初中数学:多边形练习

合集下载

(完整版)初中数学专项训练:多边形及其内角和

(完整版)初中数学专项训练:多边形及其内角和

初中数学专项训练:多边形及其内角和一、选择题1.一个多边形的每个外角都等于72°,则这个多边形的边数为【】A.5 B.6 C.7 D.82.五边形的内角和为【】A.720° B.540° C.360° D.180°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为【】A.5 B.5或6 C.5或7 D.5或6或74.已知一个多边形的内角和是0540,则这个多边形是【】A. 四边形B. 五边形 C . 六边形 D. 七边形5.四边形的内角和的度数为A.180° B.270° C.360° D.540°6.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为A.30°B.36°C.38°D.45°7.(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形 B.正八边形 C.正十边形 D.正十二边形8.(2013年四川眉山3分)一个正多边形的每个外角都是36°,这个正多边形的边数是【】A.9 B.10 C.11 D.129.(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.610.正多边形的一边所对的中心角与该正多边形一个内角的关系是().两角互余(B)两角互补(C)两角互余或互补(D)不能确定11.正五边形、正六边形、正八边形的每个内角的度数分别是_______.12.若一个多边形的内角和等于1080°,则这个多边形的边数是 ( )A.9B.8C.7D.613.若一个多边形共有十四条对角线,则它是( )A.六边形B.七边形C.八边形D.九边形14.四边形中,如果有一组对角都是直角,那么另一组对角可能( )A.都是钝角;B.都是锐角C.是一个锐角、一个钝角D.是一个锐角、一个直角15.一个多边形的内角中,锐角的个数最多有( )A.3个B.4个C.5个D.6个16.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( ) A.2:1 B.1:1 C.5:2 D.5:417.不能作为正多边形的内角的度数的是( )A.120°B.(12847)° C.144° D.145°18.一个多边形的外角中,钝角的个数不可能是( )19.一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为( ) A.5 B.6 C.7 D.820.如图,若90A B C D E F n +++++=o g ∠∠∠∠∠∠,那么n 等于( )A.2 B.3 C.4 D.521.如果一个多边形的每个外角,都是与它相邻内角的三分之一,则这样的多边形有( )A.无穷多个,它的边数为8B.一个,它的边数为8C.无穷多个,它的边数为6D.无穷多个,它的边数不可能确定22.如果一个正多边形的一个内角等于135o ,则这个正多边形是( )A.正八边形 B.正九边形 C.正七边形 D.正十边形二、填空题23.一个六边形的内角和是 .24.如图,在四边形ABCD 中,∠A=450,直线l 与边AB 、AD 分别相交于点M 、N 。

新人教版数学八年级上册11.3.1多边形同步练习

新人教版数学八年级上册11.3.1多边形同步练习

初中数学试卷新人教版数学八年级上册11.3.1多边形同步练习一、选择题(共15题)1.下列结论正确的是()A.在平面内,有四条线段组成的图形叫做四边形B.由不在同一直线上的四条线段组成的图形叫做四边形C.在平面内,由不在同一直线上的四条线段组成的图形叫做四边形D.在平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形答案:D知识点:四边形解析:解答:四边形的概念与三角形的概念类似,三角形的概念:在平面内,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;所以,D项的结论更准确.分析:此题考查多边形的定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形;四边形也是多边形的一种.2.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形答案:D知识点:正多边形和圆解析:解答:正方形的四条边相同,四个内角也相等,则正方形是正多边形.分析:此题考查正多边形的定义.3.一个四边形截去一个角后内角个数是()A.3B.4C.5D.3、4、5答案:B知识点:多边形的内角与外角解析:解答:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.分析:截去一个角,有多种截法,要注意分类讨论.4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形答案:A知识点:多边形的对角线解析:解答:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故这个多边形是十三边形.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.5.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形答案:A知识点:正多边形和圆解析:解答:正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形;各边都相等的多边形不一定是正多边形.分析:此题考查正多边形的定义,熟练掌握定义是解题的关键.6.下列属于正多边形的特征的有()(1)各边相等(2)各个内角相等(3)各个外角相等(4)各条对角线都相等(5)从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形A.2个B.3个C.4个D.5个答案:B知识点:正多边形和圆;多边形的对角线解析:分析:本题考查了多边形的对角线,n边形过一个顶点有(n-3)条对角线,它们把n边形分割成了(n-2)个三角形.10.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()A.9 B.10 C.11 D.12答案:C知识点:多边形的对角线解析:解答:n=9+2=11.分析:要熟练掌握正多边形的边数(n)、一个顶点可以作的对角线条数(n-3)和它们能分成的不重叠的三角形数(n-2)有关系.11.要使一个六边形的木架稳定,至少要钉()根木条A.3B.4C.6D.9答案:A知识点:多边形的对角线;三角形的稳定性解析:解答:根据三角形的稳定性,可将六边形木架分成几个三角形,则需要6-3=3根木条.分析:此题考查多边形的对角线及三角形的稳定性.12.一个正十边形的某一边长为8cm,其中一个内角的度数为144º,则这个正十边形的周长和内角和分别为()A.64cm,1440ºB.80cm,1620ºC.80cm,1440ºD.88cm,1620º答案:D知识点:正多边形和圆;多边形的内角与外角解析:解答:根据正多边形的性质可知每条边相等,每个内角都相等,则周长为10×8=80(cm),内角和为144º×10=1440º.分析:此题考查正多边形的性质.13.如图所示,四边形ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围为()A.0<AD<7B.2<AD<7C.0<AD<13D.1<AD<13答案:D知识点:三角形三边关系解析:解答:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4-2<AC<2+4,即2<AC<6.∴-6<-AC<-2,1<CD-AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD-AC<AD<CD+AC,∴1<AD<13.分析:本题综合考查了三角形的三边关系.连接AC,求出AC的取值范围是解题关键.14.下列图中不是凸多边形的是()答案:A知识点:多边形解析:解答:多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧.②每个内角的度数均小于180°,通常所说的多边形指凸多边形.分析:此题考查多边形,关键是掌握凸多边形和凹多边形的区别.15.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的ABCD边数不可能是()A.16 B.17 C.18 D.19答案:A知识点:多边形解析:解答:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.分析:此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(共5题)16.一个四边形它有条边,有个内角,有个外角,从一个顶点出发可以引条对角线,一共可以画条对角线.答案:4 4 4 1 2知识点:四边形;多边形的对角线解析:解答:根据四边形的特点填空即可.分析:根据四边形的特点.17.过m边形的一个顶点有7条对角线,n边形没有对角线,则n-m= .答案:-7知识点:多边形的对角线解析:解答:三角形没有对角线,则n=3;过m边形的一个顶点有7条对角线,则m=7+3=10,则n-m=3-10=-7.分析:此题考查多边形的一个顶点上的对角线数与边数之间的关系;即n边形的一个顶点可作(n-3)条对角线.18.正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:答案:(1)每条边都相等(2)每个内角都相等知识点:正多边形和圆解析:解答:正三角形、正方形、正六边形都属于正多边形,正多边形的特征是每条边都相等,每个内角都相等.分析:本题主要考查正多边形的性质.19.如图,在正六边形ABCDEF内放入2008个点,若这2008个点连同正六边形的六个顶点无三点共线,则该正六边形被这些点分成互不重合的三角形共个.答案:4020知识点:正多边形和圆解析:解答:∵正六边形ABCDEF内放入2008个点,这2008个点连同正六边形的六个顶点无三点共线,∴共有2008+6=2014个点.∵在正六边形内放入1个点时,该正六边形被这个点分成互不重合的三角形共6个;即当n=1时,有6个;然后出现第2个点时,这个点必然存在于开始的6个中的某一个三角形内,然后此点将那个三角形又分成3个三角形,三角形数量便增加2个;又出现第3个点时,同理,必然出现在某个已存在的三角形内,然后又将此三角形1分为3,增加2个…,∴内部的点每增加1个,三角形个数便增加2个.于是我们得到规律:存在n个点时,三角形数有:6+2(n-1)=2n+4(n≥1).由题干知,2008个点的总数为2×2008+4=4020(个).分析:先求出点的个数,进一步求出互不重合的三角形的个数.20.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为 .答案:n(n+1)知识点:正多边形和圆;探索图形的规律解析:解答:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).分析:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).三、解答题(共5题)21.(1)如图(1),O为四边形ABCD内一点,连接OA、OB、OC、OC可以得几个三角形?它与边数有何关系?(2)如图(2),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?(3)如图(3),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?答案:(1)连接OA、OB、OC、OD可以得4个三角形,它与边数相等,(2)连接OC、OD、OE可以得4个三角形,它的个数比边数小1,(3)过点A作六边形ABCDEF的对角线,可以得到4个三角形,它的个数比边数小2.知识点:多边形的对角线;探索图形的规律解析:解答:观察图形,可得到每个图形分得的三角形数,与多边形的边数作比较即可.分析:此题考查了多边形的对角线,关键是观察图形,找出三角形的个数与多边形的边数之间的关系.22.把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(多边形的内角和公式:(n-2)·180º)(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?答案:(2)12边形(2)分割成了6个小多边形论n 取任何大于2的正整数,a 与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.答案:(1)20 (2)知识点:正多边形和圆解析:解答:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a >b 或a <b ,但可令a=b ,得6077n n =+, ∴60n+420=67n ,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b ,即不符合这一说法的n 的值为60.分析:(1)根据正多边形的每条边相等,可知边长=周长÷边数;(2)分别表示出a 和b 的代数式,让其相等,看是否有相应的值.25.如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连接A 1B 1,我们称A 1B 1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.答案:(1)70% (2)1170美元知识点:多边形的对角线;平行线的判定;三角形的面积解析:解答:证明:取A 1A 5中点B 3,连接A 3B 3、A 1A 3、A 1A 4、A 3A 5,∵A 3B 1=B 1A 4,∴131A A B S V =114A B A S V ,又∵四边形A 1A 2A 3B 1与四边形A 1B 1A 4A 5的面积相等,∴123A A A S V =145A A A S V ,-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达 同理123A A A S V =345A A A S V ,∴145A A A S V =345A A A S V ,∴△A 3A 4A 5与△A 1A 4A 5边A 4A 5上的高相等,∴A 1A 3∥A 4A 5,同理可证A 1A 2∥A 3A 5,A 2A 3∥A 1A 4,A 3A 4∥A 2A 5,A 5A 1∥A 2A 4.分析:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行;可以再作五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.。

