数学建模实验作业参考例子
数学建模作业实验线性规划实验模板
数学建模作业(实验3线性规划实验)基本实验1.生产计划安排某公司使用三种操作装配三种玩具——玩具火车、玩具卡车和玩具汽车。
对于三种操作可用时间限制分别是每天430分钟、460分钟和420分钟, 玩具火车、玩具卡车和玩具汽车的单位收入分别是3美元、2美元和5美元。
每辆玩具火车在三种操作的装配时间分别是1分钟, 3分钟和1分钟。
每辆玩具卡车和每辆玩具汽车相应的时间是( 2, 0, 4) 和( 1, 2, 0) 分钟( 零时间表示不使用该项操作) 。
( 1) 将问题建立成一个线性规划模型, 确定最优的生产方案。
( 2) 对于操作1, 假定超过它当前每天430分钟能力的任何附加时间必须依靠每小时50美元的加班获得。
每小时成本包括劳动力和机器运行费两个方面。
对于操作1, 使用加班在经济上有利吗? 如果有利, 最多加多少时间?( 3) 假定操作2的操作员已同意每天加班工作两小时, 加班费是45美元一小时。
还有, 操作自身的成本是一小时10美元。
这项活动对于每天收入的实际结果是什么?( 4) 操作3需要加班时间吗?解答解:设生产玩具火车、玩具卡车和玩具汽车的数量分别为X1, X2, X3, 则目标函数为:3X1+2X2+5X3约束条件:X1+2X2+X3<=4303X1+2X3<=460X1+4X2<=420X1>=0; X2>=0; X3>=0最优值为目标函数取得最大。
LINGO程序max=3*x1+2*x2+5*x3;x1+2*x2+x3<=430;3*x1+2*x3<=460;x1+4*x2<=420;运行结果Globaloptimalsolutionfound.Objectivevalue:1350.000Infeasibilities:0.000000Totalsolveriterations:2ModelClass:LPTotalvariables:3Nonlinearvariables:0Integervariables:0Totalconstraints:4Nonlinearconstraints:0Totalnonzeros:10Nonlinearnonzeros:0VariableValueReducedCostX10.0000004.000000X2100.00000.000000X3230.00000.000000RowSlackorSurplusDualPrice11350.0001.00000020.0000001.00000030.0000002.000000420.000000.000000( 1) 由运行结果可得, 最优的生产方案为:玩具火车、玩具卡车和玩具汽车的生产数量分别为: 0、100、230; 收入为1350.( 2) 由DualPrice第二行可知, 当操作1每增加1分钟收入增加1美元, 因此50/60<1, 使用加班在经济上是有利的; Rangesinwhichthebasisisunchanged: ObjectiveCoefficientRanges:CurrentAllowableAllowable VariableCoefficientIncreaseDecreaseX13.0000004.000000INFINITYX22.0000008.0000002.000000X35.000000INFINITY2.666667RighthandSideRanges:CurrentAllowableAllowableRowRHSIncreaseDecrease2430.000010.00000200.00003460.0000400.000020.000004420.0000INFINITY20.00000分析可知, 最多增加10分钟。
数学建模与应用案例练习题
数学建模与应用案例练习题数学建模是将实际问题转化为数学问题,并通过数学方法和计算机技术求解的过程。
它在各个领域都有着广泛的应用,能够帮助我们更好地理解和解决现实中的复杂问题。
下面我们将通过一些具体的案例练习题来深入了解数学建模的方法和应用。
案例一:生产计划优化问题某工厂生产 A、B 两种产品,生产 A 产品每件需要消耗 2 个单位的原材料和 3 个单位的工时,生产 B 产品每件需要消耗 3 个单位的原材料和 2 个单位的工时。
工厂现有 100 个单位的原材料和 80 个单位的工时,A 产品的单位利润为 5 元,B 产品的单位利润为 4 元。
问如何安排生产计划,才能使工厂获得最大利润?首先,我们设生产 A 产品 x 件,生产 B 产品 y 件。
那么,目标函数就是利润最大化,即 Z = 5x + 4y。
然后,我们需要考虑约束条件。
原材料的限制为 2x +3y ≤ 100,工时的限制为 3x +2y ≤ 80,同时 x、y 都应该是非负整数。
接下来,我们可以使用线性规划的方法来求解这个问题。
通过绘制可行域,找到目标函数在可行域上的最大值点。
经过计算,我们可以得出当 x = 20,y = 20 时,工厂能够获得最大利润 180 元。
这个案例展示了数学建模在生产决策中的应用,通过合理地安排生产计划,能够有效地提高企业的经济效益。
案例二:交通流量预测问题在一个城市的某个十字路口,每天不同时间段的车流量不同。
我们收集了过去一段时间内每天各个时间段的车流量数据,希望建立一个数学模型来预测未来某一天的车流量。
首先,我们对收集到的数据进行分析,发现车流量具有一定的周期性和季节性变化。
然后,我们可以选择使用时间序列分析的方法来建立模型。
比如,可以使用 ARIMA 模型(自回归移动平均模型)。
在建立模型之前,需要对数据进行预处理,包括平稳性检验、差分处理等。
通过建立合适的 ARIMA 模型,并进行参数估计和检验,我们就可以利用这个模型对未来的车流量进行预测。
数学建模简单13个例子 ppt课件
1、从包汤圆(饺子)
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
某航空母舰派其护卫舰去搜寻其跳伞的飞 行员, 护卫舰找到飞行员后,航母通知它尽快返回与其汇 合并通报了航母当前的航速与方向,问护卫舰应怎 样航行,才能与航母汇合。
数学建模简单13个例子
Y
P(x,y)
记v2/ v1=a通常a>1
航母
则 |BP|2a2|AP|2 即:
A(0,b)
θ1
x2 (y b )2 a 2[x2 (y-b )2]
v 也是交管部门早已定好的,目的是使交通流量最大,可
另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线
拟合方法得出,也可利用牛顿第二定律计算出来
黄灯究竟应当亮多久现在已经变得清楚多了。
第一步,先计算出L应多大才能使看见黄灯的司机停
得住车。
第二步,黄灯亮的时间应当让已过线
的车顺利穿过马路,DFra bibliotek即T 至少应当达到 (L数+学建D模)简单/13v个。例子
数学建模简单13个例子
4、爬山问题
某人早8时从山下旅店出发沿一条路径上山,下午5 时到达山顶并留宿,次日早8时沿同一路径下山,下午5 时回到旅店,则这人在两天中的同一时刻经过途中的 同—地点,为什么?
