机器学习 习题答案

合集下载

机器学习参考答案

机器学习参考答案

第7章机器学习参考答案7-6ID3解:设根节点为S,尽管它包含了所有的训练例子,但却没有包含任何分类信息,因此具有最大的信息熵。

即:H(S)= - (P(+)log 2 P(+) + P(-)log2 P(-))式中P(+)=3/6,P(-)=3/6分别是决策方案为“ +”或“-”时的概率。

因此有H(S)= - ((3/6)log 2(3/6) + (3/6)log 2(3/6))=1按照ID3算法,需要选择一个能使S的期望熵为最小的一个属性对根节点进行扩展,因此我们需要先计算S关于每个属性的条件熵:H(S|x i)= ( |S T| / |S|)* H(S T) + ( |S F| / |S|)* H(S F)其中,T和F为属性人的属性值,S T和S F分别为X j=T或X i=F时的例子集,|S、| S T|和|S F|分别为例子集S、S T和S F的大小。

下面先计算S关于属性X1的条件熵:在本题中,当x1=T时,有:S T={1,2,3}当X1=F时,有:S F={4,5, 6}其中,S T和S F中的数字均为例子集S中的各个例子的序号,且有|S|=6, | S T |=| S F |=3。

由S T可知,其决策方案为“ +”或“-”的概率分别是:P ST(+)=2/3P ST (-)=1/3因此有:H(S T)= - (P ST (+)log2 P ST (+) + P ST (-)log2 P ST (-))=-((2⑶log 2(2/3) + (1/3)log 2(1/3))=0.9183再由S F可知,其决策方案为“ +”或“-”的概率分别是:P SF (+)=1/3P SF (-)=2/3则有:H (S F)= - (P SF (+)log 2 P SF (+) + P SF (-)log 2 P SF (-))=-((1 ⑶log 2(1/3)+ (2/3)log 2(2/3))=0.9183将H(S T)和H (S F)代入条件熵公式,有:H(S|X1)=(|S T|/|S|)H(S T)+(|S F|/|S|)H(S F)=(3/6) * 0.9183 + (3/6)* 0.9183=0.9183下面再计算S关于属性X2的条件熵:在本题中,当X2=T时,有:S T={1 , 2, 5, 6}当x2=F时,有:S F={3 , 4}其中,S T和S F中的数字均为例子集S中的各个例子的序号,且有|S|=6, | S T |=4, | S F |=2。

机器学习考试题目及答案

机器学习考试题目及答案

机器学习考试题目答案1.简描述机器学习概念?TomMitCheI1:"对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E学习J 我们遇到的大部分事情一般包括分类问题与回归问题。

如房价的预测,股价的预测等属于分类问题。

一般的处理过程是:首先,1)获取数据;2)提取最能体现数据的特征;3)利用算法建模;4)将建立的模型用于预测。

如人脸识别系统,首先我们获取到一堆人脸照片,首先,对数据进行预处理,然后提取人脸特征,最后用算法如SVM或者NN等。

这样,我们就建立了一个人脸识别系统,当输入一张人脸,我们就知道这张面孔是否在系统中。

这就是机器学习的整个流程,其次还包括寻找最优参数等。

机器学习主要分为:监督学习:数据集是有标签的,大部分机器学习模型都属于这一类别,包括线性分类器、支持向量机等等;无监督学习:跟监督学习相反,数据集是完全没有标签的,主要的依据是相似的样本在数据空间中一般距离是相近的,这样就能通过距离的计算把样本分类,这样就完全不需要IabeI,比如著名的kmeans算法就是无监督学习应用最广泛的算法;半监督学习:半监督学习一般针对的问题是数据量超级大但是有标签数据很少或者说标签数据的获取很难很贵的情况,训练的时候有一部分是有标签的而有一部分是没有的;强化学习:一直激励学习的方式,通过激励函数来让模型不断根据遇到的情况做出调整;2.循环神经网络的基本原理?RNNS的目的是用来处理序列数据。

在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。

但是这种普通的神经网络对于很多问题却无能无力。

例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。

RNNS之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。

具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

机器学习原理及应用习题答案

机器学习原理及应用习题答案

第一章的题目填空题1、常见的机器学习算法有_________、___________、___________(随意列举三个)答:逻辑回归、最大熵模型、k-近邻模型、决策树、朴素贝叶斯分类器、支持向量机、高斯混合模型、隐马尔可夫模型、降维、聚类、深度学习2、sklearn.model_selection中的train_test_split函数的常见用法为______,______,______,______ = train_test_split(data,target)(填写测试集和训练集名称,配套填写,例如x_train,x_test)答:x_train x_test y_train y_test3、根据机器学习模型是否可用于生成新数据,可以将机器学习模型分为_________和_________。

答:生成模型判别模型4、训练一个机器学习模型往往需要对大量的参数进行反复调试或者搜索,这一过程称为______。

其中在训练之前调整设置的参数,称为_________。

答:调参超参数5、根据样本集合中是否包含标签以及半包含标签的多少,可以将机器学习分为____________、____________和______________。

答:监督学习半监督学习无监督学习判断题1、根据模型预测输出的连续性,可以将机器学习算法适配的问题划分为分类问题和线性问题。

(F)(回归问题)2、决策树属于典型的生成模型。

(F)(判别模型)3、降维、聚类是无监督学习算法(T)4、当我们说模型训练结果过拟合的时候,意思是模型的泛化能力很强(F)(很差)5、训练误差和泛化误差之间的差异越小,说明模型的泛化性能越好。

(T)选择题1、以下属于典型的生成模型的是(D)A、逻辑回归B、支持向量机C、k-近邻算法D、朴素贝叶斯分类器2、以下属于解决模型欠拟合的方法的是(C)A、增加训练数据量B、对模型进行裁剪C、增加训练过程的迭代次数D、正则化3、构建一个完整的机器学习算法需要三个方面的要素,分别是数据、模型、(A)。

机器学习课后习题答案

机器学习课后习题答案

第二章 模型评估与选择1.数据集包含1000个样本,其中500个正例,500个反例,将其划分为包含70%样本的训练集和30%样本的测试集用于留出法评估,试估算共有多少种划分方式。

一个组合问题,从500500正反例中分别选出150150正反例用于留出法评估,所以可能取法应该是(C 500150)2。

2.数据集包含100个样本,其中正反例各一半,假定学习算法所产生的模型是将新样本预测为训练样本数较多的类别(训练样本数相同时进行随机猜测),试给出用10折交叉验证法和留一法分别对错误率进行评估所得的结果。

