气体放电管基础知识教学提纲
气体放电基础分解PPT学习教案
气体放电物理基础
核辐射引起的电离: (1)射线、质子和氘核
它们引起的电离,相当于高速正离子与气体原子产生 的第一类非弹性碰撞。
(2)射线
它引起的电离,相当于极高速电子与气体原子的第一 类非弹性碰撞。
(3)射线
射线引起的电离相当于能量很大的光子引起的光致电 离,主要产生康普顿效应。
第23页/共72页
气体放电物理基础
带电粒子的热运动 (1)带电粒子的速度分布与平均动能 麦克斯韦分布:
第24页/共72页
气体放电物理基础
三种统计速度:
最可几速度
p
2kT m
平均速度
8kT
m
1.13 p
方均根速度
s
2
3kT
m
1.22p
带电粒子的平均动能:
1 2
mese 2
1 2
M isi 2
2.带电粒子的复合 • 电子和正离子间的复合
假定电子质量为m,正离子质量为M。复合之前
,电子相对于离子的速度为,复合后形成中性原子
速度为u。中性原子的质量则为m+M。eUi为其电离
能。
m v (m M )u
根据动量守恒有
根据动量守恒有
1 2
mv 2
eU i
1 2
(m
M )u2
第19页/共72页
气体放电物理基础
气体放电物理基础
带电粒子的双极性扩散运动
带电粒子的浓度分布随时间的变化
第32页/共72页
气体放电物理基础
气体放电的伏安特性
Va(V)
非自持放电 汤生
放电
1000
自持 暗放电
800
Vf 600
气体放电管介绍及使用注意事项
气体放电管介绍及使用注意事项气体放电管气体放电管包括二极管和三极管,电压范围从75V—3500V,超过一百种规格,严格按照CITEL标准进行生产、监控和管理。
放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。
气体放电管包括贴片、二极管和三极管,电压范围从75V—3500V,超过一百种规格,严格按照CITEL标准进行生产、监控和管理。
放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。
优点:绝缘电阻很大,寄生电容很小,浪涌防护能力强。
缺点:在于放电时延(即响应时间)较大,动作灵敏度不够理想,部分型号会出现续流现象,长时间续流会导致失效,对于波头上升陡度较大的雷电波难以有效地抑制。
结构简介放电管的工作原理是气体放电。
当外加电压增大到超过气体的绝缘强度时,两极间的间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平。
五极放电管的主要部件和两极、三极放电管基本相同,有较好的放电对称性,可适用于多线路的保护。
(常用于通信线路的保护)注意事项接地连线应当具有尽量短的长度接地连线应具有足够的截面,以泄放暂态大电流。
放电管的失效模式放电管受到机械碰撞,超耐受的暂态过电压多次冲击以及内部出现老化后,将发生故障。
故障的模式(即失效模式)有两种:第一种是呈现低放电电压和低绝缘电阻状态;第二种是呈现高放电电压状态。
开路故障模式比短路故障模式具有更大的危害性:开路故障模式令人难以及时察觉,从而不能采取补救措施。
现在的电源SPD产品中,带有失效报警装置,如声,光报警,颜色变化提示等,这些措施的采取对于及时发现和更换已经失效的SPD是有利的。
透明的容器(当然常见的是玻璃)中充有某种低压气体。
在这气体中放电,会有特殊的现象。
比如柔光,弧光,闪光。
导体中的游离电荷是电子承载的,电子是带负电的。
当然要从阴极射出。
本文由深圳市瑞隆源电子有限公司提供,专业制造各种防雷器,避雷器,放电管,陶瓷气体放电管等。
《气体放电技术》辅导资料
气体放电技术辅导资料一主题:气体放电理论概述学习时间:2011年4月15日-4月17日内容:我们这周主要学习气体放电理论的相关内容。
希望通过下面的内容能使同学们加深对气体放电技术知识的理解。
一、学习要求1.掌握气体放电理论;2.掌握气体放电的概念;二、主要内容(一)气体放电概念干燥气体是良好的绝缘体,但当气体中存在自由带电粒子时,它就变为带电,这时如在气体中安置两个电极并加上电压,就有电流通过气体,这个现象称为气体放电。
依气体压力、施加电压、电极形状、电源频率的不同,气体放电有多种多样的形式。
主要的形式有暗放电、辉光放电、电弧放电、电晕放电、火花放电、高频放电等。
20世纪70年代以来激光导引放电、电子束维持放电等新的放电形式,也日益受到人们的重视。
气体放电的基本物理过程气体放电总的过程由一些基本过程构成,这些基本过程是:激发、电离、消电离、迁移、扩散等。
基本过程的相互制约决定放电的具体形式和性状(二)气体放电理论气体中流通电流的各种形式的统称。
包括电晕放电、辉光放电、电弧放电、火花放电等。
在电场作用下,带电粒子在气体中运动时,一方面沿电力线方向运动,不断获得能量;一方面与气体分子碰撞,作无规则的热运动,不断损失能量。
经若干次加速碰撞后,它们便达到等速运动状态,这时其平均速度u与电场强度E成正比u=KE,系数K称为电子(离子)迁移率。
对于离子,K是一个常数;对于电子,它并不是一个常数,而与电场强度E有关。
体放电。
荷能电子碰撞气体分子时,有时能导致原子外壳层电子由原来能级跃迁到较高能级。
这个现象,称为激发;被激发的原子,称为受激原子。
要激发一个原子,使其从能级为E1的状态跃迁到能级为Em的状态,就必须给予(Em-E1)的能量;这个能量所相应的电位差设为eVe,则有eVe=Em-E1,电位Ve称为激发电位。
实际上,即使电子能量等于或高于激发能量,碰撞未必都能引起激发,而是仅有一部分能引起激发。
引起激发的碰撞数与碰撞总数之比,称为碰撞几率。
气体放电基础知识
气体放电基础知识气体击穿理论气体介质是电力系统和电气设备中常用的绝缘介质。
如:空气、 CO2、 N2、SF6、混合气体等。
当电场强度达到一定数值后,气体会失去绝缘能力,从而造成事故。
