新人教版一元一次方程全章优秀教案
《一元一次方程》的优秀教案(9篇)精选全文完整版
可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
一元一次方程教案人教版
一元一次方程教案最新人教版一、教学目标1. 让学生理解一元一次方程的概念,掌握一元一次方程的解法。
2. 培养学生运用一元一次方程解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学重点1. 一元一次方程的概念及解法。
2. 一元一次方程在实际问题中的应用。
三、教学难点1. 一元一次方程的解法。
2. 实际问题中的一元一次方程求解。
四、教学方法1. 采用问题驱动法,引导学生自主探究一元一次方程的解法。
2. 利用实例分析,让学生了解一元一次方程在实际生活中的应用。
3. 组织小组讨论,培养学生的合作交流能力。
4. 运用归纳总结法,帮助学生巩固所学知识。
五、教学内容1. 一元一次方程的概念及例题解析。
2. 一元一次方程的解法(移项、合并同类项、系数化为1)。
3. 一元一次方程在实际问题中的应用举例。
4. 课堂练习:求解一元一次方程。
5. 总结一元一次方程的解法及应用。
六、教学步骤1. 引入新课:通过复习相关数学知识,引导学生回顾代数式的基本概念,为新课的学习做好铺垫。
2. 讲解一元一次方程的概念:解释一元一次方程的定义,举例说明。
3. 演示一元一次方程的解法:通过示例,展示解一元一次方程的步骤,包括移项、合并同类项、系数化为1。
4. 应用实例:提供几个实际问题,让学生运用一元一次方程进行求解。
5. 课堂练习:布置一些练习题,让学生独立完成,检验对一元一次方程的掌握程度。
七、教学反思在课后,对课堂教学进行反思,观察学生的反馈,了解学生在学习过程中的难点和疑点,为下一步的教学提供参考。
八、课后作业布置一些相关的课后作业,让学生进一步巩固一元一次方程的知识,提高解题能力。
九、课堂评价通过课堂提问、练习完成情况等方式,对学生的学习情况进行评价,了解学生的掌握程度,为后续教学提供依据。
十、教学拓展对于学习优秀的学生,可以提供一些拓展资料,如一元二次方程、多元方程等,激发学生的学习兴趣,提高学生的数学素养。
人教版初中数学一元一次不等式教案范文优秀7篇
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
一元一次方程教案人教版
一元一次方程教案最新人教版一、教学目标1. 让学生理解一元一次方程的概念,掌握一元一次方程的解法。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力。
二、教学内容1. 一元一次方程的定义及特点2. 一元一次方程的解法3. 应用一元一次方程解决实际问题三、教学重点与难点1. 重点:一元一次方程的概念、解法及应用。
2. 难点:一元一次方程在实际问题中的运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究一元一次方程的定义、解法。
2. 利用实例分析,让学生学会将实际问题转化为一元一次方程。
3. 运用小组合作学习,培养学生团队合作精神。
五、教学过程1. 导入新课:通过生活实例引入一元一次方程,激发学生的学习兴趣。
2. 自主学习:让学生自主探究一元一次方程的定义、特点及解法。
3. 课堂讲解:讲解一元一次方程的概念、解法,并通过例题演示解题过程。
4. 应用拓展:让学生尝试解决实际问题,运用一元一次方程进行分析。
5. 小组讨论:分组讨论一元一次方程在实际问题中的应用,分享解题心得。
7. 课后作业:布置适量作业,巩固所学知识。
六、教学评估1. 课堂讲解过程中,观察学生对一元一次方程概念和解法的掌握情况。
2. 通过课后作业和课堂练习,评估学生对一元一次方程的实际应用能力。
3. 收集学生的小组讨论材料,了解学生在解决实际问题时的思维过程。
七、教学反思1. 反思教学过程中是否存在难以理解的地方,如有,考虑如何改进讲解方式。
2. 反思教学内容是否符合学生实际需求,如有,考虑如何调整教学内容。
3. 反思教学方法是否有效,如有,考虑如何改进教学方法。
八、教学拓展1. 引导学生思考:一元一次方程在实际生活中有哪些应用场景?2. 介绍一元一次方程的相关历史背景,激发学生对数学的兴趣。
3. 引导学生进行一元一次方程的变形练习,提高学生的数学思维能力。
九、教学资源1. 教材:最新人教版数学教材。
一元一次方程教案(人教版)
一元一次方程教案(最新人教版)章节一:引言教学目标:1. 理解实际问题与方程之间的联系。
2. 掌握一元一次方程的概念。
教学内容:1. 引入实际问题,引导学生思考问题与数值之间的关系。
2. 介绍一元一次方程的定义和特点。
教学步骤:1. 引入实际问题,例如购物问题,引导学生思考问题与数值之间的关系。
2. 引导学生将实际问题转化为方程,解释一元一次方程的定义和特点。
教学评估:1. 提问学生对实际问题与方程之间关系的理解。
2. 检查学生对一元一次方程的定义和特点的掌握。
章节二:一元一次方程的解法教学目标:1. 掌握一元一次方程的解法。
2. 能够熟练解一元一次方程。
教学内容:1. 介绍一元一次方程的解法。
2. 讲解一元一次方程的解法步骤。
教学步骤:1. 引入一元一次方程的解法,解释解法的基本思想。
2. 讲解一元一次方程的解法步骤,包括去分母、去括号、移项、合并同类项、化简等操作。
教学评估:1. 提问学生对一元一次方程解法的理解。
2. 让学生独立解一元一次方程,检查学生的解题能力。
章节三:一元一次方程的应用教学目标:1. 能够应用一元一次方程解决实际问题。
2. 掌握一元一次方程在实际问题中的应用。
教学内容:1. 介绍一元一次方程在实际问题中的应用。
2. 讲解一元一次方程在实际问题中的解法步骤。
教学步骤:1. 引入实际问题,引导学生思考问题与方程之间的联系。
2. 讲解一元一次方程在实际问题中的解法步骤,包括建立方程、解方程、检验解等操作。
教学评估:1. 提问学生对一元一次方程在实际问题中应用的理解。
2. 让学生独立解决实际问题,检查学生的应用能力。
章节四:复习与巩固教学目标:1. 复习一元一次方程的概念和解法。
2. 巩固对一元一次方程的理解和应用能力。
教学内容:1. 复习一元一次方程的概念和解法。
2. 进行一元一次方程的练习。
教学步骤:1. 复习一元一次方程的概念和解法,回答学生的问题。
2. 进行一元一次方程的练习,包括解方程和应用方程解决实际问题。
新人教版一元一次方程全章优秀教案
新人教版七年级上册数学第三章一元一次方程教案(2015年秋季学期)授课者:蒋宏亮学校:东兴市京族学校第三章一元一次方程单元要点分析教案内容方程就是将众多实际问题“教案化”的一个重要模型.因此,课本从学生熟悉的实际问题开始,从算式到方程,展开方程的学习,以使学生认识到方程的出现源于解决问题的需要,体会学习方程的意义和作用.本章内容主要分为以下三个部分:1.通过丰富实例,从算式到建立一元一次方程,•展开方程是刻画现实生活的有效数学模型.2.运用等式的基本性质解方程,归纳移项法则,运用分配律,•归纳“合并”、“去括号”等法则,逐步展现求解方程的一般步骤,这些内容的学习不是孤立进行的,始终从实际问题出发,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.3.运用方程解决丰富多彩的、贴近学生生活的实际问题,•展现运用方程解决实际问题的一般过程.为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生的抽象概括等能力,课本内容的呈现都以求解决一个实际问题为切入点,让学生经历抽象、符号变号、应用等活动,在活动中培养学生解决问题的兴趣和能力,提高学生的思维水平和应用数学知识去解决实际问题的意识.三维目标1.知识与技能根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.过程与方法(1)了解一元一次方程及其相关概念,会解一元一次方程.(数学系数)(2)能以一元一次方程为工具解决一些简单的实际问题,包括列方程,•求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.3.情感态度与价值观培养学生求实的态度。
培养学生获取信息,分析问题,处理问题的能力。