10折交叉检验:由于每次训练样本中正反例数目一样,所以讲结果判断为正反例的概率也是一样的,所以错误率的期望是5050%。

留一法:如果留下的是正例,训练样本中反例的数目比正例多一个,所以留出的样本会被判断是反例;同理,留出的是反例,则会被判断成正例,所以错误率是100%。

3.若学习器A 的F1值比学习器B 高,试析A 的BEP 值是否也比B 高。

4.试述真正例率(TPR )、假正例率(FPR )与查准率(P )、查全率(R )之间的联系。

查全率: 真实正例被预测为正例的比例真正例率: 真实正例被预测为正例的比例显然查全率与真正例率是相等的。

查准率:预测为正例的实例中真实正例的比例假正例率: 真实反例被预测为正例的比例两者并没有直接的数值关系。

第一章 绪论(略)机器学习(周志华)参考答案9.试述卡方检验过程。

第三章线性模型2.试证明,对于参数w,对率回归(logistics回归)的目标函数(式1)是非凸的,但其对数似然函数(式2)是凸的。

如果一个多元函数是凸的,那么它的Hessian矩阵是半正定的。

3.编程实现对率回归,并给出西瓜数据集3.0α上的结果/icefire_tyh/article/details/520688444.选择两个UCI数据集,比较10折交叉验证法和留一法所估计出的对率回归的错误率。

/icefire_tyh/article/details/520689005.编程实现线性判别分析,并给出西瓜数据集3.0α上的结果。

机器学习期末试题及答案

机器学习期末试题及答案

机器学习期末试题及答案一、选择题1. 机器学习是一种:A. 人工智能子领域B. 数据分析工具C. 算法库D. 编程语言答案:A. 人工智能子领域2. 以下哪种算法是无监督学习算法?A. 决策树B. 支持向量机C. K均值聚类D. 朴素贝叶斯答案:C. K均值聚类3. 在机器学习中,过拟合是指:A. 模型无法适应新数据B. 模型过于简单C. 模型过于复杂D. 模型的精度较低答案:C. 模型过于复杂4. 机器学习任务中的训练集通常包括:A. 特征和标签B. 标签和模型参数C. 特征和模型参数D. 特征、标签和模型参数答案:A. 特征和标签5. 在机器学习中,用于评估模型性能的常见指标是:A. 准确率B. 回归系数C. 损失函数D. 梯度下降答案:A. 准确率二、填空题1. 监督学习中,分类问题的输出是离散值,而回归问题的输出是________________。

答案:连续值/实数值2. 机器学习中的特征工程是指对原始数据进行________________。

答案:预处理3. ________________是一种常见的集成学习算法,通过构建多个弱分类器来提高整体模型的性能。

答案:随机森林4. K折交叉验证是一种常用的评估模型性能和调参的方法,其中K 代表______________。

答案:折数/交叉验证的次数5. 在机器学习中,优化算法的目标是最小化或最大化一个称为______________的函数。

答案:目标函数/损失函数三、简答题1. 请简要解释什么是过拟合,并提出至少三种防止过拟合的方法。

答:过拟合是指在训练数据上表现很好,但在新数据上表现较差的现象。

防止过拟合的方法包括:- 数据集扩充:增加更多的训练样本,从而减少模型对特定数据的过度拟合。

- 正则化:通过在损失函数中引入正则化项,约束模型的复杂度,防止模型过分拟合训练数据。

- 交叉验证:使用交叉验证方法对模型进行评估,通过评估模型在不同数据集上的性能,选择性能较好的模型。

机器学习(慕课版)习题答案全集

机器学习(慕课版)习题答案全集

机器学习(慕课版)习题答案全集机器学习(慕课版)习题答案目录第一章机器学习概述 (2)第二章机器学习基本方法 (5)第三章决策树与分类算法 (9)第四章聚类分析 (13)第五章文本分析 (17)第六章神经网络 (22)第七章贝叶斯网络 (26)第八章支持向量机 (31)第九章进化计算 (32)第十章分布式机器学习 (34)第十一章深度学习 (35)第十二章高级深度学习 (37)第十三章推荐系统 (39)第一章机器学习概述1.机器学习的发展历史上有哪些主要事件?机器学习发展分为知识推理期、知识工程期、浅层知识期和深度学习几个阶段,可从几个阶段选择主要历史事件作答。

2.机器学习有哪些主要的流派?它们分别有什么贡献?符号主义:专家系统、知识工程贝叶斯派:情感分类、自动驾驶、垃圾邮件过滤联结主义:神经网络进化主义:遗传算法行为类推主义3.讨论机器学习与人工智能的关系机器学习是人工智能的一个分支,作为人工智能核心技术和实现手段,通过机器学习的方法解决人工智能面对的问题4.讨论机器学习与数据挖掘的关系数据挖掘是从大量的业务数据中挖掘隐藏、有用的、正确的知识促进决策的执行。

数据挖掘的很多算法都来自于机器学习,并在实际应用中进行优化。

机器学习最近几年也逐渐跳出实验室,解决从实际的数据中学习模式,解决实际问题。

数据挖掘和机器学习的交集越来越大,机器学习成为数据挖掘的重要支撑技术5.讨论机器学习与数据科学、大数据分析等概念的关系数据科学主要包括两个方面:用数据的方法研究科学和用科学的方法研究数据。

前者包括生物信息学、天体信息学、数字地球等领域;后者包括统计学、机器学习、数据挖掘、数据库等领域。

大数据分析即是后者的一个部分。

一般使用机器学习这个工具做大数据的分析工作,也就是说机器学习是我们做大数据分析的一个比较好用的工具,但是大数据分析的工具并不止机器学习,机器学习也并不只能做大数据分析。

(含答案)机器学习第一阶段测试题

(含答案)机器学习第一阶段测试题

机器学习第一阶段测试题一、选择题1.以下带佩亚诺余项的泰勒展开式错误的一项是(D)A.)x (o x !x !x e x 33231211++++= B.)x (o x *x x arcsin 33321++=C.)x (o x !x !x x sin 5535131++-= D.)x (o x !x !x cos 44241211+-+=分析:)x (o x !x !x cos 44241211++-=2.以下关于凸优化的说法错误的一项是(C )A.集合C 任意两点间线段均在集合C 内,则C 为凸集B.集合C 的凸包是能够包含C 的最小凸集C.多面体不一定是凸集D.线性变换能保持原集合的凸性分析:多面体是指有限半空间和超平面的交集,多面体一定是凸集3.以下说法错误的一项是(C )A.当目标函数是凸函数时,梯度下降法的解是全局最优解B.进行PCA 降维时需要计算协方差矩阵C.沿负梯度下降的方向一定是最优的方向D.利用拉格朗日函数能解带约束的优化问题分析:沿负梯度方向是函数值下降最快的方向但不一定是最优方向4.K-means 无法聚以下哪种形状样本?()A.圆形分布B.螺旋分布C.带状分布D.凸多边形分布分析:基于距离的聚类算法不能聚非凸形状的样本,因此选B5.若X 1,X 2,...X n 独立同分布于(2σ,μ),以下说法错误的是(C )A.若前n 个随机变量的均值,对于任意整数ε,有:B.随机变量的收敛到标准正态分布C.随机变量收敛到正态分布D.样本方差其中样本均值分析:A:大数定理概念;B、C:中心极限定理概念;C 错,应该收敛到正态分布D:样本的统计量公式二、公式推理题1.请写出标准正态分布的概率密度函数、期望、以及方差分析:概率密度函数:2221x e π)x (f -=;期望:0=)x (E ;方差:1=)x (D 2.请根据表中的分类结果混淆矩阵给出查准率(准确率)P 和查全率(召回率)R 的计算公式真实情况预测结果正例反例正例TP(真正例)FN(假反例)反例FP(假正例)TN(真反例)分析:FP TP TP P +=,NF TP TP R +=三、简答题1.求函数y ln x )y ,x (f 32+=的梯度向量分析:)y)y ,x (f ,x )y ,x (f ()y ,x (f ∂∂∂∂=∇,所以答案为(2x,3/y)∑==n i i n X n Y 111=<-∞→}ε|μY {|P lim n n σn μn X Y n i i n -=∑=1∑==n i i n X Y 1)σ,μ(N 2∑=--=n i i )X X (n S 1211)σn ,μn (N 2∑==n i i X n X 112.列举你知道的无约束最优化方法(至少三个),并选一种方法进行详细介绍分析:梯度下降法,牛顿法,拟牛顿法,共轭梯度法...(介绍略)3.请简要叙述正则化项中的L1和L2方法分析:1正则化和L2正则化可以看做是损失函数的惩罚项。