解法一: 将两天看作一天,一人两天的运动看作一天两人 同时分别从山下和山顶沿同一路径相反运功,因为两 人同时出发,同时到达目的地,又沿向一路径反向运 动,所以必在中间某一时刻t两人相遇,这说明某人在 两天中的同一时刻经过路途中的同一地点。
数学建模小实例
1、司乘人员配备问题某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下:设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员?解: 设i x为第i班应报到的人员i,建立线性模型如下:)6,(,2,1LINGO程序如下:MODEL:min=x1+x2+x3+x4+x5+x6;x1+x6>=60;x1+x2>=70;x2+x3>=60;x3+x4>=50;x4+x5>=20;x5+x6>=30;END得到的解为:x1=60,x2=10,x3=50,x4=0,x5=30,x6=0 ;配备的司机和乘务人员最少为150人。
2、铺瓷砖问题要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。
一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。
试问是这人的功夫不到家还是这个问题根本无解呢?3、 棋子颜色问题在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。
然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢?分析与求解:由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。
这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。
设棋子数为n ,12,,,n a a a 为初始状态。
当n=3时步数 状态(舍掉偶次项) 0 1a 2a 3a1 21a a 32a a 13a a231a a 21a a 32a a3 32a a 31a a21a a412a a 23a a 31a a说明当n=3时,经过3步进入初始状态。
数学建模简单13个例子
另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线
拟合方法得出,也可利用牛顿第二定律计算出来
黄灯究竟应当亮多久现在已经变得清楚多了。
第一步,先计算出L应多大才能使看见黄灯的司机停
得住车。
第二步,黄灯亮的时间应当让已过线
的车顺利穿过马路,
D
即T 至少应当达到 (L+D)/v。
L
返回
9、砖块延伸
出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
总距离为 n 1 ,
故有砖点n块 出向人右意可料时 叠。k1至, 2knk任1 2意1k远,n这1 一21n结果多少返回
10、寻找黑匣子
飞机失事时,黑匣子会自动打开,发射出某种 射线。为了搞清失事原因,人们必须尽快找回匣子。 确定黑匣子的位置,必须确定其所在的方向和距离, 试设计一些寻找黑匣子的方法。由于要确定两个参 数,至少要用仪器检测两次,除非你事先知道黑匣 子发射射线的强度。
I2 I1
1
方法二
A
在方法一中,两检测点与黑匣子
位于β一α a
直线上,这一点比较容易 点是结果对照度测
量的精C做度到要, 求主 较要 高缺 ,B
很少的误差会造成结果的很大变化,即敏感性很
强,现提出另一方法,在 A点测得黑匣子方向后 ,
到B点再测方向 ,AB 距离为a ,∠BAC=α,
数学建模举例
10.1牙膏的销售量某大型牙膏制造企业为了更好地拓展产品市场,有效地管理库存,公司董事会要求销售部门根据市场调查,找出公司生产的牙膏销售量与销售价格、广告投入等之间的关系,从而预测出在不同价格和广告费用下的销售量。
为此,销售部的研究人员收集了过去30个销售周期(每个销售周期为4周)公司生产的牙膏的销售量、销售价格、投入的广告费用,以及同期其它厂家生产的同类牙膏的市场平均销售价格,见表1-1(其中价格差指其它厂家平均价格与公司销售价格之差)。
试根据这些数据建立一个数学模型,分析牙膏销售量与其它因素的关系,为制订价格策略和广告投入策略提供数量依据表1-1牙膏销售量与销售价格、广告费用等数据一、问题重述根据过去30个销售周期(每个销售周期为4周)公司生产的牙膏的销售量、销售价格、投入的广告费用,以及同期其它厂家生产的同类牙膏的市场平均销售价格,见表1-1。
根据这些数据建立一个数学模型,分析牙膏销售量与其它因素的关系,为制订价格策略和广告投入策略提供数量依据二、问题分析由于牙膏是生活必需品,对大多属顾客来说,在购买同类产品的牙膏是更多地会在意不同品牌之间的价格差异,而不是它们的价格本身。
因此,在研究各个因素对销量的影响时,用价格差代替公司销售价格和其他厂家平均价格更为合适。
三、模型假设1.画出牙膏销售量与价格差,公司投入的广告费用的散点图2.由散点图确定两个函数模型,再由这两个函数模型解出回归模型3.对模型进行改进,添加新的条件确定更好的回归模型系数,得到新的回归模型4.对模型进一步改进,确定最终的模型四、符号约定牙膏销售量为y,其他厂家平均价格和公司销售价格之差(价格差)为x1,公司投入的广告费用为x2,其他厂家平均价格和公司销售价格分别为x3和x4,x1=x3-x4。
