工程热力学课件 热力学总结

合集下载

工程热力学-热力学第一定律

工程热力学-热力学第一定律
热力学第一定律的应用有助于开发更高效的节能技术,如改进热力发动机的效率,优化建筑物的能源 性能等。
减排措施
根据热力学第一定律,减少不必要的能量损失和排放是可行的,例如通过改进设备的保温性能和减少 散热损失来降低能耗。
环境保护
可持续发展
减少污染
热力学第一定律强调能量的有效利用和转换, 这有助于推动可持续发展,通过更环保的方 式满足人类对能源的需求。
该定律是热力学的基本定律之一,它 为能量转换和利用提供了理论基础。
内容
热力学第一定律可以表述为:在一个封闭系统中,能量总和保持不变,即能量转 换和传递过程中,输入的能量等于输出的能量加上系统内部能量变化。
该定律强调了能量守恒的概念,即能量不能被创造或消灭,只能从一种形式转化 为另一种形式。
符号和单位
热力平衡状态下的应用
能量转换
热力学第一定律可以用于分析能量转 换过程,如燃烧、热电转换等,以确 定转换效率。
热力设备设计
在设计和优化热力设备时,如锅炉、 发动机等,可以利用热力学第一定律 来分析设备的能量平衡,提高设备的 效率。
非平衡状态下的应用
热传导
在研究非平衡状态下的热传导过程时, 可以利用热力学第一定律来分析热量传 递的方向和大小。
VS
热辐射
在研究物体之间的热辐射传递时,可以利 用热力学第一定律来分析辐射能量的交换 。
热力过程的应用
热力循环
在分析热力循环过程,如蒸汽机、燃气轮机等,可以利用热力学第一定律来计算循环效 率。
热量回收
在热量回收过程中,如余热回收、热泵等,可以利用热力学第一定律来分析回收效率。
04 热力学第一定律的推论
熵增原理
定义
熵增原理是热力学第二定律的一个推论,它指出在一个封 闭系统中,自发过程总是向着熵增加的方向进行。

工程热力学总结

工程热力学总结

闭口系统能量方程
一般式
Q
W
Q = dU + W
Q = U + W
q = du + w q = u + w
单位工质
适用条件: 1)任何工质 2) 任何过程
4
准静态和可逆闭口系能量方程
简单可压缩系准静态过程
w = pdv
q = du + pdv
q = u + pdv
简单可压缩系可逆过程
q = Tds
cn
n n
-k 1
cv
(1) 当 n = 0 p v 0 co n st p C
v
1- k
cn
n 1 1
cv
n
cn kcv cp p
(2) 当 n = 1 p v1 co n st T C cn
T
(3) 当 n = k p v k co n st s C cn 0
s
1
(4) 当 n = p n v const18 v C
热二律的表述与实质
热功转换
传热
1851年 开尔文-普朗克表述
热功转换的角度
1850年 克劳修斯表述
热量传递的角度
23
卡诺循环— 理想可逆热机循环
1-2定温吸热过程, q1 = T1(s2-s1) 2-3绝热膨胀过程,对外作功 3-4定温放热过程, q2 = T2(s2-s1) 4-1绝热压缩过程,对内作功
Tds = du + pdv
热力学恒等式
Tds = u + pdv 5
稳定流动能量方程
q
h
1 2
c2
gz
ws
适用条件: 任何流动工质 任何稳定流动过程