为了能正确构成气体绝缘,就需要了解气体中的放电过程。
本章着重介绍气体击穿的一些理论分析,如:带电质点的产生、运动和消失的规律;气体击穿过程的发展等。
第一节气体放电主要形式什么是气体放电:气体中出现电流的各种形式统称为气体放电。
处于正常状态并隔绝各种外电离因素作用的气体是完全不导电的。
气体中存在少量带电质点(紫外线、宇宙射线作用,500-1000对/立方厘米正、负离子),在电场作用下,带电质点沿电场方向运动,形成电流,所以气体通常并不是理想绝缘介质。
由于带电质点极少,气体的电导也极小,仍为优良的绝缘体。
击穿:当提高气体间隙上的外施电压而达一定数值后,电流突然剧增,从而气体失去绝缘性能。
气体这种由绝缘状态突变为良导电态的过程,称为击穿。
沿面闪络:当击穿过程发生在气体与液体或气体与固体的交界面上时,称为沿面闪络。
击穿电压:气体击穿的最低临界电压称为击穿电压。
击穿场强:气体发生击穿时的电场强度称为击穿场强。
气体放电形式根据气体压力、电源功率、电极形状等因素的不同,击穿后气体放电可具有多种不同形式:1、辉光放电2、电弧放电3、火花放电4、电晕放电1、辉光放电当气体压力不大、电源功率很小(放电回路中串入很大阻抗)时,外施电压增到一定值后,回路中电流突增至明显数值,管内阴极和阳极间整个空间出现发光现象。
这种放电形式称为辉光放电。
辉光放电的特点:电流密度较小,放电区域通常占据整个空间;管端电压较高,不具有短路的特性。
注意:辉光放电仅发生在气压较低的情况下2、电弧放电随着外回路中的阻抗减小,电流增大。
当电流增大到一定值后,放电通道收细,且越来越明亮,管端电压则更加降低,说明通道的电导越来越大,这时的放电形式称为电弧放电。
电弧放电的特点:电流密度很大,管端电压很低,具有短路的特性。
气体放电管的使用技巧
气体放电管的使用技巧气体放电管是一种广泛应用于不同领域的技术装置。
它利用气体放电产生的光、热、声等性质,用于照明、通信、科研等各种用途。
然而,要正确并高效地使用气体放电管,掌握一些使用技巧是非常重要的。
本文将从选购、安装、维护几个方面,介绍气体放电管的使用技巧。
1. 选购气体放电管在选购气体放电管时,首先需要了解不同类型的放电管及其特点。
例如,氖灯、氙灯、氩氖(Ar/Ne)混合灯等常见的气体放电管,其光谱和亮度都有所不同。
因此,根据实际应用场景和需求,选择适合的放电管是至关重要的。
其次,考虑使用寿命和稳定性。
不同的气体放电管在使用寿命上可能有所差异,有些放电管可能在长时间使用后逐渐失去亮度或产生色偏。
因此,在选购时务必要仔细核对相关参数和说明。
另外,还要留意品牌和质量信誉,选择合适的供应商和品牌,以确保使用寿命和稳定性。
最后,还需要考虑购买成本与维护成本之间的平衡。
气体放电管在购买后,常常需要维护、更换一些零部件。
因此,在购买时要考虑到维护成本,并权衡总体的经济性。
2. 安装气体放电管正确的安装方法对于气体放电管的使用和效果都至关重要。
首先,安装时要确保放电管的连接部件牢固可靠,避免在使用过程中松动或掉落。
其次,要选择合适的安装位置和角度,以充分利用光线和热量的传播。
除此之外,在室内安装时需注意通风和散热,避免过热对放电管造成损害。
另外,对于需要长时间持续工作的放电管,考虑到散热问题,可以采取一些散热措施,如加装风扇或散热片,以保证放电管的温度在正常范围内。
3. 维护气体放电管维护对于气体放电管的寿命和稳定性至关重要。
首先,定期清洁放电管的表面是必要的,以确保其光线的传播效果。
可以使用一些清洁剂和柔软的布进行清洁,但要避免使用过多的水或液体接触放电管。
另外,注意定期更换放电管的零部件,如电极、滤光片等,以保持其正常工作状态。
根据使用情况和厂家的建议,也可以定期进行检查和维护,以确保放电管的性能和使用寿命。
半导体放电管和气体放电管的基础知识
半导体放电管和气体放电管的基础知识气体放电管的结构及特性开放型气体放电管放电通路的电气特性主要取决于环境参数,因而工作的稳定性得不到保证.为了提高气体放电管的工作稳定性,目前的气体放电管大都采用金属化陶瓷绝缘体与电极进行焊接技术,从而保证了封接的外壳与放电间隙的气密性,这就为优化选择放电管中的气体种类和压力创造了条件,气体放电管内一般充电极有氖或氢气体。
气体放电管的各种电气特性,如直流击穿电压、冲击击穿电压、耐冲击电流、耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化.这种调整往往是通过改变放电管内的气体种类、压力、电极涂敷材料成分及电极间的距离来实现的.气体放电管有二极放电管及三极放电管两种类型.有的气体放电管带有电极引线,有的则没有电极引线。
从结构上讲,可将气体放电管看成一个具有很小电容的对称开关,在正常工作条件下它是关断的,其极间电阻达兆欧级以上。
当浪涌电压超过电路系统的耐压强度时,气体放电管被击穿而发生弧光放电现象,由于弧光电压低,仅为几十伏,从而可在短时间内限制了浪涌电压的进一步上升.气体放电管就是利用上述原理来限制浪涌电压,对电路起过压保护作用的。
随着过电压的降低,通过气体放电管的电流也相应减少.当电流降到维持弧光状态所需的最小电流值以下时,弧光放电停止,放电管的辉光熄灭。
气体放电管主要用来保护通信系统、交通信号系统、计算机数据系统以及各种电子设备的外部电缆、电子仪器的安全运行.气体放电管也是电路防雷击及瞬时过压的保护元件。
气体放电管具有载流能力大、响应时间快、电容小、体积小、成本低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不能恢复截止状态,不能用于保护低压电路,每次经瞬变电压作用后,性能还会下降。
半导体放电管也称固体放电管是一种PNPN元件,它可以被看作一个无门电极的自由电压控制的可控硅,当电压超过它的断态峰值电压或称作雪崩电压时,半导体放电管会将瞬态电压箝制到元件的开关电压或称转折电压值之内。
