小学四年级奥数知识点梳理(完整资料).doc

合集下载

小学奥数知识点梳理(完整版)

小学奥数知识点梳理(完整版)

小学奥数(知识点梳理)前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。

概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质若111a b c>>,则c>b>a.。

形如:312123m m m n n n >>,则312123n n n m m m <<。

5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②()()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c4. 整除性质① 如果c|a 、c|b ,那么c|(a ±b)。

小学奥数知识点.doc

小学奥数知识点.doc

小学奥数知识点(供家长参考)一、计算1.四则混合运算繁分数⑴运算顺序⑵分数、小数混合运算技巧一般而言:①加减运算中,能化成有限小数的统一以小数形式;②乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2.简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序①运算定律的综合运用②连减的性质③连除的性质④同级运算移项的性质⑤增减括号的性质⑥变式提取公因数形如:3.估算求某式的整数部分:扩缩法4.比较大小①通分a. 通分母b. 通分子②跟“中介”比③利用倒数性质若1/c<1/b<1/c,则c>b>a.。

5.定义新运算6.特殊数列求和运用相关公式二、数论1.奇偶性问题奇+奇=偶奇×奇=奇奇+偶=奇奇×偶=偶偶+偶=偶偶×偶=偶2.位值原则形如:abc =100a+10b+c3.数的整除特征:整除数特征2 末尾是0、2、4、6、83 各数位上数字的和是3的倍数5 末尾是0或59 各数位上数字的和是9的倍数11 奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数4和25 末两位数是4(或25)的倍数8和125 末三位数是8(或125)的倍数7、11、13 末三位数与前几位数的差是7(或11或13)的倍数4.整除性质①如果c|a、c|b,那么c|(a b)。

②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.⑤a个连续自然数中必恰有一个数能被a 整除。

5.带余除法一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=b×q+r当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a 除以b的余数,q为a除以b的不完全商(亦简称为商)。

用带余数除式又可以表示为a ÷b=q……r, 0≤r<b a=b×q+r6. 唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即n= p1 × p2 ×...×pk7. 约数个数与约数和定理设自然数n的质因子分解式如n= p1 ×p2 ×...×pk 那么:n的约数个数:d(n)=(a1+1)(a2+1)....(ak+1) n的所有约数和:(1+P1+P1 +…p1 )(1+P2+P2 +…p2 )…(1+Pk+Pk +…pk )8. 同余定理①同余定义:若两个整数a,b被自然数m 除有相同的余数,那么称a,b对于模m同余,用式子表示为a≡b(mod m)②若两个数a,b除以同一个数c得到的余数相同,则a,b的差一定能被c整除。

(完整版)四年级奥数第一讲_图形的计数问题

(完整版)四年级奥数第一讲_图形的计数问题

第一讲图形的计数问题一、知识点:几何图形计数问题常常没有不言而喻的次序,并且要数的对象往常是重叠交织的,要正确计数就需要一些智慧了.实质上,图形计数问题,往常采纳一种简单原始的计数方法-一列举法.详细而言,它是指把所要计数的对象一一列举出来,以保证列举时无一重复、.无一遗漏,而后计算其总和.正确地解答较复杂的图形个数问题,有助于培育同学们思想的有序性和优秀的学习习惯.二、典例解析:例( 1)数出右图中总合有多少个角解析:在∠ AOB内有三条角分线 OC1、OC2、OC3,∠ AOB被这三条角分线分红 4 个基本角,那么∠ AOB内总合有多少个角呢?第一有这 4 个基本角,其次是包括有 2 个基本角构成的角有 3 个(即∠ AOC2、∠ C1OC3、∠ C2OB),而后是包括有 3 个基本角构成的角有 2 个(即∠ AOC3、∠C1OB),最后是包括有 4 个基本角构成的角有 1 个(即∠ AOB),因此∠ AOB内总合有角:4+3+2+1=10(个)解:4+3+ 2+ 1=10(个)答:图中总合有10 个角。

方法 2:用公式计算:边数×(边数—1)÷ 25 ×( 5-1 )÷ 2=10练一练:数一数右图中总合有多少个角?例( 2 )数一数共有多少条线段?共有多少个三角形?解析:①要数多少条线段:先看线段 AB、AD、AE、AF、AC纵向线段,再看 BC、MN、 GH 这 3 条横向线段:(4×3÷2)×5+(5×4÷2)×3=60(条)②要数有多少个三角形,先看在△ ABC中,被 GH和 MN分红了三层,每一层的三角形同样多,因此只需算出一层三角形个数就能够了。