工程热力学课件完整版

工程热力学课件完整版
的热消失时,必产生相应量的功;消耗一定量的功时 ,必出现与之对应的一定量的热。
第三章 理想气体的性质
基本要求: 1、熟练掌握并正确应用理想气体状态方程式; 2、正确理解理想气体比热容的概念,熟练应用比热容计算理想 气体热力学能、焓、熵及过程热量; 3、掌握有关理想气体的术语及其意义; 4、掌握理想气体发生过程; 5、了解理想气体热力性质图表的结构,并能熟练应用它们获得 理想气体的相关状态参数。
T
不可逆过程的熵增(过程角度)
q
T
0
克劳休斯积分不等式(循环角度)
dsiso 0
孤立系统角度
ds sf sg 非孤立系统角度
熵、热力学第二定律的数学表达式
1. 熵的定义
ds qre
T
2. 循环过程的熵
3. 可逆过程的熵变
qre Tds
ds 0,则 q 0 可逆过程中ds 0,则 q 0
dv
q cndT Tds
T s
n
T cn
T ,定容过程 cV
T ,定压过程 cp
4个基本过程中的热量和功的计算
2
2
1、定容过程
w pdv 0 1
wt 1 vdp v( p2 p1)
2、定压过程
qv u cv (T2 T1)
2
w 1 pdv p(v2 v1)
热力学上统一规定:外界向系统传热为正,系统向外界传热为负。
可逆过程的热量
T
1
B
qre = Tds
T
A
2
q
ds qrev
T
S1
S dS S2
q “+”
q “-”
热力循环
功:工质从某一初态出发,经历一系列热力状态后,又回到原来 初态的热力过程称为热力循环,即封闭的热力过程,简称循环。

工程热力学1总结pptx解析

工程热力学1总结pptx解析

s
s
s
定压吸热 q1=h1—h4 定压吸热 q1=q14+q1’5 定压吸热 q1=h1—h6
定压放热 q2= h2—h3 定压放热 q2= h2—h3 定压放热 1 h2 h3
绝热膨胀 wT= h1—h2
绝热膨胀(或定熵) wT (h1 h5 ) (h1 h2 )
绝热膨胀wT wT1 wT 2 wT1 h1 hA
wT 2 (1)hA h2
绝热压缩 wP= h4—h3 绝热压缩wP= h4—h3 绝热压缩 wp wp34 wp56
w0 q1 q2 wT wP
热效率
t
w0 q1
;
耗汽率 d 3600 kg/(kW.h)
w0
六、制冷循环
循环
空气压缩制冷
蒸汽压缩制冷
T-s图上的表示
吸热过程 放热过程 膨胀过程 压缩过程 耗循环净功 经济指标
(刚性容器)
定压过程
h cpT
w pv wt 0 (p=定值) (换热器 )
定温过程
T s(可逆)
w wt T s (可逆)(T=定值)
设备名称
能量方程
其它
汽轮机等 绝热过程 压气机等
wt h1 h2 wc h2 h1
相对内效率 oi wT ' wT 绝热效率 cs wc wc'
4、大型计算和分析: 数量、经济性、安全性的结论
如何拿分
1、多写: 一点也不会的,写一点理想气体状态方程, 写一个稳定流动能量方程,写一个可用能 损失方程,画一些p-v图、T-s图,总比空 那儿好,说不定给你两分呢。
2、分步: 千万不要一套参数丢进去,一个结果跳出 来,迷信活动一样,要分步,这样即使有 一步错了,也不会扣太多分,由此连带的 错误结果说不定就不扣分了

工程热力学总结

工程热力学总结

工程热力学总结第一章,基本概念工质: 实现热能和机械能相互转化的媒介物质。

热源(高温热源) :工质从中吸取热能的物系。

冷源(低温热源) :接受工质排出热能的物系。

热力系统(热力系):人为分割出来作为热力学分析对象的有限物质系统。

系统选择有任意性,可以是物质(气体,也可以是气缸(工具))。

外界:热力系统以外的部分。

边界:系统与外界之间的分。

系统分类(按能量物质交换分类)闭口系统:系统与外界无物质交换,系统内质量(关键看质量,只要质量不变,即使气体空间位置发生变化,仍为闭口系,漏气问题常用)恒定不变,也称控制质量开口系统:系统与外界有物质交换,系统被划定在一定容积范围内,也称控制容积 绝热系统:系统与外界无热量交换孤立系统:系统与外界既无能量交换,也无物质交换简单可压缩系统:系统与外界只有热量与容积功交换(现如今均为简单可压缩)。