初中数学八年级上册多边形及其内角和练习题含答案

初中数学八年级上册多边形及其内角和练习题含答案

初中数学八年级上册多边形及其内角和练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列结论正确的是()A.四边形可以分成平行四边形和梯形两类B.梯形可分为直角梯形和等腰梯形两类C.平行四边形是梯形的特殊形式D.直角梯形和等腰梯形都是梯形的特殊形式2. 若一个多边形的内角和与外角和总共是900∘,则此多边形是()A.四边形B.五边形C.六边形D.七边形3. 边长为a的正六边形的面积等于( )A.√34a2 B.a2 C.3√32a2 D.3√3a24. 从一个n边形的同一个顶点出发,连结对角线,若这些对角线把这个多边形分割成7个三角形,则n的值是()A.9B.8C.7D.65. 一个多边形的内角和比它的外角和的2倍还大180∘,这个多边形的边数是( )A.5B.6C.7D.86. 从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2013个三角形,则这个多边形的边数为()A.2011B.2015C.2014D.20167. 若一个多边形的内角和等于900∘,则这个多边形的边数是()A.8B.7C.6D.58. 某中学新科技馆铺设地面,已有正方形地砖,现打算购买另一种正多边形地砖(边长与正方形的相等),与正方形地砖作平面镶嵌,则该学校可以购买的地砖形状是( )A.正五边形B.正六边形C.正八边形D.正十二边形9. 一个多边形的内角和是720∘,这个多边形是()A.五边形B.六边形C.七边形D.八边形10. 若从n边形的一个顶点出发,最多可以作3条对角线,则该n边形的内角和是()A.540∘B.720∘C.900∘D.1080∘11. 正五边形内角和为________.12. 在平面内,________,________的多边形叫正多边形.13. 四边形的内角和是________度.14. 若一个多边形的内角和与外角和之和是1800∘,则此多边形是________边形.15. 如图,若干全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环,还需正五边形________个.16. 每一个多边形都可分割(分割方法如图)成若干个三角形.根据这种方法八边形可以分割成________个三角形.用此方法n边形能割成________个三角形.17. 若正n边形的一个内角是140∘,那么它的边数n=_________.18. 装修大世界出售下列形状的地砖:①正三角形;②正方形;③正五边形;④正六边形;⑤正八边形;⑥正十边形,若只选购一种地砖镶嵌地面,你有________种选择.19. 如果一个正多边形的内角和是720∘,则这个正多边形是正________边形.20. 下列结论中:①两条对角线互相平分且相等的四边形是矩形;②两条对角线互相垂直的四边形是菱形;③顺次连结四边形各边中点所得的四边形是平行四边形;④对角线互相垂直且相等的四边形是正方形;⑤平行四边形对角相等;⑥菱形每一条对角线平分一组对角.其中正确的结论是________(填序号).21. 直线a:y=x+2和直线b:y=−x+4相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.(1)在同一坐标系中画出函数图象;(2)求△ABC的面积;(3)求四边形ADOC的面积;(4)观察图象直接写出不等式x+2≤−x+4的解集和不等式−x+4≤0的解集.22. 已知:从n边形的一个顶点出发共有4条对角线;从m边形的一个顶点出发的所有对角线把m边形分成6个三角形;正t边形内角和等于外角和的4倍,求(n−m)t的值.23. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上几根木条?要使一个n边形(n≥4)木架在同一平面内不变形,至少还要再钉上________根木条?24. 已知两个正多边形,其中一个正多边形的外角是另一个正多边形外角的2倍,并且用这两个正多边形可以拼成平面图形,求这两个正多边形的边数.25. 已知2个正多边形A和3个正多边形B可绕一点周围镶嵌(密铺),A的一个内角的度数是B的一个内角的度数的3.2(1)试分别确定A,B是什么正多边形?(2)画出这5个正多边形在平面镶嵌(密铺)的图形(画一种即可).26. 在A,B,C,D四张卡片上分别用一句话描述了一个图形,依次为:A:内角和等于外角和的一半的正多边形;B:一个内角为108∘的正多边形;C:对角线互相平分且相等的四边形;D:每个外角都是36∘的多边形.(1)依次说出这四张卡片上描述的图形名称;(2)从这四张卡片中任取两张,描述的图形都既是轴对称图形又是中心对称图形的概率是多少(利用树状图或列表来求解)?27. 有两个多边形它们的边数之比为2:3,对角线之比为1:3,这两个多边形是几边形?28. 请根据下面X与Y的对话解答下列各小题.X:我和Y都是多边形,我们俩的内角和相加的结果为1440∘;Y:X的边数与我的边数之比为1:3.(1)求X与Y的外角和相加的度数;(2)分别求出X与Y的边数;(3)直接写出多边形Y的对角线的条数.29. 一个凸多边形的每个内角都是140∘,这个多边形共有多少条对角线?30. 如图,以AB为边,在正六边形ABCDEF内作正方形ABMN,连接MC.求∠BCM的度数.31. 为了说明各种三角形之间的关系,小明画了如下结构图:请你采用类似的方式说明下述几个概念之间的关系:正方形、四边形、梯形、菱形、平行四边形、矩形.32. 已知一个多边形的内角和比它的外角和的3倍少180度,求这个多边形的边数.33. 如果一个多边形的边数增加一倍,它的内角和是2880∘,那么原来的多边形的边数是多少?34. 如图所示,分别在三角形,四边形,五边形的广场各角修建半径为1米的扇形草坪(图中阴影部分).(1)图①中草坪的面积为________(用π表示);(2)图②中草坪的面积为________(用π表示);(3)图③中草坪的面积为________(用π表示);(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为多少?(写出过程)35. 已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.36. 如图,在四边形ABCD中,连接对角线AC,如果∠BAD=∠BCD,∠B=∠D,那么∠1与∠2有什么关系,为什么?37. 如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4.求∠CAD的度数.38. 一个多边形的每个外角都等于40∘,求这个多边形的内角和.39. (1)若多边形的内角和为2340∘,求此多边形的边数; 39.(2)一个n边形的每个外角都相等,如果它的内角与相邻外角的度数之比为13:2,求n的值..求多边形的边数.40. 在各个内角都相等的多边形中,一个外角等于一个内角的13参考答案与试题解析初中数学八年级上册多边形及其内角和练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】多边形【解析】平行四边形和梯形是特殊的四边形,直角梯形和等腰梯形是特殊的梯形,平行四边形是两边互相平行的四边形,梯形是一组对边互相平行,另一组对边不平行的四边形.【解答】解:A、四边形可以分成平行四边形和梯形两类,说法错误;B、梯形可分为直角梯形和等腰梯形两类,说法错误;C、平行四边形是梯形的特殊形式,说法错误;D、直角梯形和等腰梯形都是梯形的特殊形式,说法正确;故选:D.2.【答案】B【考点】多边形的外角和多边形的内角和【解析】本题需先根据已知条件,再根据多边形的外角和是360∘,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.【解答】解:∵多边形的内角和与外角和的总和为900∘,多边形的外角和是360∘,∴多边形的内角和是900∘−360∘=540∘,∴多边形的边数是:540∘÷180∘+2=3+2=5.故选B.3.【答案】C【考点】多边形【解析】经过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C;连接OA,则在直角△OAC中,∠O=180∘n,OC是边心距,OA即半径.再根据三角函数即可求解.【解答】解:∵边长为a的正六边形的面积为6个边长为a的等边三角形的面积和,∴正六边形的面积为6×12×a×(a×sin60∘)=3√32a2.故选C.4.【答案】A【考点】多边形的对角线【解析】本题考查了多边形的对角线.【解答】解:从一个n(n>3)边形的一个顶点出发,分别连结这个顶点和其余的各顶点,可将这个n边形分为(n−2)个三角形,已知n−2=7,易得n=9.故选A.5.【答案】C【考点】多边形的外角和多边形的内角和多边形内角与外角【解析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180∘,则多边形的内角和是2×360+180=900度;n边形的内角和是(n−2)180∘,则可以设这个多边形的边数是n,这样就可以列出方程(n−2)180∘=900∘,解之即可.【解答】解:由题知多边形的内角和是2×360∘+180∘=900∘,设这个多边形的边数是n,根据题意得:(n−2)×180∘=900∘,解得n=7,即这个多边形的边数是7.故选C.6.【答案】C【考点】多边形的对角线【解析】可根据多边形的一点(不是顶点)出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.【解答】解:多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为2013+1=2014.故选C.7.【答案】B【考点】多边形内角与外角【解析】n边形的内角和为(n−2)180∘,由此列方程求n的值.【解答】解:设这个多边形的边数是n,则:(n−2)180∘=900∘,解得n=7,故选B.8.【答案】C【考点】平面镶嵌(密辅)多边形内角与外角【解析】此题暂无解析【解答】解:A,正五边形的内角为108∘,108∘的角和90∘的角无法组成一个360∘的角,故A错误;B,正六边形的内角为120∘,120∘的角和90∘的角无法组成一个360∘的角,故B错误;C,正八边形的内角为135∘,两个135∘的角和一个90∘的角可以组成一个360∘的角,故C正确;D,正十二边形的内角为150∘,150∘的角和90∘的角无法组成一个360∘的角,故D错误. 故选C.9.【答案】B【考点】多边形内角与外角【解析】利用n边形的内角和可以表示成(n−2)⋅180∘,结合方程即可求出答案.【解答】设这个多边形的边数为n,由题意,得(n−2)180∘=720∘,解得:n=6,故这个多边形是六边形.10.【答案】B【考点】多边形的内角和多边形的对角线【解析】本题考查了多边形内角和与对角线.【解答】解:∵从n边形的一个顶点出发,最多可以作3条对角线,∴n=6,∴该n边形的内角和为:(6−2)×180∘=720∘.故选B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】540∘【考点】多边形的内角和【解析】根据n边形的内角和公式(n−2)⋅180∘可求出正五边形的内角和.【解答】解:∵n边形的内角和公式为(n−2)⋅180∘,∴正五边形的内角和是(5−2)⋅180∘=540∘.故答案为:540∘.12.【答案】各边都相等,各内角也相等【考点】多边形【解析】利用正多边形的定义直接填空得出即可.【解答】解:如果多边形的各边都相等,各内角也相等,那么就称它为正多边形.故答案为:各边都相等,各内角也相等.13.【答案】360【考点】多边形的内角和【解析】n边形的内角和是(n−2)⋅180∘,代入公式就可以求出内角和.【解答】解:四边形的内角和为(4−2)×180∘=360∘.故答案为:360.14.【答案】10【考点】多边形的外角和多边形的内角和【解析】设多边形是n边形,列出方程,求出n的值即可.【解答】解:设此多边形是n边形,可得,(n−2)×180∘+360∘=1800∘,解得,n=10.故答案为:10.15.【答案】7【考点】多边形的外角和【解析】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360∘除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【解答】解:∵正五边形的外角等于360∘÷5=72∘,∴∠1=180∘−72∘−72∘=36∘,∴360∘÷36∘=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故答案为:7.16.【答案】6,n−2【考点】多边形的对角线【解析】根据图中提示,找出规律.四边形一点可画一条对角线,分成两个三角形,五边形一点可画两条对角线,能分成三个三角形,则n边形一点可画n−3条对角线,可分n−2个三角形.【解答】解:八边形可以分割成6个三角形.用此方法n边形能割成n−2个三角形.17.【答案】9【考点】多边形的外角和多边形内角与外角【解析】此题暂无解析解:∵多边形的每个内角都等于140∘,∴多边形的每个外角都等于180∘−140∘=40∘,∴边数n=360∘÷40∘=9.故答案为:9.18.【答案】3【考点】平面镶嵌(密辅)【解析】此题主要考查了平面镶嵌.【解答】解:①正三角形的每个内角是60∘,能整除360∘,故可以镶嵌地面;②正方形的每个内角是90∘,能整除360∘,故可以镶嵌地面;③正五边形的每个内角是108∘,不能整除360∘,故不可以镶嵌地面;④正六边形的每个内角是120∘,能整除360∘,故可以镶嵌地面;⑤正八边形的每个内角是135∘,不能整除360∘,故不可以镶嵌地面;⑥正十边形的每个内角是144∘,不能整除360∘,故不可以镶嵌地面;所以可选择的地砖有3种.故答案为:3.19.【答案】六【考点】多边形内角与外角【解析】设此多边形边数为n,根据多边形的内角和公式可得方程180(n−2)=720,再解即可.【解答】解:设此多边形边数为n,由题意得:180(n−2)=720,解得:n=6,故答案为:六.20.【答案】①③⑤⑥【考点】多边形【解析】根据平行四边形的判定与性质,可得答案.解:①两条对角线互相平分且相等的四边形是矩形; ②两条对角线互相垂直的平行四边形是菱形;③顺次连结四边形各边中点所得的四边形是平行四边形; ④对角线互相垂直且相等的平行四边形是正方形; ⑤平行四边形对角相等;⑥菱形每一条对角线平分一组对角, 故答案为:①③⑤⑥.