(5 ×4÷2)×3=30(个)答:在△ ABC中共有线段60 条,共有三角形30 个。

练一练:图中共有多少个三角形?例( 3)数一数图中长方形的个数解析:长边线段有:6× 5÷ 2=15宽边线段有: 4 ×3÷2=6共有长方形: 15×6 = 90(个)答:共有长方形90 个。

四年级奥数启蒙知识点总结

四年级奥数启蒙知识点总结

四年级奥数启蒙知识点总结四年级的奥数启蒙知识点主要涵盖了数学的基础知识和解题技巧。

“奥数”是指奥林匹克数学竞赛的简称,是一项培养学生数学兴趣和提高数学能力的数学竞赛活动。

四年级的学生正处于数学启蒙阶段,通过“奥数”启蒙的学习可以帮助他们提前接触并掌握数学的基本概念和解题方法,为将来更深入的数学学习打下坚实的基础。

一、基础知识点总结1. 加减乘除的基本运算四年级的学生应该熟练掌握一位数和两位数的加减乘除运算。

他们需要通过大量的练习,掌握进位借位运算的方法,学会用竖式计算和横式计算解决加减乘除的问题。

2. 数的整数和小数四年级的学生应该对数的整数和小数有一定的了解。

他们需要知道整数和小数的概念,掌握小数点的运用和小数的加减乘除运算方法。

3. 分数四年级的学生需要了解分数的概念和意义,熟练掌握分数的加减乘除运算方法,掌握分数表达和分数的化简方法。

4. 数量关系四年级的学生需要通过各种实际问题,了解并掌握多个数的数量关系、分数比较大小等概念和方法。

5. 几何图形四年级的学生需要熟悉各种几何图形的名称、特点和性质,掌握对称图形和不规则图形的操作方法。

6. 时间和日历四年级的学生需要掌握时间的读法和表示方法,了解一年中的月份、天数和星期,学会使用日历解决时间问题。

7. 数据统计四年级的学生需要掌握收集数据、整理数据、表示数据和分析数据的基本方法,了解饼图、直方图、折线图等图形表示数据的方法。

二、解题技巧总结1. 理解问题在解题过程中,学生首先需要理解问题的意思,以确保自己正确理解了问题的要求和条件。

要善于抓住问题的主要内容,排除无关因素。

2. 分析问题在理解问题的基础上,学生需要进行问题分析,找到问题的关键点、要点和规律,确定解题的策略和方法。

3. 求解问题在分析清楚问题后,学生需要运用所学知识,选择合适的解题方法,进行具体求解。

对于需要计算的题目,要注意细节,做准确计算。

4. 检验问题在完成题目后,学生需要对自己的答案进行检验,确认答案是否符合题目要求。

小学四年级奥数知识点

小学四年级奥数知识点

小学四年级奥数知识点【小学四年级奥数知识点】奥数,即奥林匹克数学竞赛,是指专门针对小学生的一项数学竞赛活动。

它的目的是培养学生的逻辑思维能力、解决问题的能力和数学创新思维。

对于小学四年级的学生来说,掌握一些基础的奥数知识点有助于提升数学水平。

本文将介绍几个适合四年级学生的奥数知识点。

一、倍数和约数倍数是指一个数可以被另一个数整除,而约数则是指能整除一个数的所有数。

在奥数竞赛中,对倍数和约数的掌握非常重要。

例如,求一个数的倍数时,可以通过不断地加上这个数来得到。

而求一个数的约数时,可以列举所有可以整除这个数的数。

在解答问题时,我们经常需要用到倍数和约数的概念,因此掌握这些基本概念对于解题非常有帮助。

二、分数的计算在奥数竞赛中,分数的计算也是一个重要的考点。

学生需要掌握分数的加减乘除运算,以及分数与整数的混合运算。

比如,学生需要知道分数的相加减时,要先找到分母的公倍数,然后根据公倍数的分母进行计算。

同时,学生还需要学会将分数化简为最简形式,如将分子和分母的公约数约掉。

三、几何形状几何形状是奥数竞赛中的另一个考点。

学生需要熟悉常见的几何形状,如正方形、长方形、三角形、圆等,并了解它们的性质和计算方法。

比如,在计算长方形的面积时,学生需知道长方形的面积等于底边乘以高。

同时,学生还需要了解几何形状之间的关系,如正方形是长方形的特殊情况,圆的半径和直径的关系等。

四、逻辑推理逻辑推理是奥数竞赛中的一大考点,也是培养学生思维能力的重要内容。

在逻辑推理题中,学生需要根据已知条件进行推理,找出问题的解答。

这需要学生具备良好的观察力和思维灵活性。

通过做一些逻辑推理题,可以提高学生的思维能力和解题能力。

五、运算数据的估算在奥数竞赛中,运算数据的估算是一个常见的题型。

学生需要根据问题中给定的信息,对数据进行合理的估算,而不是进行精确的计算。

这需要学生能够迅速抓住问题的主要矛盾,灵活运用数字的大小关系。

培养学生估算能力不仅可以提高计算速度,还可以培养他们的数学直觉。

最新小学四年级奥数知识点.docx

最新小学四年级奥数知识点.docx
断.
③条件分析 ——表法:当两个 象之 只有两种关系,就可用 表示两个 象之 的关系,有 表示“是,有”等肯定的状,没有 表示否定的状
.例如A和B两人之 有 或不 两种状,有 表示,没有表示不.
④ 算:在推理的 程中除了要 行条件分析的推理之外,要 行相 的 算,根据 算的 果 推理提供一个新的判断 条件.⑤ 与推理:根据 目提供的特征和数据,分析其中存在的 律和方法,并从特殊情况推广到一般情况,并 推出相关的关系式,从而得到 的解决.
有:被除数=除数×商+余数,或(被除数-余数)÷除数=商.余数小于除数.
周期 象:事物在运 化的 程中,某些特征有 律循 出.
周期:我 把 两次出 所 的 叫周期.
型:找 形( 形 数),找字符,找数字( ),年月日、星期几,个位数是几.
关 :确定循 周期.
年:一年有366天;
①年份能被4整除;②如果年份能被100整除,年份必 能被400整除.
加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前