半导体放电管和气体放电管的基础知识
半导体放电管和气体放电管的基础知识气体放电管的结构及特性开放型气体放电管放电通路的电气特性主要取决于环境参数,因而工作的稳定性得不到保证。
为了提高气体放电管的工作稳定性,目前的气体放电管大都采用金属化陶瓷绝缘体与电极进行焊接技术,从而保证了封接的外壳与放电间隙的气密性,这就为优化选择放电管中的气体种类和压力创造了条件,气体放电管内一般充电极有氖或氢气体。
气体放电管的各种电气特性,如直流击穿电压、冲击击穿电压、耐冲击电流、耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化。
这种调整往往是通过改变放电管内的气体种类、压力、电极涂敷材料成分及电极间的距离来实现的。
气体放电管有二极放电管及三极放电管两种类型。
有的气体放电管带有电极引线,有的则没有电极引线。
从结构上讲,可将气体放电管看成一个具有很小电容的对称开关,在正常工作条件下它是关断的,其极间电阻达兆欧级以上。
当浪涌电压超过电路系统的耐压强度时,气体放电管被击穿而发生弧光放电现象,由于弧光电压低,仅为几十伏,从而可在短时间内限制了浪涌电压的进一步上升。
气体放电管就是利用上述原理来限制浪涌电压,对电路起过压保护作用的。
随着过电压的降低,通过气体放电管的电流也相应减少。
当电流降到维持弧光状态所需的最小电流值以下时,弧光放电停止,放电管的辉光熄灭。
气体放电管主要用来保护通信系统、交通信号系统、计算机数据系统以及各种电子设备的外部电缆、电子仪器的安全运行。
气体放电管也是电路防雷击及瞬时过压的保护元件。
气体放电管具有载流能力大、响应时间快、电容小、体积小、成本低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不能恢复截止状态,不能用于保护低压电路,每次经瞬变电压作用后,性能还会下降。
半导体放电管也称固体放电管是一种PNPN元件,它可以被看作一个无门电极的自由电压控制的可控硅,当电压超过它的断态峰值电压或称作雪崩电压时,半导体放电管会将瞬态电压箝制到元件的开关电压或称转折电压值之内。
第4章改 气体放电原理
A* + B → A + B+ + e + ∆E
举例:
Ar*(Vm=11.53v) + Hg (Vi=10.4v)→ Ar + Hg+ + e Ne*(Vm=16.62v) + Ar (Vi=15.8v)→ Ne + Ar+ + e
三、辉光放电
① ②
③
④ ⑤ ⑥ ⑦ ⑧
度大处就会向带电粒子浓度小处形成定向运动,如此形成的定向运动,就叫 扩散。
“双极”扩散率
等离子体中有电子和离子。电子轻且杂乱 热运动使其速度快,因此预测电子向管壁 扩散比正离子快,所以等离子体中正离子 过剩。 由于正离子吸引电子,所以减慢电子扩散 速率;另正离子产生一径向电场,加速正 离子向管壁扩散。 所以,总的效应使电子扩散慢下来,而正 离子的扩散快起来,直到二者以相同的速 率扩散为止,这个扩散率就是。。。
原子的量子态 n2S+1 L J (主量子、角量子、磁量子43;Er
转动能级)
(原子能级、分子振动能级、分子
4.2 气体放电的辐射
4.2.2 原子发光和分子发光
原子的线光谱
∆ E= e∆v = hC/λ, 即 λ = 1239/ ∆v nm 共振辐射
分子的带状光谱
此,阴极经常使用逸出功低的材料。 例如,钍钨比钨好;碱 土金属氧化物(BaO, SrO)。 2)绝大多数材料在室温时热电子发射很低,到 1000K时发射显著。所以要足够发射,阴极必须加热到一定 温度。按加热方式分自热阴极和独立式阴极。
总结:1)热阴极材料应具有低的逸出功,高熔点, 低蒸发速率; 2)热电子发射是弧光放电阴极最主要的一种 发射形式。
气体放电基础知识
气体放电基础知识关于气体击穿常用气体绝缘介质:空气、SF6、CO2、N2、混合气体(SF6+ CO2、SF6+N2)等。
气体击穿:正常情况下气体是良好的绝缘介质,但当电场强度达到一定数值后,气体会失去绝缘能力(气体击穿)。
气体击穿是气体绝缘失败的最后表现形式,深入了解气体击穿的发展过程,对于提高分析问题、解决问题的能力更有意义。
平均电场强度与最大电场强度尖端效应或边缘效应电极表面的电场强度与其表面电荷密度成正比。
在电极尖端或边缘的曲率半径小,表面电荷密度大,电力线密集,电场强度高,容易发生局部放电。
这种现象称为尖端效应或边缘效应。
尖端效应或边缘效应是极不均匀电场的重要标志。
工程上常需改善电极形状,避免电极表面曲率过大或出现尖锐边缘。
分析绝缘结构的击穿电压时,不仅要考虑绝缘距离,而且还要考虑电场不均匀程度的影响。
对于同样距离的间隙,电场愈不均匀,通常击穿电压愈低。
茹柯夫斯基电极任一等位面上电场强度最大值:12211222C U U C C =+静电感应现象电容分压导体受邻近带电体的影响,在其表面不同部位出现正负电荷的现象称为静电感应。
气体放电的几个概念:气体放电:气体中出现电流的各种形式统称为气体放电。
气体击穿:由于外施电压升高,电流突然剧增,气体失去绝缘性能。
气体由绝缘状态突变为良导电态的过程,称为击穿。
沿面闪络:当击穿过程发生在气体与液体或气体与固体的交界面上时,称为沿面闪络。
气体放电的基本形式包括:1、电晕放电(局部放电);2、辉光放电;3、电弧放电;4、火花放电。
气体击穿后的放电形式受气体压力、电源功率、电极形状等因素的影响。
1、电晕放电:随着电压升高,在电极附近电场最强处出现发光层。
发生电晕放电时,气体间隙的大部分尚未丧失绝缘性能,放电电流很小,间隙仍能耐受电压的作用。
2、辉光放电:当气体压力不大、电源功率很小(放电回路中串入很大阻抗),外施电压增到一定值后,回路中电流突增至明显数值,管内阴极和阳极间整个空间出现发光现象。
气体放电管设计及使用
气体放电管设计及使用
