循环码的编码方法研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要本文对循环码的编码方法进行了深入的分析和探讨,循环码具有很高的可靠性,在通信、军事等领域应用非常广泛。关键词循环码编码中图分类号:G202文献标识码:A 0 引言循环码是线性分组码最重要的子集。它除了具有线性分组码的一般性质外,还有许多特殊的性质,这些性质有助于按照要求的纠错能力系统地构造这类码,并且简化译码算法。循环码还有易于实现的特点,很容易用带反馈的移位寄存器实现其硬件。正是由于循环码具有码的代数结构清晰、检纠错能力强、编译码易于实现,具有很高的可靠性等特点,因此在通信、军事等领域应用非常广泛。 1 循环码的相关概念 1.1 循环码的特性表1给出了(7,3)循环码的所有码字,我们可以直观的看出循环码具有如下特性:(1)封闭性。(线性性):任何许用码组的线性和还是许用码组。(2)循环性:任何许用的码组循环移位后的码组还是许用码组。表1 (7,3)循环码 1.2 循环码的码多项式用码多项式来表示来表示循环码,可以方便的利用代数理论对其进行研究。若许用码字为C = (,,…,):,码多项式可表示为:C(x) = … c1x c0其中:对于二元码组,多项式的每个系数是0或者1; x仅是码元位置的标志,并不关心x的取值。利用码多项式可以方便的表示循环移位特性。若C(x) 是一个长为n的许用码字,则xi C(x) (左乘xi)在按模xn 1运算下,亦是一个许用码字,也就是:xiC(x) = Ci(x) (模xn 1),正是C(x) 代表的码组向左循环移位次的结果。 1.3 循环码的生成多项式和生成矩阵循环码的生成多项式g(x)是一个常数项为1,且能除尽xn 1的r = n - k次多项式;循环码中其它码多项式都是g(x)的倍式。由生成多项式可以表示出生成矩阵G(x)为: 1.4 循环码的监督多项式和监督矩阵利用循环码的特点来确定监督矩阵H, 由于循环码中是的因式,因此可令:h(x) == xk hk-1xk-1 … h1x 1,这里称为监督多项式。与G(x)相对应,监督矩阵表示为: 其中:h*(x)是h(x)逆多项式,h*(x) = xk h1xk-1 h2xk-2 … hk-1x 1。 2 循环码编码的具体实现方法 2.1 利用生成矩阵编码 2.1.1 求解生成多项式根据g(x)的特性,g(x)是xn 1的一个r次因式。因此,先对xn 1进行因式分解,找到它的r次因式。以(7,3)循环码为例进行分析: 第一步:对x7 1进行因式分解得:x7 1 = (x 1)(x3 x2 1)(x3 x 1) 第二步:构造生成多项式g(x),即找r = n - k = 4次因子。不难看出,这样的因子有两个,即: (x 1)·(x3 x2 1) = x4 x2 x 1 (x 1)·(x3 x 1) = x4 x3 x2 1 2.1.2 编码由g(x)得到生成矩阵为: 循环码是线性码的一种,根据线性码编码的特点,生成矩阵确定,码组也就确定了。 C = mG 其中,C是编码之后的码字,m是信息码元序列,G是生成矩阵。 2.2 利用监督矩阵编码由h*(x)得到监督矩阵为: 根据线性码编码的特点,监督矩阵确定,码组也就确定了。 HCT = 0其中,C是编码之后的码字,H是监督矩阵。 2.3 循环码的系统码编码方法设要产生(n,k)循环码,m(x)表示信息多项式,编码步骤如下: (1)用xn-k乘m(x)。根据码多项式的特点,左乘xn-k实际上是把信息位左移位(n-k),即在信息码后加上(n-k)个“0”。例如,信息码为110,它相当于m(x) = x2 x。当n-k = 7-3 = 4时, xn-k·m(x) = x6 x5,它相当于1100000。而希望的到得系统循环码多项式应当是C(x) = xn-k·m(x) r(x) (2)求r(x)。由于循环码多项式C(x)都可以被g(x)整除,也就是: == (3)求C(x),C(x) = xn-k·m(x) r(x) 例如,对于(7,3)循环码,若选用g(x) = x4 x2 x 1,信息码110时,则: = ,求得r(x) = x2 1,这时的编码输出为:1100101。 3 结论本文深入系统地分析了循环码的编码技术。随着数字技术的高速发展,循环码纠错技术已经广泛应用于各种通信系统中。其编码和译码都可以通过简单的反馈移位寄存器来完成,实现简单,纠错能力强 ,可以降低误码率,保证数据传输的可靠性,大大提高通信质量。