面是除号,去掉或加上括号要变号.
100×(4×5)=100×4×5
100÷(4÷5)=100÷4÷5
4.最大最小
1、解答最大最小的问题,可以进行枚举比较.在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值.
5/11
④数 方形 律:个数=1×1+2×2+3×3+⋯+行数×列数.
例1:从天津到上海的火,上午、下午各 一列;也可以乘 机,有
3个不同的航班,有一艘 船直达上海.那么从天津到上海共有多少种不同的走法?
解析:我 把坐火 看成第一 走法,有2种不同的 法; 乘 机是第二 走法,有3种不同的 法;坐 船 第三 走法,只有1种 法.无 哪一种 法,都可以直接完成 件事.

四年级奥数知识点word百度文库

四年级奥数知识点word百度文库

四年级奥数知识点word百度文库一、拓展提优试题1.定义新运算:a△b=(a+b)×b,a□b=a×b+b,如:1△4=(1+4)×4=20,1□4=1×4+4=8,按从左到右的顺序计算:1△2□3=.2.相传唐代诗仙李白去买酒,提壶街上走,遇店加1倍,见花喝2杯.途中四遇店和花,最后壶中还剩2杯酒.壶中原有杯酒.3.如图所示,长方形ABCD中,AB=14厘米,AD=12厘米,现沿其对角线BD将它对折,得一几何图形,则图中阴影部分周长是.4.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.5.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.6.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.7.(7分)将偶数按下图进行排列,问:2008排在第列.2 4681614121018 20 22 2432 30 28 26…8.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.9.给出3、3、8、8,请你按“24点”的游戏规则,写出一个得数等于24的等式,.10.如果,那么=.11.如图是长方形,将它分成7部分,至少要画条直线.12.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.13.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?14.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有人.15.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.【参考答案】一、拓展提优试题1.【分析】定义新运算需要理解题中给出的运算过程,△的运算是两数和再乘以第二个数的积运算.□的运算是两数的积与第二个数的和运算.解:依题意可知:a△b=(a+b)×b得1△2=(1+2)×2=6a□b=a×b+b得6□3=3×6+3=21故答案为:21【点评】本题的关键是找到新定义的符号的意义和运用.同时注意做题时的顺序是从左向右的顺序计算,那么代表他们是同级运算.问题解决.2.解:设李白壶中原有x杯酒,由题意得:{[(x×2﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[(2x﹣2)×2﹣2]×2﹣2}×2﹣2=2,{[4x﹣6]×2﹣2}×2﹣2=2,{8x﹣14}×2﹣2=2,16x﹣30=2,16x=32,x=2;答:壶中原有2杯酒.故答案为:2.3.【分析】由图意得:BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽,代数计算即可.解:14×2+12×2,=28+24,=52(厘米).答:阴影部分的周长是52厘米.故答案为:52厘米.【点评】解决本题的关键是找到BE、CD是长方形的长,BC、DE是长方形的宽,阴影部分的周长=长方形的2条长+2条宽.4.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.5.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.6.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.7.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定.解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.8.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.9.解:8÷(3﹣8÷3),=8÷(3﹣),=8÷,=24.故答案为:8÷(3﹣8÷3).10.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.11.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.12.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.13.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.14.解:(32﹣11)÷(11﹣8)+1=21÷3+1=8(人)答:教室里一共有 8人.故答案为:8.15.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.。