激发学生的好奇心和主动学习的欲望,体会数学的应用价值.重、难点与关键1.重点:一元一次方程有很多直接应用,•解一元一次方程是解其他方程和方程组的基础.因此本章重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题.2.难点:正确地列出一元一次方程的解决实际问题.3.关键:(1)熟练地解一元一次方程的关键在于正确地了解方程、方程解的意义和运用等式的两个性质.(2)正确地列出方程的关键在于正确地分析问题中的已知数、未知数,•并找出能够表示应用题全部含义的相等关系.3.1从算式到方程§3.1.1一元一次方程(一)教案目标:知识与技能:通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。
第五章一元一次方程整章教案
-特殊解的判断:一元一次方程组可能存在唯一解、无解或无穷多解,学生需要学会判断。
-举例:解方程组x + y = 4和2x + 2y = 8。指导学生分析此方程组为何有无穷多解。
-综合练习中的难点题型:选取典型例题,针对学生易错、难懂的题型进行详细讲解。
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的一元一次方程教学中,我发现学生们对于方程的概念和应用有着不错的接受程度,但在具体的解题方法和应用上,还存在一些问题。特别是在将实际问题转化为方程模型的过程中,部分学生感到困惑,这说明我们在教学中需要更多地联系实际,让学生感受到数学与生活的紧密联系。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。例如,通过实物分配演示一元一次方程的基本原理。
新人教版一元一次方程全章优秀教案
新人教版七年级上册数学第三章一元一次方程教案(2015 年秋季学期)授课者:蒋宏亮学校:东兴市京族学校第三章一元一次方程单元要点分析教案内容方程就是将众多实际问题“教案化”的一个重要模型.因此,课本从学生熟悉的实际问题开始,从算式到方程,展开方程的学习,以使学生认识到方程的出现源于解决问题的需要,体会学习方程的意义和作用.本章内容主要分为以下三个部分:1 .通过丰富实例,从算式到建立一元一次方程, ?展开方程是刻画现实生活的有效数学模型.2 .运用等式的基本性质解方程,归纳移项法则,运用分配律, ?归纳“合并”、“去括号”等法则,逐步展现求解方程的一般步骤,这些内容的学习不是孤立进行的,始终从实际问题出发,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.3 .运用方程解决丰富多彩的、贴近学生生活的实际问题,实际问题的一般过程.为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生的抽象概括等能力,课本内容的呈现都以求解决一个实际问题为切入点,让学生经历抽象、符号变号、应用等活动,在活动中培养学生解决问题的兴趣和能力,提高学?展现运用方程解决生的思维水平和应用数学知识去解决实际问题的意识.三维目标1/291.知识与技能根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2.过程与方法(1)了解一元一次方程及其相关概念,会解一元一次方程.(数学系数)(2)能以一元一次方程为工具解决一些简单的实际问题,包括列方程, ?求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.3.情感态度与价值观培养学生求实的态度。
培养学生获取信息,分析问题,处理问题的能力。
激发学生的好奇心和主动学习的欲望,体会数学的应用价值.重、难点与关键1 .重点:一元一次方程有很多直接应用, ?解一元一次方程是解其他方程和方程组的基础.因此本章重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题.2.难点:正确地列出一元一次方程的解决实际问题.3.关键:( 1)熟练地解一元一次方程的关键在于正确地了解方程、方程解的意义和运用等式的两个性质.( 2)正确地列出方程的关键在于正确地分析问题中的已知数、未知数, ?并找出能够表示应用题全部含义的相等关系.3.1 从算式到方程§ 3.1.1 一元一次方程(一)教案目标:知识与技能:通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。
一元一次方程教案(人教版)
一元一次方程教案(最新人教版)一、教学目标1. 让学生掌握一元一次方程的定义、解法和应用。
2. 培养学生运用数学知识解决实际问题的能力。
3. 培养学生合作学习、积极探究的精神。
二、教学内容1. 一元一次方程的定义:含有一个未知数,未知数的次数为1,系数不为0的方程。
2. 一元一次方程的解法:移项、合并同类项、系数化为1。
3. 一元一次方程的应用:解决实际问题。
三、教学重点与难点1. 重点:一元一次方程的定义、解法和应用。
2. 难点:一元一次方程的解法步骤和应用。
四、教学方法1. 采用问题驱动法,引导学生探究一元一次方程的解法。
2. 运用案例分析法,让学生学会将实际问题转化为一元一次方程。
3. 采用合作学习法,培养学生团队协作精神。
五、教学过程1. 导入:通过生活实例,引导学生认识一元一次方程。
2. 新课讲解:讲解一元一次方程的定义、解法和应用。
3. 案例分析:分析实际问题,引导学生学会将问题转化为方程。
4. 课堂练习:布置练习题,让学生巩固所学知识。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评价2. 评价内容:一元一次方程的定义、解法、应用以及解决实际问题的能力。
3. 评价标准:准确理解概念,熟练掌握解法,能够灵活应用到实际问题中。
七、教学资源1. 教材:最新人教版数学教材。
2. 课件:教学课件,包含图片、动画、例题等。
3. 练习题:课后练习题及拓展题。
4. 实际问题案例:生活中的相关问题案例。
八、教学进度安排1. 第1周:引入一元一次方程,讲解定义和简单解法。
2. 第2周:深入学习一元一次方程的解法,解题步骤,以及解的意义。
3. 第3周:应用一元一次方程解决实际问题,案例分析。
4. 第4周:练习题讲解,巩固知识,拓展应用。
九、教学拓展1. 对比二元一次方程:引导学生思考二元一次方程与一元一次方程的区别和联系。
2. 探索其他方程类型:引导学生了解并探究其他类型的方程,如二次方程等。
3. 数学历史:介绍一元一次方程在数学发展史上的地位和作用。
一元一次方程教案(4篇)
一元一次方程教案〔4篇〕元一次方程教案篇一一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、学问与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:〔1〕通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进展猜测、推断。
〔2〕运用所学过的数学学问进展分析,演练、合作探究,体会数学学问在社会活动中的运用,提高应用学问的力气和社会实践力气。
3、情感态度与价值观:通过数学活动,激发学生学习数学兴趣,增加自信念,进一步进展学生合作沟通的意识和力气,体会数学与现实的联系,培育学生求真的科学态度。
三、重难点与关键1、重点:经受探究具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。
2、难点:以上重点也是难点3、关键:明确问题中的量与未知量间的关系,查找等量关系。
四、教具预备:投影仪,每人一根质地均匀的直尺,一些一样的棋了和一个支架。
五、教学过程:(一)活动1一种商品售价为2.2元件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品n件,争论下面问题:这个人买了n件商品需要多少元?教师活动:〔1〕把学生每四人分成一组,进展合作学习,并参入学生中一起探究。
〔2〕教师对学生在发表解法时存在的问题加以指正。
学生活动:〔1〕分组后对活动一的问题开放争论,探究解决问题的方法。
〔2〕学生派代表上黑板板演,并发表解法。