气体放电管称陶瓷气体放电管是开关型过压保护器件,简称GDT。
陶瓷气体放电管GDT是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电诱导设计,通过金属焊料高温封接而制成的一种陶瓷气体放电器件,它主要用于瞬时大电压的过电压保护。
气体放电管设计及使用:
1)气体放电管的加入不能影响线路的正常工作,这就要保证气体放电管的直流击穿电压的下限值必须高于线路的最大正常工作电压。
据此确定所需放电管的标称直流击穿电压值。
2)确定线路所能承受的最高瞬时电压值,要确保放电管的冲击击穿电压值必须低于此值。
以确保当瞬间过压来临时,放电管的反映速度快于线路的反映速度,抢先一步将过电压限制在安全值。
这是放电管的一个最重要的指标。
3)根据线路中可能窜入的冲击电流强度,确定所选用放电管必须达到的耐冲击电流能力(如:在室外一般选用10kA以上等级;在入室端一般选用5kA等级;在设备终端处一般选用2kA左右等级)。
4)当过电压消失后,要确保放电管及时熄灭,以免影响线路的正常工作。
这就要求放电管的过保持电压尽可能高,以保证正常线路工作电压不会引起放电管的持续导通(即续流问题)。
5)若过电压持续的时间很长,气体放电管的长时间动作将产生很高的热量。
为了防止该热量所造成的保护设备或者终端设备的损坏同时也为了防止发生任何可能的火灾,气体放电管此时必须配上适当的短路装置,我们称之为FS装置( 即“失效保护装置”)。
气体放电管选型很重要,在放电管工作中能长期发挥稳定质量保障更重要。
浪拓电子气体放电管为电子,通信及工业设备提供优质保护,气体放电管产品系列丰富,反应快速,具有稳定的保护水平。
气体放电管原理及应用(详解)
气体放电管原理及应用(详解)气体放电管原理及应用(详解)原理:气体放电管采用陶瓷密闭封装,内部由两个或数个带间隙的金属电极,充以惰性气体(氩气或氖气)构成,基本外形如图1所示。
当加到两电极端的电压达到使气体放电管内的气体击穿时,气体放电管便开始放电,并由高阻变成低阻,使电极两端的电压不超过击穿电压。
气体放电管的主要参数1)反应时间指从外加电压超过击穿电压到产生击穿现象的时间,气体放电管反应时间一般在US数量极。
2)功率容量指气体放电管所能承受及散发的最大能量,其定义为在固定的8X 20 □电流波形下,所能承受及散发的电流。
3)电容量指在特定的1MHz频率下测得的气体放电管两极间电容量。
气体放电管电容量很小,一般为<1pF。
4)直流击穿电压当外施电压以500V/S的速率上升,放电管产生火花时的电压为击穿电压。
气体放电管具有多种不同规格的直流击穿电压,其值取决于气体的种类和电极间的距离等因素。
5)温度范围其工作温度范围一般在—55 C?+ 125 C之间。
6)绝缘电阻是指在外施50或100V直流电压时测量的气体放电管电阻,一般>1010Q。
气体放电管的应用示例1)电话机/传真机等各类通讯设备防雷应用如图3所示。
特点为低电流量,高持续电源,无漏电流,高可靠性。
图3通讯设备防雷应用2 )气体放电管和压敏电阻组合构成的抑制电路图4是气体放电管和压敏电阻组合构成的浪涌抑制电路。
由于压敏电阻有一致命缺点:具有不稳定的漏电流,性能较差的压敏电阻使用一段时间后,因漏电流变大可能会发热自爆。
为解决这一问题在压敏电阻之间串入气体放电管。
但这又带来了缺点就是反应时间为各器件的反应时间之和。
例如压敏电阻的反应时间为25ns ,气体放电管的反应时间为100ns ,则图4的R2,G,R3的反应时间为150ns ,为改善反应时间加入 R1压敏电阻,这样可使反应时间为25ns 。
图4气体放电管和压敏电阻配合应用3)气体放电管在综合浪涌保护系统中的应用自动控制系统所需的浪涌保护系统一般由二级或三级组成,利用各种浪涌抑制器件的特点,可以实现可靠保护。
气体放电管+结构与+参数
典型保护原理及应用 (MDF Protection Modules)
五、
2-point Protection
3-point Protection
四、气体放电管耐流特性
2. 冲击电流试验 对试样施加波形为10/1000μs的冲击电流波,电流峰值按表4相应
的电流等级选取, 冲击电流源的充电电压峰值应不小于试样最大冲击击 穿电压的1.5倍。试验可以是正或者正、反两极性交替冲击,冲击次数 通常为300次。 3. 冲击电流试验 2
对试样施加波形为8/20μs的冲击电流波,电流峰值按表4相应的 电流等级选取,正、反向极性各冲击5次,其它要求同冲击电流1。
2
一、气体放电管放电过程---辉光放电
辉光放电是一种重要的放电形式,是汤生放电的进一步发展,主要区别在于辉光放电 有较大的电流。因放电管出现特有的光辉而得名,辉光放电可分为亚辉光、正常辉光 及反常辉光放电三种类型。 辉光放电是一种自持放电,放电电流大小为毫安级,它是靠正离子轰击阴极所产生的 二次电子发射来维持的。
G: 辉光放电区 (Glow mode range) A: 弧光放电区 (Arc mode range)
一、气体放电微观过 程
EPCOS 04/2004
1
一、气体放电微观过程
EPCOS 04/2004
1
一、气体放电管微观放电过程---汤生放电
击穿。
T1区:阴极发射的电子在电场的作用下获得足够的能量,它们与气体 分子碰撞并产生电离,导致带电粒子增加,放电电流随之上升。
T2区:电子与气体分子碰撞产生正离子,电流进一步增大。 这里从阴极发射的最原始的电子是由某种光电效应产生的,如果这种 光电效应突然消失,那么汤生放电区域的电流会立即中断,所以这种 属于非自持放电。
气体放电管工作原理
气体放电管的工作原理1. 引言气体放电管是一种用于产生和控制电子束的装置,广泛应用于照明、显示、通信等领域。
它是由一个密封在玻璃或金属外壳中的气体放电管组成,内部充填有特定的气体和金属蒸汽。