四年级奥数知识点梳理

四年级奥数知识点梳理

四年级奥数知识点梳理
内容重点次重点易接受知

相连接知

相连接知识点
1寻找规律
(一)

2寻找规律
(二)

3简单推理√
4解决问题
(一)

5算式之谜
(一)

6算式之谜
(二)

7最优问题√√8巧妙求和
(一)

9变化规律
(一)

10变化规律
(二)

11错中求解√
12简单列举√
13和倍问题√
14植树问题√√15图形问题√√16巧妙求和
(二)
√√17数数图形
(一)

18数数图形
(二)

19解决问题
(二)

20速算巧算

(一)
21速算巧算

(二)
22平均解题√√23定义运算√
24差倍问题√
25和差问题√
26巧算年龄√
27和差问题√
28周期问题√√
29行程问题

(一)
30假设解题√√31还原问题√√32逻辑推理√
33速算巧算

(三)
34行程问题

(二)
35容斥问题
√√(一)
36二进制题√
37解决问题

(三)
38解决问题

(四)
39盈亏问题√
40开放数学√。

小学奥数的所有知识点总结

小学奥数的所有知识点总结

小学奥数的所有知识点总结第一章数学基础知识一、数字的认识1.自然数、整数、有理数、小数、分数2.有关数的表示和认识3.大小比较二、数的四则运算1.加法、减法、乘法、除法2.运算规律3.运算技巧三、数的倍数和约数1.倍数的概念和判断2.约数的概念和判断3.倍数和约数的性质四、数的整除1.整除的概念和性质2.质数和合数3.分解质因数4.最小公倍数和最大公约数五、分数1.分数的概念和表示2.化简、通分3.分数的加减乘除4.分数的比较5.带分数第二章几何基础知识一、点、线、面1.点的概念2.直线和线段的概念3.射线和角的概念4.平行线和垂直线的关系二、线段和角1.线段的长度2.角的度量3.相交线的性质三、三角形1.三角形的分类2.三角形的性质3.三角形的周长和面积四、四边形1.四边形的分类2.四边形的性质3.四边形的周长和面积五、多边形1.多边形的分类和性质2.多边形的内角和外角和3.多边形的周长和面积六、相似和全等1.相似和全等的概念2.相似和全等的判断3.相似和全等的性质第三章综合应用一、尺规作图1.用图形工具画简单图形2.用尺规作出平行线、垂直线等二、平面图形的变化1.旋转和平移2.镜面反射3.放大、缩小三、数学应用题1.通过故事和实际问题引出运算2.建立方程和不等式3.奥数问题解题技巧四、数学启发题1.奇妙的数学问题2.趣味的数学游戏3.数学思维培养第四章奥数竞赛技巧一、备战奥数竞赛1.理解奥数竞赛2.奥数竞赛的特点3.比赛常见题型二、解题技巧1.快速计算技巧2.巧妙应用数学知识解题3.发散性思维和逻辑推理三、比赛心态1.放松心态2.临场发挥3.全面准备总结:小学奥数的知识点总结包括了数学基础知识、几何基础知识、综合应用和奥数竞赛技巧四个部分。

在数学基础知识中,包括了数字的认识、数的四则运算、数的倍数和约数、数的整除和分数等内容。

在几何基础知识中,包括了点、线、面、线段和角、三角形、四边形、多边形、相似和全等等内容。

小学四年级奥数知识点完整版

小学四年级奥数知识点完整版

小学四年级奥数知识点 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】小学四年级奥数知识点1.和差倍问题和差问题和倍问题差倍问题几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数公式②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型基本公式在直线或者不封闭的曲线上植树,两端都植树棵数=段数+1在直线或者不封闭的曲线上植树,两端都不植树棵距×段数=总长棵数=段数-1在直线或者不封闭的曲线上植树,只有一端植树棵距×段数=总长棵数=段数封闭曲线上植树棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

(完整版)小学四年级奥数知识点(自己整理综合)