解:2.2nn1002.2100+2(n-100)n100问题转换:一种商品售价为2.2元/件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品共花了n元,争论下面的问题:〔1〕这个人买这种商品多少件?〔2〕假设这个人买这种商品的件数恰是0.48n,那么n的值是多少?教师活动:同上学生活动:同上解:(1)n220100+n220〔2〕=0.48nn=0100+=0.48nn=500(二)活动2:本活动课前布置学生做好活动前的预备工作:1、预备一根质地均匀的直尺,一些一样的棋子和一个支架。
新人教版七年级数学上册第三章一元一次方程整章教案和习题
3.1.1一元一次方程[教学目标]理解一元一次方程的概念,会识别一元一次方程;了解方程的解,会验证方程的解;知道怎样列方程解决实际问题,感受方程作为刻画现实世界有效模型的意义。
[重点难点]一元一次方程和方程的解的概念是重点;怎样列方程解决实际问题是难点。
[教学过程]一、问题导入含有未知数的等式叫做方程。
方程把问题中的未知数与已知数的联系用等式的形式表示出来。
研究问题时,要分析数量关系,用字母表示未知数,列出方程,然后求出未知数。
怎样根据问题中的数量关系列出方程?怎样解方程?二、怎样列方程问题 汽车匀速行驶途径王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。
王家庄到翠湖的路程有多远?1、汽车从王家庄行驶到青山用了多少时间?从青山到秀水用了多少时间?2、请你用算术方法解决这个问题。
3、如果设王家庄到翠湖的路程为x 千米,那么王家庄距青山多少千米?王家庄距秀水多少千米?4、由于汽车是匀速行驶,可知各段路程的车速相等。
你能据此列出方程吗?列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含未知数的等式——方程。
列方程的过程可以表示如下:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
三、一元一次方程的概念例1 根据下列问题,设未知数并列出方程:(1)用一根长24㎝的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?王家庄青山 翠湖 秀水设未知数,列方程(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?解:(1)设正方形的边长为x厘米,可列方程4x=24 ①(2)设x月后这台计算机的使用时间达到规定的检修时间。
1700+150 x=2450 ②(3)设这个学校的学生人数为x人,那么女生人数是多少?男生人数是多少?女生人数为0.52 x人,男生人数为(1-0.52)x人。
《一元一次方程》教学设计精选11篇
《一元一次方程》教学设计精选11篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《一元一次方程》教学设计精选11篇作为一位优秀的人·民教师,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。
《一元一次方程》单元教学设计5篇
《一元一次方程》单元教学设计5篇第一篇:《一元一次方程》单元教学设计《一元一次方程》单元教学设计一、教学内容分析(一)教学内容本章是人教版七年级(上)数学第3章《一元一次方程》,属于《标准》中的“数与代数”领域。
本章主要内容包括:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析与解决实际问题。
其中,以方程为工具分析问题、解决问题,是全章的重点,同时也是难点。
分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章的主线,而对一元一次方程的有关概念和解法的讨论,则是在建立和运用方程这种数学模型的大背景之下进行的。
列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”,是本章始终渗透的主要数学思想。
(二)地位与作用方程有悠久的历史,它随着实践需要而产生,并且具有极其广泛的应用。
从数学本身看,方程是代数学的核心内容,正是对于它的研究才推动了整个代数学的发展。
从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。
本章知识有承前启后的重要地位,通过本章学习不但可以学生的方程思想和建模能力,还能够提高学生分析问题和解决问题的能力(三)本章知识结构图(四)单元整体目标分析知识与技能:(1)了解一元一次方程及其相关概念,认识从算式到方程是数学的进步。
经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种非常有效的数学模型,(2)通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。
1(3)了解解方程的基本目标(使方程逐步转化为“x =a”的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。
(4)能够“找出实际问题中的已知数和未知数,分析它们之间的数量关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。
(5)通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。
人教版七年级数学3.1.1一元一次方程教案
人教版七年级数学3.1.1一元一次方程教案第一篇:人教版七年级数学3.1.1一元一次方程教案3.1 从算式到方程——3.1.1 一元一次方程(第2课时)教学目标:1.了解一元一次方程及方程的解、解方程的概念。
2.掌握检验某个值是不是方程的解的方法。
3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力。
教学重点:一元一次方程的概念及方程的解。
教学难点:会寻找实际问题中的相等关系列出方程。
教学课时:1课时教学过程:一、创设情境问题:世界上最大的动物是蓝鲸.一只蓝鲸重124吨,比一头大象体重的25倍少1吨.问这头大象重几吨?分析:若已知大象的重量为 x 吨,那么蓝鲸的重量为(25x-1)吨。
列出方程,得25x-1=124(1)二、自主探究例:根据下列问题,设未知数并列出方程:1、用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?2、一台计算机已使用1700 h,预计每月再使用150h,经过多少月这台计算机的使用时间达到规定的检修时间2450 h?3、某校女生占全体学生数的52%,比男生多80人,这个学校有多少 1学生?学生探究得出:x=24(2)1700+150 x=2450(3)0.52 x-(1-0.52)x=80(4)问题:观察上面例题列出的四个方程有什么特征?探究得出:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
三、应用新知练习1:判断下列方程是不是一元一次方程:(1)2x+3y=0()(2)x2 –3x+2=0()(3)x+1=2x-5()(4)0.32m-(3+0.02m)=0.7()(5)3x 2()认知感悟实际问题列一元一次方程思考(1)方程4 x=24中未知数 x 的值是多少?当 x=6时,方程等号左右4 x=24两边相等.x=6叫做方程4 x=24的解.(2)方程1700+150x=2450中未知数x的值是多少?当x=5时,当x=1时,左边=1700+150×5=2450左边=1700+150×1=1850 右边=2450右边=2450左边=右边左边≠右边X=5是方程1700+150x=2450的解x=1不是方程1700+150x=2450的解学生探究得出:方程的解:使方程中等号左右两边相等的未知数的值叫做方程的解解方程:求出方程的解的过程叫做解方程练习2:(1)下列方程中,以x=3为解的方程是().(A)3x-1-9=0(B)x=10-4x(C)x(x-2)=3(D)2x-7=126的解是().(2)方程=-x2(A)-3(B)1(C)12(D)-12练习3:根据下列问题,设未知数,列出方程。
新人教版数学七年级上 一元一次方程全章教案
一元一次方程全章教案一、单元教学策略分析[说明]在本单元的教学中,一元一次方程的解法可以作为一个整体来看待。