基于上面的分析,我们仅利用1x和2x来建立y的预测模型。
五、模型的建立和求解1.基本模型利用表1-1的数据用matlab 作出y 与x1的散点图(图1-1),y 与x2的散点图(图1-2) 代码如下:x1=[-0.05 0.25 0.6 0 0.25 0.2 0.15 0.05 -0.15 0.15 0.2 0.1 0.4 0.45 0.35 0.3 0.5 0.5 0.4 -0.05 -0.05 -0.1 0.2 0.1 0.5 0.6 -0.05 0 0.05 0.55];x2=[5.5 6.75 7.25 5.5 7 6.5 6.75 5.25 5.25 6 6.5 6.25 7 6.9 6.8 6.8 7.1 7 6.8 6.5 6.25 6 6.5 7 6.8 6.8 6.5 5.75 5.8 6.8];y=[7.38 8.51 9.52 7.5 9.33 8.28 8.75 7.87 7.1 8 7.89 8.15 9.1 8.86 8.9 8.87 9.26 9 8.75 7.95 7.65 7.27 8 8.5 8.75 9.21 8.27 7.67 7.93 9.26];A1=polyfit(x1,y,1); yy1=polyval(A1,x1); A2=polyfit(x2,y,2); x5=5:0.05:7.25; yy2=polyval(A2,x5);subplot(1,2,1);plot(x1,y,'o',x1,yy1); title('图1 y 对x1的散点图'); subplot(1,2,2);plot(x2,y,'o',x5,yy2); title('图2 y 对x2的散点图');图(1-1)与图(1-2)从图1可以发现,随着1x 的增加,y 的值有比较明显的线性增长趋势,图中的直线是用线性模型:011y x ββε=++(1)拟合的(其中ε是随机误差)。
数学建模有趣的例子
数学建模有趣的例子
1. 嘿,你知道吗?数学建模能帮我们规划最优的快递配送路线呢!就像给快递小哥设计一条超级捷径,让包裹能最快到达我们手中。
这是不是很有趣呀?
2. 哇塞,数学建模还可以用来模拟传染病的传播呢!就如同解开一个神秘疾病扩散的谜团,太奇妙了吧。
3. 哎呀,想想看,用数学建模来优化城市交通信号灯的时间安排,这不就像是给城市的交通脉络做了一次精心梳理嘛,多有意思啊!
4. 嘿,数学建模甚至能帮助农民伯伯确定最佳的种植布局呢!是不是感觉像给田地施了一次神奇的魔法呀。
5. 哇哦,通过数学建模来分析股票的走势,那不就像是在股海里找到正确的航向嘛,这可太引人入胜啦!
6. 天哪,数学建模可以帮助消防员确定最佳的救援路线,这简直就是给生命开辟快速通道啊,太厉害了吧!
7. 哈哈,数学建模能用来给超市设计最合理的货架摆放呢!这不就像是给商品们找到了最舒适的家嘛。
8. 你想想,利用数学建模来预测天气变化,岂不是像拥有了提前知晓大自然秘密的超能力,有趣极了呀!
我觉得数学建模真的是充满了无限可能和乐趣,它在各个领域都能发挥出神奇的作用,让我们的生活变得更加美好和高效。
数学建模解决实际问题的实践案例
数学建模解决实际问题的实践案例数学建模是一种将实际问题进行抽象、建模、求解、验证的一种方法,可以解决各种各样的实际问题。
实践中,数学建模已经发展成为一门独立的学科,吸引着越来越多的学生和专业人士关注和参与。
本文将介绍数学建模解决实际问题的一些实践案例,以期为学习和实践的人提供一些启示和借鉴。
1. 预测疫情发展趋势随着全球新冠疫情的爆发,各国政府和公众非常关注疫情的发展趋势。
数学建模可以帮助预测疫情的传播和爆发趋势,为政府制定应对措施提供参考和依据。
一个成功的例子是2020年初,中国各大高校和研究机构联合开展的“新冠疫情数学建模竞赛”,其中多个团队使用了数学模型预测了疫情的发展趋势,并对实际情况进行调整和优化,取得了很好的成果。
2. 优化交通运输系统交通拥堵是城市发展的一大难题,为了解决这个问题,可以使用数学模型优化交通运输系统。
例如,瑞典斯德哥尔摩的交通问题比较突出,瑞典皇家理工学院的研究人员使用数学模型建立了一个交通仿真系统,可以模拟不同的交通场景,优化交通路线和信号灯的配时,从而减少拥堵和排放污染物。
3. 改善医疗服务质量医疗服务是人民生活的重要组成部分,如何优化医疗服务质量是医疗行业面临的重要问题。
数学模型可以帮助医疗机构优化医疗流程和资源配置,提高医疗服务效率和质量。
例如,美国佛罗里达州的一家医疗中心就使用了数学模型对医生的看诊时间进行优化,从而减少了等待时间和排队人数,提高了医疗服务质量和满意度。
4. 提高金融风险管理能力金融风险管理是金融机构必须面对的问题之一,如何预测和管理风险是保证金融行业稳定发展的关键。
数学模型可以帮助金融机构进行风险评估和预测,制定风险管理策略。
例如,中国银监会就使用了数学模型对风险指标进行监测和预测,从而提高了银行业的风险管理能力和金融稳定性。
总的来说,数学建模可以解决各种各样的实际问题,这些案例只是冰山一角。
数学建模不仅有理论上的重要性,更有实践上的应用价值。
数学建模简单13个例子_2022年学习资料