热力学状态:工质在热力变化过程中某一瞬间呈现出来的宏观物理状况,简称状态(了解即可)状态参数:描述工质所处状态的宏观物理量。

如温度、压力体积、焓(H )、熵(S)、热力学能(u )等。

状态参数其值只取决于初终态,与过程无关。

常用的状态参数有: 压力P 、温度T 、体积V 、热力学能U 、焓H 和熵S.其中压力P 、温度T 和体积V 可直接用仪器测量,称为基本状态参数。

其余状态参数可根据基本状态参数间接算得。

5)(了解即可)状态参数有强度量与广延量之分: 强度量:与系统质量无关,如P 、T 。

强度量不具有可加性。

广延量:与系统质量成正比,如V 、U 、H 、S 。

广延量具有可加性。

广延量的比参数(单位质量工质的体积、热力学能等)具有强度量的性质,不具有可加性。

基本状态函数温度(t ) t(℃)=T(K)-273.15压强:绝对压力p 、表压力P g 、真空度p v 及大气压力之间的关系 比体积:单位质量物质所占的体积 单位:m3/kgv 与ρ互成倒数,即:v ρ=1平衡态:不受外界影响的情况下,系统宏观状态量量保持不变 实现平衡的充要条件:两个平衡热平衡:组成热力系统的各部分之间没有热量的传递 力平衡:组成热力系统的各部分之间没有相对位移状态参数坐标图:对于简单可压系统,由于独立参数只有两个,可用两个独立状态参数组成二维平面坐标系,坐标图中任意一点代表系统某一确定的平衡状态,任意一平衡状态也对应图上一个点,这种图称状态参数坐标图。

工程热力学课件ppt

工程热力学课件ppt

热力系统的环境影响评价
环境影响
环境影响是指人类活动对环境产生的各种影响,包括正面和负面 影响。
生命周期评价
生命周期评价是一种用于评估产品或服务在整个生命周期内对环境 的影响的方法。
热力系统的环境影响
热力系统在运行过程中会产生各种环境影响,如排放污染物、消耗 能源等。
可持续性与可再生能源在热力学中的应用
高效热力系统的研究与开发
高效热力系统设计
针对不同应用场景,研究开发高效热 力系统,如高效燃气锅炉、高效空调 系统等,通过优化系统结构和运行参 数,降低能耗和提高能效。
高效热力系统评估
建立和完善高效热力系统的评估体系 ,制定相关标准和规范,为实际应用 提供指导和依据。
热力学在可再生能源利用中的应用
热力学在工程中的应用
热力发动机
热力发动机原理
热力发动机利用燃料燃烧产生的 热能转化为机械能,通过活塞、 转子或涡轮等机构输出动力。
热力发动机类型
热力发动机有多种类型,如内燃 机、蒸汽机和燃气轮机等,每种 类型都有其特点和应用领域。
热力发动机效率
提高热力发动机效率是重要的研 究方向,通过优化设计、改善燃 烧过程和减少热量损失等方法可 以提高效率。
新型热力材料与技术
新型热力材料
随着科技的发展,新型热力材料不断涌现,如纳米材料、复合材料等,这些材料 具有优异的热物理性能和热力学特性,为热力系统的优化和能效提升提供了新的 可能性。
新型热力技术
新型热力技术如热管技术、热泵技术、热电技术等在工程热力学领域的应用越来 越广泛,这些技术能够实现高效能的热量传递和转换,提高能源利用效率。
要点二
详细描述
热力系数是衡量热力学系统转换效率的参数,表示系统输 出功与输入功的比值。它反映了系统转换能量的能力,是 评价系统性能的重要指标之一。热力效率是衡量系统能量 转换效率的参数,表示系统输出有用功与输入总功的比值 。它反映了系统在能量转换过程中的损失程度,也是评价 系统性能的重要指标之一。