因此,在这里,将解法这部分内容作为《一元一次方程》单元中的一个小单元进行分析。
(一)教材所处的地位----------教材分析:新人教版《数学》七年级上册第三章《一元一次方程》是继《有理数》《整式》两个单元后对“数与代数”领域的进一步探索。
方程是代数学的核心内容,而一元一次方程是最简单的代数方程,也是所有代数方程的基础。
其中一元一次方程的解法是二元一次方程组以及一元二次方程的解法的基础,学好它将为将来的学习打下坚实的基础。
同时,通过解方程,使学生对方程以及方程的解的意义有更深一步的认识。
(二)单元教学目标1、知识目标(1)熟悉解方程的一般步骤:系数化1,移项,合并同类项,去括号,去分母等,掌握一元一次方程的解法。
(2)能够找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出一元一次方程来表示问题中的等量关系。
2、过程与方法目标(1)了解解方程的基本目标,通过把一元一次方程化为x=a的形式,让学生体会解法中蕴含的化归思想。
(2)通过学生的探索,交流,补充,初步体会数学建模的过程和思想,为进一步的实践与探索作准备。
3、情感态度目标(1)通过将不同的一元一次方程化为x=a的形式,让学生比较,体会方程的不同解法,让学生充分体验成功的感觉。
(2)通过教学内容中数学历史以及故事的学习,使学生逐步认识数学的科学价值和人文价值,提高科学文化素养。
(三)单元教学重难点本小单元的教学重点是一元一次方程的解法,难点是正确求解带有分母的一元一次方程。
(四)单元教学思路及策略由于列方程是本章知识的重点和难点,因此为了分散难点,教材的本意是使学生能有较多机会接触列方程,因此把对实际问题的讨论作为贯穿全章的一条主线。
对一元一次方程解法的讨论也是结合解决实际问题进行的。
而根据我们学生的实际情况:列方程是学生学习方程中的难点,不少学生对于列方程这一内容的学习都感到害怕。
八年级数学(上)全册教案(新人教版)
八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。
学会解一元一次方程,掌握解方程的基本步骤。
1.2 方程的解法学习使用加减法、乘除法解一元一次方程。
学会使用移项、合并同类项解方程。
1.3 方程的应用学会将实际问题转化为方程,解决实际问题。
练习使用一元一次方程解决实际问题。
第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。
学会解一元一次不等式,掌握解不等式的基本步骤。
2.2 不等式组理解不等式组的概念,掌握不等式组的解法。
学会解不等式组,掌握解不等式组的基本步骤。
2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。
练习使用不等式解决实际问题。
第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。
学会判断两个变量之间的关系是否为函数。
3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。
学会判断函数的单调性、奇偶性、周期性。
3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。
练习使用函数解决实际问题。
第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。
学会判断两个整式是否相等。
4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。
学会使用合并同类项进行整式的加减法运算。
4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。
练习使用整式解决实际问题。
第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。
掌握数据的整理方法,如列表、画图等。
5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。
学会使用图表展示数据,如条形图、折线图等。
5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。
学会使用统计量对数据进行描述和分析。
八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。
《一元一次方程》全章教案
第三章一元一次方程3.1从算式到方程3.1.1一元一次方程(2课时)第1课时方程的概念1.初步学会寻找问题中的相等关系,列出方程,了解方程的概念.2.培养学生获取信息、分析问题、处理问题的能力.重点了解一元一次方程及相关概念.难点寻找问题中的相等关系,列方程.活动1:创设情境,导入新课师:小学中我们已经学习过列方程解决问题,什么是方程?你能举一个例子吗?学生回答.活动2:探究新知1.定义方程,回顾举例师:你知道什么叫方程吗?生:含有未知数的等式叫做方程.师:你能举出一些方程的例子吗?由学生举例,教师总结.练习:判断下列式子是不是方程,正确的打“√”,错误的打“×”.(1)1+2=3(2)x+2>1(3)1+2x=4(4)x+y=2(5)x2-1(6)x2=x+2(7)x+3-5(8)x=82.如何根据题意列方程师:利用多媒体展示图片,出示教材本小节开头的问题:一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1小时经过B地,A,B两地间的路程是多少?学生分组活动,同桌两个同学讨论看能否用算术方法解,然后考虑用方程如何解决,然后小组内同学交流,教师可以参与到学生中去,要关注学生解决问题的思路,在用算术法时,是否遇到了麻烦,用方程可以轻松解决吗?让学生感受方程在解决实际问题时的优势.解:设A,B两地间的路程是x km.根据客车比卡车早1小时经过B地,可得方程x 60-x70=1.在这一过程的教学中,教师不仅要使学生掌握本问题的解决方法,更重要的是让学生去体会列方程过程中的一般思路和方法.在这一过程中,教师还应当注意培养学生的发散思维和创新能力,可以让他们进行小组间的交流,也可以根据题意画一个表格讨论,看一看各小组所列的方程是否一致,以开拓学生的思路,从而掌握更多的解题方法.活动3:归纳整理师:提出问题,你能谈谈列方程过程中的思路和方法吗?你是怎样一步步列出方程的?学生讨论交流,然后回答.算术法和方程法有什么不同?你能谈谈你的认识吗?两种方法的比较:从形式上观察:算术方法与方程方法有什么不同的情况出现?从思路上看:你刚才做题的想法有什么不同?(师根据学生的口述列成表,便于比较)用方程解用算术方法解1.未知数用x表示,x参加列式 1.未知数不参加列式2.根据题意找出数量间的相等关系,列出含有未知数x的等式 2.根据题里已知数和未知数间的关系,确定解答步骤,再列式计算师指出:在两个方面的区别中,未知数能不能参加列式决定了怎样分析,并且决定了列式的不同特点.学生讨论交流后回答.教师不必苛求学生的回答,只要学生能谈出一两点体会,教师都应当加以鼓励.练习:教材练习第1,2题.学生独立完成,然后交流.活动4:小结与作业小结:谈谈你本节课的收获.作业:习题3.1第1,5题.要上好一节课不仅要埋头钻研教材,设计教学过程,还必须善于与学生交流,要学会从学生的角度看问题,也就是常说的要学会做学生,应从学生能否理解的角度来安排适当的教学程序,用有趣的资料激发学生的学习热情,更应主动地去了解学生对过去相应的知识的掌握程度,这样才能把握住实施教的深浅及分寸,做到进行适当的引导,达到事半功倍的效果.第2课时一元一次方程1.理解一元一次方程、方程的解的概念.2.掌握检验某个值是不是方程的解的方法.重点寻找等量关系,列出方程.难点对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.一、情境引入师出示问题:问题:小雨、小思的年龄和是25,小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?在学生回答的基础上,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们可以写成:25-x =2x -8.这样就得到了一个方程.