7、气象预报问题-在气象台A的正西方向300km处有一台风中心,它以-40km/h的速度向东北方向移动;根 台风的强度,在距-其中心250km以内的地方将受到影响,问多长时间后气象-台所在地区将遭受台风的影响?持续 间多长?-此问题是某气象台所遇到的实际问题,为了搞好气象-预报,现建立解析几何模型加以探-以气象台A为坐标 点建立-平而直角坐标系,设台风中心为B,-如图
某人第一天由A地去B地,第二天由B地沿原路-返回A地。问:在什么条件下,可以保证途中-至少存在一地,此人在 天中的同一时间到达该-假如我们换一种想法,把第二天的返回改变成另一-人在同一天由B去A,问题就化为在什么条 下,两-人至少在途中相遇一次,这样结论就很容易得出了:-只要任何一人的到达时间晚于另一人的出发时间,-两人 会在途中相遇。
1.皮的厚度一样2.汤圆(饺子)的形状-假设-R大皮的半径,r小皮的半-模型-S=ns-S=k R,V=k R3V=kS2-s=kr2,v=kr3 v=ks2-=n32v-应用-V=√nv≥vv是nv是√n倍-若1 0个汤圆(饺子包1公斤馅,-则50个汤圆(-问题杀羊方案-现有26只羊,要求7天杀完且每天必须杀奇数只,-问各天分别杀几只?-分析:-1 这是一个有限问题,解决此类问题的一-类方法是枚举,你可以试试。-建模:-2.依题意,设第i天杀2k,+1k 自然数只,-则所提问题变为在自然数集上求解方程-之2k,+10=26-i=1-于是,我们有了该问题的数学语 表达—数学模型-求解:-用反证法容易证明本问题的解不存在。-返回
x+y=l-y+z=m-x+7=n-由三元一次线性方程组解出x,y,z即得三根-电线的电阻。-说明:此问题 难,点也是可贵之处是用方程-“观点”、”立场”去分析,用活的数学思想使实-际问题转到新剑设的情景中去。-返
简单数学建模实例
简单数学建模实例随着社会和科技的发展,数学建模已经越来越成为各个领域的重要手段。
而简单数学建模实例的模拟与实验,也成为了学生学习数学和拓展实际应用的重要方式。
在此,我们将为大家介绍一些简单的数学建模实例。
(一)瓶子里的气体假设一个恒定体积的瓶子装满的气体,其中含有 x % 的氮气,y % 的氧气和 z % 的二氧化碳。
现在在瓶子中加入一定量的氧气,使得瓶子中氮气的百分比降至 v %。
问原瓶子中氧气的百分比是多少?这个问题只需要列出守恒方程即可:氧气的质量与氮气和二氧化碳的质量之和等于瓶子中气体的总质量。
再加上一个初始状态的方程,就可以得到两个关于 y 和 z 的一元二次方程,解它们即可。
(二)小球的弹性碰撞两个小球,一个重量为 m1,在速度为 v1 的情况下运动;另一个球的重量为 m2,在速度为 v2 的情况下静止。
两个小球弹性碰撞后,速度分别为 u1 和 u2。
问 u1 和 u2 在什么情况下相等?这个问题需要利用动能守恒和动量守恒的规律,分别列出两个守恒方程,然后解方程即可。
其中,动能守恒方程是指碰撞前后的总动能是守恒的;动量守恒方程是指碰撞前后的总动量也是守恒的。
(三)植物生长的模拟植物的生长是与光、水、温度等因素有关的,而光照强度、水分充足和温度适宜是保证植物生长的基本条件。
因此,我们可以利用数学方法,建立植物生长与光照强度、水分和温度之间的关系模型。
具体地说,我们可以将光照强度、水分和温度三个因素定量化,例如化学计量法,然后建立该物种的生长速度与光照强度、水分和温度之间的函数关系。
最后,可以通过改变各个因素来预测植物的生长速度。
(四)自然灾害预测自然灾害如洪水、地震、气象灾害等都是由物理或化学规律导致的,因此可以利用数学方法,预测或模拟这些自然灾害。
例如,可以通过建立地震发生的概率模型,分析地震的分布规律和发生的时间等信息,从而预警或预测地震。
在预测洪水方面,我们可以通过搜集洪水历史数据、雨量和地下水位等信息,建立预警模型。
数学建模简单例题
数学建模简单例题
近年来,数学建模迅速发展,成为数学教育的重要组成部分。
不仅如此,数学建模也在实际应用中扮演着重要角色。
以下是举出的一些简单例题,介绍如何应用数学建模解决实际问题。
例1:汽车路线优化
假设有A、B、C三个城市,从A到B需要经历200公里,从B到C需要经历300公里。
同时,存在有限路段,要求尽可能明确最短路径。
此时,可以建立一个图,将A、B、C三个城市看作三个顶点,再建立若干边,表示每条路径的距离,再使用迪杰斯特拉算法,计算出最短路径。
例2:工厂设备调配
假想一家公司有3台生产设备,每台设备有不同的生产能力和每日最大生产量,要求给出每天各台设备的最优配置,以达到每日最大生产量。
给定三台设备的生产能力和每日最大生产量,建立这个问题的数学模型,可以采用最短路径算法的思想,建立一张图,把每台设备看成一个顶点,再建立若干边,表示每台设备的最大生产能力,最后根据路径的长度,计算出各台设备的最优配置。
以上是两个简单的数学建模例题,为了解决具体实际问题,数学建模不仅仅可以使用上述算法,还可以使用线性规划、最优化、反问题等方法来解决实际问题。
本文就介绍了数学建模的一些基础原理,
并举出了几个例子,希望能对读者有所帮助。
数学建模案例分析--线性代数建模案例20例
线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。
案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。
数学建模各类实际问题实例