(完整word版)机器学习练习题与答案

(完整word版)机器学习练习题与答案

(完整word版)机器学习练习题与答案《机器学习》练习题与解答1.小刚去应聘某互联网公司的算法工程师,面试官问他“回归和分类有什么相同点和不同点”,他说了以下言论,请逐条判断是否准确。

1)回归和分类都是有监督学习问题[单选题] [必答题]○对○错参考答案:对。

解析:这道题只有一个同学做错。

本题考察有监督学习的概念。

有监督学习是从标签化训练数据集中推断出函数的机器学习任务。

有监督学习和无监督学习的区别是:机器学习算法的图谱如下:在回归问题中,标签是连续值;在分类问题中,标签是离散值。

具体差别请看周志华《机器学习》书中的例子,一看便懂:2.背景同上题。

请判断2)回归问题和分类问题都有可能发生过拟合 [单选题] [必答题] ○对○错答案:对解析:这题有两个同学做错。

过拟合的英文名称是Over-fitting(过拟合)。

为了说清楚“过”拟合,首先说一下“拟合”【拟合的几何意义】:从几何意义上讲,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲线或曲面来最大限度地逼近这些点。

一个直观的例子,是下面的电阻和温度的例子。

我们知道在物理学中,电阻和温度是线性的关系,也就是R=at+b。

现在我们有一系列关于“温度”和“电阻”的测量值。

一个最简单的思路,取两组测量值,解一个线性方程组,就可以求出系数a、b了!但是理想是丰满的,现实是残酷的!由于测量误差等的存在,我们每次测量得到的温度值和电阻值都是有误差的!因此,为了提高测量精度,我们会测量多次,得到多组的值,这样就相当于得到二维平面上的多个点,我们的目标是寻找一条直线,让这条直线尽可能地接近各个测量得到的点。

拟合的数学意义:在数学的意义上,所谓拟合(fit)是指已知某函数的若干离散函数值{f1,f2,…,fn}(未必都是准确值,有个别可能是近似甚至错误值),通过调整该函数中若干待定系数f(λ1, λ2,…,λn),使得该函数与已知点集的差别(最小二乘意义)最小。

机器学习期末复习题及答案

机器学习期末复习题及答案

一、单选题1、在条件随机场(CRF)中,参数的学习通常使用哪种优化算法?()A.K-Means聚类B.梯度提升机(GBM)C.支持向量机(SVM)D.随机梯度下降(SGD)正确答案:D2、在概率无向图模型中,什么是团分解(Cluster Decomposition)?()A.一种通过节点之间的边传播信息,以更新节点的边缘概率的方法B.一种用于计算图的分割的算法C.一种将联合概率分布分解为多个局部概率分布的方法D.一种用于表示联合概率分布的无向树正确答案:C3、在数据不完备时,下列哪一种方法不是贝叶斯网络的参数学习方法()A.拉普拉斯近似B.最大似然估计方法C.蒙特卡洛方法D.高斯逼近正确答案:B4、在有向图模型中,什么是条件独立性?()A.给定父节点的条件下,子节点之间独立B.所有节点之间都独立C.所有节点的状态相互独立D.任意两个节点都是独立的正确答案:A5、在概率有向图模型中,节点表示什么?()A.变量B.参数C.条件概率D.边正确答案:A6、下列哪一项表示簇中样本点的紧密程度?()A.簇个数B.簇大小C.簇描述D.簇密度正确答案:D7、闵可夫斯基距离表示为曼哈顿距离时p为:()A.1B.2C.3D.4正确答案:A8、谱聚类与K均值聚类相比,对于什么样的数据表现更好?()A.低维数据B.高维数据C.线性可分数据D.高密度数据正确答案:B9、SVM适用于什么类型的问题?()A.既可用于线性问题也可用于非线性问题B.仅适用于回归问题C.仅适用于非线性问题D.仅适用于线性问题正确答案:A10、对于在原空间中线性不可分的问题,支持向量机()A.在原空间中寻找非线性函数划分数据B.无法处理C.利用核函数把数据映射到高维空间D.在原空间中寻找线性函数划分数据正确答案:C11、LDA主题模型中的alpha参数控制着什么?()A.单词分布的稀疏性B.文档-主题分布的稀疏性C.模型大小D.模型收敛速度正确答案:B12、LDA的全称是什么?()tent Dirichlet AllocationB.Linear Discriminant Analysistent Data AnalysisD.Lin Latent Dirichlet Allocation ear Data Algorithm正确答案:A13、以下对于梯度下降法中学习率lr的阐述,正确的是()A.lr小,收敛速度较快B.lr大,收敛速度较慢C.lr小,收敛速度较慢且较不易收敛D.lr大,收敛速度较快但可能导致不收敛正确答案:D14、在EM算法中,E代表期望,M代表()A.均值B.最大化C.最小化D.均方误差正确答案:B15、梯度下降中如何有效地捕捉到目标函数的全局最优?()A.调整学习速率B.增加模型复杂度C.使用梯度下降的变种算法D.增加训练样本量正确答案:C二、多选题1、下列机器学习常用算法中哪个属于分类算法?()A.K-meansB.最小距离分类器C.KNN(K近邻)D.逻辑回归正确答案:B、C、D2、下列关于决策树的说法正确的是?()A.CART使用的是二叉树B.其可作为分类算法,也可用于回归模型C.不能处理连续型特征D.它易于理解、可解释性强正确答案:A、B、D3、下列属于k近邻算法中常用的距离度量方法的是?()A.余弦相似度B.欧式距离C.曼哈顿距离D.闵可夫斯基距离正确答案:A、B、C、D4、下列属于深度模型的是?()A.DNNB.LightgbmC.LSTMD.Seq2Seq正确答案:A、C、D5、sklearn中RFECV方法分成哪两个部分?()A.RFEB.CVC.NLPD.MM正确答案:A、B6、以下关于蒙特卡洛方法描述正确的是()A.蒙特卡洛方法计算值函数可以采用First-visit方法B.蒙特卡洛方法方差很大C.蒙特卡洛方法计算值函数可以采用Every-visit方法D.蒙特卡洛方法偏差很大正确答案:A、B、C7、为什么循环神经网络可以用来实现自动问答,比如对一句自然语言问句给出自然语言回答()A.因为自动问答可以看成是一种序列到序列的转换B.因为循环神经网络能够处理变长输入C.因为循环神经网要比卷积神经网更强大D.因为卷积神经网络不能处理字符输入正确答案:A、B8、通常有哪几种训练神经网络的优化方法()A.梯度下降法B.随机梯度下降法C.小批量随机梯度下降法D.集成法正确答案:A、B、C9、隐马尔可夫模型的三个基本问题是()A.估值问题B.寻找状态序列C.学习模型参数D.状态更新正确答案:A、B、C10、在数据不完备时,贝叶斯网络的参数学习方法有()A.高斯逼近B.蒙特卡洛方法C.拉普拉斯近似D.最大似然估计方法正确答案:A、B、C11、基于约束的方法通过统计独立性测试来学习结点间的()A.独立性B.相关性C.依赖性D.完备性正确答案:A、B12、基于搜索评分的方法,关键点在于()A.确定合适的搜索策略B.确定评分函数C.确定搜索优先级D.确定选择策略正确答案:A、B13、条件随机场需要解决的关键问题有()A.特征函数的选择B.参数估计C.模型推断D.约束条件正确答案:A、B、C14、以下关于逻辑斯蒂回归模型的描述正确的是()A.针对分类的可能性进行建模,不仅能预测出类别,还可以得到属于该类别的概率B.直接对分类的可能性进行建模,无需事先假设数据分布,这样就避免了假设分布不准确所带来的问题C.模型本质仍然是一个线性模型,实现相对简单D.逻辑斯蒂回归模型是线性回归模型正确答案:A、B、C、D15、LDA模型在做参数估计时,最常用的方法是()A.Gibbs采样方法B.变分推断C.梯度下降D.Beam search正确答案:A、B三、判断题1、关于EM算法的收敛性,EM算法理论上不能够保证收敛()正确答案:×2、多次运行,随机化初始点是对存在局部最优点的函数求解的一种方案()正确答案:√3、训练算法的目的就是要让模型拟合训练数据()正确答案:×4、循环神经网络按时间展开后就可以通过反向传播算法训练了()正确答案:√5、GIS算法的收敛速度由计算更新值的步长确定。