二、尝试探究师:让学生尝试解决例1,对于基础比较差的学生,教师可以作如下提示: (1)选择一个未知数,设为x. (2)对于这三个问题,分别考虑:用含x 的式子分别表示正方形的周长;用含x 的式子表示这台计算机x 个月的使用时间; 用含x 的式子分别表示男生和女生的人数. (3)找一个问题中的相等关系列出方程. 学生讨论完成后交流.师:让学生观察并讨论所列方程等号两边式子的关系,师生归纳:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量.学生讨论交流:以上各题,你还能用两种不同的方法来表示另一个量,再列出方程吗? 让学生在学习小组内讨论,然后分组汇报交流:如(2)题中,选“已使用的时间”可列方程:2450-150x =1700.选“还可使用的时间”可列方程:150x =2450-1700. 解题书写过程(略). 三、探究概念 学生讨论交流.在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程式.“一元”:一个未知数,“一次”:未知数的次数是一次. 引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:实际问题――→设未知数 列方程一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.列出方程后,还必须解这个方程,求出未知数的值,对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试—发现—归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边相等的未知数的值,叫做方程的解,求方程解的过程,叫做解方程.一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代入方程,看方程左右两边是否相等.四、练习与小结练习:教材练习第3题.小结:1.谈谈你对一元一次方程的认识.2.谈谈你对列方程的认识.3.如何进行估算?五、布置作业习题3.1第6,7,8题.学生在小学已经对方程有初步认识,但这个过程没有给“一元一次方程”这样准确的理性的概念.本节课是基于学生在小学已经学习的基础上来进行的.继续对有关方程的一些初步知识,并能通过对多个熟悉的实际问题的分析,由学生结合已有知识,得出一元一次方程,并能给出一元一次方程的简单概念及一些相关概念.3.1.2等式的性质(2课时)第1课时等式的性质1.了解等式的两条性质.2.会用等式的性质解简单的(用等式的一条性质)一元一次方程.3.培养观察、分析、概括及逻辑思维能力.重点理解和应用等式的性质.难点应用等式的性质把简单的一元一次方程化成“x=a”的形式.活动1:创设情境,导入新课师:哪位同学能谈谈上节课我们学习了哪些内容?学生思考回答.师:通过估算的方法,我们可以求得方程的解,可是我们也看到,通过估算求解,需要通过多次尝试才能得到正确的答案,有没有相对简单的方法,使我们可以获得方程的解呢?从今天开始我们就来学习解方程.活动2:探究等式的性质分组进行实验(时间约10~15分钟);每小组准备天平一架,砝码、等质量小木块等若干.教师引导学生进行以下操作.操作(1)1.先在托盘中放入一块小木块,然后在另一个托盘中加入砝码,使天平平衡.2.然后在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡,可以重复此步骤.操作(2)在两个托盘中放入等质量的木块各一块,观察此时天平是否平衡. 在两个托盘中放入等质量的木块各两块,观察此时天平是否平衡. 在两个托盘中放入等质量的木块各相等数量的块数,观察此时天平是否平衡,可以重复此步骤.思考:这其中包含的数学道理是什么? 学生讨论后交流.然后师生共同归纳出等式的性质: 如果a =b ,那么a±c =b±c.等式性质1:等式两边加(或减)同一个数或同一个式子,结果仍相等.教师按类似的方法得出等式性质2: 如果a =b ,那么ac =bc ; 如果a =b ,那么a c =bc(c ≠0).等式性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.活动3:解决问题师出示教材82页例2(1)(2).师生共同分析如何运用等式的性质解决这两个问题,在分析过程中教师注意化归思想的渗透,应当告诉学生解方程就是使方程向“x =a ”的形式进行化归,沿着这个思路进行引导,使学生感受化归思想,能自觉地运用等式的性质解决问题.解:略练习:教材第83页练习(1)(2). 学生独立完成,然后同学间交流.根据时间情况和学生的掌握情况,教师可以随机再补充几个练习. 活动4:小结与作业小结:谈谈你对等式性质的认识. 作业:习题3.1第2,3题.等式的性质(关于乘除的),是在学生掌握了等式的性质(关于加减的)的基础上教学的.学生已掌握了一定的学习方法,形成了一定的推理能力.因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.第2课时 用等式的性质解方程1.通过解一元一次方程进一步理解等式的性质;2.会用等式的性质解简单的(两次运用等式的性质)一元一次方程.重点用等式的性质解方程. 难点需要两次运用等式的性质,并且有一定的思维顺序.一、创设情境,复习引入解下列方程:(1)x +7=5;(2)2x =5. 要求学生能说出:①每一步的依据分别是什么?②求方程的解就是把方程化成什么形式?师:这节课继续学习用等式的性质解一元一次方程. 二、探究新知 对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?例1:利用等式的性质解方程:(1)0.6-x =2.4 (2)-13x -5=4先让学生对第(1)题进行尝试,然后教师进行引导:①要把方程0.6-x =2.4转化为x =a 的形式,必须去掉方程左边的0.6,怎么去? ②要把方程-x =1.8转化为x =a 的形式,必须去掉x 前面的“-”,怎么去? 然后给出解答:解:两边减0.6,得0.6-x -0.6=2.4-0.6. 化简,得 -x =1.8,两边同乘-1得 x =-1.8.小结:(1)这个方程的解答中两次运用了等式的性质;(2)解方程的目标是把方程最终化为x =a 的形式,在运用性质进行变形时,始终要朝着这个目标去转化.你能用这种方法解第(2)题吗? 在学生解答后点评.解:两边加5,得到13x -5+5=4+5,化简,得-13x =9,两边同乘-3,得x =-27.解后反思:①第(2)题能否先在方程的两边同乘“-3”?②比较这两种方法,你认为哪一种方法更好?为什么?允许学生在讨论后再回答.例2:(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了80套成人服装,用余下的布还可以做几套儿童服装?在学生弄清题意后,教师再作分析:如果设余下的布可以做x 套儿童服装,那么这x 套服装就需要布1.5x 米,根据题意,你能列出方程吗?解:设余下的布可以做x 套儿童服装,那么这x 套服装就需要布1.5x 米,根据题意,得80×3.5+1.5x =355.化简,得280+1.5x =355, 两边减280,得280+1.5x -280=355-280, 化简,得 1.5x =75,两边同除以1.5,得x =50.答:用余下的布还可以做50套儿童服装.解后反思:对于许多实际问题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.问题:我们如何才能判别求出的答案50是否正确?在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x =50代入方程80×3.5+1.5x =355的左边,得80×3.5+1.5×50=280+75=355.方程的左右两边相等,所以x =50是方程的解.你能检验一下x =-27是不是方程13x -5=4的解吗?三、课堂练习练习:1.课本83页练习(3),(4).2.补充练习:小刚带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)解:设笔记本的单价为x 元.根据圆珠笔和笔记本的钱的总和为18元,得方程 5×1.2+8x =18. 化简,得6+8x =18.两边减6,得6+8x -6=18-6, 化简,得8x =12.两边同除以8,得x =1.5. 