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)依照题意画出图形,如图所示.(2)令y =x +2中y =0,则x +2=0,解得:x =−2, ∴ 点B(−2, 0);令y =−x +4中y =0,则−x +4=0,解得:x =4, ∴ 点C(4, 0); 联立两直线解析式得:{y =x +2,y =−x +4,解得:{x =1,y =3.∴ 点A(1, 3).S △ABC =12BC ⋅y A =12×[4−(−2)]×3=9.(3)令y =x +2中x =0,则y =2, ∴ 点D(0, 2).S 四边形ADOC =S △ABC −S △DBO =9−12×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴ 不等式x +2≤−x +4的解集为x ≤1; 当x >4时,直线b 在x 轴的下方,∴ 不等式−x +4≤0的解集为x ≥4. 【考点】一次函数图象上点的坐标特点一次函数与一元一次不等式 一次函数与二元一次方程(组) 一次函数的图象 多边形 三角形的面积【解析】(1)根据直线的画法画出图形即可;(2)根据直线a 、b 的解析式可得出点B 、C 的坐标,联立两直线的解析式成方程组,解方程组可得出点A 的坐标,再利用三角形的面积公式即可得出结论;(3)根据直线a 的解析式可求出点D 的坐标,利用分割图形求面积法结合三角形的面积公式即可得出结论;(4)根据两函数图象的上下位置关系结合交点的坐标,即可得出不等式的解集. 【解答】解:(1)依照题意画出图形,如图所示.(2)令y =x +2中y =0,则x +2=0,解得:x =−2, ∴ 点B(−2, 0);令y =−x +4中y =0,则−x +4=0,解得:x =4, ∴ 点C(4, 0); 联立两直线解析式得:{y =x +2,y =−x +4,解得:{x =1,y =3.∴ 点A(1, 3).S △ABC =12BC ⋅y A =12×[4−(−2)]×3=9.(3)令y =x +2中x =0,则y =2, ∴ 点D(0, 2).S 四边形ADOC =S △ABC −S △DBO =9−12×2×2=7.(4)观察函数图形,发现:当x <1时,直线a 在直线b 的下方,∴ 不等式x +2≤−x +4的解集为x ≤1;当x>4时,直线b在x轴的下方,∴不等式−x+4≤0的解集为x≥4.22.【答案】解:由题意得:n−3=4,则n=7;m−2=6,则m=8;(t−2)×180∘=360∘×4,则t=10;所以(n−m)t=(7−8)10=1.【考点】多边形的外角和多边形的内角和多边形的对角线【解析】暂无.【解答】解:由题意得:n−3=4,则n=7;m−2=6,则m=8;(t−2)×180∘=360∘×4,则t=10;所以(n−m)t=(7−8)10=1.23.【答案】n−3【考点】三角形的稳定性多边形的对角线【解析】从一个多边形的一个顶点出发,能做(n−3)条对角线,把三角形分成(n−2)个三角形.【解答】解:根据三角形的稳定性,要使六边形木架不变形,至少再钉上3根木条;要使一个n边形木架不变形,至少再钉上(n−3)根木条.故答案为:n−3.24.【答案】解:设这两个正多边形的边数分别为n、k,依题意有360∘n =2×360∘k.因此k=2n(n≥3,且n为整数).所以n=3,4,5,6⋯,从而k=6,8,10,12,⋯,其中正三角形和正六边形.正方形和正八边形.正五边形和正十边形能拼成平面图形.【考点】多边形内角与外角平面镶嵌(密辅)【解析】根据n边形内角和公式和多边形内角与外角可求n边形每个外角的度数,再根据平面镶嵌的特征即可求解.【解答】解:设这两个正多边形的边数分别为n、k,依题意有360∘n =2×360∘k.因此k=2n(n≥3,且n为整数).所以n=3,4,5,6⋯,从而k=6,8,10,12,⋯,其中正三角形和正六边形.正方形和正八边形.正五边形和正十边形能拼成平面图形.25.【答案】解:(1)设B的内角为x,则A的内角为32x,∵2个正多边形A和3个正多边形B可绕一点周围镶嵌(密铺),∴3x+2×32x=360∘,解得:x=60∘,∴可确定A为正四边形,B为正三边形.(2)所画图形如下:【考点】平面镶嵌(密辅)【解析】本题考查了平面密铺的知识.【解答】解:(1)设B的内角为x,则A的内角为32x,∵2个正多边形A和3个正多边形B可绕一点周围镶嵌(密铺),∴3x+2×32x=360∘,解得:x=60∘,∴可确定A为正四边形,B为正三边形.(2)所画图形如下:26.【答案】解:(1)A:内角和等于外角和的一半的正多边形是等边三角形;B:一个内角为108∘的正多边形是正五边形;C:对角线互相平分且相等的四边形是矩形;D:每个外角都是36∘的多边形是正十边形;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是既是轴对称图形又是中心对称图形的共有2种情况,所以既是轴对称图形又是中心对称图形的概率是212=16.【考点】列表法与树状图法多边形【解析】(1)根据正多边形的长性质以及矩形的判定方法逐项分析即可得到四张卡片上描述的图形名称;(2)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)A:内角和等于外角和的一半的正多边形是等边三角形;B:一个内角为108∘的正多边形是正五边形;C:对角线互相平分且相等的四边形是矩形;D:每个外角都是36∘的多边形是正十边形;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是既是轴对称图形又是中心对称图形的共有2种情况,所以既是轴对称图形又是中心对称图形的概率是212=16.27.【答案】解:设两个多边形的边数分别为2x条,3x条,则2x(2x−3) 3x(3x−3)=13,解得,x=3.故这两个多边形分别是六边形和九边形.【考点】多边形的对角线【解析】先根据两个多边形边长之比为2:3”可设两个多边形的边数分别为2x条,3x条,再由对角线的条数之比为1:3列出方程求解即可.【解答】解:设两个多边形的边数分别为2x条,3x条,则2x(2x−3) 3x(3x−3)=13,解得,x=3.故这两个多边形分别是六边形和九边形.28.【答案】解:(1)360∘+360∘=720∘.(2)设X的边数为n,Y的边数为3n,由题意得:180∘(n−2)+180∘(3n−2)=1440∘,解得:n=3,∴3n=9.答:X与Y的边数分别为3和9.(3)9×(9−3)2=27(条),答:Y共有27条对角线.【考点】多边形的外角和多边形内角与外角多边形的对角线【解析】根据多边形的外角和定理可得多边形的外角和为360∘,进而可得答案;设X的边数为n,Y的边数为3n,根据多边形的内角和定理结合题意可得方程180(n−2)+180(3n−2)=1440,解出X的值,进而可得n的值,然后可得答案.根据求多边形的对角线的公式即可得到结果.【解答】解:(1)360∘+360∘=720∘.(2)设X的边数为n,Y的边数为3n,由题意得:180∘(n−2)+180∘(3n−2)=1440∘,解得:n=3,∴3n=9.答:X与Y的边数分别为3和9.(3)9×(9−3)2=27(条),答:Y共有27条对角线.解:∵多边形的每个内角都等于140∘,∴多边形的每个外角都等于180∘−140∘=40∘,∴边数n=360∘÷40∘=9,∴对角线条数=1×9×(9−3)=27.2故这个多边形共有27条对角线.【考点】多边形内角与外角多边形的对角线【解析】n(n−3)代入数据计算即先求出多边形的外角度数,然后即可求出边数,再利用公式12可.【解答】解:∵多边形的每个内角都等于140∘,∴多边形的每个外角都等于180∘−140∘=40∘,∴边数n=360∘÷40∘=9,∴对角线条数=1×9×(9−3)=27.2故这个多边形共有27条对角线.30.【答案】解:∵六边形ABCDEF为正六边形,∴∠ABC=120∘,AB=BC.∵四边形ABMN为正方形,∴∠ABM=90∘,AB=BM,∴∠MBC=120∘−90∘=30∘,BM=BC,∴∠BCM=∠BMC,∴∠BCM=1×(180∘−30∘)=75∘.2【考点】多边形【解析】△BCM是等腰三角形,只要求出顶角∠CBM就可以,这个角是正六边形与正方形内角的差.【解答】解:∵六边形ABCDEF为正六边形,∴∠ABC=120∘,AB=BC.∵四边形ABMN为正方形,∴∠ABM=90∘,AB=BM,∴∠MBC=120∘−90∘=30∘,BM=BC,∴∠BCM=∠BMC,∴∠BCM=1×(180∘−30∘)=75∘.2解:如图所示:【考点】多边形【解析】根据矩形、菱形、正方形、平行四边形以及梯形直接的区别与联系进而得出即可.【解答】解:如图所示:32.【答案】解:设这个多边形的边数是n,依题意得(n−2)×180∘=3×360∘−180∘,(n−2)=6−1,n=7.∴这个多边形的边数是7.【考点】多边形内角与外角【解析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180∘,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n−2)×180∘=3×360∘−180∘,(n−2)=6−1,n=7.∴这个多边形的边数是7.33.【答案】原来的多边形的边数是9.【考点】多边形内角与外角【解析】设原来的多边形的边数是n,根据多边形的内角和定理即可列方程求解.【解答】解:设原来的多边形的边数是n,依题意得.(2n−2)⋅180=2880解方程,得:n=934.【答案】解:(1)因为半径为1的圆面积为π,故该草坪形成的内角和度数为(3−2)×180∘= 180∘,所以草坪的面积为12πm2.(2)图2草坪形成四边形,故(4−2)×180∘=360∘,为一个圆,故草坪的面积为πm2.(3)图3草坪形成一个五边形,故(5−2)×180∘=540∘,故草坪的面积为32πm2.(4)根据以上的规律可知,当多边形的边数为n,所以草坪的面积为n−22πm2.【考点】多边形内角与外角【解析】依题意,因为半径为1的圆面积为π.图1的草坪形成的内角和度数为180∘,为一个半圆,所以草坪的面积为12πm2;以此类推,易求出草坪的面积.【解答】解:(1)因为半径为1的圆面积为π,故该草坪形成的内角和度数为(3−2)×180∘=180∘,所以草坪的面积为12πm2.(2)图2草坪形成四边形,故(4−2)×180∘=360∘,为一个圆,故草坪的面积为πm2.(3)图3草坪形成一个五边形,故(5−2)×180∘=540∘,故草坪的面积为32πm2.(4)根据以上的规律可知,当多边形的边数为n,所以草坪的面积为n−22πm2.35.【答案】解:(1)a=20;(2)此说法不正确.理由:令a=b,则60n =60+7n+7,即60n =67n+7.∴60n+420=67n,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b,即不符合这一说法的n的值为60.【考点】多边形【解析】此题暂无解析【解答】解:(1)a=20;(2)此说法不正确.理由:令a=b,则60n =60+7n+7,即60n =67n+7.∴60n+420=67n,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b,即不符合这一说法的n的值为60.36.【答案】解:∠1=∠2.证明:∵∠BAD=∠BCD,∠D=∠B,∴∠BAD+∠D=∠BCD+∠B.∵(∠BAD+∠D)+(∠BCD+∠B)=360∘,∴∠BAD+∠D=180∘,∴AB // CD,∴∠1=∠2.【考点】多边形内角与外角【解析】四边形的内角和是360∘,根据∠BAD=∠BCD,∠B=∠D,即可证明∠BAD+∠D= 180∘,从而得到AB // CD,根据平行线的性质即可证明∠1=∠2.【解答】解:∠1=∠2.证明:∵∠BAD=∠BCD,∠D=∠B,∴∠BAD+∠D=∠BCD+∠B.∵(∠BAD+∠D)+(∠BCD+∠B)=360∘,∴∠BAD+∠D=180∘,∴AB // CD,∴∠1=∠2.37.【答案】∵五边形的内角和是540∘,∴每个内角为540∘÷5=108∘,∴∠E=∠B=∠BAE=108∘,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=(180∘−108∘)÷2=36∘,∴∠CAD=∠BAE−∠1−∠3=108∘−36∘−36∘=36∘.【考点】多边形内角与外角【解析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36∘,从而求出∠CAD=108∘−72∘=36度.【解答】∵五边形的内角和是540∘,∴每个内角为540∘÷5=108∘,∴∠E=∠B=∠BAE=108∘,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=(180∘−108∘)÷2=36∘,∴∠CAD=∠BAE−∠1−∠3=108∘−36∘−36∘=36∘.38.【答案】这个多边形的内角和为1260∘.【考点】多边形内角与外角【解析】由一个多边形的每个外角都等于40∘,根据n边形的外角和为360∘计算出多边形的边数n,然后根据n边形的内角和定理计算即可.【解答】解:设这个多边形是n边形,则40∘×n=360∘,解得n=9.这个多边形的内角和为(9−2)×180∘=1260∘.39.【答案】解:(1)设此多边形的边数为n,则(n−2)⋅180∘=2340,解得n=15.故此多边形的边数为15.(2)设多边形的一个外角为2x度,则一个内角为13x度,依题意得13x+2x=180,解得x=12.2x=2×12=24,360∘÷24∘=15.故这个多边形边数为15.即n的值为15.【考点】多边形内角与外角【解析】(1)根据多边形的内角和计算公式作答;(2)先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360∘,从而可代入公式求解.【解答】解:(1)设此多边形的边数为n,则(n−2)⋅180∘=2340,解得n=15.故此多边形的边数为15.(2)设多边形的一个外角为2x度,则一个内角为13x度,依题意得13x+2x=180,解得x=12.2x=2×12=24,360∘÷24∘=15.故这个多边形边数为15.即n的值为15.40.【答案】多边形的边数是8.【考点】多边形内角与外角【解析】可设多边形的一个内角是x度,根据题意表示出外角的度数.再根据各个内角和各个外角互补,列方程求解即可.【解答】x度,依题意得:解:设多边形的一个内角为x度,则一个外角为13x+1x=180,3解得x=135,则360÷(180−135)=360÷45=8.。