完整版工程热力学大总结大全

完整版工程热力学大总结大全

第一章基本概念1. 基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(u )或密度(p )、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

工程热力学-资料.ppt

工程热力学-资料.ppt
工程热力学
§1-2 热力状态
压力p测量
一般是工质绝对压力与环境压力的相对值 ——相对 压力
注意:只有绝对压力 p 才是状态参数
工程热力学
当 p > pb 当 p < pb
绝对压力与相对压力
表压力 pe 真空度 pv
p
p pe pb p pb pv
pe
pv
pb
p
工程热力学
例1:已知当地大气压力pb,及压力表1、 2的读数分别为pg1,pg2。求pg3? 解:⑴压力表1测得的是A室的 相对压力,故
p g 1 p A p b p A p g 1 p b
⑵压力表2测得的也是A室的相对压力,但它处在B室环境中,故
p g 2 p A p B p B p A p g 2
⑶压力表3测得的是B室的相对压力,故
pg3 pBpb
工程热力学
§1-3 热力状态
其它压力测量方法
高精度测量:活塞式压力计 工业或一般科研测量:压力传感器
过热器
锅 炉
汽轮机
发电机 凝 汽 器
给水泵
工程热力学
只交换功 既交换功 也交换热
只交换热
边界特性
固定、活动
§1-2 热力系统
真实、虚构
工程热力学
§1-2 热力系统
2 热力系统分类
以系统与外界关系划分: 有
是否传质
开口系
是否传热
非绝热系
是否传功
非绝功系
是否传热、功、质 非孤立系
工程热力学
无 闭口系 绝热系 绝功系 孤立系
工程热力学
§1-1 热能和机械能转换
热能动力装置:
从燃料燃烧中得到热能,并利用热能得到动力的设备。

《工程热力学》课件

《工程热力学》课件

理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。

工程热力学PPT课件

工程热力学PPT课件
另一种表述是,热量不可能自发地从低温物体传到高温物体而不引起其他变化。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。

《工程热力学》课件

《工程热力学》课件

空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。

《工程热力学》PPT课件

《工程热力学》PPT课件

n从到0,放热→0 →吸热;等温线右内能增加,左内能减少。 例如压缩机压缩过程:K>n>1
第五节 热力学第二定律
重点掌握:
1、热力学第二定律的表述; 2、热力循环的热效率; 3、卡诺循环的热效率。
一、热力学第二定律的表述
1、热量不可能自发的、不付任何代价的由一个低温物 体传至高温物体。—热量不可能自发地从冷物体转移到
K= cp/cν:绝热指数
3、参数间的关系: 由 Pvk=常数 →P1v1k=P2v2k →P1/P2=(v2/v1)k 又 Pv=RT →P=RT/v →Tvk-1=常数 →T1/T2=(v2/v1)k-1 →T2=T1(v1/v2)k-1 =T1εk-1 4、过程量的计算: 推出: w=-u q=w+ u q=0
一、定容过程
1、定义:过程进行中系统的容积(比容)保持不变
的过程。
2、过程方程式:ν =常数 3、参数间的关系: 由 PV=RT 知,P/T=常数, 所以: P1/P2=T1/T2, P1/T1=P2/T2 4、过程量的计算: 又 q=Δ u+w, 由 W=∫PdV, 且 dV=0
→ w=0
→ q=Δ u
热力系统从一个平衡状 态到另一个平衡状态的变 化历程。
力过程。
二、膨胀功W(J)
气体在热力过程中由于体 积发生变化所做的功(又 称为容积功)
规定:热力系统对外界做功为正,外界对热
力系统做功为负。 由δ W=PdV得: dV>0,膨胀,δ W>0, 系统对外界做功; dV<0,压缩,δ W<0, 外界对系统做功; dV=0,δ W=0, 系统与外界之间无功量 传递。
四、课程的特点、要求、学时分配、考核
特点:本课程理论性较强,无多少实物供参照,课堂上的 讲授以理论分析和推导为主。

