离散数学 群与环

合集下载

离散数学--第十章群,环,域

离散数学--第十章群,环,域

离散数学--第⼗章群,环,域群基本定义设V=<S, ∘ >是代数系统,∘为⼆元运算,如果∘运算是可结合的,则称V为半群(代数系统的前提不要忘,详情可看第九章)如果半群中有单位元==> 含⼳半群|独异点含⼳半群还有逆元==>群通常记作G群中的⼆元运算可交换==>交换群|阿贝尔群Klein四元群特征:1. 满⾜交换律2. 每个元素都是⾃⼰的逆元3. a, b, c中任何两个元素运算结果都等于剩下的第三个元素平凡群只有单位元有限群群中元素有限⼦群如果把群看成集合,⼦群就是⼦集中能满⾜群定义的⼀个集合(可以有多个集合)群是代数系统,最基本要满⾜封闭性!真⼦群就类似真⼦集⼦群判定定理:设G为群,H是G的⾮空⼦集. H是G的⼦群当且仅当∀a,b∈H 有ab−1∈H(感觉很懵逼)证必要性显然. 只证充分性. 因为H⾮空,必存在a∈H. 根据给定条件得aa−1∈H,即e∈H. 任取a∈H, 由e,a∈H 得 ea−1∈H,即a−1∈H. 任取a,b∈H,知b−1∈H. 再利⽤给定条件得a(b−1)−1∈H,即 ab∈H. 综合上述,可知H是G的⼦群.⽣成⼦群:设G为群,a∈G,令H={a k| k∈Z},则H是G的⼦群,称为由 a ⽣成的⼦群,记作<a>例如:Klein四元群 G = {e,a,b,c}的所有⽣成⼦群是:<e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}.则偏序集< L(G), ⊆ >称为G的⼦群格就相当于⼦群先变成偏序集然后就满⾜了格的定义?因为是⼦群所以叫⼦群格?右(左)陪集设H是G的⼦群,a∈G.令Ha={ha | h∈H}称Ha是⼦群H在G中的右陪集. 称a为Ha的代表元素.相当于右(左)乘a所得的集合?循环群设G是群,若在G中存在⼀个元素a,使得G中的任意元素都是a的幂,则称该群为循环群,元素a为循环群G的⽣成元。

离散数学 群

离散数学 群
定理7.1.4 任何一个循环半群(或含幺循环半群)都是可 交换半群(或含幺可交换半群)。 定理7.1.5 设<S, *>是一个半群,H 是S中任一元素的幂所 构成的集合,则<H,*>是<S, *>的子半群,且是个循环子 半群。 (该定理的证明自己练习)
5 半群同态
定义7.1.5 设U=<X,ο >和V=<Y, *>是两个半群,ο和*都是 二元运算,函数f:X→Y,若对任意的x,y∈X,有:
定理 群的运算表中每一行或每一列都是G中元素的双变换。 G中每个元素在每一行必出现且仅出现一次。
例 P198习题-18 若群<G,*>中每个元素的逆是其自身, 证该群是阿贝尔群。
证 只需证运算*可交换。 对任意的a,b∈G, a*b=a-1*b-1=(b*a)-1=b*a 故<G,*>是阿贝尔群。
= x*(a*b) 故 a*b∈C; ② 可逆性:若a∈C, 证a-1∈C。明显e∈C,对任x∈G,
a-1*x = a-1*x*a* a-1 = a-1*(x*a)* a-1 = a-1*(a*x)* a-1 = (a-1*a)*x* a-1 = x* a-1
故 a-1∈C;因此C是G的子群。 (习题-25与之类似)
阿贝尔群 设<G,*>是一个群,若*是可交换的, 则称 群 <G,*>为可交换群或阿贝尔群。
例 <R,×>不是群;而 <R-{0},×>是群。
例 7.2.1 <I,+>是阿贝尔群。
例 7.2.2 G={α,β,γ,δ},验证<G,*>是群。
可验证运算*是可结合的, * α β γ
δ

离散数学第十一章群和环习题答案

离散数学第十一章群和环习题答案

习题十五
16
证明:每个阶数大于1的群必含有阶数大于1的交换子群. 证明: 因为G的阶数大于1,必有周期大于1的元aG,构造H=(a),即 为所求。
习题十五
17
证明:循环群的子群必是循环群. 证明: 设G的生成元为a, H为G的子群,并且H中具有最小正幂的元是 ak, G=(a), HG, H={e, ak, ak2, ak3,…},设ak是H中具有最小正指数 的元, amH,证明am=(ak)* ,H=(ak), 则 amH,令m=tk+r (0r<k), 则am=(ak)t ar, 由k的选择知,r=0, 即am=(合,试确定<A, +, >是否成环、整环或域。 (1)A={x|xZ且x 0},无加法逆元,不是环 (2)A={a+b√3|a,bQ},是域 (3)A={x|(y)[yZ且x=2y]}, 由偶数构成,是环,但无法幺元, 不是整环,不是域。 (4)A={a/b|a,b为正整数,且(a,b)=1},既约分数,但无0,不构 成环。
习题十五 30
设<G, · >是群,a是G中一个固定元素,定义映射f:G → G使得对任何x G,f(x)=a· a-1. 求证:f是G的 x· 自同构映射。
证明: 容易证明f是G的同态映射, f(x· =a· y· -1 =a· a-1· y· -1 y) x· a x· a· a =f(x) ·f(y) 再证明f是双射, 证单射:f(x)=f(y), a· a-1 = a· a-1 x=y x· y· 证满射:令a· a-1 = y, x=a-1· a x· y·
c
c
c c
附加题:确定 2S,、 2S,、2S,各属于 哪一个层次?
• 2S,:闭,结,幺= S,无逆元,故含幺半群。 • 2S,:闭,结,幺= ,无逆元,故含幺半群。 • 2S,:闭,结,幺= ( A=A, AA= )A-1=A, 群。