人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析

人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析

《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.作者留言:非常感谢!您浏览到此文档。

初中数学青岛版七年级下册第13章 平面图形的认识13.2多边形-章节测试习题(3)

初中数学青岛版七年级下册第13章 平面图形的认识13.2多边形-章节测试习题(3)

章节测试题1.【题文】一个多边形的内角和与外角和的总和为1800°,求这个多边形的边数。

【答案】十边形【分析】设这个多边形的边数为n,根据这个多边形的内角和+外角和360°=1800°,列出方程求解即可.【解答】解:设这个多边形的边数为n,则依题意可得(n-2)×180+360=1800,解得n=10,所以这个多边形是十边形.2.【题文】(1)如图,已知△ABC,试画出AB边上的中线和AC边上的高;(2)有没有这样的多边形,它的内角和是它的外角和的3倍?如果有,请求出它的边数,并写出过这个多边形的一个顶点的对角线的条数.【答案】(1)作图见解析;(2)有,八边形,5.【分析】(1)利用直角三角板一条直角边与AB重合,沿AB移动,是另一条直角边经过点B,再画线段BD即可;找出BC的中点E,然后画线段AE即可.(2)利用多边形内角和公式可求.【解答】解:(1)如图:(2)设多边形边数为n,则(n-2)×180=360×3,n=8,即这是个八边形,过这个多边形的一个顶点的对角线有5条.3.【题文】一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【答案】;2.【分析】本题考查了多边形的内角和和外角和定理. 先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为mx度,则一个外角为nx度,依题意得mx+nx=180°解得x=360°÷n=∵边数是正整数∴n=1或24.【题文】一个多边形的每一个外角都等于24°,求这个多边形的边数.【答案】15【分析】本题考查了多边形的内角和和外角和定理. 根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:∵多边形的外角和为360°,∴边数=360÷24=15.则它是15边形.5.【题文】一个多边形的每一个外角都相等,且都为36°,求多边形的边数及内角和.【答案】10,1440o【分析】根据正多边形的边数等于多边形的外角和除以每一个外角的度数,进行计算即可得解;然后利用多边形的内角和公式(n-2)•180°列式进行计算即可得解.【解答】解:360°÷36°=10,(10-2)•180°=1440°.所以它的边数为10,它的内角和为1440°.6.【答题】如图,在同一平面内,将边长相等的正三角形、正五边形的一边重合,则∠1=______°.【答案】48【分析】运用了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n-2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.【解答】∵正三角形的每个内角是:180°÷3=60°,正五边形的每个内角是:(5-2)×180°÷5=3×180°÷5=540°÷5=108°,∴∠1=108°-60°=48°,故答案为:48°7.【答题】正五边形的一个外角的度数是______.【答案】72°【分析】根据多边形的外角和是360°解答即可.【解答】多边形的外角和是360°,,故答案为:.8.【答题】在图中,x的值为______.【答案】135【分析】根据多边形的内角和解答即可.【解答】103o的邻补角=(180-103)o=77o,∵四边形的内角和为360度,即x o +65 o +83 o +77 o=360 o ∴x=360-65-83-77=135.故答案是:135.9.【答题】一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为______度.【答案】130【分析】n边形的内角和是因而内角和一定是180度的倍数.而多边形的内角一定大于0,并且小于180度,因而内角和除去一个内角的值,这个值除以180度,所得数值比边数要小,小的值小于1.【解答】解:设多边形的边数为x,由题意有解得因而多边形的边数是18,则这一内角为故答案为:10.【答题】一个四边形的四个内角中最多有______个钝角,最多有______个锐角.【答案】3,3【分析】四边形的四个内角和是360度,在这四个角中可以有3个钝角,如都是92度,则第四个角是一个锐角,但如果有四个钝角,则这四个角的和就大于360度,就不符合内角和定理.如果有三个角是锐角,如都是80度,第四个角是120度,满足条件,但当四个角都是锐角时,四个角的和就小于360度,不符合内角和定理.【解答】解:如图,根据四边形的内角和为360°可知:一个四边形的四个内角中最多有3个钝角,最多有3个锐角.11.【答题】七边形的内角和是______.【答案】900°【分析】根据多边形的内角和解答即可.【解答】解:由n边形的内角和是:180°(n-2),将n=7代入即:180°×(7-2)=900°.故答案为:900°.12.【答题】如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=______.【答案】240°【分析】根据多边形的内角和解答即可.【解答】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.13.【答题】已知一个n边形,除去一个内角α外,其余内角和等于1500°,则这个内角α=______°.【答案】120【分析】根据多边形的内角和解答即可.【解答】∵1500°÷180°=8…60°,∴去掉的内角为180°﹣60°=120°,故答案为:120.14.【答题】如图,六边形ABCDEF是正六边形,那么∠α的度数是______.【答案】60°【分析】根据多边形的外角和解答即可.【解答】解:∵360°÷6=60°,∴∠α的度数是60°.故答案为:60°.15.【答题】如果一个n边形的内角和等于它的外角和的3倍,则n=______.【答案】8【分析】本题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.【解答】解:由题意得:180°×(n-2)=360°×3,解得:n=8.故答案为:8.16.【答题】正十边形的每个内角的度数是______.【答案】144°【分析】根据多边形的内角和解答即可.【解答】解:每一个外角度数为每个内角度数为故答案为:17.【答题】用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①.用n个全等的正六边形按这种方式拼接,如图②,若围成一圈后中间也形成一个正多边形,则n的值为______.【答案】6【分析】根据密铺的含义解答即可.【解答】两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.18.【答题】如果一个多边形的每一个外角都等于30°,那么这个多边形的边数为______【答案】12【分析】根据多边形的外角和解答即可.【解答】因为多边形的外角和是360°,所以这个多边形的边数为360÷30=12,故答案为12.19.【答题】若多边形每一个外角为72°,则这个多边形是______边形. 【答案】五【分析】根据多边形的外角和解答即可.【解答】360°÷72°=5.故答案为:520.【答题】若一个n边形的内角和为900º,则n=______.【答案】7【分析】根据多边形的内角和解答即可.【解答】由题意可得:180(n-2)=900,解得:n=7.故答案为:7.。