当施加适当的电压和电流时,气体放电管会发生放电现象,产生可见光、紫外线或其他形式的辐射。
本文将详细解释气体放电管的工作原理,包括激发态的产生、能级跃迁、辐射机制以及控制方法等内容。
2. 激发态的产生在气体放电管内部,充填有一定压强和比例的气体混合物。
当施加适当的高压和低频交流(AC)或直流(DC)电源时,气体分子会被激发到高能级。
这种激发态可以通过不同的机制产生: - 原子碰撞:在高能量电场下,正离子与自由电子碰撞会导致原子或分子中的电子被激发到高能级。
- 光电效应:光电子通过金属阴极的辐射和吸收,也可以激发气体分子的电子。
3. 能级跃迁当气体分子中的电子被激发到高能级时,它们会在短时间内返回到低能级。
这种能级跃迁会伴随着辐射或非辐射过程。
主要的能级跃迁过程包括: - 辐射跃迁:在能级跃迁时,分子会发射光子。
这些光子可以是可见光、紫外线或其他波长的电磁波。
- 非辐射跃迁:在能级跃迁时,分子不发射光子,而是通过碰撞或其他机制将能量传递给其他分子。
4. 辐射机制气体放电管产生可见光、紫外线或其他形式的辐射主要依赖于以下几种机制:4.1 激发态至基态的辐射当气体分子中的激发态电子回到基态时,会释放出能量。
这些能量以光子形式辐射出来,产生可见光或紫外线。
其具体机制包括: - 自发辐射:激发态电子在自然衰减过程中,通过辐射跃迁释放能量。
- 受激辐射:激发态电子受到外界光子的刺激,引发辐射跃迁并释放能量。
4.2 气体分子碰撞的辐射在气体放电管中,气体分子之间的碰撞也会导致能级跃迁和辐射。
这种碰撞导致的辐射主要是非辐射跃迁过程中释放出来的能量。
4.3 金属蒸汽的辐射气体放电管中常添加金属蒸汽作为助燃剂,其蒸汽也可以发生能级跃迁和产生特定波长的光线。
CH 3 气体放电管
式中ufdc是直流放电电压,min(ufdc) 表示取直流放电电压的下限值,UP为线 路正常运行电压的峰值,1.15系数是考 虑系统运行电压可能出现的最大允许波 动为15%,1.25系数是在线路运行电压波 动的基础上再追加25%的安全裕度。
南京信息工程大学 大气物理学院施广全
放电管直流放电电压的允许偏差为 0.2,所以有: min (u fdc ) = (1 − 0.2 )u fdc = 0.8u fdc 由上两式可以得到放电管的直流放 电电压:
南京信息工程大学 大气物理学院施广全
§3.1 结构简介 放电管的工作原理是气体放电。 当外加电压增大到超过气体的 绝缘强度时,两极间的间隙将放电 击穿,由原来的绝缘状态转化为导 电状态,导通后放电管两极之间的 电压维持在放电弧道所决定的残压 水平 。
南京信息工程大学 大气物理学院施广全
两极放电管的结构示意图
南京信息工程大学 大气物理学院施广全
三极放电管的结构示意图
南京信息工程大学 大气物理学院施广全
五极放电管的主要部件和两极、 三极放电管基本相同,有较好的放电 对称性,可适用于多线路的保护。 (常用于通信线路的保护) 两极放电管的放电分散性比较大, 在使用两极放电管时,可能将共模过 电压转变为差模过电压,详见本章第 四节的分析。
§3.3 响应时间 从暂态过电压开始作用于放电管 两端的时刻到管子实际放电时刻之间 有一个延迟时间,该时间就称为响应 时间。 响应时间的组成:一是管子中随 机产生初始电子-离子对带电粒子所 需要的时间,即统计时延;二是初始 带电粒子形成电子崩所需要的时间, 即形成时延。
南京信息工程大学 大气物理学院施广全
南京信息工程大学 大气物理学院施广全
这种方法会造成供电和信号 传输的短时中断,对于要求不高 的电子设备可以接受。
气体放电管
放电管特性及选用吴清海放电管的分类放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。
气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。
其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。
气体放电管同流量大,但动作电压较难控制。
半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。
半导体放电管的保护机理和应用方式和气体放电管相同。
半导体放电管动作电压控制精确,通流量较小。
放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。
当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。
气体放电管气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。
放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。
在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。
1-1 气体放电基础知识
高压电气设备绝缘预防试验及电气设备状态检修参考教材:电力系统状态检修技术气体放电基础知识关于气体击穿常用气体绝缘介质:空气、SF6、CO2、N2、混合气体(SF6+ CO2、SF6+N2)等。
气体击穿:正常情况下气体是良好的绝缘介质,但当电场强度达到一定数值后,气体会失去绝缘能力(气体击穿)。
气体击穿是气体绝缘失败的最后表现形式,深入了解气体击穿的发展过程,对于提高分析问题、解决问题的能力更有意义。
平均电场强度与最大电场强度尖端效应或边缘效应电极表面的电场强度与其表面电荷密度成正比。
在电极尖端或边缘的曲率半径小,表面电荷密度大,电力线密集,电场强度高,容易发生局部放电。
这种现象称为尖端效应或边缘效应。
尖端效应或边缘效应是极不均匀电场的重要标志。
工程上常需改善电极形状,避免电极表面曲率过大或出现尖锐边缘。