离散数学第七章__环

离散数学第七章__环
规定:
n na a a a (n)a (na), 0a 0
则有:
ma na (m n)a m na mn a
0a a 0 0(0为R中零元)
n(a b) na nb
定义 一个集合(R,+,。)叫做环,假如
(a)(b) ab
a(b1 b2 bn ) ab1 ab2 abn
a b
ibn amb1 ambn
(na) b a(nb) n(ab)
规定:
n n a aa a
a0 和
ab ac ab ac 0 a(b c) 0

b c 0 即 b c 消去律成立。
反之,假设消去律成立,因为
ab 0 ab a 0
所以由消去律知若 a
0则 b0
所以环R没有零因子。
推论: 一个环若有一个消去律成立,则另一个消去律 也成立。
a0 1
定义(含单位元的环):(R,。)是单元半 群 常见的环:整数环,有理数环,实数环。 推论:(R,。)不可能构成群。 (因为0元无逆元)
运算规则:
(a b)c ac bc c(a b) ca cb
0a a 0 0 (0为R中零元)
(a)b a(b) ab
则对任何整数都有
a a a
m n
mn
(a ) a
m n
mn
定义:若在一个环R里
a 0, b 0 但 ab 0
则称a是环R的一个左零因子,b是环R的一个右零因子。
例 R={所有模n的剩余类}规定R中的加法和乘法如 下:
[a] [b] [a b] [a][b] [ab]

《离散数学课件》群与环3

《离散数学课件》群与环3
7/34
定理的证明(续)
设G=(g)是一个n阶有限循环群,则gn=e,且对于任意的小于n 的正整数m,gm≠e。所以,对于任意的小于n大于等于0的二个 整数m1,m2,若m1≠m2,则gm1≠gm2。 即 G={g, g2, ..., gn-1, g0=e}, 而模n的整数加群为 (Zn,), 这里Zn={0, 1, 2, ..., n-1}。 作映射φ ,对于任意的i ∊ Zn, φ( i)=gi。 显然φ是一个满射且也是一个单射,即φ是一个双射。 对于任意的i,j ∊ Zn, 若i+j ≤ n-1, φ (i j)=φ (i+j)=gi+j =gi ∘ gj=φ(i)∘φ(j), 若i+j ≥ n, φ (i j)=φ (i+j-n)=gi+j-n=gi+j-n∘gn =gi+j=gi ∘ gj=φ(i)∘φ(j) 。 所以φ也即是同构映射,从而 (Zn, )同构于(G,∘)。
A2={0, 3},
A3={0, 2, 4},
和Z6本身。
14/34
例 S3= { (1), (12), (23), (13), (123), (132)}
S3的所有子群为: {(1)}
∘ (1) (12) (13) (23) (123) (132)
(1)
(12) (13) (23)
(1)
(12) (13) (23)
25/34
由子集A生成的子群(A)
设(G,· )是一个群,Ø≠A⊆G, 设想给出G的一个子群A’,有性质: ◆A’ ⊇A, ◆且若有B是G的子群,B⊇A,则B⊇A’。 这样的子群A’称为由子集A生成的子群,记 (A)=A’。
3/34
循环群

离散数学第七讲群、环、域

离散数学第七讲群、环、域

17
三、子群
定义7: 设〈G , *〉是一个群, S是G的非空子集, 并满足以 下条件: (1) 对任意a、b∈S有a * b∈S ; (2) 对任意a∈S有a-1 ∈S; (3) e∈S, e是〈G ,*〉的么元, 则称〈S ,*〉是〈G ,*〉的子群。 如 〈I ,+〉是〈R ,+〉的子群, 〈N ,+〉不是。
的群同态如果g一个子集k的每一元素都被映入h再没有其它元素映入e的同态h的核kerh形成群g如果abkerh那么habkerh即kerh对运算1kerh四群同态24定义10的子群我们称集合ah为元素ag所确定的子群称为左陪集ah的表示元素
6.7
一、群的定义和性质