(完整版)小学四年级奥数知识点(自己整理综合)

小学四年级奥数知识点总复习1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=375 7×11×13=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。

加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。

100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。

除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律。

积的变化规律:同扩同缩法。

同级运算时,如果有交换数的位置,应该注意符号搬家。

加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。

100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较。

在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。

2、运用规律。

(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大。

3、考虑极端情况。

如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。

5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。

四年级奥数知识点

四年级奥数知识点

3、数值原理法.先把加在一起为整十、整百 、整千……的数相加,然后再与其它的数相加 . 4、“基准数”法,基准当几个数比较接近于 某一整数的数相加时,选这个整数为“基准数 ”(要注意把多加的数减去,把少加的数加上 ) 例题精讲
模块一:分组凑整思想 【例 1】 91.8186.789.6270.490.288.891.5
【练习3】 1.1208-569-208 2.283+69-183 3.132-85+68 4.2318+625-1318+375
【练习2】 1.50+52+53+54+51 2.262+266+270+268+264 3.89+94+92+95+93+94+88+96+87 4.381+378+382+383+379 5.1032+1028+1033+1029+1031+1030 6.2451+2452+2446+2453.
【巩固】 2006+200.6+20.06+2.006+ 994+99.4+9.94+0.994=
【例 3】 计算 56.43+12.96+13.57-4.33 -8.96-5.67
模块二、加补凑整思想 【例 5】 (1) 0.999990.99990.9990.990.9 (2)199.819.971.996 (3)999999999.799.79.7 0.7
【巩固】 199.819.971.996
第四讲 体育比赛中的数学问题
一、知识点总结 1.单循环赛:每两个队之间都要比赛一场,无主客场之分。 (通俗的说就是除了不和自己比赛,其他人都要比)

小学四年级奥数知识点

小学四年级奥数知识点

标红:难点或常考标蓝:基础小学四年级奥数知识点总复习1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=375 7×11×13=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。

加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。

100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。

除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律。

积的变化规律:同扩同缩法。

同级运算时,如果有交换数的位置,应该注意符号搬家。

加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。

100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较。

在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。

2、运用规律。

(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大。

3、考虑极端情况。

如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。

5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。

小学奥数所有的知识点归纳

小学奥数所有的知识点归纳

小学奥数所有的知识点归纳对于小学生来说,参加奥数是提高数学能力和思维能力的绝佳途径。

小学奥数涉及的知识点广泛而深入,涵盖了数学的各个方面。

下面将对小学奥数的知识点进行归纳总结。

一、基础知识点1.1 数的认识和比较小学奥数的基础知识点之一是数的认识和比较。

包括数的读写、数的加减法运算、数的大小比较等。

1.2 整数的四则运算整数的四则运算是小学奥数必备的基础知识点,包括整数的加减乘除运算、负数的加减乘除运算等。

1.3 分数和小数的基本运算分数和小数的基本运算也是小学奥数的核心知识点之一。

包括分数的加减乘除运算、分数与整数的混合运算、小数的加减乘除运算等。

1.4 平方根和立方根的计算平方根和立方根的计算是小学奥数的一项重要知识点。

要求学生能够计算非负整数的平方根和立方根,并应用于实际问题中。

二、应用问题2.1 算术题小学奥数中,包含了各类应用算术题,如速算、面积体积计算、运算顺序等。

此类问题要求学生具备计算能力和分析解决问题的能力。

2.2 类比题类比题是小学奥数中的经典题型之一,它要求学生能够发现和分析事物之间的相似关系,并运用到具体问题中。

2.3 推理与判断题推理与判断题是小学奥数中较为复杂的类型,它要求学生通过逻辑思维和推理能力来解答问题。

这类题目既考察了学生的思维能力,又培养了他们的逻辑思维能力。

三、数学思维3.1 抽象思维小学奥数培养学生的数学抽象思维能力,使学生能够将数学问题具象化,提高解决问题的能力。

3.2 推理思维推理思维是解决数学问题的重要能力之一。

小学奥数中的推理题要求学生能够发现问题的规律,并运用推理能力进行解答。

3.3 分析思维分析思维是解决复杂数学问题的关键能力。

小学奥数中的分析题要求学生能够分析问题的结构和关系,并找出解题的关键点。

以上是小学奥数知识点的简要归纳。

通过学习这些知识点,可以提高小学生的数学能力和思维能力,为他们将来更高阶段的数学学习打下坚实基础。

希望同学们能够充分利用好奥数学习的机会,努力提高自己的数学水平!。

(完整版)小学四年级奥数知识点(自己整理综合)