一 北京飞至底特律的航程计算北京0A (北纬40°,东经116°),底特律坐标11A (北纬43°,西经83°), 纬度以北为正,南为负;经度以东为正,西为负。
而且以下计算中,飞机航线途中站点经纬度用表一的数据。
表一站点 A 0 A 1 A 2 A 3 A 4 A 5 纬度B (°) 40 31 36 53 62 59 经度L (°)116 122 140 -165 -150 -140 站点 A 6 A 7 A 8 A 9 A 10 A 11 纬度B (°) 55 50 47 47 42 43 经度L (°)-135-130-125-122-87-83设椭球体上任意两点10,2,1,0),,(),,(111 =+++i L B A L B A i i i i i i ,⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-=-=+++++).sin(),cos (cos )(),sin (sin )(1311221121i i i i i i i i i i L L n tgB L tgB L a b n tgB L tgB L a b n 其中a =6388千米,b =6367千米,21032221,||n n arctgn n n n =+=ϕ ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++=++=++=2022202022220222)(sin )sin(sin )(sin cos )(sin b L n a L abn z L b L n a ab y Lb L n a ab x ϕϕϕϕ曲面上两点的弧长公式用|)()()(|21222dL L z L y L x S L L ⋅'+'+'=⎰。
试求北京至底特律的航程,你能对上述公式进行简化处理吗?精度如何?二 抢渡长江选手的竞游路线图用⎪⎪⎩⎪⎪⎨⎧=+=θθsin )(cos u dt dy y v u dt dx,初始条件为:⎪⎪⎩⎪⎪⎨⎧====HT y L T x y x )()(0)0(0)0( 画出)(x y y =的图像 。
数学建模简单13个例子讲义.
支 球队中的胜者及轮空者进入下一轮,直至比赛结
束。问共需进行多少场比赛?
一般思维:
36 18 10 4 2 1 18 9 5 2 1 1 36 2 2 2 2 2
逆向思维:
每场比赛淘汰一名失败球队,只有一名冠军,即 就是淘汰了36名球队,因此比赛进行了36场。
4、爬山问题
某人早8时从山下旅店出发沿一条路径上山,下午5 时到达山顶并留宿,次日早8时沿同一路径下山,下午5 时回到旅店,则这人在两天中的同一时刻经过途中的 同—地点,为什么? 解法一: 将两天看作一天,一人两天的运动看作一天两 人同时分别从山下和山顶沿同一路径相反运功,因为 两人同时出发,同时到达目的地,又沿向一路径反向 运动,所以必在中间某一时刻t两人相遇,这说明某人 在两天中的同一时刻经过路途中的同一地点。
1、从包汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S V s v s v
…
s v
( 共 n个 )
定性分析
根据题意,A点的坐标为(-300,0), 单位为km.台风中心的运动轨迹为直 线BC,这里的∠CBA=450,当台风中 心在运动过程中处于以A为圆心、半径 为250 km的圆内(即MN上)时,气象台 A所在地区将遭受台风的影响。 因为圆的方程为: 直线BC的方程为: 当台风中心处于圆内时,有: 解得 其中参数t 为时间(单 位为h)。
马路的宽度D是容易测得的,问题的关键在于L的确定。 为确定L,还应当将L划分为两段:L1和L2。 其中 L1是司机在发现黄灯亮及判断应当刹车的反应 时间内驶过的路程,L2为刹车制动后车辆驶过的路程。 L1较容易计算,交通部门对司机的平均反应时间 t1早有测 算,反应时间过长将考不出驾照),而此街道的行驶速度 v 也是交管部门早已定好的,目的是使交通流量最大,可 另建模型研究,从而L1=v*t1。刹车距离 L2既可用曲线拟 合方法得出,也可利用牛顿第二定律计算出来 黄灯究竟应当亮多久现在已经变得清楚多了。 第一步,先计算出L应多大才能使看见黄灯的司机停 得住车。 第二步,黄灯亮的时间应当让已过线 D 的车顺利穿过马路, L 即T 至少应当达到 (L+D)/v。
(2)数学建模与数学建模竞赛--示例
(3)模型建立
中心问题是用数学语言把椅子四脚同时着地的条件和 y 结论表示出来。
B B’
A’ x
引入变量 表示位置 引入函数表示椅子脚到
A
C C’
O D’
地面的距离 f A、C g B、 D
D
f 0
g 0
由假设2可知, f , g 为的连续函数 由假设3可知,对任一 , , g 和至少有一个为零 f
结论:仅当 v x a 0时,应取 u v x 可以使前后不淋雨, 则总淋雨量最小,其它情况下都应使尽可能地大。
示例之四:椅子问题
问题:问题源于日常生活中,把四只脚椅子放在不 平面地,通常只有三只脚着地,放不稳,但只需稍 挪动几下,就可以使四脚同时着地,放稳。现在的 问题是要证实这种现象。
x
u 其中 a v y L vz T 0 。
Ru
u v
x
a
因此,雨中行走问题可抽象成如下的数学问题: 已知 l , vx , a ,求 u 为何值时 Ru 最小?
