中梁刚度放大系数
梁刚度放大系数按主梁计算的思考
关于pkpm新版本中梁刚度系数放大的问题,新版本中是这样表述的:而旧版本中是这样表述的:
我认为新版本这样写,是更加完善,更加准确的写法;
先说一下旧版本的计算问题所在
在旧版本中,存在这样的问题,就是同样一根框架梁,截面尺寸、跨度一样的前提下,被次梁分割下就会发现,主梁的刚度放大系数差距很大了,如图所示:
就会发现框架梁被多个次梁分割成一小段一小段的时候,刚度放大系数变小了,我认为这样是不符合实际的,梁的刚度放大系数跟次梁分割不分割是没有关系的,框架梁是一根整体的,而pkpm在计算的时候,次梁的分割会在框架梁上形成一个个的节点,这样导致框架梁的刚度放大系数分成几段来计算,由规范的表格可以知道,框架梁的刚度放大系数跟三个方面有关系,分别为梁的计算跨度、梁的净距、楼板的厚度,旧版中的pkpm中来计算的时候,是
把梁分段来计算的,这样导致一个完整的框架梁被分成了几小段,导致计算跨度减小,导致梁的刚度放大系数减小,这样会导致整个结构的刚度减小,总之会导致地震剪力的减小,并且位移角会增加5%作用,地震剪力墙会减小7%左右,总之来说旧版本中的这个问题,是需要我们在特殊构件补充定义里去修改被分割后的框架梁的刚度放大系数,以下是截图
修改完之后,这样才符合实际的结构工作情况,那么问题来了,以前没有注意这个问题的时候,房子也不是没有倒塌吗,那是因为没有发生大震或者中震,并且我们知道混凝土的构件设计的时候,安全储备是很大的,我们看下混凝土与钢筋的设计值和标准值就明白了;
好了,正是pkpm发现了这个问题的所在,故而在新版本中将此项改为了梁刚度放大系数按主梁计算,也就是不考虑次梁,也就避免了以上的问题,所以我认为这个改善是很有必要的。
以上观点仅供参考,不足或者错误之处敬请批评。
-----------2016年12月7日。
对pkpm参数设置的疑问解答
一、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。
模拟施工加载2则可以更合理的给基础传递荷载。
复杂结构设计人员可以指定施工顺序。
二、修正后的大体风压一般就是荷载规范规定的大体风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。
3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。
结构阻尼比取0.01~0.02,程序缺省0.02。
4、侧刚计算方式:一种简化计算法,计算速度快,但应用范围有限,当概念有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有必然误差;总刚计算方式:精度高,适用范围广,计算量大。
对于没有概念弹性楼板且没有不与楼板相连构件的工程,两种方式结果一样。
(以下转贴)“刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的减弱、不持续,都可采用这个假定。
相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。
一样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。
“弹性板6 ”的适用范围:所有的工程都可采用。
相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。
板的面外刚度将承担一部份梁柱的面外弯矩,而使梁柱配筋减少。
此时结构分析时间大大增加。
“弹性板3 ”的适用范围:需要保证楼板平面内刚度超级大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。
“如厚板转换层中的厚板,板厚达到1m以上。
而面外刚度则需要按实际考虑。
相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差别产生的传力问题。
“弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。
设计时可以进行梁的刚度放大和扭矩折减。
(弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁一路承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.另外计算工作量大.因此该模型仅适用于板柱结构;弹性楼板3:考虑楼板的面内刚度无穷大,并考虑楼板的面外刚度.适用于厚板转换层;弹性膜:考虑面内刚度,面外刚度为零.采用膜剪切单元.弹性板由用户人工指定,但对于斜屋面,若是没有指定,程序会缺省为弹性膜,用户可以指定为弹性板6或弹性膜,不允许概念为刚性板或弹性板3)五、按照高规(JGJ 3-2021)第3.7.3条注,抗震设计时SATWE计算结果中楼层层间最大位移与层高之比的限值可不考虑偶然偏心的影响。
YJK参数设置详细解析
结构总体信息1、结构体系:按实际情况填写。
2、结构材料信息:按实际情况填写。
3、结构所在地区:一般选择“全国”.分为全国、上海、广东,分别采用中国国家规范、上海地区规程和广东地区规程。
B类建筑和A类建筑选项只在坚定加固版本中才可选择。
4、地下室层数:定义与上部结构整体分析的地下室层数,根据实际情况输入,无则填0。
5、嵌固端所在层号:(P219~224)抗规6。
1.14条:地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的2倍。
如果地下室首层的侧向刚度大于其上一层侧向刚度的2倍,可将地下一层顶板作为嵌固部位;如果不大于2倍,可将嵌固端逐层下移到符合要求的部位,直到嵌固端所在层侧向刚度大于上部结构一层的2倍.由于剪切刚度比的计算只与建筑结构本身的特性有关,与外界条件(如回填土的影响、是否为地下室等)无关,所以在计算侧向刚度比是宜选用剪切刚度比。
在YJK中的结果文件wmass。
out中,剪切刚度是RJX1、RJY1,可从地下一层逐层计算与地上一层的剪切刚度比,出现大于2或四舍五入大于2的,该层顶板即可作为嵌固端。
如果地下室各层都不满足嵌固条件,应将嵌固部位设定在基础顶板处,嵌固端所在层号填0。
6、与基础相连构件最大底标高:7、裙房层数:程序不能自动识别裙房层数,需要人工指定。
应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
8、转换层所在层号:应按楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。
程序不能自动识别转换层,需要人工指定。
对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号—嵌固端所在层号+1)进行判断,是否为3层或3层以上转换.9、加强层所在层号:人工指定。
根据《高规》10.3、《抗规》6.1.10条并结合工程实际情况填写。
10、底框层数:用于框支剪力墙结构。
高规10。
211、施工模拟加载层步长:一般默认1。
中梁刚度放大系数规范
竭诚为您提供优质文档/双击可除中梁刚度放大系数规范篇一:结构计算中的梁刚度放大系数结构计算中的梁刚度放大系数王军在混凝土>中,第5.2.2条明确提出楼板作为梁的有效翼缘形成t形截面,提高了楼面梁的刚度,结构计算时应将梁刚度放大1.3~2.0倍;在>中,第7.2.3条对t形截面翼缘宽度的选取做了规定。
据此,目前结构设计中对框架结构或剪力墙结构中的框架梁,均对其刚度进行放大。
对框架梁刚度统一进行放大计算,是一种简化的、方便适用的、符合结构实际情况的结构计算方法。
但放大系数的选取是不能随意的,应根据框架梁截面大小、板的厚度经计算后确定。
梁刚度放大系数的大小,直接影响结构的整体刚度,进而影响地震力的大小。
如果取值偏小,会造成地震作用下结构体系的不安全;如果取值偏大,会造成结构配筋的浪费。
pkpm新天地20xx年第3期中有文章讨论梁刚度放大系数对梁弯矩的影响,得出的结论为:1.(竖向荷载作用下),随着梁刚度系数的增大,梁的跨中弯矩不断增大,支座负弯矩逐渐减小;2.(在地震力作用下),梁的刚度越大,梁刚度放大系数对其内力的影响越大;3.(在地震力作用下),梁的刚度放大系数对梁支座负弯矩影响大于对跨中弯矩的影响。
可见,较准确的选取梁刚度放大系数是十分重要的。
为便于设计人员准确选取梁刚度放大系数,笔者制作了“常用中梁刚度放大系数表”,方便实用。
从列表中可总结出,对剪力墙住宅结构,由于常用梁及板厚比较固定,中梁刚度放大系数可采用2.0;对普通框架结构,可采用1.7~1.9;对宽扁梁结构,可采用1.3~1.6。
同时,笔者编写了excel放大系数计算小程序,可供大家使用。
篇二:关于中梁刚度放大系数关于中梁刚度放大系数20xx-10-2809:26:33|分类:pkpm|字号订阅《高规》第5.2.2条规定:在结构内力和位移计算中,现浇楼板和装配整体式楼面中梁的刚度可考虑翼缘的作用予以放大。