(完整版)小学四年级奥数知识点(自己整理综合)

小学四年级奥数知识点总复习1.常用特殊数的乘积25×4=100 125×8=1000625×16=10000 25×8=200 125×4=500 125×3=375 7×11×13=1001 37×3=1112.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。

加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。

100+(21+58)=100+21+ 58100-(21+58)=100-21- 583.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。

除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律。

积的变化规律:同扩同缩法。

同级运算时,如果有交换数的位置,应该注意符号搬家。

加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号。

100×(4×5)=100×4×5100÷(4÷5)=100÷4÷54.最大最小1、解答最大最小的问题,可以进行枚举比较。

在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。

2、运用规律。

(1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为0)时,乘积最大。

3、考虑极端情况。

如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。

5.比较大小估算最常用的技巧是“放大缩小”,即先对某个数或算式进行适当的“放大”或“缩小”,确定它的取值范围,再根据其他条件得出结果,调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。

小学奥数知识点梳理(完整版).doc

小学奥数知识点梳理(完整版).doc

小学奥数(知识点梳理)前言小学奥数知识点梳理,对于学而思的小学奥数大纲建设尤其必要,不过,对于知识点的概括很可能出现以偏概全挂一漏万的现象,为此,本人参考了单尊主编的《小学数学奥林匹克》、中国少年报社主编的《华杯赛教材》、《华杯赛集训指南》以及学而思的《寒假班系列教材》和华罗庚学校的教材共五套教材,力图打破原有体系,重新整合划分,构建十七块体系(其第十七为解题方法汇集,可补充相应杂题),原则上简明扼要,努力刻画小学奥数知识的主树干。

概述一、 计算1. 四则混合运算繁分数⑴ 运算顺序⑵ 分数、小数混合运算技巧一般而言:① 加减运算中,能化成有限小数的统一以小数形式;② 乘除运算中,统一以分数形式。

⑶带分数与假分数的互化⑷繁分数的化简2. 简便计算⑴凑整思想⑵基准数思想⑶裂项与拆分⑷提取公因数⑸商不变性质⑹改变运算顺序① 运算定律的综合运用② 连减的性质③ 连除的性质④ 同级运算移项的性质⑤ 增减括号的性质⑥ 变式提取公因数形如:1212......(......)n n a b a b a b a a a b ÷±÷±±÷=±±±÷3. 估算求某式的整数部分:扩缩法4. 比较大小① 通分a. 通分母b. 通分子② 跟“中介”比③ 利用倒数性质若111a b c>>,则c>b>a.。

形如:312123m m m n n n >>,则312123n n n m m m <<。

5. 定义新运算6. 特殊数列求和运用相关公式:①()21321+=++n n n ②()()612121222++=+++n n n n ③()21n a n n n n =+=+④()()412121222333+=++=+++n n n n ⑤131171001⨯⨯⨯=⨯=abc abc abcabc⑥()()b a b a b a -+=-22 ⑦1+2+3+4…(n-1)+n+(n-1)+…4+3+2+1=n 2二、 数论1. 奇偶性问题奇±奇=偶 奇×奇=奇奇±偶=奇 奇×偶=偶偶±偶=偶 偶×偶=偶2. 位值原则 形如:abc =100a+10b+c① 如果c|a 、c|b ,那么c|(a ±b)。

四年级奥数辅导资料

四年级奥数辅导资料
2.先找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,20,(),31
(2)1,4,9,16,25,(),49,64
(3)3,2,5,2,7,2,(),()
(4)53,44,36,29,(),18,(),11,9,8
(5)81,64,49,36,(),16,(),4,1,0
(7)1,3,6,8,16,18,(),(),76,78
(8)0,1,2,4,7,12,20,()
5.下面括号里的两个数是按一定的规律组合的,在□里填上适当的数。
(1)(6,9)(7,8)(10,5)(□,4)
(2)(1,24)(2,12)(3,8)(4,□)
(3)(18,17)(14,10)(10,1)(□,5)
(6)28,1,26,1,24,1,(),(),20,1
(7)30,2,26,2,22,2,(),(),14,2
(8)1,6,4,8,7,10,(),(),13,14
1.知识要点:
观察是解决问题的根据。通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:
1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;
a×(b+c)=a×b+a×c
利用商不变的性质
(1)72×53+72×47
(2)2400÷25
1.运算定律与性质:
(1)加减法运算定律:a+b-c=a-c+b (a+b)+c=a+(b+c) a-b-c=a-(b+c)
(2)乘除法运算定律:a×b×c=a×(b×c)a×(b+c)=a×b+a×c a÷b÷c=a÷(b×c)a×b÷c=a÷c×b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此文档下载后即可编辑1.圆周率常取数据3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.73.15×6=18.84 3.14×7=21.98 3.14×8=25.123.14×9=28.262.常用特殊数的乘积125×8=1000 25×4=100 125×3=375 625×16=10000 7×11×13=1001 25×8=200 125×4=500 37×3=1113.100内质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 974.单位换算:1米=3尺=3.2808英尺=1.0926码1公里=1000米=2里1码=3英尺=36英寸1海里=1852米=3.704里=1.15英里1平方公里=1000000平方米=100公顷 =4平方里=0.3861平方英里1平方米=100平方分米=10000平方厘米1公顷=100公亩=15亩=2.4711英亩1立方米=1000立方分米=1000000立方厘米1立方米=27立方尺=1.308立方码=35.3147立方英尺1吨=1000公斤=1000千克1公斤=1000克=2斤(市制)=2.2046磅5.加减法运算性质:同级运算时,如果交换数的位置,应注意符号搬家。