定义1:群〈G , * 〉是一代数系统, 其中二元运算* 满足: (1) 运算*是可结合的; (2) 存在么元e (3) 对每一a∈G, 存在一个元素a-1 , 使 a-1 * a = a * a-1 = e 如 〈Q, ×, 1〉 不是群(0无逆元) 〈Q+, ×, 1〉 是群
16
二、置换群和循环群
定理11:设〈G, *〉是由g∈G生成的有限循环群, 如果 |G|=n,则gn =e, G = {g, g2, g3, …, gn = e} 且n是使gn =e 证: (2) 再证{g, g2, g3, …, gn}中的元素全不相同。 若有gi= gj, 不妨设i<j, 于是gj-i=e。 但j-i<n, 这与n是使gn =e 由于〈G , *〉是群, 所以G= {g, g2, g3, …, gn}, 又由(1)得gn =e。 证毕。
如 〈I, +〉是阿贝尔群。
2
一、群的定义和性质
例1:①〈Q+, ×, 1〉

离散数学第7章群、环和域

离散数学第7章群、环和域
所以,(x∗y)∗z=x∗(y∗z),故<R,*>是一个半群。 7.1.2 独异点 定义7.1.3 设G,*是半群,如果运算*的单位元eG,
则称半群G,*为含幺半群或独异点。
第7章 群、环和域
若G,*为独异点,且*是可交换的,则称G,*为可换 的独异点。
例如,设A是任一集合,P (A)是A的幂集合。集合并运算 ∪在P (A)上是封闭的,并运算∪的单位元P (A),所以半 群<P (A),∪>是独异点;交运算∩在P (A)上也是封闭的,交运 算∩的单位元AP (A),所以半群<P (A),∩>也是独异点。显
第7章 群、环和域
⑴ (a–1)–1=a ⑵ a*b有逆元,且(a*b)–1=b–1*a–1 证明:⑴ 因a*a–1=a–1*a =e,故(a–1)–1=a ⑵ 因(a*b)*(b–1* a–1)=(a*(b*b–1)*a–1
=a*e*a–1=a*a–1=e 又
(b–1* a–1)*(a*b)=(b–1*a–1)*(a*b) =b–1*(a–1*a)*b=b–1*e*b=b–1*b=e
第7章 群、环和域
返回总目录
第7章 群、环和域
第7章 群、环和域
7.1半群和独异点
7.1.1广群和半群 代数系统<S,*>又称为广群。 定义7.1.1 设<S,*>是代数系统,*是S上的二元运算,如 果*满足结合律,则称代数系统<S,*>为半群。
例如,代数系统<I,+>、R,·、<P(a),∪>、<P(a),∩>、
则称该群为阿贝尔(Abel)群,或称可交换群。 整数加法群I,+中的加法运算是可交换的,所以,整
数加法群是阿贝尔群,群R-0,·中的乘法运算也是可交 换的,所以,R-0,·也是阿贝尔群。

离散数学环和域

离散数学环和域
定理2:环<R, +, ·>是无零因子 <R, +, ·>满足可约律。 证明:(1) 必要性:∀a, b, c∈R, 且a≠0,若a·b=a·c, 则有
a·b-a·c=0, a·b-a·c=a·b+a·(-c)= a·(b-c)=0。 由于无零因子,则b=c , 可见<R, +, ·>满足可约律。 (2) 充分性:∀b, c∈R, b·c=0, 证明b=0或c=0。
又×k可交换, 所以,乘法在加法上可分配。
一、环
定理1:设<R, +, ·>为环, 0是加法么元,那么对任意a,b,cR (1) a·0 = 0·a = 0 (加法么元必为乘法零元) (2) (-a)·b = a·(-b) = -(a·b) (3) (-a)·(-b) = a·b (4) a·(b-c) = a·b-a·c (5) (b-c)·a=b·a-c·a
例2 (b) <N6,+6,×6>不是整环,因为3×62=0, 3和2是零因子。但<N7,+7,×7> 是整环,N7= {0,1,2,3,4,5,6},根据定理2,只需证明a,源自b,cN7,
a
7
b a
a 0
7
c
b
c
反证:假如b≠c,不妨设b>c,存在整数i, j使得 ab=7i+r, ac=7j+r (0<=r<=6, i>j)
三、域
域一定是整环,但整环不一定是域
例如<I,+,·>是整环但不是域,因<I- {0},·>不是阿贝尔群。
两式相减可得,a(b-c) = 7(i-j),那么7| a(b-c),但由于0<a<7, 0<b-c<7,所 以7不可能整除a(b-c),矛盾,所以b=c。