答:笔记本的单价是每本1.5元. 四、小结(1)这节课学习的内容. (2)我有哪些收获?(3)我应该注意什么问题? 五、作业习题3.1第4,10题.解方程是学生刚接触的新知识,学生原有的知识储备与生活经验不足,因此教学中老师要时刻关注学生的学习的情况,引导学生经历将现实生活问题加以数学化,引导学生通过操作、观察、分析和比较,由具体的知识渗透到抽象的去理解等式的性质,并应用等式的性质来解方程.3.2 解一元一次方程(一) ——合并同类项与移项(4课时)第1课时 合并同类项1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型. 2.学会合并(同类项),会解“ax +bx =c ”类型的一元一次方程.重点建立方程解决实际问题,会解“ax +bx =c ”类型的一元一次方程. 难点分析实际问题中的已知量和未知量,找出相等关系,列出方程.一、创设情境,导入新课师:背景资料投影展示:约公元820年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.二、探究分析,解决问题 师:出示教材问题1.某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:引导学生回忆:实际问题――→设未知数 列方程一元一次方程问题:如何列方程?分哪些步骤?师生共同讨论分析:①设未知数:前年购买计算机x 台. ②找相等关系:前年购买量+去年购买量+今年购买量=140台. 然后教师引导学生列出方程. ③x +2x +4x =140. 进一步提出问题:怎样解这个方程?如何将方程向x =a 的形式进行转化?学生观察,讨论交流,教师引导学生说出将方程左边合并同类项,向x =a 的形式转化. 教师板演过程或用教材的框图表示过程.(过程略)思考:本问题的解决过程中,合并同类项起到了什么作用? 学生讨论后回答.(让学生感受化归的思想)问题:对于本问题,你还有其他的方法解决吗? 三、尝试运用,巩固加深 教师出示教材例1. 解下列方程: (1)2x -52x =6-8;(2)7x -2.5x +3x -1.5x =-15×4-6×3. 师生共同解决,教师板书过程. 四、练习与小结练习:课本第88页练习1.小结:谈谈你对这节课的收获.五、作业习题3.2第1,4,5题.本节课研究的内容是“合并同类项”,“合并同类项”是化简解方程的重要方法.通过合并同类项可以使方程向x=a的形式转化.这节课与前面所学的知识有千丝万缕的联系.合并同类项的法则是建立在数的运算的基础上,在合并同类项的过程中,要不断运用数的运算,可以说合并同类项是有理数加减运算的延伸和拓广.第2课时合并同类项的应用学会探索数列中的规律,建立等量关系.能正确地求解一元一次方程.重点建立一元一次方程解决实际问题.难点探索并发现实际问题中的等量关系,并列出方程.活动1:创设情境,导入新课师:练习解方程:(1)-4x+0.5x=6;(2)7x-4.5x=7.5-5;(3)-12x+34x=-3.学生独立完成,然后同学交流.活动2:探究新知教师出示教材例2.有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?第一个数 1第二个数-3第三个数9第四个数-27第五个数81第六个数-243面进行观察.师生共同完成解答过程,教师注意要规范地书写过程.在这一过程中,老师要关注学生能否准确地发现规律,能否列出方程,本问题的难点在于它有多个未知数,要引导学生找到相邻的数的关系,然后设出未知数,再用含未知数的式子表示相邻的数.解:设这三个相邻数中的第1个数为x,则第2个数为-3x,第3个数为-3×(-3x)=9x.根据这三个数的和是-1701.得 x -3x -9x =-1701, 合并,得x =-243, 所以-3x =729,9x =-2187.答:这三个数是-243,729,-2187.思考:有一列数,按一定规律排列成1,-3,9,-27,81,-243,…,你能说出它的第n 个数是多少吗?(用含n 的式子表示)可作为课下思考题,本问题与本课时的关系不大,但作为对本例题的一个拓展,却有让学生重新思考的价值.活动3:综合运用教师出示例题.(或投影展示) 补例:一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上一瓶果汁,后来他们又改为三人一桌,服务员又给每桌送上一瓶葡萄酒,不久他们改坐成四人一桌,服务员再给每桌一瓶矿泉水.此外他们每人都要了一瓶可口可乐.聚会结束时服务员共收拾了50个空瓶.如果没人带走瓶子,那么聚会有几人参加?分析:要求聚会有几人参加,就要先设出未知数,再根据题意列出等量关系,设共有x 人参加,由题意得,一共要了x 2瓶果汁,x 3瓶葡萄酒,x4瓶矿泉水,x 瓶可口可乐,即:空瓶子数为各类饮料瓶子数之和,由这个等量关系,列出方程求解.解:设这次聚会共有x 人参加,由题意得:x +x 2+x 3+x4=50,解得:x =24.答:这次聚会共有24人参加. 学生讨论交流,师生共同解决. 活动4:小结小结:谈谈你这节课的收获. 活动5:作业习题3.2第5,12,13题.实施开放式教学,倡导自主探索、合作交流的学习方式.让学生从熟悉的生活实例出发,探索获得同类项概念,体验知识的形成过程,体会观察、分析、归纳等解决问题的技能与方法.教师只是整个教学活动的组织者和指导者,体现了以人为本的现代教学理念.第3课时 移项1.通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性.2.掌握移项方法,学会解“ax +b =cx +d ”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.重点建立方程解决实际问题,会解“ax +b =cx +d ”类型的一元一次方程. 难点分析实际问题中的相等关系,列出方程.一、创设情境,导入新课出示教材问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?二、探究新知引导学生回顾列方程解决实际问题的基本思路. 学生讨论、分析:1.设未知数:设这个班有x 名学生. 2.找相等关系:这批书的总数是一个定值,表示它的两个等式相等. 3.列方程:3x +20=4x -25.问题1:怎样解这个方程?它与上节课遇到的方程有何不同?学生讨论后发现:方程的两边都有含x 的项(3x 与4x)和不含字母的常数项(20与-25). 问题2:怎样才能使它向x =a 的形式转化呢?学生思考、探索:为使方程的右边没有含x 的项,等号两边同减去4x ,为使方程的左边没有常数项,等号两边同减去20.3x -4x =-25-20.问题3:以上变形依据是什么? 等式的性质1.归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项. 师生共同完成解答过程,或用框图表示.问题4:以上解方程中“移项”起了什么作用? 学生讨论、回答,师生共同整理:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x =a 的形式.师:解方程时,要合并同类项和移项.前面提到的古老的代数书中的“对消”与“还原”,指的就是“合并同类项”和“移项”.三、尝试运用,加深巩固师出示教材例3.解下列方程:(1)3x +7=32-2x ;(2)x -3=32x +1.教师引导学生按照框图所展示的过程,共同完成本例. 练习:课本第90页练习1. 四、小结谈谈本节课你的收获. 五、作业习题3.2第2,3题.这节课要学习的方程类型是两边都有x 和常数项,通过移项的方法化到合并同类项的方程类型.教学重点是用移项解一元一次方程,难点是移项法则的探究.在教学过程中一定要强调学生,移项的时候要注意变号.第4课时 方程的应用1.进一步培养学生列方程解应用题的能力.2.通过探究实际问题与一元一次方程的关系,感受数学的应用价值,提高分析问题、解决问题的能力.重点建立一元一次方程解决实际问题. 难点探究实际问题与一元一次方程的关系.活动1:创设情境,引入新课 师:展示投影:练习解方程:(1)12x +4x =9 (2)-4x =-2x +6 (3)5x +4=4x -3 (4)0.6x =50+0.4x学生独立完成,然后师生交流答案,看谁做得又对又快.活动2:探究新知 教师展示教材例4.