4、求解、讨论
下面分几种情况讨论:
(1)vx 0 时
l vx a l l u vx u a u Ru l l a vx u vx a l u u u vx u vx
1.问题
人们外出行走,途中遇雨,未带雨伞 势必淋雨。自然就会想到,走多快才会少 淋雨呢?
2、假设、符合说明
严格说该问题比较复杂,我们这里只讨论简单情形, 只考虑人在雨中沿一直线从一处向另一处行进时,雨 的速度已知,问行人走的速度多大才能使淋雨量最少?
为了使问题解决时简单,适当选择坐标系,用
简单数学建模应用例子
2024/1/713Fra bibliotek建模实例
这里是要用数学方法求解,一是为了给出建模 的示例,二是因为这类模型可以解决相当广泛 的一类问题,比逻辑思索的结果容易推广。
由于问题已经理想化了,所以不必再作假设。 安全渡河问题可以视为一个多步决策过程。每 一步即船由此岸驶向彼岸或从彼岸驶回此岸, 都要对船上的人员作出决策,在保证安全的前 题下,在有限步内使人员全部过河,
x(t t) x(t) rx(t)t
2024/1/7
24
建模实例
于是x(t)满足如下方程:
dx rx dt x(0) x0
易知其解为 x(t) x0ert
(2) (3)
2024/1/7
25
建模实例
上式表明了人口增长的指数规律,此时将t离 散化,并认为r较小,则可得(1)式,即(1) 为指数增长模型的一种离散形式的近似表示。 人们发现,在地广人稀的加拿大领土上,法国 移民后代的人口比较符合指数增长模型,而同 一血统的法国本土居民人口的增长却远低于这 个模型。
2024/1/7
7
建模实例
虽然椅子只有四个距离,但是由于正方形的中 心对称性,只要设两个距离函数就行了,记A, C两脚与地面的距离之和为f( ),B,D两脚与 地面的距离之和为g( ), f( ),g ( )≥0,由假设2, f与g均是连续函数。由假设3,椅子在任何位 置至少有三只脚着地,所以对于任意的 , f( ), g( )中至 少有一个为零,当 =0时 不妨设g( )=0, f( )>0。
数学建模
简单建模实例
1
建模实例
实例一:椅子能在不平的地面上放稳吗? 把椅子往不平的地面上放,通常只有三只脚着 地,放不稳,然而只需挪动几次,就可以使四 脚同时着地,放稳了。这看来似乎与数学无关 的现象能够用数学语言以表述,并用数学工具 来证实吗?
简单数学建模100例
实用标准
分析与假设
①将 243 颗珠子平均分成 3 份,每份 81 颗,任取其 2 份放置在天平两边,若平衡则稍重的一颗在另 1 份中;若不平衡则
稍重的一颗在天平下沉的 1 份中.
②在找出含有稍重珠子的一份中(含 81 颗),再将其 81 颗珠子平均分成 3 份,每份 27 颗,任取其 2 份放置在天平两边,若 平衡则稍重的一颗在另 1 份中;若不平衡则稍重的一颗在天平下沉的 1 份中.
③在找出含有稍重珠子的一份中(含 27 颗),再将其 27 颗珠子平均分成 3 份,每份 3 颗,任取其 2 份放置在天平两边, 若平衡则稍重的一颗在另 1 份中;若不平衡则稍重的一颗在天平下沉的 1 份中.
④在找出含有稍重珠子的一份中(含 1 颗),再将其 3 颗珠子平均分成 3 份,每份 1 颗,任取其 2 颗放置在天平两边,若 平衡则另 1 颗稍重的一颗;若不平衡则稍重的一颗为天平下沉的 1 颗.
【8】甲、乙两人去沙漠中探险,他们每天向沙漠深处走 20 千米,已知每人最多可带一个人 4 天的食物和水。如果允许将部分食物存放于途 中,其中 1 人最远可深入沙漠多少千米?(要求最后两人返回出发点)
分析与假设 要使其中一位探险者尽可能走得远,另一位须先回,留下食物和水给另一位,所以必须分头行动.问题是在何处留下食物和 水?
练习题
文档大全
实用标准
小敏把 100 只彩色小灯泡串联起彩灯,用来布置教室,可是其中有只小灯泡坏了,这可急坏了小敏。你能用最速捷的方法很快地找出了 那只损坏的小灯泡吗?
【7】水果店进了十筐苹果,每筐
10 个,共 100 个,每筐里的苹果重 量都一样,其中有九筐每个苹果的 重量都是 1 斤,另一筐中每个苹果 的重量都是 0.9 斤,但是外表完全 一样,用眼看或用手摸无法分辨。 现在要你用一台普通的大秤一次把 这筐重量轻的找出来。你可以办到么?