离散数学几个典型的代数系统

离散数学几个典型的代数系统

{ a, b, c, e, f }是 L2的子格, 并且同构于五角格;
{ a, c, b, e, f }是 L3的子格, 也同构于钻石格.
25
全上界与全下界
定义 设L是格, 若存在 a∈L 使得 x∈L 有 a ≼ x, 则称 a 为 L 的全 下界; 若存在 b∈L 使得 x∈L 有 x ≼ b, 则称 b 为 L 的全 上界. 说明:
对偶原理 交换律、结合律、幂等律、吸收律
格的等价定义 子格 格的同构 特殊的格:分配格、有界格、有补格、布尔格
10
格的定义
定义 设<S, ≼>是偏序集,如果x,y≼S,{x,y}都有 最小上界和最大下界,则称S关于偏序≼作成一个
格. 由于最小上界和最大下界的惟一性,可以把求{x,y} 的最小上界和最大下界看成 x 与 y 的二元运算∨和 ∧,即 x∨y 和 x∧y 分别表示 x 与 y 的最小上界和 最大下界. 注意:这里出现的∨和∧符号只代表格中的运算, 而不再有其他的含义.
由 a ≼ a, a∧b ≼ a 可得 a∨(a∧b) ≼ a (VI)
由式 (V) 和 (VI) 可得 a∨(a∧b) = a 根据对偶原理, a∧(a∨b) = a 得证.
18
格作为代数系统的定义
定理 设<S,∗, >是具有两个二元运算的代数系统, 若对于∗和运算适合交换律、结合律、吸收律, 则 可以适当定义S中的偏序≼,使得<S, ≼>构成格, 且 a,b∈S有 a∧b = a∗b, a∨b = ab.
4
零因子的定义与存在条件
设<R,+,>是环,若存在 ab =0, 且 a0, b0, 称 a 为左零因子,b为右零因子,环 R 不是无零因子 环. 实例 <Z6,,>,其中 23=0,2 和 3 都是零因 子.

离散数学代数系统中的群与域知识梳理

离散数学代数系统中的群与域知识梳理

离散数学代数系统中的群与域知识梳理离散数学是研究不连续量的数学分支,而代数系统是离散数学的基础概念之一。

在代数系统中,群与域是两个重要的概念。

本文将对离散数学代数系统中的群与域的相关知识进行梳理。

一、群的定义及性质群是代数系统中一种基本的代数结构,它是一个集合与一个二元运算的组合,满足四个条件:封闭性、结合律、单位元和逆元。

1.1 封闭性在群中的任意两个元素进行运算后,结果仍然属于这个群。

即对于群 G 中任意的 a、b,有 a * b ∈ G。

1.2 结合律在群中进行运算的结果不受运算元素的顺序影响。

即对于群 G 中任意的 a、b、c,有 (a * b) * c = a * (b * c)。

1.3 单位元群中存在一个特殊元素,称为单位元,它与群中的任意元素进行运算后得到这个元素本身。

即对于群 G 中任意的 a,有 a * e = e * a = a,其中 e 是群 G 的单位元。

1.4 逆元对于群 G 中的每个元素 a,群中存在一个元素 b,使得 a * b = b * a = e,其中 e 是群 G 的单位元,并且称元素 b 是元素 a 的逆元,记作 b = a^(-1)。

二、群的例子2.1 整数环(Z,+)整数环是一个群,其中的运算为加法。

整数环满足群的四个条件:封闭性、结合律、单位元和逆元。

例如,对于整数环中的任意两个整数 a、b,其和仍然为整数,满足封闭性;整数的加法满足结合律;0 是整数环的单位元,对于任意整数 a,有 a + 0 = 0 + a = a;对于任意整数 a,存在一个整数 -a,使得 a + (-a) = (-a) + a = 0。

2.2 二进制群(Zn,⊕)二进制群是一个有限集合,其中的运算为模 n 的加法(⊕)。

二进制群也满足群的四个条件:封闭性、结合律、单位元和逆元。

例如,对于二进制群中的任意两个元素 a、b,其模 n 的和仍然在这个群中,满足封闭性;模 n 的加法满足结合律;0 是二进制群的单位元,对于任意元素 a,有 a ⊕ 0 = 0 ⊕ a = a;对于任意元素 a,存在一个元素 b,使得 a ⊕ b = b ⊕ a = 0。

离散数学知识点整理

离散数学知识点整理

离散数学知识点整理离散数学是现代数学的一个重要分支,它在计算机科学、信息科学、电子工程等领域都有着广泛的应用。

下面我们来对离散数学的一些重要知识点进行整理。

一、集合论集合是离散数学的基础概念之一。

集合是由一些确定的、不同的对象组成的整体。

集合的表示方法有列举法和描述法。

集合的运算包括并集、交集、差集和补集。

并集是指将两个集合中的所有元素合并在一起组成的新集合。

交集则是指两个集合中共同拥有的元素组成的集合。

差集是从一个集合中去掉另一个集合中的元素得到的集合。

补集是在给定的全集范围内,某个集合之外的元素组成的集合。

集合之间的关系也非常重要,比如包含关系、相等关系等。

子集是指一个集合中的所有元素都属于另一个集合。

如果两个集合相互包含,那么它们就是相等的。

二、关系关系是集合中元素之间的某种联系。

关系可以用矩阵和图形来表示。

关系的性质包括自反性、反自反性、对称性、反对称性和传递性。

自反性是指集合中的每个元素都与自身有关系;反自反性则是集合中的每个元素都与自身没有关系。

对称性是指如果一个元素与另一个元素有关系,那么反过来另一个元素也与这个元素有关系;反对称性则是如果一个元素与另一个元素有关系,且另一个元素也与这个元素有关系,那么这两个元素必须相等。

