ,解得k =-2m +8,∴直线OM 函数表达式为y =(-2m +8)x ,由y =(-2m +8)x y =-2x +8 得x =8-2m +10y =-16m +64-2m +10,∴C 8-2m +10,-16m +64-2m +10,∴OT =8-2m +10,KT =m -8-2m +10=-2m 2+10m -8-2m +10,∵MK ⎳CT ,∴MC OC =KT OT=-2m 2+10m -8-2m +108-2m +10=-2m 2+10m -88=-14m -52 2+916,∵-14<0,∴当m =52时,MC OC取最大值,最大值为916;(3)抛物线上存在一点M ,使得∠MAO =∠BOA ,理由如下:过B 作BR ⊥x 轴于R ,过M 作MS ⊥x 轴于S ,连接AM ,如图:∵B (1,6),∴BR =6,OR =1,∴tan ∠BOA =BR OR=6,∵∠MAO =∠BOA ,∴tan ∠MOA =tan ∠BOA =6,∴MS AS=6,设M (t ,-2t 2+8t ),则MS =|-2t 2+8t |,AS =4-t ,∴|-2t 2+8t |4-t=6,解得t =3或t =4(舍去)或t =-3,∴M (3,6)或(-3,-42).。

九年级《二次函数的最值问题》说课稿

九年级《二次函数的最值问题》说课稿

九年级《二次函数的最值问题》说课稿尊敬的各位同事们,大家好!我今天要说的课是九年级数学中的《二次函数的最值问题》。

这是我们数学课程中的一个重要内容,也是学生们在应对中考时必须掌握的重要知识点。

一、教学目标和重点难点1.教学目标通过本节课的学习,学生们应该能够:•理解二次函数最值的概念和含义。

•掌握求解二次函数最值的方法,包括顶点法、配方法等。

•能够在实际问题中应用二次函数最值的概念和解决方法。

2.重点难点本节课的重点是掌握求解二次函数最值的方法,包括顶点法、配方法等。

难点是应用二次函数最值的概念和解决方法解决实际问题。

二、教学内容与过程1.导入新课通过一些实际问题的引入,让学生们感受到二次函数最值问题的现实意义,例如,通过计算球落地时的最大速度、物品堆积的最小空间等问题,引出二次函数最值的概念。

2.知识讲解通过具体的例子,详细讲解求解二次函数最值的几种方法,包括顶点法、配方法等。

让学生们理解各种方法的原理和应用范围。

3.学生练习让学生们在具体的练习中掌握二次函数最值的求解方法。

我会给出一些实际问题,让学生们用刚刚学过的方法进行求解,这样可以帮助学生们更好地理解和掌握这些方法。

4.课堂讨论与总结在课程的最后阶段,我会组织学生们进行课堂讨论,让学生们分享自己的解题思路和方法,以此来锻炼学生们的表达能力和合作精神。

然后,我会带领学生们一起总结本节课的主要内容,并强调二次函数最值问题在中考中的重要性。

三、教学方法与手段在本节课中,我将会采用以下教学方法和手段:1.问题式教学通过提出问题的方式,引导学生们思考并进入课程主题,同时让他们在学习过程中保持思维活跃性。

例如,我可能会问:“你们觉得球落地时的最大速度会出现在何时?”这样的问题可以引导学生们积极思考,并让他们更加主动地参与到学习中来。

2.多媒体辅助教学利用多媒体设备展示图像和动画,以增强学生们的直观感受和理解。

例如,在解释二次函数的图像和性质时,通过展示动态的图像或动画,可以让学生们更好地理解二次函数的性质和最值的概念。

冀教版数学九年级下册《二次函数求实际问题中的最值》说课稿

冀教版数学九年级下册《二次函数求实际问题中的最值》说课稿

冀教版数学九年级下册《二次函数求实际问题中的最值》说课稿一. 教材分析冀教版数学九年级下册《二次函数求实际问题中的最值》这一节的内容,是在学生已经掌握了二次函数的图像和性质的基础上进行讲授的。

通过这一节的内容,让学生能够运用二次函数解决实际问题,求解实际问题中的最值。

教材通过引入实际问题,激发学生的学习兴趣,培养学生运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,对于如何将二次函数应用于实际问题中,求解实际问题中的最值,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识和实际问题相结合,培养学生运用数学知识解决实际问题的能力。

三. 说教学目标1.让学生掌握二次函数求解实际问题中的最值的方法。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生分析问题和解决问题的能力。

四. 说教学重难点1.重点:二次函数求解实际问题中的最值的方法。

2.难点:如何将二次函数应用于实际问题中,求解实际问题中的最值。

五. 说教学方法与手段1.采用案例分析法,引入实际问题,让学生直观地了解二次函数在实际问题中的应用。

2.采用问题驱动法,引导学生分析实际问题,找出问题的关键点。

3.采用分组讨论法,让学生分组讨论,共同解决问题。

4.利用多媒体教学手段,展示二次函数的图像,帮助学生更好地理解二次函数的性质。

六. 说教学过程1.引入实际问题,让学生尝试用已知的二次函数知识解决问题,引出本节课的主题。

2.讲解二次函数求解实际问题中的最值的方法,引导学生理解并掌握方法。

3.分组讨论实际问题,让学生运用所学的知识解决问题,教师巡回指导。

4.各组展示讨论结果,教师点评并讲解解决问题的方法。

5.总结本节课的知识点,布置课后作业,巩固所学知识。

七. 说板书设计板书设计包括以下几个部分:1.二次函数的一般形式:y=ax^2+bx+c2.二次函数的图像:开口方向、顶点坐标、对称轴3.二次函数的最值:最大值、最小值4.求解实际问题中的最值的方法:a.确定二次函数的一般形式b.找出实际问题的关键点c.运用二次函数的性质求解最值八. 说教学评价教学评价主要包括以下几个方面:1.学生对二次函数求解实际问题中的最值的方法的理解和掌握程度。