机器学习练习题与答案

机器学习练习题与答案

单变量函数的梯度下降我们假设有一个单变量的函数函数的微分初始化,起点为学习率为根据梯度下降的计算公式我们开始进行梯度下降的迭代计算过程:如图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底多变量函数的梯度下降我们假设有一个目标函数:现在要通过梯度下降法计算这个函数的最小值。

我们通过观察就能发现最小值其实就是 (0,0)点。

但是接下来,我们会从梯度下降算法开始一步步计算到这个最小值!我们假设初始的起点为:初始的学习率为:函数的梯度为:进行多次迭代:我们发现,已经基本靠近函数的最小值点1.小刚去应聘某互联网公司的算法工程师,面试官问他“回归和分类有什么相同点和不同点”,他说了以下言论,请逐条判断是否准确。

1)回归和分类都是有监督学习问题[单选题] [必答题]○对○错参考答案:对。

解析:这道题只有一个同学做错。

本题考察有监督学习的概念。

有监督学习是从标签化训练数据集中推断出函数的机器学习任务。

有监督学习和无监督学习的区别是:机器学习算法的图谱如下:在回归问题中,标签是连续值;在分类问题中,标签是离散值。

具体差别请看周志华《机器学习》书中的例子,一看便懂:2.背景同上题。

请判断2)回归问题和分类问题都有可能发生过拟合 [单选题] [必答题]○对○错答案:对解析:这题有两个同学做错。

过拟合的英文名称是 Over-fitting(过拟合)。

为了说清楚“过”拟合,首先说一下“拟合”【拟合的几何意义】:从几何意义上讲,拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲线或曲面来最大限度地逼近这些点。

一个直观的例子,是下面的电阻和温度的例子。

我们知道在物理学中,电阻和温度是线性的关系,也就是R=at+b。

现在我们有一系列关于“温度”和“电阻”的测量值。

一个最简单的思路,取两组测量值,解一个线性方程组,就可以求出系数a、b了!但是理想是丰满的,现实是残酷的!由于测量误差等的存在,我们每次测量得到的温度值和电阻值都是有误差的!因此,为了提高测量精度,我们会测量多次,得到多组的值,这样就相当于得到二维平面上的多个点,我们的目标是寻找一条直线,让这条直线尽可能地接近各个测量得到的点。

机器学习-习题答案

机器学习-习题答案

机器学习-习题答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--(题目略)(a). 第一步:S0 {<(Q Q Q Q ), (Q Q Q Q)>}G0 {<( ), ( )>}第二步:S1 {<(male brown tall US), (female black short US)> G1 {<( ), ( )>}第三步:S2 {<(male brown ), (female black short US)>G2 {<( ), ( )>}第四步:S3 {<(male brown ), (female black short US)>G3 {<(male ), ( )>,< >,< US>}第五步:S4 {<(male brown ), (female short )>G4 {<(male ), ( )>}(b).假设中的每个属性可以取两个值,所以与题目例题一致的假设数目为: (2*2*2*2)*(2*2*2*2) = 256(c). 这个最短序列应该为8,25628=如果只有一个训练样例,则假设空间有25628=个假设,我们针对每一个属性来设置训练样例,使每次的假设空间减半。

则经过8次训练后,可收敛到单个正确的假设。

<female,blanck,short,Portuguese>,<female,blonde,tall,Indian> <male,brown,short,Portuguese>,<female,blonde,tall,Indian><male,blanck,tall,Portuguese>,<female,blonde,tall,Indian><male,blanck,short,US>,<female,blonde,tall,Indian><male,blanck,short,Portuguese>,<male,blonde,tall,Indian><male,blanck,short,Portuguese>,<female,black,tall,Indian><male,blanck,short,Portuguese>,<female,blonde,short,Indian> <male,blanck,short,Portuguese>,<female,blonde,tall,US>(d). 若要表达该实例语言上的所有概念,那么我们需要扩大假设空间,使得每个可能的假设都包括在内,这样假设空间就远远大于256,而且这样没法得到最终的没法收敛,因为对每一个未见过的训练样例,投票没有任何效果,因此也就没有办法对未见样例分类。

机器学习复习题及答案

机器学习复习题及答案

一、单选题1、下列哪位是人工智能之父?( )A.Marniv Lee MinskyB.HerbertA.SimonC.Allen NewellD.John Clifford Shaw正确答案:A2、根据王珏的理解,下列不属于对问题空间W的统计描述是( )。

A.一致性假设B.划分C.泛化能力D.学习能力正确答案:D3、下列描述无监督学习错误的是( )。

A.无标签B.核心是聚类C.不需要降维D.具有很好的解释性正确答案:C4、下列描述有监督学习错误的是( )。

A.有标签B.核心是分类C.所有数据都相互独立分布D.分类原因不透明正确答案:C5、下列哪种归纳学习采用符号表示方式?( )A. 经验归纳学习B.遗传算法C.联接学习D.强化学习正确答案:A6、混淆矩阵的假正是指( )。