传递性是指如果一个元素与另一个元素有关系,另一个元素与第三个元素有关系,那么第一个元素与第三个元素也有关系。

关系的合成是将两个关系结合起来得到一个新的关系。

三、函数函数是一种特殊的关系,它对于定义域中的每个元素,都有唯一的对应值在值域中。

函数的类型有单射、满射和双射。

单射是指定义域中的不同元素对应值域中的不同元素;满射是指值域中的每个元素都有定义域中的元素与之对应;双射则是既是单射又是满射。

四、代数系统代数系统由集合、运算和运算所满足的公理组成。

常见的代数系统有群、环、域等。

群是一种具有封闭性、结合律、单位元和逆元的代数系统。

环是在群的基础上增加了两个运算,并且满足一定的运算规则。

离散数学-环

离散数学-环

.

1.3 多项式环
定义11.26
环如< S,+,·>,< R,+,·>如定义11.25所述, cS,如果c不是任何非零R-多项式的根, 只是零多项式O(或0(x))的根,
那么称c为环R的超越元,否则称c为 环R的代数元.
.

1.3 多项式环
定义11.27 设f(x) R[x],R为含么交换环,若有 R-多项式g(x),其最高次数项系数为e,及q(x), r(x)(其次数低于g(x)的次数或为零多项式), 使得 f(x)= q(x)g(x)+ r(x) (11-l)
定理0
设R为含么交换环, f(x)R[x], 那么,c是f(x)的根 当且仅当f(x)可 被x-c整除(即余式为 0).
.பைடு நூலகம்

1.3 多项式环
定理1 设R是含么交换环,f(x)R[x],那么,f(x)
有不同的根c1,c2,…,cm,当且仅当f(x)可被 (x-c1)(x-c2)…(x-cm)整除.
定理2 设R是含么整环,f(x)为R[x]中的n次非零多项 式.那么 f(x)的不同根的个数不超过n。
R的理想子环,简称理想(ideals),如果对任意的
rR,dD,有rdD,drD .当D=R或D={0}时,称 < D,+,·>为< R,+,·>平凡理想.
.

Δ1.2 子环和理想
定理11.32
设< D1,+,·>, < D2,+,·>为环< R,+,·> 的理想, 那么
(1)< D1D2,+,·>为< R,+,·>的理想. (2)< D1+D2,+,·>为< R,+,·>的理想. 其中D1+D2 = {d1+d2 d1D1∧d2D2}

离散数学 第十章、群与环

离散数学  第十章、群与环
17
子群判定定理3 子群判定定理
定理10.7 (判定定理三) 判定定理三) 定理 为群, 是 的非空有穷子集 的非空有穷子集, 设G为群,H是G的非空有穷子集,则H是G的子群当且仅当 为群 是 的子群当且仅当 ∀a,b∈H有ab∈H. ∈ 有 ∈ 必要性显然. 为证充分性, 证 必要性显然 为证充分性,只需证明 a∈H有a−1∈H. ∈ 有 任取a∈ 任取 ∈H, 若a = e, 则a−1 = e∈H. ∈ 若a≠e,令S={a,a2,…},则S⊆H. , , ⊆ 由于H是有穷集 必有a 是有穷集, 由于 是有穷集,必有 i = aj(i<j). ) 根据G中的消去律得 aj−i = e,由a ≠ e可知 j−i>1,由此得 根据 中的消去律得 − , 可知 − , −− −− a j−i−1a = e 和 a a j−i−1 = e −− 从而证明了a 从而证明了 −1 = a j−i−1∈H.
8
群的性质: 群的性质:幂运算规则
定理10.1 设G 为群,则G中的幂运算满足: 为群, 中的幂运算满足: 定理 中的幂运算满足 (1) ∀a∈G,(a−1)−1=a ∈ , (2) ∀a,b∈G,(ab)−1=b−1a−1 ∈ , (3) ∀a∈G,anam = an+m,n, m∈Z ∈ , ∈ (4) ∀a∈G,(an)m = anm,n, m∈Z ∈ , ∈ (5) 若G为交换群,则 (ab)n = anbn. 为交换群, 为交换群 的逆元, 也是 的逆元. 也是a 证 (1) (a−1)−1是a−1的逆元,a也是 −1的逆元 根据逆元唯一 等式得证. 性,等式得证 (2) (b−1a−1)(ab)= b−1(a−1a)b = b−1b = e, (ab)( b−1a−1)=e, 同理 , 的逆元. 故b−1a−1是ab的逆元 根据逆元的唯一性等式得证 的逆元 根据逆元的唯一性等式得证.