数学建模实验报告经典实例
《数学建模》实验报告计算过程如下, 结果如下:画图程序命令如下:函数图象如下:实验题目二: 编写利用顺序Guass消去法求方程组解的M-函数文件,并计算方程组的解解: M-函数文件如下:方程组的计算结果如下:实验题目三: 编写“商人们安全过河”的Matlab程序解: 程序如下:function foot=chouxiang%%%%%%%%%%%%%%%%%%%%%% 程序开始需要知道商人数, 仆人数, 船的最大容量n=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');if nn>nn=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 决策生成jc=1; % 决策向量存放在矩阵“d”中, jc为插入新元素的行标初始为1for i=0:nnnfor j=0:nnnif (i+j<=nnn)&(i+j>0) % 满足条件D={(u,v)|1<=u+v<=nnn,u,v=0,1,2}d(jc,1:3)=[i,j 1]; %生成一个决策向量后立刻将他扩充为三维(再末尾加“1”)d(jc+1,1:3)=[-i,-j,-1]; % 同时生成他的负向量jc=jc+2; % 由于一气生成两个决策向量,jc指标需要往下移动两个单位endendj=0;end再验证:程序结果说明在改变商人和仆人数目, 其他条件不变的条件下。
可能无法得到结果。
程序结果说明在改变商人和仆人数目,其他条件不变的条件下。
可能无法得到结果。
「初中数学建模的若干简要案例」
初中数学建模的若干简要案例初中数学建模学习案例1 :-----与自行车有关的问题(小组学习实践)课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。
问题1:用自己或同学的一辆自行车为观察对象,观察并解决下列问题:( 1 )我观察的这辆自行车是什么牌子的?( 2 )它的直径是_______cm,轮子转动一周,在地面走过的距离是_______cm ,精确到1cm。
( 3)自行车中轴的大齿轮盘的齿数是_______齿,后轴的小齿轮(飞轮)的齿数是_______,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_______周(保留2 位小数)。
问题 2 :如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。
问题3 :如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。
如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?:选做问题4:你认为对问题3 中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么?求解工作的表格省略初中数学数学建模案例2: -----线路设计问题(自学、探索、创新实践)课题: 为所在小区设计一个最佳的邮政投递路线,、一个合理的保安巡逻路线。
实施建议: 1: 按居住地成立4-6 人的小组,对你们要研究的小区,进行观察, 收集必要的数据和信息,( 如平面图, 楼的门洞的朝向,道路情况,小区的进出口位置等).发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。
2:复习必要的知识, 如一笔画方法,最短邮路的画法和算法等.3: 画出小区的平面示意图, (最好复印一下, 以避免后面画坏时重画),在图上完成邮政投递路线的设计,( 使邮递员走的路线最短).4 :实践环节:先不加思索按投递要求随意地走一遍,再按你设计的路线, 实际走一遍, 测算出路程看一看相差多少?(记录数据)创新实践项目:为你们居住的小区设计一个合理的保安巡逻路线、或合理的送奶的路线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1.1 求解线性方程组命令如下:>> a=[2,3,-1;8,2,3;45,3,9];>> b=[2;4;23];>> x=inv(a)*bx =0.55310.2051-0.2784例1.2 绘制正弦曲线和余弦曲线。
命令如下:>> x=[0:0.5:360]*pi/180;>> plot(x,sin(x),x,cos(x)) ;例1.3 输入10个学生的成绩并对成绩按升序排序。
>>g=[45 56 34 24 76 89 32];>>f=sort(g)f =24 32 34 45 56 76 89例1.4 设有常微分方程初值问题,试求其数值解,并与精确解相比较。
(1)建立函数文件funt.m:function yp=funt(t,y)yp=(y^2-t-2)/4/(t+1);(2)求解微分方程:t0=0;tf=10;y0=2;[t,y]=ode23('funt',[t0,tf],y0);y1=sqrt(t+1)+1;t'例2.1 计算表达式的值,并将结果赋给变量x,然后显示出结果。
在MA TLAB命令窗口输入命令:>>x=(5+cos(47*pi/180))/(1+sqrt(7)-2*i) %计算表达式的值2.2 A=[1 2 3;4 5 6;7 8 9]A =1 2 34 5 67 8 9例2.3 分别建立3×3、3×2和与矩阵A同样大小的零矩阵。
(1)建立一个3×3零矩阵:zeros(3)>> zeros(3)ans =0 0 00 0 00 0 0)建立一个3×2零矩阵:zeros(3,2)>> zeros(3,2)ans =0 00 00 0(3)建立与矩阵A同样大小零矩阵:zeros(size(A))>> A=[2 4 7 5;7 8 9 10];zeros(size(A))ans =0 0 0 00 0 0 0例2.4 产生5阶随机方阵A,其元素为[10,90]区间的随机整数,然后判断A的元素是否能被3整除。
(1) 生成5阶随机方阵A。
>> A=fix((90-10+1)*rand(5)+10)A =86 71 59 42 1428 46 74 85 3859 11 84 84 7549 76 69 43 1082 46 24 82 21(2) 判断A的元素是否可以被3整除。
>> P=rem(A,3)==0P =0 0 0 1 00 0 0 0 00 0 1 1 10 0 1 0 00 0 1 0 1例3.1 建立一个命令文件将变量a,b的值互换,然后运行该命令文件。
首先建立命令文件并以文件名exch.m存盘:clear;a=1:10; b=[11,12,13,14;15,16,17,18];c=a;a=b;b=c;abanta =11 12 13 1415 16 17 18b =1 2 3 4 5 6 7 8 9 10例3.2 建立一个函数文件将变量a,b的值互换,然后在命令窗口调用该函数文件。