其建议中梁该系数取2,边梁可取1.5,一般而言,填入此系数后,梁的刚度增大,内力也会相应的增大。
梁刚度放大系数
梁刚度放大系数梁刚度放大系数: 中梁2.0,边梁1.5 我一般这样取。
但一直不太清楚:梁刚度放大系数到底对计算结果产生怎样的影响,是不是结构整体刚度大了,就具体构件而言,梁分配的弯矩是不是大了,个人理解多多指正!==========梁刚度放大系数是对现浇楼板而言的,其意义考虑楼板作为梁的翼缘,是梁的一部分。
你的取法是正确的,因为中梁两侧都有翼缘,而边梁单侧才有。
按我的理解,设置这一参数并不存在人为地去将梁端弯矩放大,而是还其本来面目。
换句话说,如果你不考虑翼缘的作用,那么你考虑计算用的梁的刚度比实际取小了。
设置了这个系数,你的计算模型与实际结构就更吻合了。
==========对楼上的回答补充三点:1、梁刚度放大系数并不只对现浇楼板而言,对有现浇面层的装配式楼面梁,也可考虑,不过放大系数应适当减小罢了。
对无现浇面层的装配式楼面梁可不考虑。
2、梁刚度放大实际上是适当考虑了楼板平面外的刚度。
计算模型往往假定楼板平面内无穷刚,而面外刚度为0,这与实际结构并不完全符合。
另外,计算中若将楼板设成弹性板,则梁刚度便不能放大,因为程序已自动计算了板的平面外刚度。
所以梁刚度放大只适用于楼板平面内无穷刚假定的情况。
3、梁刚度放大系数与梁截面及板厚有关,使用中应根据具体情况调整。
==========能否详细说明一下梁的刚度放大系数和楼板厚度及梁截面的关系比如有什么数字关系==========我想profhxf 兄的说法是对的,那么对单根梁的计算来说应该就是按矩形梁还是T型梁的差异,那么梁的刚度放大系数取值大,梁配筋就应该小.可我比较过一个工程,梁的刚度放大系数为2时,satwe的配筋结果比梁的刚度放大系数为1的配筋结果大.是不是梁的刚度放大系数取值大,分配的弯矩就大?不知有哪位大侠能指点一二,是不是梁的刚度放大系数取值大,分配的弯矩就大==========谈一谈自己的看法:bozhou兄所说:“梁刚度放大实际上是适当考虑了楼板平面外的刚度。
YJK参数设置详细解析
结构总体信息1、结构体系:按实际情况填写。
2、结构材料信息:按实际情况填写。
3、结构所在地区:一般选择“全国”。
分为全国、上海、广东,分别采用中国国家规范、上海地区规程和广东地区规程。
B类建筑和A类建筑选项只在坚定加固版本中才可选择。
4、地下室层数:定义与上部结构整体分析的地下室层数,根据实际情况输入,无则填0。
5、嵌固端所在层号:(P219~224)抗规6.1.14条:地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的2倍。
如果地下室首层的侧向刚度大于其上一层侧向刚度的2倍,可将地下一层顶板作为嵌固部位;如果不大于2倍,可将嵌固端逐层下移到符合要求的部位,直到嵌固端所在层侧向刚度大于上部结构一层的2倍。
由于剪切刚度比的计算只与建筑结构本身的特性有关,与外界条件(如回填土的影响、是否为地下室等)无关,所以在计算侧向刚度比是宜选用剪切刚度比。
在YJK中的结果文件wmass.out中,剪切刚度是RJX1、RJY1,可从地下一层逐层计算与地上一层的剪切刚度比,出现大于2或四舍五入大于2的,该层顶板即可作为嵌固端。
如果地下室各层都不满足嵌固条件,应将嵌固部位设定在基础顶板处,嵌固端所在层号填0。
6、与基础相连构件最大底标高:7、裙房层数:程序不能自动识别裙房层数,需要人工指定。
应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
8、转换层所在层号:应按楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。
程序不能自动识别转换层,需要人工指定。
对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。
9、加强层所在层号:人工指定。
根据《高规》10.3、《抗规》6.1.10条并结合工程实际情况填写。
10、底框层数:用于框支剪力墙结构。
高规10.211、施工模拟加载层步长:一般默认1.12、恒活荷载计算信息:(P66)1)一般不允许不计算恒活荷载,也较少选一次性加载模型;2)模拟施工加载一模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;3)按模拟施工二:计算时程序将竖向构件的轴向刚度放大十倍,削弱了竖向荷载按刚度的重分配,柱墙上分得的轴力比较均匀,传给基础的荷载更为合理。