A.模型预测为正的正样本B.模型预测为正的负样本C.模型预测为负的正样本D.模型预测为负的负样本正确答案:B7、混淆矩阵的真负率公式是为( )。

A.TP/(TP+FN)B.FP/(FP+TN)C.FN/(TP+FN)D.TN/(TN+FP)正确答案:D8、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,准确率是( )。

A.1/4B.1/2C.4/7D.4/6正确答案:B9、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,精确率是( )。

A.1/4B.1/2C.4/7D.2/3正确答案:C10、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,召回率是( )。

A.1/4B.1/2C.4/7D.2/3正确答案:D11、混淆矩阵中的TP=16,FP=12,FN=8,TN=4,F1-score是( )。

A.4/13B.8/13C.4/7D.2/30.00/2.00正确答案:B12、EM算法的E和M指什么?( )A.Expectation-MaximumB.Expect-MaximumC.Extra-MaximumD.Extra-Max正确答案:A13、EM算法的核心思想是?( )A.通过不断地求取目标函数的下界的最优值,从而实现最优化的目标。

机器学习(慕课版)习题答案全集

机器学习(慕课版)习题答案全集

机器学习(慕课版)习题答案目录第一章机器学习概述 (2)第二章机器学习基本方法 (5)第三章决策树与分类算法 (9)第四章聚类分析 (13)第五章文本分析 (17)第六章神经网络 (22)第七章贝叶斯网络 (26)第八章支持向量机 (31)第九章进化计算 (32)第十章分布式机器学习 (34)第十一章深度学习 (35)第十二章高级深度学习 (37)第十三章推荐系统 (39)第一章机器学习概述1.机器学习的发展历史上有哪些主要事件?机器学习发展分为知识推理期、知识工程期、浅层知识期和深度学习几个阶段,可从几个阶段选择主要历史事件作答。

2.机器学习有哪些主要的流派?它们分别有什么贡献?符号主义:专家系统、知识工程贝叶斯派:情感分类、自动驾驶、垃圾邮件过滤联结主义:神经网络进化主义:遗传算法行为类推主义3.讨论机器学习与人工智能的关系机器学习是人工智能的一个分支,作为人工智能核心技术和实现手段,通过机器学习的方法解决人工智能面对的问题4.讨论机器学习与数据挖掘的关系数据挖掘是从大量的业务数据中挖掘隐藏、有用的、正确的知识促进决策的执行。

数据挖掘的很多算法都来自于机器学习,并在实际应用中进行优化。

机器学习最近几年也逐渐跳出实验室,解决从实际的数据中学习模式,解决实际问题。

数据挖掘和机器学习的交集越来越大,机器学习成为数据挖掘的重要支撑技术5.讨论机器学习与数据科学、大数据分析等概念的关系数据科学主要包括两个方面:用数据的方法研究科学和用科学的方法研究数据。

前者包括生物信息学、天体信息学、数字地球等领域;后者包括统计学、机器学习、数据挖掘、数据库等领域。

大数据分析即是后者的一个部分。

一般使用机器学习这个工具做大数据的分析工作,也就是说机器学习是我们做大数据分析的一个比较好用的工具,但是大数据分析的工具并不止机器学习,机器学习也并不只能做大数据分析6.机器学习有哪些常用的应用领域?请举例说明其应用艺术创作、金融领域、医疗领域、自然语言处理、网络安全、工业领域、娱乐行业。

《机器学习导论》题集

《机器学习导论》题集

《机器学习导论》题集一、选择题(每题2分,共20分)1.以下哪个选项不是机器学习的基本类型?A. 监督学习B. 无监督学习C. 强化学习D. 深度学习2.在监督学习中,以下哪个选项是标签(label)的正确描述?A. 数据的特征B. 数据的输出结果C. 数据的输入D. 数据的预处理过程3.以下哪个算法属于无监督学习?A. 线性回归B. 逻辑回归C. K-均值聚类D. 支持向量机4.在机器学习中,过拟合(overfitting)是指什么?A. 模型在训练集上表现很好,但在新数据上表现差B. 模型在训练集上表现差,但在新数据上表现好C. 模型在训练集和新数据上表现都很好D. 模型在训练集和新数据上表现都差5.以下哪个选项不是交叉验证(cross-validation)的用途?A. 评估模型的泛化能力B. 选择模型的超参数C. 减少模型的训练时间D. 提高模型的准确性6.在梯度下降算法中,学习率(learning rate)的作用是什么?A. 控制模型训练的迭代次数B. 控制模型参数的更新速度C. 控制模型的复杂度D. 控制模型的训练数据量7.以下哪个激活函数常用于神经网络中的隐藏层?A. Sigmoid函数B. Softmax函数C. ReLU函数D. 线性函数8.以下哪个选项不是决策树算法的优点?A. 易于理解和解释B. 能够处理非线性数据C. 对数据预处理的要求不高D. 计算复杂度低,适合大规模数据集9.以下哪个评价指标适用于二分类问题?A. 准确率(Accuracy)B. 召回率(Recall)C. F1分数(F1 Score)D. 以上都是10.以下哪个算法属于集成学习(ensemble learning)?A. 随机森林B. K-近邻算法C. 朴素贝叶斯D. 感知机二、填空题(每空2分,共20分)1.在机器学习中,数据通常被分为训练集、_______和测试集。

2._______是一种常用的数据预处理技术,用于将数值特征缩放到一个指定的范围。

机器学习课后习题答案

机器学习课后习题答案

机器学习课后习题答案一、回归问题1. 什么是回归问题?回归问题是指预测一个或多个连续值的问题。

在机器学习中,回归算法通过对已有的输入数据进行学习,建立一个数学模型,用于预测连续型输出变量的取值。

2. 回归问题有哪些常用的评价指标?常用的回归问题评价指标包括:•均方误差(Mean Squared Error,MSE):计算预测值与真实值之间的差异的均方值。

公式如下:MSE = (1/n) * Σ(y_pred - y_true)^2其中,y_pred是预测值,y_true是真实值,n是样本数量。

MSE越小,表示预测值与真实值的拟合程度越好。

•均方根误差(Root Mean Squared Error,RMSE):MSE的平方根。

公式如下:RMSE = √MSERMSE与MSE类似,用于评估预测值与真实值之间的差异,但RMSE更为直观。

•平均绝对误差(Mean Absolute Error,MAE):计算预测值与真实值之间的绝对差异的均值。

公式如下:MAE = (1/n) * Σ|y_pred - y_true|MAE越小,表示预测值与真实值的差异越小。

3. 请简要介绍线性回归算法的原理。

线性回归是一种基本的回归算法,它通过建立一个线性模型来描述自变量与因变量之间的关系。

线性回归的目标是找到最佳拟合直线来最小化预测值与真实值之间的误差。

线性回归算法的原理可以概括如下:1.假设自变量与因变量之间存在线性关系:y = β0 + β1*x1 + β2*x2 + ... + βn*xn + ε其中,y是因变量,x1, x2, …, xn是自变量,β0, β1, β2, …,βn是模型的参数,ε是误差项。