人教版八年级数学上册多边形及其内角和测试题

人教版八年级数学上册多边形及其内角和测试题

11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.540°C.630°D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.1.A 解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440 解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360°解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是() A.130°B.40°C.90°D.140°9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是()A.m-n B.m+nC.2m-n D.2m+n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解; ③若a +b +c =0,且abc ≠0,则abc >0; ④若|a |>|b |,则a -ba +b>0. 其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax =ay ,下列各式中一定成立的是( )A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n 10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

多边形面积专项训练题

多边形面积专项训练题

多边形面积专项训练题
1. 计算一个正方形的面积,其边长为5厘米。

2. 一个矩形的长为8米,宽为4米,求其面积。

3. 一个三角形的底边长为6厘米,高为4厘米,求其面积。

4. 一个梯形的上底长为5厘米,下底长为8厘米,高为3厘米,求其面积。

5. 一个六边形的边长为7厘米,求其面积。

6. 一个正五边形的边长为10厘米,求其面积。

7. 一个正多边形有12条边,每条边长为6厘米,求其面积。

8. 一个不规则多边形,已知其各个顶点坐标,如何计算其面积?
9. 一个圆形的半径为10厘米,求其面积。

10. 一个椭圆的长轴为6厘米,短轴为4厘米,求其面积。

以上是多边形面积专项训练题,希望大家能够通过这些题目加深对多边形面积计算的理解,提高自己的数学能力。

初中数学:正多边形练习(含答案)

初中数学:正多边形练习(含答案)

初中数学:正多边形练习(含答案)知识点1 正多边形1.若一个正多边形的每个内角为156°,则这个正多边形的边数是( ) A.13 B.14 C.15 D.162.若一个正多边形的每个外角都是36°,则这个正多边形的边数是( ) A.9 B.10 C.11 D.12图3-7-13.如图3-7-1,AC是正五边形ABCDE的一条对角线,则∠ACB=________°.4.如果一个正多边形的每个内角比与它相邻的外角的4倍还多30°,求这个正多边形的边数及内角和.知识点2 圆内接正多边形5.下列说法正确的是( )A.在圆的内部的正多边形叫做圆内接正多边形B.经过四边形的各个顶点的圆叫做这个四边形的外接圆C.任意一个四边形都有外接圆D.一个圆只有唯一一个内接四边形6.已知⊙O的内接正六边形的周长为12 cm,则这个圆的半径是________cm.7.如图3-7-2①,圆内接正五边形的中心角∠AOB=________°,∠ACB=________°;如图②,圆内接正六边形的中心角∠AOB=______°,∠ACB=________°.图3-7-2探究:如图③,圆内接正n边形的中心角∠AOB=________°,∠ACB=________°.(用含n的代数式表示)图3-7-38.如图3-7-3,在正六边形ABCDEF 中,AB =2,P 是ED 的中点,连结AP ,则AP 的长为( )A .2 3B .4 C.13 D.119.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边长作三角形,则该三角形的面积是( )A.22 B.32C. 2D. 3 10.如图3-7-4,正方形ABCD 内接于⊙O ,M 为AD ︵的中点,连结BM ,CM . (1)求证:BM =CM ;(2)连结OA ,OM ,求∠AOM 的度数.图3-7-4图3-7-511.若干个全等正五边形排成环状,图3-7-5中所示的是前3个正五边形,要完成这一圆环共需________个正五边形.详解详析1.C [解析] 由正多边形的每个内角是156°可得它的每一个外角是24°,360°24°=15.故选C. 2.B3.36 [解析] ∵五边形ABCDE 是正五边形, ∴∠B =108°,AB =CB ,∴∠ACB =(180°-108°)÷2=36°.4.解:设这个正多边形的每个内角是x °,每个外角是y °,则得到方程组⎩⎨⎧x =4y +30,x +y =180,解得⎩⎨⎧x =150,y =30.而任何多边形的外角和是360°, 360÷30=12,则这个正多边形是正十二边形,内角和为(12-2)×180°=1800°. 故这个正多边形的边数是12,内角和为1800°. 5.B6.2 7.72 36 60 30 ⎝ ⎛⎭⎪⎫360n ⎝ ⎛⎭⎪⎫180n8.C [解析] 如图,连结AE,过点F作FM⊥AE于点M.在正六边形ABCDEF中,∠AFE=16×(6-2)×180°=120°.∵AF=EF,∴∠AEF=∠EAF=12×(180°-120°)=30°,EM=12AE,∴∠AEP=120°-30°=90°,FM=12EF=1,∴EM=3,AE=2EM=2 3.∵P是ED的中点,∴EP=12×2=1.在Rt△AEP中,AP=AE2+EP2=(2 3)2+12=13. 故选C.9.A [解析] 如图①,∵OC=2,∴OD=1;如图②,∵OB=2,∴OE=2;如图③,∵OA=2,∴OD= 3.则该三角形的三边长分别为1,2, 3. ∵12+(2)2=(3)2, ∴该三角形是直角三角形,∴该三角形的面积是12×1×2=22.故选A.10.(1)证明:∵四边形ABCD 是正方形, ∴AB =CD ,∴AB ︵=CD ︵. ∵M 为AD ︵的中点, ∴AM ︵=DM ︵, ∴BM ︵=CM ︵, ∴BM =CM .(2)如图,连结OB ,OC .∵BM ︵=CM ︵, ∴∠BOM =∠COM . ∵正方形ABCD 内接于⊙O ,∴∠BOC=∠AOB=360°4=90°,∴∠BOM=12×(360°-90°)=135°,∴∠AOM=∠BOM-∠AOB=135°-90°=45°.11.10 [解析] 如图,延长正五边形的两边,交于圆心.∵正五边形的外角等于360°÷5=72°,∴延长正五边形的两边围成的圆心角的度数为180°-72°-72°=36°. ∵360°÷36°=10,∴要完成这一圆环共需10个正五边形.故答案为10.。

初中数学精品试题:正多边形

初中数学精品试题:正多边形

3.7 正多边形
1.正六边形ABCDEF 内接于⊙O,正六边形的周长是12,则⊙O 的半径是( ). A.3 B.2 C.2 D.23
(第1题)(第3题)(第4题)
2.下列圆的内接正多边形中,一条边所对的圆心角最大的是( ).
A.正三角形
B.正方形
C.正五边形
D.正六边形
3.如图所示,边长为a 的正六边形内有两个斜边长为a,有一个角是60°的直角三角形,则
空白
阴影S S 的值为( ).
A.3
B.4
C.5
D.6
4.如图所示,在正六边形ABCDEF 中,△BCD 的面积为4,则△BCF 的面积为( ).
A.16
B.12
C.8
D.6
5.如图所示,AD 是正五边形ABCDE 的一条对角线,则∠BAD = . (第5题)(第6题)(第7题)
6.如图所示,若干全等的正五边形排成环状,图中所示的是前3个五边形,要完成这一圆环还需 个五边形.
7.如图所示,在正八边形ABCDEFGH 中,四边形BCFG 的面积为20cm 2,则该正八边形的面积为 cm 2.
8.如图所示,以正六边形ABCDEF 的边AB 为边,在正六边形内作正方形ABMN ,连结MC.求∠BCM 的大小.
9.如图所示,M ,N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE…的边AB ,BC 上的点,且BM=CN ,连结OM ,ON .
(1)求图1中∠MON 的度数.
(2)图2中∠MON 的度数为 图3中∠MON 的度数为 .
(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).。

初中数学沪教版(五四制)八年级下册第二十二章 四边形第一节 多边形-章节测试习题(1)

初中数学沪教版(五四制)八年级下册第二十二章 四边形第一节 多边形-章节测试习题(1)