完整版)二次函数的线段最值问题

完整版)二次函数的线段最值问题

完整版)二次函数的线段最值问题二次函数的线段最值问题例1:给定三个点A(4,0),B(-4,-4),C(0,2),连接AB,BC,AC,求抛物线的解析式和点P的坐标,其中点P是抛物线对称轴上的一点。

解析:首先,我们可以通过点A和点B的坐标,得到抛物线的对称轴方程为x=0.然后,我们可以通过点C的坐标,得到抛物线的顶点坐标为(0,2)。

因此,抛物线的解析式为y=ax^2+2,其中a为待定系数。

接下来,我们可以利用点A或点B的坐标,带入解析式求解a的值。

得到a=-1/8,因此抛物线的解析式为y=-x^2/8+2.点P在对称轴上,因此其横坐标为0.我们可以通过求解点P到线段BC的垂线,得到点P的纵坐标。

具体来说,我们可以利用线段BC的斜率和垂线的斜率的乘积为-1的性质,求解垂线的斜率。

然后,利用点P和线段BC的一个端点的坐标,带入点斜式方程求解垂线的方程。

最后,求解垂线与线段BC的交点的纵坐标即可。

经过计算,得到点P的坐标为(0,-3/2)。

例2:给定抛物线y=x^2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D。

求抛物线的解析式,点P在运动的过程中线段PD长度的最大值,以及是否存在点M使|MA﹣MC|最大,若存在则求出点M的坐标,若不存在则说明理由。

解析:首先,我们可以通过点C的坐标,得到抛物线的解析式为y=x^2.然后,我们可以通过点A和点B的坐标,得到抛物线的顶点坐标为(2,4)。

因此,抛物线的解析式为y=x^2+4.点P沿抛物线从点C到点A运动,因此其轨迹为抛物线上的一段。

我们可以通过求解点P到线段CD的垂线,得到点P在运动过程中线段PD的长度。

具体来说,我们可以利用线段CD的斜率和垂线的斜率的乘积为-1的性质,求解垂线的斜率。

然后,利用点P和线段CD的一个端点的坐标,带入点斜式方程求解垂线的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的最值问题
【例题精讲】
题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.
【拓展练习】
如图,在平面直角坐标系xOy 中,二次函数2y bx c =
++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .
(1)求此二次函数解析式;
(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :y =+BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.
练习一
【例题精讲】
若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.
【拓展练习】
题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.
(1)求k的取值范围;
(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.
①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.
练习二
金题精讲
题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.
【拓展练习】
题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.
讲义参考答案
【例题精讲】
答案:3--0或2或4
【拓展练习】
答案:(1) 2y x =
-;(2) (2);(3)8
练习一答案 【例题精讲】
答案:a =
【拓展练习】
答案:(1) k ≤2;(2)①k 值为-1;②y 的最大值为32
,最小值为-3. 详解:(1)当k =1时,函数为一次函数y = -2x +3,其图象与x 轴有一个交点. 当k ≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,
令y =0得(k -1)x 2-2kx +k +2=0.
△=(-2k )2-4(k -1)(k +2)≥0,解得k ≤2.即k ≤2且k ≠1.
综上所述,k 的取值范围是k ≤2.
(2)①∵x 1≠x 2,由(1)知k <2且k ≠1.
由题意得(k -1)x 12+(k +2)=2kx 1(*),
将(*)代入(k -1)x 12+2kx 2+k +2=4x 1x 2中得:2k (x 1+x 2)=4x 1x 2.
又∵x1+x2=
2k
k1
-
,x1x2=
k+2
k1
-
,∴2k•
2k
k1
-
=4•
k+2
k1
-

解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.
②如图,∵k1= -1,y= -2x2+2x+1= -2(x-1
2
)2+
3
2
,且-1≤x≤1,
由图象知:当x= -1时,y最小= -3;当x=1
2
时,y最大=
3
2
.
∴y的最大值为3
2
,最小值为-3.
练习二答案
课后练习详解【例题精讲】
答案:2或-5.
详解:配方y=(x+a)2-1,
函数的对称轴为直线x= -a,
顶点坐标为(-a,-1).
①当0≤-a≤3即-3≤a≤0时,
函数最小值为-1,不合题意;
②当-a<0即a>0时,
∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;
③当-a>3即a<-3时,
∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,
解得a= -5.
∴实数a的值为2或-5.
【拓展练习】
答案:有最大值,为8.
详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值
∴k-1<0,解得k<1.
∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.
∴最大值为8.。

相关文档
最新文档