2.最小化误差:通过最小二乘法来确定最优的参数值,使预测值与真实值之间的误差最小化。

3.模型训练和预测:使用已知的训练数据集来训练模型,得到最优的参数值。

然后,可以使用该模型对新的输入数据进行预测。

4. 请简要介绍逻辑回归算法的原理。

机器学习模拟试题含答案

机器学习模拟试题含答案

机器学习模拟试题含答案一、单选题(共50题,每题1分,共50分)1、同质集成中的个体学习器亦称()A、组件学习器B、基学习器C、异质学习器D、同质学习器正确答案:B2、假设我们使用原始的非线性可分版本的 Soft-SVM 优化目标函数。

我们需要做什么来保证得到的模型是线性可分离的?A、C = 0B、C = 1C、C 正无穷大D、C 负无穷大正确答案:C3、关于logistic回归和SVM不正确的是()A、Logistic 回归目标函数是最小化后验概率B、Logistic回归可以用于预测事件发生概率的大小C、SVM可以有效避免模型过拟合D、SVM目标是结构风险最小化正确答案:A4、构建一个最简单的线性回归模型需要几个系数(只有一个特征)?A、1 个B、2 个C、4 个D、3 个正确答案:B5、假如我们使用 Lasso 回归来拟合数据集,该数据集输入特征有 100 个(X1,X2,…,X100)。

现在,我们把其中一个特征值扩大 10 倍(例如是特征 X1),然后用相同的正则化参数对 Lasso 回归进行修正。

那么,下列说法正确的是?A、特征 X1 很可能被排除在模型之外B、特征 X1 很可能还包含在模型之中C、无法确定特征 X1 是否被舍弃D、以上说法都不对正确答案:B6、下面关于SVM算法叙述不正确的是()A、SVM是一种基于经验风险最小化准则的算法B、SVM求得的解为全局唯一最优解C、SVM在解决小样本、非线性及高维模式识别问题中具有优势D、SVM最终分类结果只与少数支持向量有关正确答案:A7、KNN算法属于一种典型的()算法A、无监督学习B、半监督学习C、弱监督学习D、监督学习正确答案:D8、关于BP算法特点描述错误的是 ( )A、输入信号顺着输入层、隐层、输出层依次传播B、计算之前不需要对训练数据进行归一化C、预测误差需逆向传播,顺序是输出层、隐层、输入层D、各个神经元根据预测误差对权值进行调整正确答案:B9、关于维数灾难说法错误的是?A、高维度数据可使得算法泛华能力变得越来越弱B、高维度数据增加了运算难度C、降低高维度数据会对数据有所损伤D、高维度数据难以可视化正确答案:A10、做一个二分类预测问题,先设定阈值为0.5,概率大于等于0.5的样本归入正例类(即1),小于0.5的样本归入反例类(即0)。

机器学习课后习题答案(周志华)

机器学习课后习题答案(周志华)

第二章模型评估与选择1.数据集包含1000个样本,其中500个正例,500个反例,将其划分为包含70%样本的训练集和30%样本的测试集用于留出法评估,试估算共有多少种划分方式。

一个组合问题,从500500正反例中分别选出150150正反例用于留出法评估,所以可能取150)2。

法应该是(C5002.数据集包含100个样本,其中正反例各一半,假定学习算法所产生的模型是将新样本预测为训练样本数较多的类别(训练样本数相同时进行随机猜测),试给出用10折交叉验证法和留一法分别对错误率进行评估所得的结果。

10折交叉检验:由于每次训练样本中正反例数目一样,所以讲结果判断为正反例的概率也是一样的,所以错误率的期望是5050%。

留一法:如果留下的是正例,训练样本中反例的数目比正例多一个,所以留出的样本会被判断是反例;同理,留出的是反例,则会被判断成正例,所以错误率是100%。

3.若学习器A的F1值比学习器B高,试析A的BEP值是否也比B高。

4.试述真正例率(TPR)、假正例率(FPR)与查准率(P)、查全率(R)之间的联系。

查全率: 真实正例被预测为正例的比例真正例率: 真实正例被预测为正例的比例显然查全率与真正例率是相等的。

查准率:预测为正例的实例中真实正例的比例假正例率: 真实反例被预测为正例的比例两者并没有直接的数值关系。

9.试述卡方检验过程。

第三章线性模型2.试证明,对于参数w,对率回归(logistics回归)的目标函数(式1)是非凸的,但其对数似然函数(式2)是凸的。

如果一个多元函数是凸的,那么它的Hessian矩阵是半正定的。

3.编程实现对率回归,并给出西瓜数据集3.0α上的结果/icefire_tyh/article/details/520688444.选择两个UCI数据集,比较10折交叉验证法和留一法所估计出的对率回归的错误率。

/icefire_tyh/article/details/520689005.编程实现线性判别分析,并给出西瓜数据集3.0α上的结果。

第八章 机器学习习题解答

第八章 机器学习习题解答

第八章机器学习8.2答:(1)学习是一项复杂的智能活动,学习过程与推理过程是紧密相连的学习中所用的推理越多,系统的能力越强(2)机器学习是一门研究机器获取新知识和新技能,并识别现有知识的学问“机器”——计算机(电子,以后还可能是中子计算机、光子计算机或神经计算机等)8.3答:机器学习系统的结构及基本功能当监督环节为示教人时,为示教式学习系统;当监督环节为监督器时,为自学式学习系统。

①知识库存储(记忆)、积累知识·长期记忆(LTM)先验知识背景如事物的基本概念和定义、定律和公理,博弈的基本规则等·中期记忆(MTM)环境事物的各种具体知识·短期记忆(STM)环境变化的信息和数据事实库或“黑板②学习元学习系统的核心环节·采集环境信息息选例环节或直接采集·接受监督指导监督环节的示教、指导信息或评价准则·进行学习推理获得有关问题的解答和结论·修改知识库将推理结果输入知识库,对知识增删改③执行元识别、论证、决策、判定模式分类器、专家咨询解释系统、智能控制机构、机械手/人等如执行元行动结果直接引起环境的变化 “在线”学习系统机器人规划、生产过程控制、机器博弈等④监督环节人:示教者;监督器:评价准则或检验标准·工作执行效果评价——接受来自执行元环节的反馈信息,对系统的工作执行效果进行评价和检验·制定评价标准——接受来自环境变化的信息,制定和修订评价标准和检验标准·监督学习环节——根据评价和检验的结果,对学习环节进行示教、训练或指导·控制选例环节——根据环境变化信息及工作执行效果的反馈,控制选例环节,选取其它事例或样本⑤选例环节作用是从环境中选取有典型意义的事例或样本,作为系统的训练集或学习对象。