章节测试题1.【答题】若凸n边形的每个外角都是36°,则从一个顶点出发引的对角线条数是()A. 6B. 7C. 8D. 9【答案】B【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.选B.2.【答题】一个n边形共有20条对角线,则n的值为()A. 5B. 6C. 8D. 10【答案】C【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】设这个多边形是n边形,则=20,∴n2−3n−40=0,(n−8)(n+5)=0,解得n=8,n=−5(舍去).故选C.3.【答题】从五边形的一个顶点,可以引几条对角线()A. 2B. 3C. 4D. 5【答案】A【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】根据n边形从一个顶点出发可引出(n-3)条对角线可直接得到从五边形的一个顶点可以引:5−3=2条对角线。

选A.4.【答题】多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A. 8B. 9C. 10D. 11【答案】C【分析】根据多边形的对角线的规律,n边形的一个顶点处有n-3条对角线,总共有条对角线.【解答】设多边形有n条边,则n−2=11,解得n=13.故这个多边形是十三边形。

故经过这一点的对角线的条数是13−3=10.选C.5.【答题】十五边形从一个顶点出发有()条对角线.A. 11B. 12C. 13D. 14【答案】B【分析】本题主要涉及多边形对角线的问题,熟练掌握多边形对角线的计算公式是解题的关键;连接多边形不相邻的两个顶点的线段,叫做多边形的对角线,n边形过一个顶点有(n-3)条对角线.【解答】n边形(n>3)从一个顶点出发可以引(n−3)条对角线,所以十五边形从一个顶点出发有:15−3=12条对角线。

初中数学:多边形的内角和测试题(含答案)

初中数学:多边形的内角和测试题(含答案)

初中数学:多边形的内角和测试题(含答案)总分100分时间40分钟一、选择题(每题5分)1、四边形ABCD中,如果∠A+∠C+∠D=280°,则∠B的度数是()A.80°B.90°C.170°D.20°【答案】A【解析】试题分析:根据四边形的内角和是360°,所以∠B的度数是360°-280°=80°. 解:根据多边形内角和公式可得:∠A+∠B+∠C+∠D=360°,∴∠B=360°-(∠A+∠C+∠D),∵∠A+∠C+∠D=280°,∴∠B=80°.故应选A.考点:多边形的内角和2、内角和等于外角和2倍的多边形是()A.五边形B.六边形C.七边形D.八边形【答案】B【解析】试题分析:设多边形的边数是x,根据多边形的内角和与多边形的外角列方程求解.解:设多边形的边数是x,根据题意可得:(x-2)×180°=2×360°,解得:x=6,所以这个多边形是六边形.故应选B.考点:多边形的内角和3、过多边形的一个顶点可以作7条对角线,则此多边形的内角和是外角和的( )A.4倍B.5倍C.6倍D.3倍【答案】A【解析】试题分析:过多边形的一个顶点可以作7条对角线,把这个多边形分成了8个三角形,根据三角形内角和定理求解.解:∵过多边形的一个顶点可以作7条对角线,∴过多边形一个顶点的对角线把这个多边形分成了8个三角形,∴这个多边形的内角和是8×180°=4×360°,∴多边形的内角和是外角和的4倍,故应选A.考点:多边形的内角和4、 若正n 边形的一个内角与正2n 边形的一个内角的和等于270°,则n 为( ) A7 B.6 C.5 D.4【答案】B【解析】试题分析:根据正多边形的每个内角与正多边形的边数之间的关系列方程求解. 解:根据题意可得:()()112180221802702n n n n-⨯︒+-⨯︒=︒, 解得:n=6,故应选B.考点:多边形的内角和5、多边形的每个外角与它相邻内角的关系是( )A .互为余角B .互为邻补角C .两个角相等D .外角大于内角【答案】B【解析】试题分析:根据多边形的外角和与它相邻的内角的位置关系解答.解:多边形的每个外角与它相邻的内角互为邻补角.故应选B.考点:多边形6、一个多边形的内角和为720°,那么这个多边形的对角线条数为( )A.6条B.7条C.8条D.9条【答案】D【解析】试题分析:根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线与多边形的边数之间的关系求解.解:设多边形的边数是n,根据题意可得:(n-2)×180°=720°,解得:n=6,所以多边形的对角线的条数是12×6×(6-3)=9.故应选D考点:多边形的内角和7、一个多边形每个内角为108°,则这个多边形()A.四边形B,五边形C.六边形D.七边形【答案】【解析】试题分析:设多边形的边数是n,根据多边形的内角和公式列方程求解. 解:设多边形的边数是n,根据题意可得:(n-2)×180°=n×108°,解得:n=5,答:这个多边形是五边形.故应选B.考点:多边形的内角和8、n边形的n个内角中锐角最多有()个.A.1个B.2个C.3个D.4个【答案】C【解析】试题分析:根据多边形的外角和是360°求解.解:因为多边形的外角和是360°,所以多边形的外角中最多有3个钝角,所以多边形的内角中最多有3个锐角.故应选C.考点:多边形的内角和.9、如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是()A.nB.2n-2C.2nD.2n+2【答案】【解析】试题分析:首先设这个多边形的边数是x,根据多边形的内角和公式列方程求解. 解:设这个多边形的边数是x,根据题意可得:(x-2)×180°=n×360°,解得:x=2n+2.故应选D.考点:多边形的内角和二、填空题(每题5分)10、一个多边形的内角和角和是外角和的4倍,则这个多边形是边形. 【答案】10【解析】试题分析:首先设这个多边形的边数是x,根据多边形内角和公式列方程求解. 解:设这个多边形的边数是x,根据题意可得:(x-2)×180°=4×360°,解得:x=10,所以这个多边形是10边形.考点:多边形11、正十边形的每一个内角的度数等于______,每一个外角的度数等于_______.【答案】144°;36°【解析】试题分析:首先利用多边形的外角和是360°,求出每一个外角的度数,再根据多边形的内角与它相邻的外角是邻补角,求出每一个内角的度数.解:因为正十边形有10个外角,所以每一个外角的度数是360°÷10=36°,因为多边形的内角与它相邻的外角是邻补角,所以每个内角是180°-36°=144°.故答案是144°;36°考点:多边形内角和三、解答题(12、13、14每题10分,15题15分)12、若两个多边形的边数之比为1:2,两个多边形的内角和之和为1440°,求这两个多边形的边数。

初中数学青岛版七年级下册第13章 平面图形的认识13.2多边形-章节测试习题(4)

初中数学青岛版七年级下册第13章 平面图形的认识13.2多边形-章节测试习题(4)

章节测试题1.【答题】如图,在五边形ABCDE中,若∠D=110°,则∠1+∠2+∠3+∠4=______.【答案】290°【分析】根据多边形的内角和及外角和解答即可.【解答】∵∠D=110°,∴∠5=180°-110°=70°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360°-70°=290°.2.【答题】若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是______.【答案】6【分析】运用了多边形的内角和定理及多边形的对角线,熟记多边形的内角和计算公式是正确解答本题的基础.【解答】∵凸n边形的内角和为1260°,∴(n-2)×180°=1260°,得,n=9;∴9-3=6.故答案是:6.3.【答题】一个多边形的内角和为720,则这个多边形的边数为______.【答案】6【分析】根据多边形的内角和解答即可.【解答】设这个多边形的边数为n,由题意得(n-2) ×180°=720°,解之得n=6.4.【答题】一个多边形的内角和是1800°,这个多边形是______边形.【答案】十二【分析】根据多边形的内角和解答即可.【解答】解:设这个多边形的边数为n,则有:(n-2)180°=1800°,解得:n=12.故答案为:十二.5.【答题】正十二边形的每一个内角的度数为()A. 120°B. 135°C. 150°D. 108°【答案】C【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°−30°=150°.故选项为:C.6.【答题】若一个多边形的每个内角都相等,且都为160度,则这个多边形的内角和是()度A. 2520B. 2880C. 3060D. 3240【答案】B【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】解:设这个多边形的边形为n,则(n-2)180°=160°n,解得,n=18.则(n-2)180°=(18-2)180°=2880°.选B.方法总结:本题主要考查了多边形的内角和,n边形的内角和是(n-2)180°.7.【答题】一个五边形的5个内角中,钝角至少有()A. 5个B. 4个C. 3个D. 2个【答案】D【分析】五边形内角和为540度,五个角平分,一个角为108度,可以都为钝角.又因外角和为360度,所以5个外角中不能有4个或5个钝角,外角中至多有3个钝角,即内角中最多有3个锐角,至少有2个钝角.【解答】解:∵五边形外角和为360度,∴5个外角中不能有4个或5个钝角,外角中至多有3个钝角,即内角中最多有3个锐角,至少有2个钝角.选D.8.【答题】已知正n边形的一个内角为144°,则边数n的值是()A. 7B. 8C. 9D. 10【答案】D【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】解:根据题意得:144°n=(n﹣2)×180°,解得:n=10选D.9.【答题】如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是().A. 110°B. 108°C. 105°D. 100°【答案】D【分析】根据多边形的外角和为360°解答即可.【解答】如下图,∵凸多边形的外角和为360°,∴∠1+∠2+∠3+∠4+∠5=360°,又∵∠1=∠2=∠3=∠4=70°∴∠5=360°-70°×4=80°,∴∠AED=180°-∠5=100°.选D.10.【答题】如果一个多边形的内角和等于它的外角和的2倍,则这个多边形是()A. 三角形B. 四边形C. 五边形D. 六边形【答案】D【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可.【解答】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据一个多边形的内角和等于它的外角和的2倍,设这个多边形是n边形.则(n-2)×180°=2×360°,n=6选D.11.【答题】正多边形的一个内角是120°,则这个正多边形的边数为()A. 4B. 8C. 6D. 12【答案】C【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】根据正多边的内角求出外角为180°-120°=60°,然后根据多边形的外角和为360°,可求其边数为360÷60°=6.选C.方法总结:此题主要考查了正多边的内外角关系,解题关键是根据内角和外角互补,求出外角,然后根据多边形的内外角和求解.12.【答题】如果一个正多边形的中心角为60°,那么这个正多边形的边数是A. 4B. 5C. 6D. 7【答案】C【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】解:这个多边形的边数为:选C.13.【答题】在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A. ∠ADE=20°B. ∠ADE=30°C. ∠ADE=∠ADCD. ∠ADE=∠ADC【答案】D【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】如图,设∠ADE=x,∠ADC=y,根据三角形的内角和可得,∠ADE+∠AED+∠A=180°,根据四边形的内角和为360°可得∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以x=y,即∠ADE=∠ADC.选D.方法总结:此题主要考查了多边形的内角和,解题关键是根据三角形的内角和为180°,四边形的内角和为360°,求出角的关系即可.14.【答题】若一个多边形的每个外角都等于60°,则它的内角和等于()A. 180°B. 720°C. 1080°D. 540°【答案】B【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可.【解答】设多边形的边数为n,∵多边形的每个外角都等于60°,∴n=360°÷60°=6,∴这个多边形的内角和=(6﹣2)×180°=720°.故选B.15.【答题】如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A. 120°B. 180°C. 240°D. 300°【答案】C【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.选C.16.【答题】一个多边形的外角和与它的内角和相等,则多边形是()A. 六边形B. 五边形C. 四边形D. 三角形【答案】C【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可.【解答】解:设多边形的边数为n.根据题意得:(n-2)×180°=360°,解得:n=4选C.17.【答题】下列多边形中,内角和是外角和的两倍的是()A. 四边形B. 五边形C. 六边形D. 八边形【答案】C【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可.【解答】解:设多边形边数为n,由题意得:(n﹣2)•180°=2×360°,解得n=6,所以这个多边形是六边形.选C.18.【答题】正n边形的内角和等于1080º,则n的值为()A. 7B. 8C. 9D. 10【答案】B【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】由题意得:(n-2)·180=1080,解得:n=8,选B.19.【答题】如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A. 90°B. 135°C. 150°D. 270°【答案】D【分析】根据多边形的内角和公式:(n-2)180°解答即可.【解答】解:∠CDE=180°-∠1,∠CED=180°-∠2,在△CDE中,∠CDE+∠CED+∠C=180°,所以,180°-∠1+180°-∠2+90°=180°,所以,∠1+∠2=270°.选D.20.【答题】一个多边形的内角和是外角和的5倍,则这个多边形是()A. 八边形B. 十边形C. 十二边形D. 十四边形【答案】C【分析】根据多边形的内角和公式:(n-2)180°和外角和为360°解答即可. 【解答】多边形的外角和是360°,设这个多边形的边数为x,则180°(x-2)=5×360,解得x=12.选C.。