加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号,括号里面要变号。

6.乘除法运算性质乘法中性质:(1)乘法交换律(2)乘法结合律(3)乘法分配律(4)乘法性质(5)积的变化规律:一扩一缩法。

除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律积的变化规律:同扩同缩法。

同级运算时,如果有交换数的位置,应该注意符号搬家。

加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号;7.等差数列数列是指按一定规律顺序排列成一列数。

如果一个数列中从第二个数开始,相邻两个数的差都相等,我们就把这样的一列数叫做等差数列,等差数列中的每一个数都叫做项,第一个数叫第一项,通常也叫“首项”,第二个数叫第二项,第三个数叫第三项……最后一项叫做“末项”。

等差数列中相邻两项的差叫做“公差”,等差数列中项的个数叫做“项数”。

公式:和=(首项+末项)×项数÷2 项数=(末项-首项)÷公差+1 第n项=首项+(n-1)×公差8.和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题。

解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系,确定总和相当于标准数的多少倍,然后用除法求出标准数,再求出其他各数,最好采用画线段图的方法。

和倍公式:和÷(倍数+1)=小数9.差倍问题己知两个数的差及它们之间的倍数关系,求这两个数的应用题叫差倍问题。

解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数。

解答这类问题,先画线段图,帮助分析数量关系。

差倍公式:差÷(倍数-1)=小数10.和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题。

解答和差问题的基本公式是:(和-差)÷2=较小数(和+差)÷2=较大数九、11.年龄问题己知两个人或几个人的年龄,求他们年龄之间的某种数量关系;或己知某些人年龄之间的数量关系,求他们的年龄等,这种题称为年龄问题。

年龄问题的特点是:一般用和差或者和倍问题的方法解答。

(1)两人的年龄之差是不变的,称为定差。

(2)两个人的年龄同时都增加同样的数量。

(3)两个年龄之间的倍数关系,随着年龄的增长,也在发生变化。

年龄问题的解题方法是:几年后= 大小年龄之差÷倍数差-小年龄几年前=小年龄-大小年龄差÷倍数差12.平均数求平均数必须知道总数和份数,常用公式:平均数=总数÷份数总数=平均数×份数份数=总数÷平均数相遇问题行程问题又分为相遇问题、13.相遇与追及问题路程=速度×时间时间=路程÷速度速度=路程÷时间。

相遇问题它的特点是两个运动物体或人,同时或不同时从两地相向而行,或同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和×相遇时间=路程路程÷速度和=相遇时间速度÷相遇时间=速度和追及问题运动的物体或人同向而不同时出发,后出发的速度快,经过一段时间追上先出发的,这样的问题叫做追及问题,解答追及问题的基本条件是“追及路程”和“速度差”。

追及问题的基本数量关系是:追及时间=追及路程÷速度差追及路程=速度差×追及时间速度差=追及路程÷追及时间14.行船问题船在江河里航行,前进的速度与水流动的速度有关系。

船在流水中行程问题,叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而上的速度与船速、水速的关系是:顺水速度=船速+水速逆水速度=船速-水速由于顺水速度是船速与水速的和,逆水速度是船速与水速的差,因此行船问题就是和差问题,所以解答行船问题有时需要驼用和差问题的数量关系。

船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2因为行船问题也是行程问题,所以在行船问题中也反映了行程问题的路程、速度与时间的关系。