(完整版)工程热力学知识总结

(完整版)工程热力学知识总结

第一章基本概念1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。

边界:分隔系统与外界的分界面,称为边界。

外界:边界以外与系统相互作用的物体,称为外界或环境。

闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。

开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。

绝热系统:系统与外界之间没有热量传递,称为绝热系统。

孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。

单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。

复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。

单元系:由一种化学成分组成的系统称为单元系。

多元系:由两种以上不同化学成分组成的系统称为多元系。

均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。

非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。

热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。

平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。

状态参数:描述工质状态特性的各种物理量称为工质的状态参数。

如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。

基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。

热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。

压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。

相对压力:相对于大气环境所测得的压力。

工程热力学全部课件pptx

工程热力学全部课件pptx

与外界没有物质和能量交 换的系统。
孤立系统
封闭系统
开放系统
热力学基本定律
热力学第零定律
如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持 不变。
热力学第二定律
热力学循环
由一系列热力学过程组成的闭合路径,如卡诺循环、布雷顿循环 等。
02 热力学第一定律
能量守恒原理
1
能量不能自发地产生或消失,只能从一种形式转 换为另一种形式。
2
在一个孤立系统中,总能量始终保持不变。
3
能量转换过程中,各种形式的能量在数量上保持 平衡。
热力学第一定律表达式
Q = ΔU + W
其中,Δ(mv^2)/2表示系 统动能的变化量;
开口系统能量方程可表示 为:Q = ΔU + Δ(mv^2)/2 + Δ(mgh) + Δ(mΦ)。
Δ(mgh)表示系统势能的 变化量;
03 热力学第二定律
热力学第二定律表述
不可能从单一热源取热,使之完全转 换为有用的功而不产生其他影响。
热力学系统内的不可逆过程总是朝着 熵增加的方向进行。
具有加和性
理想气体基本过程
01
等温过程
温度保持不变的过程,如等温膨胀 和等温压缩
等容过程
体积保持不变的过程,如等容加热 和等容冷却
03
02
等压过程
压力保持不变的过程,如等压加热 和等压冷却
绝热过程
系统与外界没有热量交换的过程, 如绝热膨胀和绝热压缩
04

《工程热力学》课件

《工程热力学》课件

热力学状态由压力、容积和温度 等多个参数所定义。
热力学循环和周期
热力学循环将热量转换为功,有 多种应用,如蒸汽循环、空气循 环、涡轮循环等。
热能和功
1

在物理学中,功是由力作用于物体时所
热能
2
做的功。
热能可以转化为功,例如燃料在发动机
里的燃烧可以形成热能,进而转化为引 擎的动力。
3
热力学第一定律
热力学第一定律表明能量守恒,即能量 不能被创造或破坏,只能从一种形式转 化为另一种形式。
工程热力学循环
理想气体循环
理想气体循环有多个阶段,包括 等压加热、等容冷却、等压膨胀 和等容加热。
蒸汽循环
气轮发动机循环
蒸汽循环的主要组成部分包括锅 炉、汽轮机、冷凝器和再生器等。
气轮发动机循环的主要组成部分 包括压缩机、燃烧室、高压涡轮 和低压涡轮等。应用领域1 Nhomakorabea能源领域
热力学原理和循环在能源领域和能源的
制造业
2
开发利用中有着广泛的应用,例如火电 站、核电站、风电场等。
热力学在制造过程中的应用可以提高产
品质量,减少污染和能源浪费的发生,
例如冶炼、焊接、淬火、加热等。
3
空调与制冷
热力学原理在空调和制冷领域可以提高 制冷效率,从而降低能源消耗和对环境 的影响。
工程热力学
工程热力学是研究热、功、能的转化和传递过程的一门学科。此课程将覆盖 基本概念、能量转化、热力学循环以及应用领域等内容。
为什么学习工程热力学
1 领域广泛
工程热力学应用广泛,包括能源、制造业和空调等领域。
2 提高效率
学习热力学可以帮助你理解能量转换的过程并且提高能源利用的效率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三定律
绝对熵
“工程热力学”课程总结
过程
热力过程
化学反应过程
闭开 口口 系系
循环 热机
制冷 热泵
热 热 内燃机 外燃机 力力 过 过 柴 汽 燃气 蒸汽 程 程 油 油 轮机 动力
空 蒸吸 气 气收 压压
缩缩
“工程热力学”课程总结
工质
研究方法
状态参数全 微分特征 Maxwell式 微分关系式 比热关系式 状态方程
“工程热力学”课程总结