离散数学 第4章 代数系统(3)

离散数学 第4章 代数系统(3)
离散数学
西安交通大学 电子与信息工程学院
计算机系
1
离散数学
§5.环
环的基本概念 环的基本性质 无零因子环和含零因子环 整环与除环R, , )是代数系统, 和是R上的两个二元运
算,若 (1) (R, )是交换群; (2) (R, )是半群 ; (3) 对满足分配律:对任何a,b,cR,都有 a(bc)=(ab)(ac) (bc)a=(ba)(ca) ;
a0 = (a0)0
= (a0)((a0)-(a0))
= (a0)((a0)(-(a0)))
= ((a0)(a0))(-(a0)) (结合律)
= (a(00))(-(a0)) (分配律)
= (a0)(-(a0))
(00 = 0 )
= (a0)-(a0) =0;
= (a0)(-(ab))
((-b)b= 0 )
= 0(-(ab))
(根据(1) a0 = 0)
= -(ab) ;
13
离散数学
(3)(-a)(-b) =-(a(-b)) (根据(2))
=-(-(ab)) (根据(2))
=ab
(反身律) ;
(4)(-1)a =-(1a)
(根据(2))
则称 (R, , )是环。
注:在环中,由于(R, )是群,故关于有幺元存在,将关于的 么元记为0,称为环的零元。
在环中,由于(R, )是群,故R中每个元素有逆元,设aR, 将a关于的逆元记为-a ,称为a 的负元,且将a (-b)简记为 a-b 3
离散数学
(即在环中可定义减法运算)。 在环中,对于运算,若有幺元,则记为1或e 。 在环中,设aR ,若a关于有逆元,则记为 a-1。 以后谈到环,只讨论|R|2的情况,即不讨论一个元素的环。 在环的定义中,不要求对满足分配律,只要求 对满足

离散数学代数系统1

离散数学代数系统1

格与布尔代数
• • • • • • • 格的定义 格的性质 格的等价定义 子格与格的同态 特殊的格 布尔代数的性质 布尔代数的同态与同构
12
格的定义
定义14.29 设<S,≼>是偏序集,如果∀x, y∈S,{x,y}都有 是偏序集, 定义 ≼ 是偏序集 如果∀ ∈ , 都有 最小上界和最大下界,则称S关于偏序 作成一个格 关于偏序≼ 最小上界和最大下界,则称 关于偏序≼作成一个格. 由于最小上界和最大下界的惟一性,可以把求{x,y}的最 由于最小上界和最大下界的惟一性,可以把求 的最 小上界和最大下界看成 x与y 的二元运算∨和∧,即 与 的二元运算∨ x∨y 和 x∧y 分别表示 与y的最小上界和最大下界 的最小上界和最大下界. ∨ ∧ 分别表示x与 的最小上界和最大下界 注意:这里出现的∨ 注意:这里出现的∨和∧符号只代表格中的运算,而不 符号只代表格中的运算, 再有其他的含义. 再有其他的含义
9

定义14.28 定义 是整环, 中至少含有两个元素. 设R是整环,且R中至少含有两个元素 若∀a∈R* , 其中 是整环 中至少含有两个元素 ∈ R*=R−{0},都有 −1∈R,则称 是域. − ,都有a ,则称R是 例如有理数集Q、实数集 、复数集C关于普通的加法和 例如有理数集 、实数集R、复数集 关于普通的加法和 乘法都构成域,分别称为有理数域 实数域和复数域. 有理数域、 乘法都构成域,分别称为有理数域、实数域和复数域 整数环Z是整环,而不是域 整数环 是整环,而不是域. 是整环 对于模n的整数环 是素数, 对于模 的整数环Zn,若n是素数,那么 n是域 的整数环 是素数 那么Z 是域.
3
环的性质
定理14.11 设<R,+,·>是环,则 是环, 定理 是环 (1) ∀a∈R,a0 = 0a = 0 ∈ , (2) ∀a, b∈R,(−a)b = a(−b) = −ab ∈ ,− − (3) ∀a, b, c∈R,a(b−c) = ab−ac, (b−c)a = ba−ca ∈ , − − , − − (4) ∀a1, a2, ... , an, b1, b2, ... , bm∈R(n, m≥2) ( )