顺水路程=顺水速度×时间逆水路程=逆水速度×时间15.过桥问题过桥问题的一般数量关系是:路程=桥长+车长车速=(桥长+车长)÷通过时间通过时间=(桥长+车长)÷车速车长=车速×通过时间-桥长桥长=车速×通过时间-车长16.植树问题在首尾不相接的路线上植树,段数与棵数关系可分为三类:(1)两端都种树段数=棵数-1 (2)一端种一端不种段数=棵数(3)两端都不种段数=棵数+1 在首尾相接的路线上种树(如圆、正方形、闭合曲线等)段数=棵数17.还原问题还原问题又叫逆推问题。

己知一个数的结果,再经过逆运算反求原数,叫做还原问题。

解决这类题要从结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘)。

18.方阵问题很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人数,这类题叫方阵问题。

在解决方阵问题时,要搞清方阵中一些量(如层数,最外层人数,最里层人数,总人数)之间的关系。

方阵问题的基本特点是:(1)方阵不管在哪一层,每边的人数都相同,每向里面一层,每边上的人数减少2,每一层就少8。

(2)每层人数=(每边人数-1)×4 (3)每边人数=每层人数÷4+1 (4)实心方阵人数=每边人数×每边人数19.幻方与数阵幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。

这相相等的和叫“幻和”。

两种方法:奇阶:1、九子排列法2、罗伯法,3、巴舍法。

偶阶:1、对称交换法2、圆心方阵法。

数阵有三种基本类型:(1)封闭型,(2)辐射型(3)综合型解数阵问题一般思路是从和相等入手,确定重处长使用的中心数,是解答解数阵类型题的解题关键。

一般答案不唯一。

20.奇数与偶数加法:偶数+偶数=偶数奇数+奇数=偶数偶数+奇数=奇数减法:偶数-偶数=偶数奇数-奇数=偶数偶数-奇数=奇数乘法:偶数×偶数=偶数奇数×奇数=奇数偶数×奇数=偶数盈亏问题解21.盈亏问题通常是比较法和对应法结合使用。

公式是:(同盈同亏用减法,一亏一盈用加法)即:两次分配结果差÷两次分配数差=人数22.牛吃草问题牛吃草问题涉及三种数量:A.原有的草。

B.新长出的草。

C.牛吃掉的草。

牛吃草问题解法一般分为三步:一、求每天新生的草量;二、求原有草量;三、求出最终的问题。

(类似于行程问题中的追及问题)23.还原问题解题关键:在从后往前推算的过程中,每一步都是做同原来相反的运算,原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用乘。

24.假设问题假设法是解答应用题时经常用到的一种方法。

所谓“假设法”就是依据题目中的己知条件或结论作出某种设想,然后按照己知条件进行推算,根据数量上出现的矛盾,再适当调整,从而找到正确答案。

25.余数问题一个带余数除法算式包含4个数:被除数÷除数=商……余数。

它们的关系也可表示为:被除数=除数×商+余数,或(被除数-余数)÷除数=商。

26.一笔画和多笔画(1)凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后能以这个点为终点画完此图。

(2)凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点。

(3)多笔画定理有2n(n>1)个奇点的连通图形,可以用n笔画完(彼此无公共线),而且至少要n次画完.27.抽屉原理抽屉原则一:把n+1(或更多)个苹果放到n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

抽屉原则二:把(m×n+1)个(或更多个)苹果放进n个抽屉里,必须一个抽屉里有(m+1)个(或更多的)苹果。

说明:应用抽屉原则解题,要从最坏的情况去思考。

28.分解因式把一个合数写成几个质数相乘的形式,叫做分解质因数。

一个自然数的约数的个数,恰为各个质因数的指数加1后的乘积。

一个数的完全平方数,各个质因数的个数,恰好是平方前这个数各个质因数个数的2倍。

一个完全平方数各个质因数的个数都是偶数。

29.最大公约数与最小公倍数求两个数的最大公约数一般有三种方法:(1)分解质因数法(2)短除法(3)辗转相除法30.分数的比较分母相同的分数比较大小,分子大的分数比较大。

分子相同的分数比较大小,分母大的分数反而小。

分子和分母都不相同的分数比较大小,可以把它们转化成分母相同的分数比较大小;也可以把它们转化成分子相同的分数比较大小。

性质: 1.一个真分数的分子和分母都加上同一个自然数,所得的新分数比原分数大。

2.一个真分数的分子、分母都减去同一个自然数(这个自然数小于真分数的分子),所得的新分数比原分数小。

相关文档
最新文档