初中数学:多边形测试题(含答案)

初中数学:多边形测试题(含答案)

初中数学:多边形测试题(含答案)总分100分时间40分钟一、选择题(每题5分)1、如果过多边形一个顶点的对角线有n条,那么这个多边形的边数是( )A.nB.n+1C.n+2D.n+3【答案】D【解析】试题分析:根据多边形对角线的条数边数之间的关系求解.解:因为过多边形一个顶点的对角线有n条,所以这个多边形的边数是(n+3)条.故应选D.考点:多边形2、若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是( )A.十三边形B.十二边形C.十一边形D.十边形【答案】A【解析】试题分析:根据多边形对角线的条数边数之间的关系求解.解:设多边形的边数是n,根据题意可得:n-3=10,解得:n=13.故应选A.考点:多边形3、把三角形的面积分为相等的两部分的是()A.三角形的角平分线B、三角形的中线C、三角形的高D、以上都不对【答案】B【解析】试题分析:根据三角形的中线进行解答.解:三角形的一条中线把三角形的一条边分成了相等的两段,所以三角形的中线把三角形分成了面积相等的两部分.故应选B.考点:三角形的中线4、如下图是凸多边形的有( )A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据凸多边形的定义进行判断解:五个图形中只有两个四边形是凸多边形.故应选B.考点:多边形5、已知等腰三角形的周长为24,一边长为4,则另一边长是( )A 、10B 、16C 、10或16D 、无法确定【答案】A【解析】试题分析:根据三角形三边关系和等腰三角形的性质求解.解:当等腰三角形的腰长是4时,等腰三角形的底边长是24-4-4=16,因为4+4<16,所以不能构成三角形;当等腰三角形的底边长是4时, 等腰三角形的腰长是()1244102-=, 因为4+10>10,所以能构成三角形.所以另一边长是10.故应选A.考点:1.三角形三边关系;2.等腰三角形的性质6、一个三角形的两边长分别是3和8,而第三边长为奇数,那么第三边长是()A、5或7B、7或9C、9或11D、11【答案】B【解析】试题分析:根据三角形三边关系求出第三边的取值范围,再根据第三边长是奇数判断第三边的长度.解:设三角形的第三边长是x,根据题意可得:8-3<x<8+3,解得:5<x<11,又因为第三边长是奇数,所以第三边长可能是7或9.故应选B.考点:三角形三边关系7、若ΔABC边为a、b、c,则|a-b-c|+|b-c-a|+|c-a-b|=()。

人教版初中数学八年级第十一章 三角形11.3 多边形及其内角和习题(1)

人教版初中数学八年级第十一章 三角形11.3 多边形及其内角和习题(1)

七年级下册 多边形练习题一、填空题(每小题2分,共24分)1、如图所示,∠B=350,∠ACD=1200,则∠A =________度。

2、等腰三角形的两条边长分别为8cm 和3cm ,则它的周长是__________。

3、△ABC 的三边长为6、7、x ,则x 的取值范围是_______________ 。

4、一个多边形的每一个外角等于300,则这个多边形为___________ 边形。

5、当多边形边数增加一条边时,其内角和增加___________度 。

6、若正多边形的一个外角等于其一个内角的52,则这个多边形的内角和是___________ 。

7、若多边形的外角和等于其内角和的32,则这个多边形的边数是___________ 。

8、若三角形的三个内角的比为1:2:3,则这个三角形是___________ 三角形。

9、如图所示,∠1=∠C+________,∠2=∠B+___________。

∠A+∠B +∠C +∠D+∠E= ________+∠1+∠2=________度。

10、若四边形ABCD 中,∠A :∠B :∠C :∠D=3:6:4:7,则这个四边形中互相平行的两边是___________11、如图所示,D 是BC 边上的中点,△ABC 的面积为8cm 2,则△ABD 的面积为___________cm 2 。

12、如图所示,∠A =350,∠B=250,∠C=550,则∠BCD= __________度。

二、选择题(每小题3分,共18分)13、一个三角形三个内角中至少有( )A 、一个直角;B 、一个钝角;C 、三个锐角;D 、两个锐角 14、下列各组线段中,能组成一个三角形的是( )A 、15cm 、10cm 、5cm;B 、4cm 、5cm 、10cmC 、3cm 、8cm 、5cmD 、3cm 、4cm 、5cm 15、各内角相等的n 边形的一个外角等于( )A 、n n )2(1800-B 、n 0360C 、n n )2(3600-D 、n018016、n 边形所有的对角线条数是( )A 、2)1(-n nB 、2)2(-n nC 、2)3(-n n D 、22n17、下列正多边形中,不能够铺满地面的是( )。

人教版初中八年级数学多边形及其内角和选择题练习含答案

人教版初中八年级数学多边形及其内角和选择题练习含答案

人教版初中八年级数学多边形及其内角和选择题练习含答案1.一个正多边形的外角与其相邻的内角之比为1:5,那么这个多边形的边数为( )A.8B.9C.10D.12【答案】D【解答】解:设正多边形的每个外角的度数为x,与它相邻的内角的度数为5x,依题意有x+ 5x=180∘,解得x=30∘,这个多边形的边数=360∘÷30∘=12.故选D.2. 某个人从多边形一个顶点出发引对角线可以把这个多边形分成八个三角形,这个多边形是()边形.A.六B.八C.十D.十一【答案】C【解答】解:这个多边形的边数是8−1+3=10.故选C.3.(2020-2021·宁夏·月考试卷)如图,⊙A,⊙B,⊙C,⊙D,⊙E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是( )A.πB.1.5πC.2πD.2.5π【答案】B【解答】解:∵ 五边形的内角和是:(5−2)×180∘=540∘,∴ 阴影部分面积之和=540π×12=1.5π.故选B.3604. 如图,四边形ABCF≅四边形EDCF,若∠AFC+∠DCF=150∘,则∠A+∠B+∠D+∠E 的大小是()A.240∘B.300∘C.420∘D.460∘【答案】C【解答】解:∵ 四边形ABCF≅四边形EDCF,∠AFC+∠DCF=150∘,∴ ∠EFC+∠DCF=150∘,∴ ∠AFE+∠BCD=300∘.又∵ 六边形的内角和为(6−2)×180∘=720∘,∴ ∠A+∠B+∠D+∠E=720∘−300∘=420∘.故选C.5. 如图,木工师傅从边长为90cm 的正三角形木板上锯出一正六边形木板,那么正六边形木板的边长为( )A.34cmB.30cmC.32cmD.28cm【答案】B【解答】解:图中三个小三角形也是正三角形,且边长等于正六边形的边长,所以正六边形的周长是大正三角形周长的23,正六边形的周长为90×3×23=180(cm), 所以正六边形的边长是180÷6=30(cm).故选B .6. 如图,若干全等正五边形排成环状,图中所示的其中3个正五边形,要完成这一圆环需要正五边形的个数为( ).A.7B.8C.9D.10【答案】D【解答】解:五边形的内角和为(5−2)×180∘=540∘,所以正五边形的每一个内角为540∘÷5=108∘.如图,延长正五边形的两边相交于点O ,则∠1=360∘−108∘×3=360∘−324∘=36∘,360∘÷36∘=10,即完成这一圆环共需10个五边形.故选D .7. 如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A.8B.9C.10D.11【答案】A【解答】解:多边形的外角和是360∘,根据题意,得180∘×(n −2)=3×360∘,解得n =8.故选A .8. 若过n 边形的一个顶点的所有对角线正好将该n 边形分成8个三角形,则n 的值是( )A.7B.8C.9D.10【答案】D【解答】解:经过n边形的一个顶点的所有对角线把多边形分成(n−2)个三角形,由题意,得n−2=8,解得n=10.故选D.。

初二多边形及其内角练习题

初二多边形及其内角练习题

初二多边形及其内角练习题1. 每题给出一个多边形的边数和某些内角的度数,请根据已知信息,计算出剩余角的度数。

a) 正五边形的内角和为540°,已知其中一个内角为90°,剩余内角的度数是多少?解答:首先,我们知道正五边形的内角和为540°,因此,剩余四个内角的度数加起来应该是540° - 90° = 450°。