中梁刚度放大系数
中梁刚度放大系数关于中梁刚度放大系数高规的条文说明5.2.2(高规里的原话):现浇楼面和装配整体式楼面的楼面板作为梁的有效翼缘形成T形截面,提高了楼面梁的刚度,结构计算时应予考虑。
当近似以梁刚度增大系数考虑时,应根据梁翼缘尺寸和梁截面尺寸的比例予以确定。
通常现浇楼面的边框架梁可取1.5,中框架梁可取2.0;有现浇面层的装配式楼面梁的刚度增大系数可适当减少。
当框架梁截面较小而楼板较厚或者梁截面较大而楼板较薄时(开洞),梁刚度增大系数可能超出1.5-2.0的范围。
本次修订调整为1.30-2.0。
我的理解:1,随着梁刚度系数的增大,梁的跨中弯矩不断增大,支座负弯矩逐渐减小。
2,梁的刚度越小,梁刚度放大系数对其内力的影响应越大。
3,梁的刚度放大系数对梁的支座负弯矩影响大于对跨中弯矩的影响。
--------------------------------------------------------------------------------另外,《PKPM新天地》2005年第6期第16页,有关于梁刚度放大系数探讨的文章在结构的整体计算分析中,如果不考虑楼板的平面外刚度,需要对框架梁的刚度进行一定的放大。
Pkpm软件中设有这一参数,即中梁刚度放大系数,一般取值1.2~2.0间。
在实际操作中,设计人员须要根据具体工程情况自己掌握这一放大系数,而结构的分析结果往往对该系数有一定的敏感性。
为此,本文将着重讨论这一系数的取值方式和影响。
目前,Satwe程序对楼板的模拟方式主要有四种,分别是刚性板、弹性板3、弹性板6、和弹性膜。
这其中,弹性板3、6考虑了楼板的面外刚度,而刚性板和弹性膜则没有考虑楼板的面外刚度。
因此,当采用前者时,框架梁不需要进行刚度放大调整,而采用刚性板或弹性膜时,框架梁应进行刚度放大。
由于框梁的刚度放大系数对结构的整体刚度会产生影响,自振周期会相应有所变化,进而影响到地震力的大小。
显然,刚度系数大者其地震作用力也会较大。
(完整版)YJK参数设置详细解析
(完整版)YJK参数设置详细解析结构总体信息1、结构体系:按实际情况填写。
1)框架结构:框架结构是指由梁和柱以刚接或者铰接相连接⽽成,构成承重体系的结构,即由梁和柱组成框架共同抵抗使⽤过程中出现的⽔平荷载和竖向荷载。
结构的房屋墙体不承重,仅起到围护和分隔作⽤,⼀般⽤预制的加⽓混凝⼟、膨胀珍珠岩、空⼼砖或多孔砖、浮⽯、蛭⽯、陶粒等轻质板材等材料砌筑或装配⽽成。
2)框剪结构:框架-剪⼒墙结构,俗称为框剪结构。
主要结构是框架,由梁柱构成,⼩部分是剪⼒墙。
墙体全部采⽤填充墙体,由密柱⾼梁空间框架或空间剪⼒墙所组成,在⽔平荷载作⽤下起整体空间作⽤的抗侧⼒构件。
适⽤于平⾯或竖向布置繁杂、⽔平荷载⼤的⾼层建筑。
3)框筒结构:如果把框剪结构剪⼒墙布置成筒体,围成的竖向箱形截⾯的薄臂筒和密柱框架组成的竖向箱形截⾯,可称为框架-筒体结构体系。
具有较⾼的抗侧移刚度,被⼴泛应⽤于超⾼层建筑。
4)筒中筒结构:筒中筒结构由⼼腹筒、框筒及桁架筒组合,⼀般⼼腹筒在内,框筒或桁架筒在外,由内外筒共同抵抗⽔平⼒作⽤。
由剪⼒墙围成的筒体称为实腹筒,在实腹筒墙体上开有规则排列的窗洞形成的开孔筒体称为框筒;筒体四壁由竖杆和斜杆形成的桁架组成则称为桁架筒。
5)剪⼒墙结构:剪⼒墙结构是⽤钢筋混凝⼟墙板来代替框架结构中的梁柱,能承担各类荷载引起的内⼒,并能有效控制结构的⽔平⼒,这种⽤钢筋混凝⼟墙板来承受竖向和⽔平⼒的结构称为剪⼒墙结构。
这种结构在⾼层房屋中被⼤量运⽤。
6)部分框⽀剪⼒墙结构:框⽀剪⼒墙指的是结构中的局部,部分剪⼒墙因建筑要求不能落地,直接落在下层框架梁上,再由框架梁将荷载传⾄框架柱上,这样的梁就叫框⽀梁,柱就叫框⽀柱,上⾯的墙就叫框⽀剪⼒墙。
这是⼀个局部的概念,因为结构中⼀般只有部分剪⼒墙会是框⽀剪⼒墙,⼤部分剪⼒墙⼀般都会落地的。
7)板柱-剪⼒墙结构:柱-剪⼒墙结构(slab-column shearwall structure),是由⽆梁楼板与柱组成的板柱框架和剪⼒墙共同承受竖向和⽔平作⽤的结构。
PKPM计算中3个参数的不同选择对配筋量的影响
表 5 选择不同梁刚度放大系数的计算结果 梁上部受力钢筋
(【 咖 ) c I l
15 .O
梁箍筋
(m}c ) c n 1
11 . 10 .