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200 t ;如用新工艺,则废水排量比环保限制的最大量少100 t .新旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?学生讨论交流.教师可提示学生分析:1.本题可否用小学学习的算术法来求解?2.题目中两种工艺的废水排量都是与环保最大值相关的,根据小学学过的比例式,如果设环保设计的最大量为x t ,你能否列出一个关于x 的比例式?3.根据新旧工艺的废水排量之比为2:5,如果设新、旧工艺的废水排量分别为2x t 和5x t ,你能列出方程吗?解:设新、旧工艺的废水排量分别为2x t 和5x t . 根据废水排量与环保限制最大量之间的关系,得 5x -200=2x +100. 移项,得5x -2x =100+200. 合并同类项,得 3x =300,系数化为1,得 x =100,所以2x =200, 5x =500.答:新、旧工艺产生的废水排量分别为200 t 和500 t . 师:通过解答过程,你能说一下这种设法的好处吗?活动3:综合运用 补例:一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?学生思考、讨论出多种解法,师生共同讲评. 本问题是一个与上一问题相似的问题,关键是让学生认真分析出各个量之间的关系,让学生学会类比、用上一问题的方法模式去解决本问题。
《一元一次方程》教案 (新版)新人教版
本资源为2021年制作,是一线教师经过认真研究,综合教学中遇到的各种问题,总结而来。
是一个非常实用的资源。
资源以课本为依托,以教学经验为蓝本,经过二次备课和实践研究,将教学环节进一步细化,综合同课异构的课堂结构,统一编写而成。
欢送您下载使用!3.1.1一元一次方程〔1〕一,教案背景1,面向学生:中学 2,学科:数学2,课时:13,学生课前准备:调查学生在小学学过哪些有关方程的知识。
二,教学目标:1,通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2,初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3,培养学生获取信息,分析问题,处理问题的能力。
三,教学重点,难点重点:知道什么是方程、一元一次方程。
找相等关系列方程难点:找相等关系列方程四,教学过程知识回忆:1.什么叫等式:用等号来表示相等关系的式子。
不含有>、<、≥、≤、≈、≠等符号。
2.什么叫方程:含有未知数的等式叫方程。
判断以下式子是不是方程,正确打“√〞,错误打“x 〞.(1) 1+2=3 ( ) (4) x+2≥1 ( )(2) 1+2x=4 ( ) (5) x+y=2 ( )(3) x+1-3 ( ) (6) x2-1=0 ( )情景引入问题:一辆客车和一辆卡车同时A地出发沿同一公路同一方法行驶,客车的行驶速度是70km/h,卡车的行驶速度是60 km/h,客车比卡车早1h 经过B地,A,B两地间的路程是多少?1.算术方法解决应怎样列算式:2.如果设A,B两地相距xkm,那么客车从A 地到B地的行驶时间为,卡车从A地到B 地的行驶时间为。
3,根据上述相等关系,可列方程为讲授新课探究、交流:①比拟算术方法解决实际问题与列方程方法解决实际问题的优劣.②方程是等式吗?等式是方程吗?方程和等式有什么关系?式到方程是数学的进步.(2)说出方程的定义由以上的探究与交流,你认为列方程可归纳为哪几步?列方程的步骤:①审题,找出问题中的相等关系; ②设未知数〔用字母表示未知数〕; ③根据相等关系写出含有未知数的等式——方程.例题1: 根据以下问题,设未知数并列出方程:(1)用一根长24cm 铁丝围成一个正方形,那么该正方形的边长是多少cm ?(2)一台计算机已经使用1700小时,预计每月再使用150小时,经过多少个月,这台计算机的使用时间到达规定的检修时间2450小时?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?思考:看看以下方程它们具有什么共同特点4χ=24,1700+150x=2450, 0.52x-(1-0.52)x=80 ,上面各方程只含有一个未知数〔元〕,未知数的次数都是1〔次〕,这样的方程叫做一元一次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版七年级上册数学第三章一元一次方程教案(2015年秋季学期)授课者:蒋宏亮学校:东兴市京族学校第三章一元一次方程单元要点分析教案内容方程就是将众多实际问题“教案化”的一个重要模型•因此,课本从学生熟悉的实际问题开始,从算式到方程,展开方程的学习,以使学生认识到方程的出现源于解决问题的需要,体会学习方程的意义和作用.本章内容主要分为以下三个部分:1 •通过丰富实例,从算式到建立一元一次方程,?展开方程是刻画现实生活的有效数学模型.2 .运用等式的基本性质解方程,归纳移项法则,运用分配律,?归纳“合并”、“去括号”等法则,逐步展现求解方程的一般步骤,这些内容的学习不是孤立进行的,始终从实际问题出发,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.3 .运用方程解决丰富多彩的、贴近学生生活的实际问题,?展现运用方程解决实际问题的一般过程.为了使学生经历“建立方程模型”这一数学化的过程,理解学习方程的意义,培养学生的抽象概括等能力,课本内容的呈现都以求解决一个实际问题为切入点,让学生经历抽象、符号变号、应用等活动,在活动中培养学生解决问题的兴趣和能力,提高学生的思维水平和应用数学知识去解决实际问题的意识.三维目标1 .知识与技能根据具体问题中的数量关系,经历形成方程模型,解方程和运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.2 .过程与方法(1)了解一元一次方程及其相关概念,会解一元一次方程.(数学系数)(2)能以一元一次方程为工具解决一些简单的实际问题,包括列方程,?求解方程和解释结果的实际意义及合理性,提高分析问题、解决问题的能力.3.情感态度与价值观培养学生求实的态度。
培养学生获取信息,分析问题,处理问题的能力。
激发学生的好奇心和主动学习的欲望,体会数学的应用价值.重、难点与关键1 .重点:一元一次方程有很多直接应用,?解一元一次方程是解其他方程和方程组的基础.因此本章重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题.2 .难点:正确地列出一元一次方程的解决实际问题.3 .关键:(1)熟练地解一元一次方程的关键在于正确地了解方程、方程解的意义和运用等式的两个性质.(2)正确地列出方程的关键在于正确地分析问题中的已知数、未知数,?并找出能够表示应用题全部含义的相等关系.3.1 从算式到方程§3.1.1 一元一次方程(一)教案目标:知识与技能:通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;过程与方法:初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;情感、态度、价值观:培养学生获取信息,分析问题,处理问题的能力。
教案重点:从实际问题中寻找相等关系教案难点:从实际问题中寻找相等关系教案过程:一、情境引入提出教科书第78 页的问题,并用多媒体直观演示:问题1:从题中你能获得哪些信息?(可以提示学生从时间、路程、速度、等方面去考虑。
)可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出A,B两地的距离吗?列算式试试。
教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、对于客车,1km所用的时间为—h,而卡车所用的时间为—h;所以1km,70 601 1客车比卡车少用的( ---------- )h。