质第



量一



守定



恒律


过程
工质
“工程热力学”课程总结
一般概念 平衡、准静态、可逆、状态参数等
“工程热力学”课程总结
第一定律
能的数量关系
闭口、开口、循环 化学反应(反应热)
“工程热力学”课程总结
第二定律
能的质量
表述、卡诺定理 克氏不等式、熵、Ex、作功能力损失 过程方向、最大(小)功,化学平衡判据
21℃ , 600
kPa
qm
1
2 qm/2 82℃ , 100
kPa -40℃ , 100
3 qm/2 kPa
符合热力学第一定律和第二定律,所以 装置可行 。但是理论上讲,不是最佳, 因为有有效能损失。最佳设计应在满足 设计条件下,尽量满足 Siso 0
理想循环,试在T-s图上表示这些循环,并确
定它们的热效率
pb
T
b
v
s
a
c
p
v
v
s
c
a
p
s
pb p c v a dp/dv=常数
T
bp c v
dp/dv=常数
a
v
s
qxi cv (Tb Ta ) cp (Tc Tb )
w
1 2
(
pb
pa
)(vc
va
)
( pb
2cv Tb
pa )(vc va )
定压过程的热量 q p c p dT
只适用于理想气体,而不适用 于实际气体
系统经历一个可逆定温过程,由于温 度没有变化,故该系统工质不能与外 界交换热量
循环净功越大,则循环的热效率也越大 熵增加的过程不一定是不可逆过程 任意可逆循环的热效率都是η=T2/T1
试述膨胀功、技术功和流动功的意义及关 系,并将可逆过程的膨胀功和技术功表示
在p-v图上
两个相同的刚性容器(A和B)装有不同 质量的同种理想气体,加热时,容器内 的压力的初态和终态值均相等(如图所 示),说明那一容器内的质量较多
p
2 p2
A p1 1 1’
2’ B
T
理想气体方程
pV=mRgT
因为压力任意时刻均 相等,所以温度较低 的容器(A)内一定 气体较多
定比热容的理想气体工质经历如图所示的三种
种类
理想 气体
混湿 合空 气气 体
实际 气体
水制 蒸冷 气工

答疑 机电楼915
填空 选择或者判断 简要回答问题 作图 计算题 ……
判断下述说法对错,并简述理由
动力循环的热效率小于等于1
不可逆过程可以自发进行。 对于任意一个过程,热力学第二定 律对系统的要求是熵变大于等于0
工质经过任何一个循环的熵变均不 为零
Ta k(Tc Tb )
=1 2cvTb源自( pb pa )(vc va )
1
pa pb
k
vc va
1
p b
p
c
T
s T
a v
p
b T
1
c pTa
ln
Tb Tc
ln Tb 1 Tc
c p (Tc Tb )
Tc 1
Tb
c s a s
有人设计了一种特殊装置,它可使一股氮 气(通过这种装置)分离成两股流量相等, 压力相同的氮气,其中一股为高温,另一 股为低温,参数如图所示,试通过定量计 算论证这种装置是否可行?从理论上讲这 一设计是否是最佳设计?氮气作理想气体 处理,并取定值比热容,
相关文档
最新文档