离散数学第七章群与环

离散数学第七章群与环

定理7.4:给定半群<S,⊙>和半群<T,>,且s∈S的逆元 元 ,则积半群<S×T>中的逆元为
,t∈T的逆
PART 01 PART 02 PART 03 PART 04 PART 05
半群 群 子群与群的陪集分解 循环群与置换群 环与域
7.2 群
定义7.7 给定代数系统V=<G,⊙>,若<G,⊙>是独异点并且每个元素均 存在逆元,或满足⊙是可结合的并且关于⊙存在幺元并且G中每个元素关 于⊙是可逆的,则称<G,⊙>是群。记为G。群比独异点具有更强的条件。
7.3.2 群的陪集与拉格朗日定理
给定一子群H和G内的某一元素a,则可定义出一个左陪集 aH={ah;h∈H}。 因为a为可逆的,由φ(h) = ah给出之映射φ : H → aH为一个双射。更甚地, 每一个G内的元素都包含在恰好一个H的左陪集中;其左陪集为对应于一 等价关系的等价类,其等价关系a1 ~ a2当且仅当a1−1a2会在H内。H的左 陪集之数目称之为H在G内的“指数”,并标记为[G:H]。 拉格朗日定理叙述著对一个有限群G和一个子群H而言, 其中o(G)和o(H)分别为G和H的目。特别地是,每一个G的子群的目(和每一 个G内元素的目)都必须为o(G)的因子。 右陪集为相类比之定义:Ha = {ha : h∈H}。其亦有对应于一适当之等价关系的等价类,且其个数亦会相等于 [G:H]。 若对于每个在G内的a,aH=Ha,则H称之为正规子群。每一个指数2的子群 皆为正规的:左陪集和右陪集都简单地为此一子群和其补集。
然而,在给出的运算下该集合是一个幺半群。 例7.16 在一般意义下的乘法运算下,所有非零实数组成的集合构成一个群。 a≠0的逆是1/a。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
子群格
定义10.8 设G为群, 令 L(G) = {H | H是G的子群} 则偏序集< L(G), >称为G的子群格.
实例: Klein四元群的子群格如下:
图1
26
陪集定义与实例
定义10.9 设H是G的子群,a∈G.令 Ha={ha | h∈H} 称Ha是子群H在G中的右陪集. 称a为Ha的代表元 素. 例7 (1) 设G={e,a,b,c}是Klein四元群,H=<a>是G 的子群. H所有的右陪集是: He={e,a}=H, Ha={a,e}=H, Hb={b,c}, Hc={c,b} 不同的右陪集只有两个,即H和{b,c}.
23
典型子群的实例:子群的交
例6 设G是群,H,K是G的子群. 证明 (1) H∩K也是G的子群. (2) H∪K是G的子群当且仅当 HK 或 KH. 证 (1) 由 e∈H∩K 知 H∩K 非空. 任取a, b∈H∩K,则a∈H, a∈K, b∈H, b∈K. 必有ab1∈H 和 ab1∈K,从而ab1∈H∩K. 因此 H∩KG.
(2) 设V=<S,∘>是半群,若e∈S是关于∘运算的单位 元,则称V是含幺半群,也叫做独异点. 有时也将独 异点V 记作V=<S,∘,e>.
(3) 设V=<S,∘>是独异点,eS关于∘运算的单位元, 若aS,a1S,则称V是群. 通常将群记作G.
3
实例
例1 (1) <Z+,+>,<N,+>,<Z,+>,<Q,+>,<R,+>都是半群,+ 是普通加法. 这些半群中除<Z+,+>外都是独异点. (2) 设n是大于1的正整数,<Mn(R),+>和<Mn(R),· >都 是半群,也都是独异点,其中+和· 分别表示矩阵 加法和矩阵乘法. (3) <P(B),>为半群,也是独异点,其中为集合对 称差运算. (4) <Zn, >为半群,也是独异点,其中 Zn={0,1,…,n1},为模n加法. (5) <AA,◦>为半群,也是独异点,其中◦为函数的复 合运算. (6) <R*,◦>为半群,其中R*为非零实数集合,◦运算 4 定义如下:x, yR*, x◦y=y.
18
子群判定定理1
定理10.5(判定定理一) 设G为群,H是G的非空子集,则H是G的子群当且 仅当 (1) a,b∈H有ab∈H (2) a∈H有a1∈H.
证 必要性是显然的. 为证明充分性,只需证明e∈H. 因为H非空,存在a∈H. 由条件(2) 知a1∈H,根据 条件(1) aa1∈H,即e∈H.
r个
b 1a r b b 1eb e
从而有t | r. 另一方面,由 a = (b1)1(b1ab)b1可知 r | t. 从而 有 |b1ab| = |a|.
16

实例
(2) 设 |ab| = r,|ba| = t,则有 (ab) t 1 (ab)(ab)...(ab)
19
子群判定定理2
定理10.6 (判定定理二) 设G为群,H是G的非空子集. H是G的子群当且仅当 a,b∈H有ab1∈H. 证 必要性显然. 只证充分性. 因为H非空,必存在a∈H. 根据给定条件得aa1∈H,即e∈H. 任取a∈H, 由e,a∈H 得 ea1∈H,即a1∈H. 任取a,b∈H,知b1∈H. 再利用给定条件得 a(b1) 1∈H,即ab∈H. 综合上述,可知H是G的子群.
7
群中元素的幂
定义10.3 设G是群,a∈G,n∈Z,则a 的 n次幂.

e n 1 n a a a (a 1 ) m
n0 n0 n 0, n m
群中元素可以定义负整数次幂. 在<Z3, >中有 23 = (21)3 = 13 = 111 = 0 在<Z,+>中有 (2)3 = 23 = 2+2+2 = 6
14
群的性质:元素的阶
定理10.4 G为群,a∈G且 |a| = r. 设k是整数,则 (1) ak = e当且仅当r | k (2 )|a1| = |a| 证 (2) 由 (a1)r = (ar)1 = e1 = e 可知 a1 的阶存在. 令|a1| = t,根据上面的证明有t | r. a又是a1的逆元,所以 r | t. 从而证明了r = t,即 |a1| = |a| .
第十章 群与环
主要内容:
群的定义与性质 子群与群的陪集分解 循环群与置换群 环与域
1
10.1 群的定义与性质
半群、独异点与群的定义 半群、独异点、群的实例 群中的术语 群的基本性质
2
半群、独异点与群的定义
定义10.1 (1) 设V=<S, ∘ >是代数系统,∘为二元运算,如果 ∘运算是可结合的,则称V为半群.
实例: 例如整数加群,由2生成的子群是 <2>={2k | k∈Z}=2Z <Z6, >中,由2生成的子群<2>={0,2,4} Klein四元群 G = {e,a,b,c}的所有生成子群是: <e>={e}, <a>={e,a}, <b>={e,b}, <c>={e,c}.
22
典型子群的实例:中心C
实例
例2 设G={ e, a, b, c },G上的运算由下表给出,称 为Klein四元群