路程多少千M时客车才比卡车少用1h呢?60 701 1答案为1 (丄-丄)km60 70问题3:能否用方程的知识来解决这个问题呢?二、学习新知1、引导学生设未知数,并用含未知数的字母表示有关的数量.匀速运动中,时间=路程/时间,如果设A,B两地间的路程为x千M,那客车行驶时间为h,卡车行驶时间为h.2、引导学生寻找相等关系,列出方程.问题1:题目中的客车、卡车行驶时间有什么关系?卡车时间-客车时间=1h 问题2:根据卡车时间-客车时间=1h,你能列出方程吗?依据“根据卡车时间-客车时间=1h”可列方程:x x ’ - 1,60 703、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1) 用字母表示问题中的未知数(通常用x,y,z等字母);(2) 根据问题中的相等关系,列出方程.三、举一反三,讨论交流1、比较列算式和列方程两种方法的特点.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,上面我们是直接设元,可列方程—-—1。
你还能列60 70出其他方程吗?如果能,你依据的是哪个相等关系?如果设客车行驶时间为xh,则卡车行驶时间为(x+1) h,那么可以列方程:70x 60 x 1。
求出时间x后,则路程为70xkm或60 (x+1) km。
依据:客车行驶路程=卡车行驶路程说明:要求出A,B两地路程,只要解出方程中的x即可,我们在以后几节课中再来学习.四、初步应用1、例题(补充):根据下列条件,列出关于x的方程:(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.本例题可以先让学生尝试解答,然后教师点评.解:(1) x+ 18=54;(2)丄(27 - x )= 4x.22、练习(补充):(1)列式表示:①比a小9的数;②x的2倍与3的和;③5与y的差的一半;④a与b的7倍的和.(2)根据下列条件,列出关于x的方程:(1) 12与x的差等于x的2倍;(2) x的三分之一与5的和等于6.五、课堂小结1、本节课我们学了什么知识?2、你有什么收获?说明方程解决许多实际问题的工具。
六、作业设计1课本P83: 1、5七、板书设计一兀一次方程1、定义2、例3、练习教案反思§ 3.1.1 一元一次方程(二)教案目标:1. 理解一元一次方程、方程的解等概念;2. 掌握检验某个值是不是方程的解的方法;3. 培养学生根据间题寻找相等关系、根据相等关系列出方程的能力;4. 体验用估算方法寻求方程的解的过程,培养学生求实的态度。
教案重点:寻找相等关系、列出方程.教案难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力教案过程:一、情境引入问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?学生回答,教师加以引导:小思的年龄可以用两个不同的式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示.由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8 •这样就得到了一个方程.二、自主尝试(二)自主尝试①.尝试:让学生尝试解答教科书第79页的例1。
对于基础比较差的学生,教师可以作如下提示:(1 )选择一个未知数,设为x,(2 )对于这三个问题,分别考虑:用含x的式子分别表示长方形的长和宽;用含x的式子表示这台计算机的检修时间;用含x的式子分别表示男生和女生的人数.⑶找一个问题中的相等关系列出方程.②交流:在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.③教师在学生回答的基础上作补充讲解,并强调:(1 )方程等号两边表示的是同一个量;(2 )左右两边表示的方法不同.简单地说:列方程就是用两种不同的方法表示同一个量. 以第(2)题为例:方程左边的式子"1 700 + 150x”表示计算机已使用的时间加上后来可使用的时间,也就是规定的检修时间.右边的"2 450”也是规定检修的时间.这样就有“ 1 700十150x =2 450".④讨论:问题1:在第(2)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?让学生在学习小组内讨论,然后分组汇报交流:选“已使用的时间”可列方程:2 450-150x=1 700.选“还可使用的时间”可列方程:150x=2 450-1 700.问题2:在第⑶ 题中,你还能设其他的未知数为x吗?在学生独立思考、小组讨论的基础上交流:设这个学校的男生数为x,那么女生数为(x+80),全校的学生数为(x+x+80).列方程:x + 80=52% (x+x + 80).三、建立概念1. 概念的建立.在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:(1) 23-x= 一7: (2) 2a-b=3(3)y+3= 6y-9 ; (4) 0.32 m-(3 + 0.02 m) =0.7.2 1 1(5) x2= 1 (6) —y 4 -y2 32. 引导学生归纳:从上面的分析过程我们可以发现,用方程的方法来解决实际问题,一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际冋题的一种方法.四、估算求解列出方程后,还必须解这个方程,求出未知数的值.对于简单的方程,我们可以采用估算的方法.①问题:你认为该怎样进行估算?可以采用“尝试一发现一归纳”的方法:让学生尝试后发现,要求出答案必须用一些具体的数值代入,看方程是否成立,最后教师进行归纳.可以像课本那样用列表的方法进行尝试,也可以像下面的示意图那样按程序进行尝试.②在此基础上给出概念:能使方程左右两边的值相等的未知数的值,叫做方程一般地,要检验某个值是不是方程的解,可以用这个值代替未知数代人方程,看方程左右两边的值是否相等.五、课堂练习练习课本第80页中练习六、课堂小结着重引导学生从以下几个方面进行归纳:①这节课我们学习了什么内容?②用列方程的方法解决实际问题的一般思路是什么?③列方程的实质就是用两种不同的方法来表示同一个量.④估算是一种重要的方法.思考:课本第80页中的“思考”.(目的是体验用估算的方法有时会很麻烦)七、作业设计课本第83--84页习题3.1第2,6,7,8题3.1.2等式的性质(1)、教案目标①了解等式的两条性质;②会用等式的性质解简单的(用等式的一条性质)一元一次方程;③培养学生观察、分析、概括及逻辑思维能力;④渗透“化归”的思想.二、教案重点、难点教案重点:理解和应用等式的性质知识难点:应用等式的性质把简单的一元一次方程化成“ x=a”.三、教案准备演示实验用的一架天平、砝码(估计与乒乓球等质量的取3只)、小木块等.四、教案过程(师生活动)(一)提出问题用观察的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5 = 22; ⑵ 0.28-0.13y=0.27y + 1.第(1)题要求学生给出解答,第(2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法.(二)探究新知①实验演示:教师先提出实验的要求:请同学们仔细观察实验的过程,思考能否从中发现规律,再用自己的语言叙述你发现的规律.然后按教科书第81 页图3.1-1 的方法演示实验.教师可以进行两次不同物体的实验.②归纳:请几名学生回答前面的问题.在学生叙述发现的规律后,教师进一步引导:等式就像平衡的天平,它具有与上面的事实同样的性质.比如“ 8=8”,我们在两边都加上6,就有“ 8+6=8+6”;两边都减去11,就有“ 8-11=8-11” .③表示:问题1:你能用文字来叙述等式的这个性质吗?在学生回答的基础上,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子.问题2等式一般可以用a=b来表示•等式的性质1怎样用式子的形式来表示?④观察教科书第83页图3.1 -2,你又能发现什么规律?你能用实验加以验证吗?在学生观察图3.1 一3时,必须注意图上两个方向的箭头所表示的含义. 观察后再请一名学生用实验验证.然后让学生用两种语言表示等式的性质2.女口果a=b, 那么ac=bc问题3:你能再举几个运用等式性质的例子吗?女口:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔•相当于:“5元一买1支钢笔的钱;2元一买1本笔记本的钱.5 元+ 2元二买1支钢笔的钱+买1本笔记本的钱.3 X 5元=3X买1支钢笔的钱.(三)应用举例方程是含有未知数的等式,我们可以运用等式的性质来解方程。