分析绝缘结构的击穿电压时,不仅要考虑绝缘距离,而且还要考虑电场不均匀程度的影响。
对于同样距离的间隙,电场愈不均匀,通常击穿电压愈低。
茹柯夫斯基电极任一等位面上电场强度最大值:12211222C UU C C =+静电感应现象电容分压导体受邻近带电体的影响,在其表面不同部位出现正负电荷的现象称为静电感应。
气体放电的几个概念:气体放电:气体中出现电流的各种形式统称为气体放电。
气体击穿:由于外施电压升高,电流突然剧增,气体失去绝缘性能。
气体由绝缘状态突变为良导电态的过程,称为击穿。
沿面闪络:当击穿过程发生在气体与液体或气体与固体的交界面上时,称为沿面闪络。
气体放电的基本形式包括:1、电晕放电(局部放电);2、辉光放电;3、电弧放电;4、火花放电。
气体击穿后的放电形式受气体压力、电源功率、电极形状等因素的影响。
1、电晕放电:随着电压升高,在电极附近电场最强处出现发光层。
发生电晕放电时,气体间隙的大部分尚未丧失绝缘性能,放电电流很小,间隙仍能耐受电压的作用。
2、辉光放电:当气体压力不大、电源功率很小(放电回路中串入很大阻抗),外施电压增到一定值后,回路中电流突增至明显数值,管内阴极和阳极间整个空间出现发光现象。
气体放电管基础知识
气体放电管基础知识2.1气体放电管2.1.1简介气体放电管是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电引燃机构,通过银铜焊料高温封接而制成的一种特殊的金属陶瓷结构的气体放电器件。
它主要用于瞬时过电压保护,也可作为点火开关。
在正常情况下,放电管因其特有的高阻抗(>1000MΩ)及低电容(<2pF)特性,在它作为保护元件接入线路中时,对线路的正常工作几乎没有任何不利的影响。
当有害的瞬时过电压窜入时,放电管首先被击穿放电,其阻抗迅速下降,几乎呈短路状态,此时,放电管将有害的电流通过地线或回路泄放,同时将电压限制在较低的水平,消除了有害的瞬时过电压和过电流,从而保护了线路及元件。
当过电压消失后,放电管又迅速恢复到高阻抗状态,线路继续正常工作。
气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。
放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。
由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。
气体放电管的基本特点是:通流量容量大,绝缘电阻高,漏电流小。
但残压高,反应时间慢(≤100ns),动作电压精度较低,有续流现象。
Figure 1气体放电外观图2.1.2气体放电的伏安特性气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。
现以一个直流放电电压为150V的二极放电管为例,来说明放电管伏安特性的基本特征。
下图是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。
由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。
如图所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。
在A到B之间的这段伏安特性上,其斜率(即动态电阻du/di)是负的,称为负阻区。
如果200V的直流电压源经1MΩ的电阻加到放电管上,放电管即工作在此区间,这时的放电具有闪变特征。
陶瓷气体放电管培训资料
4.GDT命名规则
5.GDT封装及分类 按电极数分有二极放电 管和三极放电管(相当于两 个二极放电管串联)两种。 其外形为圆柱形,有带引线和 不带引线两种结构(有的还 带有过热时短路的保护卡)。
二极体 UN1206
三极体 UN3E5
3.GDT特性参数 直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时 的击穿电压值。这是放电管的标称电压,常用的有90、150V、 230V、350V、470V、600V、800V等几种,我们有最高5500V、 最低70V的。其误差范围:一般为±20%,也有的为±15%。 脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μ s的 脉冲电压时的击穿电压值。因反应速度较慢,脉冲击穿电压 要比直流击穿电压高得多。 冲击放电电流Idi:有2.5 kA、5 kA、10 kA、20 kA…… 等规格。
2.GDT工作原理
气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个 电极组成。 其电气性能基本上取决于气体种类、气体压力以及电极距离,中间 所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少 电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏), 而且可以保持在一个确定的误差范围内。当其两端电压低于放电电压 时,气体放电管是一个绝缘体(电阻Rohm>100MΩ)。当其两端电压升高到 大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。气体放电管受到瞬态高能量冲 击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通 过高达数十千安的浪涌电流。