e a
e a b c e a a e b c c b
b
c
特征: 1. 满足交换律 2. 每个元素都是自己的逆元 3. a, b, c中任何两个元素运 算结果都等于剩下的第三个 元素
b c c b e a a e
10
群的性质:方程存在惟一解
定理10.2G为群,a,b∈G,方程ax=b和ya=b在G 中有解且仅有惟一解. 证 a1b 代入方程左边的x 得 a(a1b) = (aa1)b = eb = b 所以a1b 是该方程的解. 下面证明惟一性. 假设c是方程ax=b的解,必有ac=b,从而有 c = ec = (a1a)c = a1(ac) = a1b 同理可证ba1是方程 ya=b的惟一解.
8
元素的阶
定义10.4 设G是群,a∈G,使得等式 ak=e 成立的最 小正整数k 称为a 的阶,记作|a|=k,称 a 为 k 阶元. 若不存在这样的正整数 k,则称 a 为无限阶元. 例如,在<Z6,>中, 2和4是3阶元, 3是2阶元, 1和5是6阶元, 0是1阶元. 在<Z,+>中,0是1阶元,其它整数的阶都不存在.
11
群的性质:方程存在惟一解
例3 设群G=<P({a,b}),>,其中为对称差. 解下列 群方程:{a}X=,Y{a,b}={b}

X={a}1={a}={a}, Y={b}{a,b}1={b}{a,b}={a}
12
群的性质:消去律
定理10.3 G为群,则G中适合消去律,即对任意 a,b,c∈G 有 (1) 若 ab = ac,则 b = c. (2) 若 ba = ca,则 b = c. 例4 设G = {a1, a2, … , an}是n阶群,令 aiG = {aiaj | j=1,2,…,n} 证明 aiG = G. 证 由群中运算的封闭性有 aiGG. 假设aiGG,即 |aiG| < n. 必有aj,ak∈G使得 aiaj = aiak (j ≠ k) 13 由消去律得 aj = ak, 与 |G| = n矛盾.
21
典型子群的实例:生成子群
定义10.6 设G为群,a∈G,令H={ak| k∈Z}, 则H是G的子群,称为由 a 生成的子群,记作<a>.
证 首先由a∈<a>知道<a>≠. 任取am,al∈<a>,则 am(al)1 = amal = aml∈<a> 根据判定定理二可知<a>≤G.
15
实例
例 5 设G是群,a,b∈G是有限阶元. 证明 (1) |b1ab| = |a| (2) |ab| = |ba|
证 (1) 设 |a| = r,|b1ab| = t,则有 (b 1ab)r (b 1ab)(b 1ab)...(b 1ab)
9
群的性质:幂运算规则
定理10.1 设G 为群,则G中的幂运算满足: (1) a∈G,(a1)1=a (2) a,b∈G,(ab)1=b1a1 (3) a∈G,anam = an+m,n, m∈Z (4) a∈G,(an)m = anm,n, m∈Z (5) 若G为交换群,则 (ab)n = anbn.
5
有关群的术语
定义10.2 (1) 若群G是有穷集,则称G是有限群,否 则称为无限群.
群G 的基数称为群 G 的阶,有限群G的阶记作|G|.
(2) 只含单位元的群称为平凡群.
(3) 若群G中的二元运算是可交换的,则称G为交换 群或阿贝尔 (Abel) 群.
6
有关群的术语
实例: <Z,+>和<R,+>是无限群. <Zn,>是有限群,也是 n 阶群. Klein四元群是4阶群. <{0},+>是平凡群. 上述群都是交换群,n阶(n≥2)实可逆矩阵集合关于 矩阵乘法构成的群是非交换群.
20
子群判定定理3
定理10.7 (判定定理三) 设G为群,H是G的非空有穷子集,则H是G的子群 当 且仅当a,b∈H有ab∈H. 证 必要性显然. 为证充分性,只需证明 a∈H有a1∈H.
任取a∈H, 若a = e, 则a1 = e∈H. 若a≠e,令S={a,a2,…},则SH. 由于H是有穷集,必有ai = aj(i<j). 根据G中的消去律得 aji = e,由a ≠ e可知 ji>1,由 此得 a ji1a = e 和 a a ji1 = e 从而证明了a1 = a ji1∈H.
相关文档
最新文档