由于五边形的内角相等,所以每个剩余的内角应该是 450° / 4 = 112.5°。

b) 六边形的内角和为720°,已知其中一个内角为120°,剩余内角的度数是多少?解答:根据已知信息,剩余五个内角的度数应为 720° - 120° = 600°。

由于六边形的内角相等,所以每个剩余的内角应该是 600° / 5 = 120°。

c) 七边形的内角和为900°,已知其中一个内角为135°,剩余内角的度数是多少?解答:剩余六个内角的度数为 900° - 135° = 765°。

由于七边形的内角相等,所以每个剩余的内角应该是 765° / 6 = 127.5°。

2. 给出一个多边形的边数,求该多边形的内角和。

a) 四边形的内角和是多少?解答:四边形的内角和可以通过公式 (n - 2) × 180°来计算,其中 n表示多边形的边数。

对于四边形来说,内角和为 (4 - 2) × 180° = 2 × 180°= 360°。

b) 五边形的内角和是多少?解答:五边形的内角和为 (5 - 2) × 180° = 3 × 180° = 540°。

c) 八边形的内角和是多少?解答:八边形的内角和为 (8 - 2) × 180° = 6 × 180° = 1080°。

初中数学:多边形的内角和练习(含答案)

初中数学:多边形的内角和练习(含答案)

初中数学:多边形的内角和练习(含答案)一、选择题1、一个多边形的内角和等于1080°,这个多边形的边数是()A.9 B.8 C.7 D.6【答案】B【解析】试题分析:设多边形的边数是x,根据多边形内角和公式列方程求解.解:设多边形的边数是x,根据题意可得:(x-2)×180°=1080°,解得:x=8,答:这个多边形的边数是8.故应选B.考点:多边形的内角和2、一个多边形的边数增加2条,则它的内角和增加( )A.180°B.90°C. 360°D.540°【答案】C【解析】试题分析:根据多边形的内角和公式求解.解:当多边形的边数是x时,多边形的内角和是(x-2)×180°,当多边形的边数增加2时,多边形的内角和是(x+2-2)×180°,它的内角增加的度数是(x+2-2)×180°-(x-2)×180°=360°.故应选C.考点:多边形的内角和3、在四边形ABCD中,∠A、∠B、∠C、∠D的度数之比为2∶3∶4∶3,则∠D的外角等于() (A)60°(B)75°(C)90°(D)120°【答案】C【解析】试题分析:首先根据四边形的内角和与∠A、∠B、∠C、∠D的度数之比求出∠D的度数,再根据多边形的内角与外角的关系求解.解:因为多边形的内角和是360°,∠A、∠B、∠C、∠D的度数之比为2∶3∶4∶3,所以∠D=360°×312=90°,所以∠D的外角是90°.故应先C.考点:多边形的内角和4、在各个内角都相等的多边形中,一个内角是与它相邻的一个外角的3倍,那么这个多边形的边数是( )A. 4B. 6C. 8D. 10【答案】C【解析】试题分析:根据多边形的一个内角是与它相邻的外角的补角求出这个多边形的外角度数,再根据多边形的外角和求出多边形的边数.解:因为多边形一个内角是与它相邻的一个外角的3倍,所以多边形的每一个外角的度数是180°×14=45°,因为多边形的外角和是360°,所以多边形的边数是360°÷45°=8.故应选C.考点:多边形的内角和5、若n边形每个内角都等于150°,那么这个n边形是()A.九边形B.十边形C.十一边形D.十二边形【答案】D【解析】试题分析:根据多边形的内角度数求出多边形每个外角的度数,再根据多边形的外角和求出多边形的边数.解:因为多边形的每个内角是150°,所以多边形的每个外角是30°,因为多边形的外角和是360°,所以多边形的边数是360°÷30°=12,答:这个n边形是12.故应选D考点:多边形的内角和6、随着多边形的边数n的增加,它的外角和()A.增加B.减小C.不变D.不定【答案】C【解析】试题分析:根据多边形的外角和解答.解:多边形的外角和是360°.故应选C考点:多边形的内角和7、一个多边形的内角和是1800°,那么这个多边形是()A.五边形B.八边形C.十边形D.十二边形【答案】D【解析】试题分析:设这个多边形的边数是x,根据多边形的内角和公式列方程求解. 解:设这个多边形的边数是x,根据题意可得:(x-2)×180°=1800°,解得:x=12,答:这个多边形是十二边形.故应选D考点:多边形的内角和8、一个多边形每个外角都是60°,这个多边形的外角和为()A.180°B.360°C.720°D.1080°【答案】B【解析】试题分析:根据多边形的外角和进行解答.解:多边形的外角和与多边形的边数无关,多边形的外角和是360°.故应选B.考点:多边形的内角和9、一个多边形中,除一个内角外,其余各内角和是1200°,则这个角的度数是()A.60°B.80°C.100°D.120°【答案】A【解析】试题分析:首先设这个多边形的边数是x,根据多边形的边数每增加1,多边形的内角和增加180°列不等式组求解.解:设这个多边形的边数是x,根据题意可得:()()2180120021801380 xx-⨯︒>︒⎧⎪⎨-⨯︒<︒⎪⎩解不等式组得:22 8933x<<,所以多边形的边数是9,则多边形的内角和是(9-2) ×180°=1260°,所以这个内角的度数是1260°-1200°=60°.故应选A.考点:多边形的内角和二、填空题10、一个多边形的每一个外角都等于36°,那么这个多边形的内角和是°. 【答案】1440°.【解析】试题分析:根据多边形的外角和与每个外角的度数求出多边形的边数,再根据多边形的内角和公式求出结果.解:因为多边形的外角和是360°,所以多边形的边数是360°÷36°=10,所以多边形的内角和是(10-2) ×180°=1440°.故答案是1440°.考点:多边形的内角和11、六边形的内角和等于_______度.【答案】720°.【解析】试题分析:根据多边形的内角和求解.解:六边形的内角和是(6-2) ×180°=720°.故答案是720°.考点:多边形内角和12、一个多边形的每个内角都等于135°,则这个多边形为________边形.【答案】8【解析】试题分析:根据多边形的内角度数求出每个多边形的外角的度数,再根据多边形的外角和求出结果.解:多边形的每个内角是135°,所以多边形的每个外角是45°,因为多边形的外角和是360°,所以多边形的边数是360°÷45°=8.故答案是8.考点:多边形的内角和13、内角和等于外角和的多边形是_______边形.【答案】四【解析】试题分析:设这个多边形的边数是n,根据多边形的内角和等于外角和列方程求解.解:设这个多边形的边数是n,根据题意可得:(n-2) ×180°=360°,解方程得:n=4,所以这个多边形是四边形.故答案是四考点:多边形的内角和三、解答题14、一个多边形的外角和是内角和的15,它是几边形?【答案】12边形【解析】试题分析:设多边形的边数是x,根据多边形的内角和与外角和的关系列方程求解.解:设多边形的边数是x,根据题意可得:(n-2) ×180°=5×360°,解得:n=12,所以这个多边形是12边形.考点:多边形的内角和15、一个多边形的每一个外角都等于24°,求这个多边形的边数.【答案】15【解析】试题分析:根据多边形的外角和是360°和多边形每个外角的度数求解.解:因为多边形的外角和是360°和多边形每个外角是24°,所以多边形的边数是360°÷24°=15,答:这个多边形的边数是15.考点:多边形的内角和16、一个多边形出一个内角外,其余个内角的和为2030°,求这个多边形的边数.【答案】12【解析】试题分析:首先设这个多边形的边数是x,根据多边形的边数每增加1,多边形的内角和增加180°列不等式组求解.解:设这个多边形的边数是x,根据题意可得:()()2180203021802210 xx-⨯︒>︒⎧⎪⎨-⨯︒<︒⎪⎩解不等式组得:55 1112 1818x<<,所以多边形的边数是12. 故答案是12考点:多边形的内角和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:多边形练习
一、选择题
1、n边形所有对角线的条数是( )
A.
()1
2
n n-
B.
()2
2
n n-
C.
()3
2
n n-
D.
()4
2
n n-
2、若一个多边形共有十四条对角线,则它是( )
A.六边形
B.七边形
C.八边形
D.九边形
3、下列的线段哪些可以组成三角形()
A、10,14,24
B、12,2,16,
C、16,6,4
D、8,10,12
4、五边形的外角个数为()
A、5
B、8
C、10
D、12
5、下列命题中正确的是()
A、各角都相等的多边形是正多边形
B、各边都相等的多边形是正多边形
C、经过多边形的一个顶点可引(n-2)条对角线
D、正方形是正多边形
6、适合条件∠A=∠B=1
2
∠C的三角形是()
A、锐角三角形
B、直角三角形
C、钝角三角形
D、不能确定
7、下列图形中,是正多边形的是()
A、直角三角形
B、等腰三角形
C、长方形
D、正
方形
8、具备下列条件的三角形中,不是角三角形的是()
∠C
A、∠A+∠B=∠C
B、∠A=∠B=1
2
C、∠A=90°-∠B
D、∠A-∠B=90°
二、填空题
9、两根木棒的长分别为3cm和5cm,要选择第三根木棒,将它钉成一个三角形,若第三根木棒的长为偶数,则第三根木棒的长是_______cm 10、画出多边形任意一条边所在直线,整个多边形都在这条直线的同一侧,这样的多边形叫做________;画出多边形任意一条边所在直线,整个多边形不都在这条直线的同一侧,这样的多边形叫做________;
11、从一个多边形的顶点可以引出6条对角线,那么这个多边形是____边形
三、解答题
12、按图中所给的条件,求出∠1、∠2、∠3的度数.
13、如图:在△ABC中,∠ABC和∠ACB平分线交于点O,过点O作
EF∥BC,交AB于E,交AC于F,且△ABC的周长是24cm,BC=10cm,求△AEF的周长?
14、已知∆ABC的三边长分别为a、b、c,且0
(c
b
+)
c
b求
-
a
+
|
5
+
2
|2=
-a的值.
15、把一个五边形锯去一个内角后得到是什么图形?请画图说明。

相关文档
最新文档