1.GDT简介 陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最 广泛的一种开关器件,无论是交直流电源的防雷还是各种信 号电路的防雷,都可以用它来将雷电流泄放入大地。其主要 特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高 (≥100MΩ ),击穿电压分散性较大(±20%),反应速度 较慢(最快为0.1~0.2μ s)。按电极数分,有二极放电管 和三极放电管(相当于两个二极放电管串联)两种。其外形 为圆柱形,有带引线和不带引线两种结构形式(有的还带有 过热时短路的保护卡)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1气体放电管2.1.1简介气体放电管是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电引燃机构,通过银铜焊料高温封接而制成的一种特殊的金属陶瓷结构的气体放电器件。
它主要用于瞬时过电压保护,也可作为点火开关。
在正常情况下,放电管因其特有的高阻抗(>1000MΩ)及低电容 (<2pF)特性,在它作为保护元件接入线路中时,对线路的正常工作几乎没有任何不利的影响。
当有害的瞬时过电压窜入时,放电管首先被击穿放电,其阻抗迅速下降,几乎呈短路状态,此时,放电管将有害的电流通过地线或回路泄放,同时将电压限制在较低的水平,消除了有害的瞬时过电压和过电流,从而保护了线路及元件。
当过电压消失后,放电管又迅速恢复到高阻抗状态,线路继续正常工作。
气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。
放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。
由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。
气体放电管的基本特点是:通流量容量大,绝缘电阻高,漏电流小。
但残压高,反应时间慢(≤100ns),动作电压精度较低,有续流现象。
Figure 1气体放电外观图2.1.2气体放电的伏安特性气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。
现以一个直流放电电压为150V的二极放电管为例,来说明放电管伏安特性的基本特征。
下图是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。
由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。
如图所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。
在A到B之间的这段伏安特性上,其斜率(即动态电阻du/di)是负的,称为负阻区。
如果200V的直流电压源经1MΩ的电阻加到放电管上,放电管即工作在此区间,这时的放电具有闪变特征。
BC段为正常辉光放电区,在此区间内电压基本不随电流而变,当辉光覆盖整个阴极表面时,电流再增加,电压也不增加。
CD段称为异常辉光放电区。
直流放电电压为90V~300V放电管,其辉光放电区BD的最大电流一般在0.2A~1.5A 之间。
当电流增加到足够大时放电E点突然进入电弧放电区,即使是同一个放电管,放电由辉光转入电弧时的电流值也是不能精确重复的。
在电弧放电时,处在电场中加速了的正离子轰击阴极表面,阴极材料被溅射到管壁上,阴极被烧蚀,使间隙距离增加,管壁绝缘变坏。
在采用合适的材料后,放电管可以做到导通10KA、8/20μs电流数百次。
在电弧区,放电管两端的电压基本上与通过的电流无关,在管内充以不同的惰性气体并具有不同的电压电弧压降常在10V~30V。
管子工作在电弧区就可以将电压箝制在较低的水平,从而达到过电压保护的目的。
当电流下降到比开始燃弧(E点)的数值低的电弧熄灭电流值(F点)时,放电由电弧转为辉光,电弧熄灭电流通常在0.1A~0.5A。
Figure 2气体放电管的伏安特性曲线按照过电压保护的要求,在过电压作用下放电后,放电管应能自动恢复到非导通状态,否则在电弧区的续流可能会烧坏管子,甚至使通过续流的导线或电源也受到损坏。
在辉光区,毫安级的续流长期流过,也会使放电管损坏。
因此,系统中加在放电管两端的系统正常运行电压应低于维持放电的电压。
在一般信号电路中,电源内阻较大,维持放电的电压是维持辉光放电的电压。
在试验时,将直流电源与放电管之间串联5KΩ电阻,慢慢升压使放电管动作,然后再慢慢降低电压,测出放电管停止放电时的电压。
例如,测得直流放电电压为350V 的放电管维持放电电压为68V~184V。
实际上,随着放电管品种的不同,其维持放电电压值的差异是比较大的。
在被放电管保护的系统中,只要直流电源电压低于维护放电电压或交流电源电压的幅值低于管子的直流放电电压,过电压过去后就不会有续流,但在某些情况下可能会在电弧区产生续流,对此需要采取限流措施。
2.1.3气体放电管结构早期的放电管是以玻璃作为管子的封装外壳,现已改用陶瓷作为封装外壳,放电管内充入电气性能稳定的惰性气体(如氩气和氖气等),放电电极一般为两个、三个或五个,电极之间由惰性气体隔开。
按电极个数的设置来划分,放电管可分为二极、三极和五极放电管。
气体放电管的内部结构如图所示。
对于两极放电管来说,它由纯铁电极、镍铬钴合金帽、银铜焊帽和陶瓷管体等主要部件构成。
管内放电电极上涂敷有放射性氧化物,管内内壁也涂敷有放射性元素,用于改善放电特性。
放电电极主要有针形和杯形两种结构,在针形电极的放电管中,电极与管体壁之间还要加装一个圆筒热屏,该热屏可以使陶瓷管体受热趋于均匀,不致出现局部过热而引起管断裂。
热屏内也涂敷放射性氧化物,以进一步减小放电分散性。
在杯形电极的放电管中,杯口处装有钼网,杯内装有铯元素,其作用也是减小放电分散性。
对于三级放电管,它也是由纯铁电极、镍铬钴合金帽、银铜焊帽和陶瓷管体等主要部件构成。
与二极放电管不同,在三极放电管中增加了镍铬钴合金圆筒,作为第三电极,即接地电极。