如挑选典型病历,以便提高学习效率,加速学习过程。

选例环节可以由人或机器来实现⑥环境系统获取知识和信息的来源,执行的对象和人物等。

最新(含答案)机器学习第一阶段练习题

最新(含答案)机器学习第一阶段练习题

最新(含答案)机器学习第⼀阶段练习题机器学习第⼀阶段练习题⼀、选择题1. 以下三阶泰勒展开式错误的⼀项是(B )A. 3231211x !x !x e x +++=B. 3231211x x x )x ln(++=+ C. 331x !x x sin -= D. 321x x x x-11+++= 分析:3231211x x -x )x ln(+=+ 2. 以下不属于凸函数⼀项的是(D )A. y=-log xB. y=x log xC. y=||x||pD. y=e ax分析:a 应该限定取值范围:a ≥1或a ≤03. 以下说法错误的⼀项是(C )A. 负梯度⽅向是使函数值下降最快的⽅向B. 当⽬标函数是凸函数时,梯度下降法的解是全局最优解C. 梯度下降法⽐⽜顿法收敛速度快D. 拟⽜顿法不需要计算Hesse 矩阵分析:⽜顿法需要⼆阶求导,梯度下降法只需⼀阶,因此⽜顿法⽐梯度下降法更快收敛4. ⼀般,k-NN 最近邻⽅法在(B )的情况下效果较好A. 样本较多但典型性不好B. 样本较少但典型性好C. 样本呈团状分布D. 样本呈链状分布分析:k 近邻算法对较多且典型不好的,团状,链状的样本不具有太⼤的优势5. 机器学习中L1正则化和L2正则化的区别是?(A )A. 使⽤L1可以得到稀疏的权值,使⽤L2可以得到平滑的权值B. 使⽤L1可以得到平滑的权值,使⽤L2可以得到平滑的权值C 使⽤L1可以得到平滑的权值,使⽤L2可以得到稀疏的权值D.使⽤L1可以得到稀疏的权值,使⽤L2可以得到稀疏的权值分析:L1正则化偏向于稀疏,它会⾃动进⾏特征选择,去掉⼀些没⽤的特征,也就是将这些特征对应的权重置为0。

L2主要功能是为了防⽌过拟合,当要求参数越⼩时,说明模型越简单,⽽模型越简单则,越趋向于平滑,从⽽防⽌过拟合。

⼆、公式推理题1. 请写出通过条件概率公式和全概率公式推出贝叶斯公式的过程分析:条件概率:)A (P )AB (P )A |B (P )B (P )AB (P )B |A (P ==,全概率:∑=iii )B (P )B |A (P )A (P 贝叶斯公式:∑=jj j i i i )B (P )B |A (P )B (P )B |A (P )A |B (P 2. 请写出正态分布的概率密度函数、期望、以及⽅差分析:概率密度函数:021222>=--σ,e σπ)x (f σ)µx (;期望:µ)x (E =;⽅差:2σ)x (D =三、四、简答题1.2. 求函数R x ,x )x (f x∈=的最⼩值分析:令,x t x =两边取对数:,x ln x lnt =两边对t 求导:,x *x x ln 't *t 11+= 令t ’=0:10-==+e x ,1 lnx 那么:,则e e t 1-=即为f(x)最⼩值。

机器学习课后习题答案(周志华)

机器学习课后习题答案(周志华)

第二章模型评估与选择1.数据集包含1000个样本,其中500个正例,500个反例,将其划分为包含70%样本的训练集和30%样本的测试集用于留出法评估,试估算共有多少种划分方式。

一个组合问题,从500500正反例中分别选出150150正反例用于留出法评估,所以可能取150)2。

法应该是(C5002.数据集包含100个样本,其中正反例各一半,假定学习算法所产生的模型是将新样本预测为训练样本数较多的类别(训练样本数相同时进行随机猜测),试给出用10折交叉验证法和留一法分别对错误率进行评估所得的结果。

10折交叉检验:由于每次训练样本中正反例数目一样,所以讲结果判断为正反例的概率也是一样的,所以错误率的期望是5050%。

留一法:如果留下的是正例,训练样本中反例的数目比正例多一个,所以留出的样本会被判断是反例;同理,留出的是反例,则会被判断成正例,所以错误率是100%。

3.若学习器A的F1值比学习器B高,试析A的BEP值是否也比B高。

4.试述真正例率(TPR)、假正例率(FPR)与查准率(P)、查全率(R)之间的联系。

查全率: 真实正例被预测为正例的比例真正例率: 真实正例被预测为正例的比例显然查全率与真正例率是相等的。

查准率:预测为正例的实例中真实正例的比例假正例率: 真实反例被预测为正例的比例两者并没有直接的数值关系。

9.试述卡方检验过程。

第三章线性模型2.试证明,对于参数w,对率回归(logistics回归)的目标函数(式1)是非凸的,但其对数似然函数(式2)是凸的。

如果一个多元函数是凸的,那么它的Hessian矩阵是半正定的。

3.编程实现对率回归,并给出西瓜数据集3.0α上的结果/icefire_tyh/article/details/520688444.选择两个UCI数据集,比较10折交叉验证法和留一法所估计出的对率回归的错误率。

/icefire_tyh/article/details/520689005.编程实现线性判别分析,并给出西瓜数据集3.0α上的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.5(题目略)(a).第一步:S0{<(Q Q Q Q ),(Q Q Q Q)>}G0{<(????),(????)>}第二步:S1{<(male brown tall US),(female black short US)>G1{<(????),(????)>}第三步:S2{<(male brown ??),(female black short US)>G2{<(????),(????)>}第四步:S3{<(male brown ??),(female black short US)>G3{<(male ???),(????)>,<????>,<???US>}第五步:S4{<(male brown ??),(female ?short ?)>G4{<(male ???),(????)>}(b).假设中的每个属性可以取两个值,所以与题目例题一致的假设数目为:(2*2*2*2)*(2*2*2*2)=256(c).这个最短序列应该为8,25628=如果只有一个训练样例,则假设空间有25628=个假设,我们针对每一个属性来设置训练样例,使每次的假设空间减半。

则经过8次训练后,可收敛到单个正确的假设。

<female,blanck,short,Portuguese>,<female,blonde,tall,Indian><male,brown,short,Portuguese>,<female,blonde,tall,Indian><male,blanck,tall,Portuguese>,<female,blonde,tall,Indian><male,blanck,short,US>,<female,blonde,tall,Indian><male,blanck,short,Portuguese>,<male,blonde,tall,Indian><male,blanck,short,Portuguese>,<female,black,tall,Indian><male,blanck,short,Portuguese>,<female,blonde,short,Indian><male,blanck,short,Portuguese>,<female,blonde,tall,US>(d).若要表达该实例语言上的所有概念,那么我们需要扩大假设空间,使得每个可能的假设都包括在内,这样假设空间就远远大于256,而且这样没法得到最终的没法收敛,因为对每一个未见过的训练样例,投票没有任何效果,因此也就没有办法对未见样例分类。