首先建立函数文件fexch.m:function [a,b]=fexch(a,b) % exchc=a;a=b;b=c;clear;x=1:10; y=[11,12,13,14;15,16,17,18];[x,y]=fexch(x,y)例3.5 输入一个字符,若为大写字母,则输出其后继字符,若为小写字母,则输出其前导字符,若为数字字符则输出其对应的数值,若为其他字符则原样输出。
c=input('请输入一个字符','s');if c>='A' & c<='Z'disp(setstr(abs(c)+1));elseif c>='a'& c<='z'disp(setstr(abs(c)-1));elseif c>='0'& c<='9'disp(abs(c)-abs('0'));elsedisp(c);end例3.6 某商场对顾客所购买的商品实行打折销售,已知打折标准为:商品价格小于200元时,折扣率为0;商品价格大于或等于200元且小于500时,折扣率为0.03;商品价格大于或等于500且小于1000元时,折扣率为0.05;商品价格大于或等于1000且小于2500元时,折扣率为0.08;商品价格大于或等于2500且小于5000元时,折扣率为0.1;商品价格大于或等于5000元时,折扣率为0.14;求所售商品的实际销售价格。
>>price=input('请输入商品价格');switch fix(price/100)case {0,1}rate=0;case {2,3,4}rate=3/100;case num2cell(5:9)rate=5/100;case num2cell(10:24)rate=8/100;case num2cell(25:49)rate=10/100;otherwiserate=14/100;endprice=price*(1-rate)请输入商品价格890price =845.5000例3.7 矩阵乘法运算要求两矩阵的维数相容,否则会出错。
先求两矩阵的乘积,若出错,则自动转去求两矩阵的点乘。
程序如下:A=[1,2,3;4,5,6]; B=[7,8,9;10,11,12];tryC=A*B;catchC=A.*B;endClasterr %显示出错原因C =7 16 2740 55 72ans =Error using ==> *Inner matrix dimensions must agree.例3.8 已知求y 的表达式,当n=100时,求y 的值。
程序如下y=0;n=100;for i=1:ny=y+1/i/i;endy补充知识: 在实际MATLAB 编程中,为提高程序的执行速度,常用向量运算来代替循环操作:n=100; i=1:n;f=1./i.^2;y=sum(f)例3.9 求定积分程序如下:a=0;b=3*pi;n=1000; h=(b-a)/n;x=a:h:b; f=exp(-0.5*x).*sin(x+pi/6);for i=1:ns(i)= (f(i)+f(i+1))*h/2;ends=sum(s) 补充知识:事实上,MATLAB 提供了有关数值积分的标准函数,实际应用中可直接调用这些函数求数值积分例3.10 已知5个学生4门功课的成绩,求每名学生的总成绩。
程序如下:1320()sin()6x e x dx ππ-+⎰s=0;a=[65,76,56,78;98,83,74,85;76,67,78,79;98,58,42,73;67,89,76,87]for k=as=s+k;enddisp(s');结果为:a =65 76 56 7898 83 74 8576 67 78 7998 58 42 7367 89 76 87275 340 300 271 319 例3.11 产生一个长度为6的调和数列。
程序如下:X=zeros(1,6);i=1;while i<=6X(i)=1/i;i=i+1;endformat rat %使用分数表示数值disp(X例3.12 用while语句实现例3.8。
程序如下:y=0; i=1;while 1f=1/i/i;y=y+f;if i==100break;endi=i+1;endy例3.13 用筛选法求某自然数范围内的全部素数。
程序如下:m=input('m=');p=2:m;for i=2:sqrt(m)n=find(rem(p,i)==0&p~=i);p(n)=[];endp输入一个值为:m=100p =Columns 1 through 52 3 5 7 11Columns 6 through 1013 17 19 23 29Columns 11 through 1531 37 41 43 47Columns 16 through 2053 59 61 67 71Columns 21 through 2573 79 83 89 97例3.14 编写函数文件求半径为r的圆的面积和周长。
函数文件如下:function [s,p]=fcircle(r)%CIRCLE calculate the area and perimeter of a circle of radii r%r 圆半径%s 圆面积%p 圆周长%2001年7月30日编s=pi*r*r;p=2*pi*r;将以上函数文件以文件名fcircle.m存入c:\matlabr11\work下,然后在MA TLAB命令窗口调用该函数:[s,p]=fcircle(10)s =13823/44p =7100/113例3.15 利用函数文件,实现直角坐标(x,y)与极坐标(ρ,θ)之间的转换。
函数文件tran.m:function [rho,theta]=tran(x,y)rho=sqrt(x*x+y*y);theta=atan(y/x);调用tran.m的命令文件main1.m:x=input('Please input x=:');y=input('Please input y=:');[rho,the]=tran(x,y);rhothe例3.17 nargin用法示例。
函数文件examp.m:function fout=examp(a,b,c)if nargin==1fout=a;elseif nargin==2fout=a+b;elseif nargin==3fout=(a*b*c)/2;end命令文件mydemo.m:x=[1:3];y=[1;2;3];examp(x)examp(x,y')examp(x,y,3)例3.18 全局变量应用示例。
先建立函数文件wadd.m,该函数将输入的参数加权相加。
function f=wadd(x,y)global ALPHA BETAf=ALPHA*x+BETA*y;在命令窗口中输入:global ALPHA BETAALPHA=1;BETA=2;s=wadd(1,2)。