五极放电管的主要部件与二、三极放电管基本相同,它具有较好的放电对称性,可适合于多线路的保护。
Figure 3气体放电管的组成Figure 4二极气体放电管的结构Figure 5三极气体放电管的结构2.1.4气体放电管工作原理下图描述了放电管的放电过程。
电压上升到击穿电压Vs值期间,实际上没有电流流过,着火后电压降至辉光状态电压量级Vgl(70~150伏,电流从几百毫安至1.5安培据管型而定)。
随着电流的进一步增加,跃变到弧光状态A。
在这种状态下,弧光电压极低,一般为10~35伏,在很宽的范围实际与电流无关。
随着过电压降低(即波形第二半周),通过放电管的电流相应降到维持弧光状态所需的最小值(此10mA至100mA,据管型而定)以下,从而,必定停止弧光放电,通过辉光状态后,放电管在电压Ve处熄灭。
Figure 6气体放电管的特性曲线气体放电管的微观过程如图所示。
Figure 7气体放电管的微观过程1)汤生放电气体放电分为两大类:非自持放电和自持放电。
A.非自持放电是指在存在外致电源的条件下放电才能维持的现象;B.自持放电是指去掉外致电离源的情况下放电仍能维持的现象放电从非自持过渡到自持的现象称为气体击穿。
这种放电现象与理论是本世纪初由科学家汤生提出的。
Figure 8汤生放电的伏安特性A.T0区:剩余电离粒子和电子在电场的作用下定向运动,电流从零开始逐渐增加,当极间电场足够大时,所有带电粒子都可到达电极,这时电流到达某一最大值。
由于剩余电离产生的带电粒子密度一般很弱,所以T0区域饱和电流值仍然很小(约10^-12A量级)。
B.T1区:阴极发射的电子在电场的作用下获得足够的能量,它们与气体分子碰撞并产生电离,导致带电粒子增加,放电电流随之上升。
C.T2区:电子与气体分子碰撞产生正离子,电流进一步增大。
这里从阴极发射的最原始的电子是由某种光电效应产生的,如果这种光电效应突然消失,那么汤生放电区域的电流会立即中断,所以这种属于非自持放电。
当作用在放电管两端的电压大于某一临界值Vs时,放电管的电流会突然迅速上升,如此时移去外界电离源放电会照旧维持,气体出现某种类型的自持放电,如辉光放电和弧光放电。
这时气体产生了击穿或着火,其临界电压值Vs就称为击穿电压。
2)帕邢定律和潘宁效应试验证明,在放电空间里,气体的击穿电压只是气压和极距乘积的函数(帕邢定律)。
实验发现,在适当的良种气体组成的混合气体中,它的着火电压会低于单种气体的着火电压,目前在氩-汞以及氖-氩混合气体中都发现了这种现象,这种效应称为潘宁效应。
3)辉光放电辉光放电是一种重要的放电形式,是汤生放电的进一步发展,主要区别在于辉光放电有较大的电流。
因放电管出现特有的光辉而得名,辉光放电可分为亚辉光、正常辉光及反常辉光放电三种类型。
辉光放电是一种自持放电,放电电流大小为毫安级,它是靠正离子轰击阴极所产生的二次电子发射来维持的。
辉光放电很明显分为以下几个区域:A.阴极位降区:阴极与a之间,这里有很大的电场强度。
B.负辉区:ab之间,这里电离和激发主要由阴极位降加速下的快速电子碰撞气体原子而引起。
C.法拉第暗区:bc之间,这里电子能量太低,不足以激发气体原子,在ac之间的电子流主要是扩散电子流。
D.正柱区:cd之间,这里电场强度为常数。
E.阳极辉区:阳极附近的发光区。
Figure 9辉光放电的区域4)弧光放电弧光放电是一种自持放电,它的主要特点是维持电压低,通常只有30伏以内。
由于弧光电流很大,单靠正离子轰击阴极不能提供这么多电子,更多的电子应该是阴极自身发射电子。
弧光放电分为三个区。
A.阴极位降区:区域很短<10^-4m,压降10V,电流密度很大(10^10A/m2),这个区域对于阴极发射电子及维持放电很重要。
B.阳极位降区:空间电荷是负的,而且不存在阳极发射,通常位降及电流密度小于阴极。
C.弧光正柱:在两者之间的是弧光正柱区,也是等离子区,气体是中性的,电场强度的大小与气体的性质、气压、及电流有关。
Figure 10弧光放电中电位的轴向分布5)辉弧转换过程从辉光放电相对低的电流密度、高的电压过渡到弧光放电高的电流密度、低的放电电压需要阴极电子发射机构本质的改变才行。
在反辉光区,电流密度增加,阴极位降增加,这使得撞击阴极的正离子能量增加,并提高了阴极的温度,反常辉光放电较高电流那部分对应阴极温度将变得足够高,从而使阴极发射出足够多的电子,这样最后只用较低的电压就能维持放电。
Figure 11氮气放电的辉光-弧光过渡2.1.5气体放电管参数特性1)直流击穿电压(Vs)在放电管两端施加一个100V/S缓慢上升的点电压时,致使放电管发生击穿的电压值。
亦称“直流击穿电压”,记为:Vs。
由于放电具有分散性,围绕着这个平均值还需要同时给出允许的偏差上限和下限值。
Figure 12气体放电管直流击穿电压2)冲击击穿电压在放电管极间施加上升速率很快的(100V/us或1KV/us)电压时,致使放电管发生击穿时刻的电压值。
记为Vss。
由于放电管的响应时间或动作时延与电压脉冲的上升陡度有关,对于不同的上升陡度,放电管的冲击放电电压是不相同的。
一些制造厂通常是给出在上升陡度为1KV/μs的冲击放电电压值,实际上,出于一般应用的考虑,还应给出放电管在100V/μs、500V/μs、1KV/μs、5KV/μs和10KV/μs等不同上升陡度下的冲击放电电压,以尽量包括在各种保护应用环境中可能遇到的暂态过电压上升陡度范围Figure 13气体放电管的冲击击穿电压Figure 14气体放电管的典型反应模式3) 响应时间在具有一定波头上升陡度(陡度du/dt 在1KV/μs 以上)的暂态过电压作用下,当放电管上电压上升到其直流放电电压值时,管子并不能立即放电,而是要等到管子上电压上升到一个比直流放电电压值高出很多的数值时,管子才会放电,也就是说,从暂态过电压开始作用于放电管两端的时刻到管子实际放电时刻之间有一个延迟时间,该时间即称为响应时间。