所以不存在一个最优的查询序列。

2.6完成变型空间表示定理的证明(定理2.1)定理2.1:变型空间表示定理领X 为一任意的实例集合,H 为X 上定义的布尔假设的集合。

令c :X {0,1}为X 上定义的任一目标概念,并令D 为任一训练样例的集合{<x,c(x)>}。

对所有的X ,H ,c ,D 以及良好定义的S 和G :})()((|{s h g G g S s H h VS g g HD ≥≥∈∃∈∃∈=证明:对VSH ,D 中任一h :①当h ∈S 时,取s =h ,则有h ≥gs 成立②当h ∉S 时,即(∃h1∈H )[(h>gh1)∧Consistent(h1,D)]若h1∈S ,显然h ≥gs 成立;否则有(∃h2∈H )[(h1>gh2)∧Consistent(h2,D)]同样或者h2∈S ,则h>gh1≥gs 成立;或者(∃h3∈H )[(h2>gh3)∧Consistent(h3,D)]如此下去,必存在一个序列h>gh1>gh2>g…>ghn ∈S故也有(∃s ∈S)h ≥gs同理,对VSH ,D 中任一h :①当h ∈G 时,取g =h ,则有g ≥gh 成立②当h ∉G 时,即(∃h1∈H )[(h1>gh)∧Consistent(h1,D)]若h1∈G ,显然g ≥gh 成立;否则有(∃h2∈H )[(h2>gh1)∧Consistent(h2,D)]同样或者h2∈G ,则g=h2>gh1≥gh 成立;或者(∃h3∈H )[(h3>gh2)∧Consistent(h3,D)]如此下去,必存在一个序列g=hn>g …>gh2>gh1>gh ,故也有(∃g ∈G)g ≥gh2.9(题目略)对每个属性进行如下操作:令ai=T ,遍历样例集,如果样例全部为正例,则向假设中添加ai=T ,否则,令ai=F ,遍历样例集,如果样例全部为正例,则向假设中添加ai=F,否则,舍弃ai ,不向假设中添加ai 。

时间最大复杂度:2*n*样例集大小3.215.0log 5.05.0log 5.0log )(2212=--=-=∑=ci i i p p S Entropy 01*621*641)(62)(641)(||||)()()(=--=--=-=<∑∈F T v A Values v v S Entropy S Entropy S s S S Entropy A S Gain 3.4假设u1:EnjoySport=Yes ,u2:EnjoySport=NoH(U)=-P(u1)log P(u1)–P(u2)log P(u2)=-(3/4)log(3/4)-(1/4)log(1/4)对Sky 假设v1:Sky=Sunny v2:Sky=RainyH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-1*log(1)-(0)*log(0)=0H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(0)*log(0)-(1)*log(1)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(3/4)*0+(1/4)*0=0所以I(U,V)=H(U)-H(U|V)=H(U)此时显然信息增益最大,所以Sky 作为决策树根节点,又由于对Sky 取两个值对应的EnjoySport 值都是确定的,因此可画出决策树为:SkySunny RainyYes No使用变型空间算法得到的变型空间为<sunny,warm,?,srtong,?,?>,决策树对应变型空间为<sunny,?,?,?,?,?>,显然,决策树得到的变型空间更一般。

树等价于变型空间中的一个或多个成员。

假设u1:EnjoySport=Yes,u2:EnjoySport=NoH(U)=-P(u1)log P(u1)–P(u2)log P(u2)=-(3/5)log(3/5)-(2/5)log(2/5)=0.971①对Sky假设v1:Sky=Sunny v2:Sky=RainyH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(3/4)*log(3/4)-(1/4)*log(1/4)=0.811 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(0)*log(0)-(1)*log(1)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(4/5)*0.811+(1/5)*0=0.6488I(U,V)=H(U)-H(U|V)=0.971-0.6488=0.3222②对AirTemp假设v1:AirTemp=Warm v2:AirTemp=ColdH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(3/4)*log(3/4)-(1/4)*log(1/4)=0.811 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(0)*log(0)-(1)*log(1)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(4/5)*0.811+(1/5)*0=0.6488I(U,V)=H(U)-H(U|V)=0.971-0.6488=0.3222③对Humidity假设v1:Humidity=Normal v2:Humidity=HighH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(1/2)*log(1/2)-(1/2)*log(1/2)=1 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(2/3)*log(2/3)-(1/3)*log(1/3)=0.918 H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(2/5)*1+(3/5)*0.918=0.9508I(U,V)=H(U)-H(U|V)=0.971-0.9508=0.0202④对Wind假设v1:Wind=Strong v2:Wind=WeakH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(3/4)*log(3/4)-(1/4)*log(1/4)=0.811 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(0)*log(0)-(1)*log(1)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(4/5)*0.811+(1/5)*0=0.6488I(U,V)=H(U)-H(U|V)=0.971-0.6488=0.3222⑤对Water假设v1:Water=Warm v2:Water=CoolH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(1/2)*log(1/2)-(1/2)*log(1/2)=1 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(1)*log(1)-(0)*log(0)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(4/5)*1+(1/5)*0=0.8I(U,V)=H(U)-H(U|V)=0.971-0.8=0.171⑥对Forecast假设v1:Forecast=Same v2:Forecast=ChangeH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(2/3)*log(2/3)-(1/3)*log(1/3)=0.918 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(1/2)*log(1/2)-(1/2)*log(1/2)=1 H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(3/5)*0.918+(2/5)*1=0.9580I(U,V)=H(U)-H(U|V)=0.971-0.9580=0.013从而可画出决策树第一步为:SkySunny RainyNo对于Sky=Sunny选定后H(U)=-P(u1)log P(u1)–P(u2)log P(u2)=-(3/4)log(3/4)-(1/4)log(1/4)=0.811①对AirTemp假设v1:AirTemp=Warm v2:AirTemp=ColdH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(3/4)*log(3/4)-(1/4)*log(1/4)=0.811 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(0)*log(0)-(0)*log(0)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(4/4)*0.811+(0/4)*0=0.811I(U,V)=H(U)-H(U|V)=0.811-0.811=0②对Humidity假设v1:Humidity=Normal v2:Humidity=HighH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(1/2)*log(1/2)-(1/2)*log(1/2)=1 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(1)*log(1)-(0)*log(0)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(1/2)*1+(1/2)*0=0.5I(U,V)=H(U)-H(U|V)=0.811-0.5=0.311③对Wind假设v1:Wind=Strong v2:Wind=WeakH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(1)*log(1)-(0)*log(0)=0H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(0)*log(0)-(1)*log(1)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(3/4)*0+(1/4)*0=0I(U,V)=H(U)-H(U|V)=0.811-0=0.811④对Water假设v1:Water=Warm v2:Water=CoolH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(2/3)*log(2/3)-(1/3)*log(1/3)=0.918 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(1)*log(1)-(0)*log(0)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(3/4)*0.918+(1/4)*0=0.6885I(U,V)=H(U)-H(U|V)=0.811-0.6885=0.1225⑤对Forecast假设v1:Forecast=Same v2:Forecast=ChangeH(U|v1)=-P(u1|v1)log P(u1|v1)-P(u2|v1)log P(u2|v1)=-(2/3)*log(2/3)-(1/3)*log(1/3)=0.918 H(U|v2)=-P(u1|v2)log P(u1|v2)-P(u2|v2)log P(u2|v2)=-(1)*log(1)-(0)*log(0)=0H(U|V)=P(v1)H(U|v1)+P(v2)H(U|v2)=(3/4)*0.918+(1/4)*1=0.6885I(U,V)=H(U)-H(U|V)=0.811-0.6885=0.1225从而可画出决策树第二步:SkySunny RainyWindNoStrongWeakYes No该决策树已全部画出。

相关文档
最新文档