柱纵 筋
(l 咖 ) c I I
2 7
柱箍筋 (Ⅱ c) c Ⅱ l I
2. 4
17 .0
19 .0 2. oo
.
一
; 刖 j 器 器 i = 暑 嬉 l
:
… …
●i材j 酉 帮 ¨;钳 f J i { 聃 l;}; ; 8\ 髋 D I 口 量 堂
r
c I c
D c ' 旧
~
茸
道
… ‘ 一‘ ● 霞. - . / 毫 ‘ I
在假定其它参数不变 的情况下 ,选择不 同的周 期 折 减 系数进 行 计 算 。 图 3给 出 了周 期 折 减 系 数 为
07时 ,二层 l 上 各混 凝 土 构件 配筋 及 钢 构 件 . 4轴
应 力 比简 图。
第 2期
赵芳琴 ,等 :P P K M计算中 3个参数 的不 同选择对配筋量的影响
~
蕊
、
a №
住硅 ,0 j 仰q 柏舶 1 ∞ l '0 鼬 饕∞ ㈣ m ' 0
口惦
Z
l
i
f
{
{
¨ 撕
{
{
;
}… … { ¨j
' g HO"
图 1 建筑平 面布置 图
㈠ :::: 一 :■ l 二 一… l _: :噩:L 工=:, f:[ l… ] : … :襄 r …} 二- …二 :— r :工 二
根据表 3一 5的对 比结果 ,现确定周期折减 表 系 数取 为 07 . ,连 梁 刚度折 减 系数 取 为 0 8 . ,中梁 刚度放大系数取 为 20 . ,重新计算后 ,1 4号轴线
中梁刚度放大系数,规范
竭诚为您提供优质文档/双击可除中梁刚度放大系数,规范篇一:结构计算中的梁刚度放大系数结构计算中的梁刚度放大系数王军在混凝土>中,第5.2.2条明确提出楼板作为梁的有效翼缘形成t形截面,提高了楼面梁的刚度,结构计算时应将梁刚度放大1.3~2.0倍;在>中,第7.2.3条对t形截面翼缘宽度的选取做了规定。
据此,目前结构设计中对框架结构或剪力墙结构中的框架梁,均对其刚度进行放大。
对框架梁刚度统一进行放大计算,是一种简化的、方便适用的、符合结构实际情况的结构计算方法。
但放大系数的选取是不能随意的,应根据框架梁截面大小、板的厚度经计算后确定。
梁刚度放大系数的大小,直接影响结构的整体刚度,进而影响地震力的大小。
如果取值偏小,会造成地震作用下结构体系的不安全;如果取值偏大,会造成结构配筋的浪费。
pkpm新天地20xx年第3期中有文章讨论梁刚度放大系数对梁弯矩的影响,得出的结论为:1.(竖向荷载作用下),随着梁刚度系数的增大,梁的跨中弯矩不断增大,支座负弯矩逐渐减小;2.(在地震力作用下),梁的刚度越大,梁刚度放大系数对其内力的影响越大;3.(在地震力作用下),梁的刚度放大系数对梁支座负弯矩影响大于对跨中弯矩的影响。
可见,较准确的选取梁刚度放大系数是十分重要的。
为便于设计人员准确选取梁刚度放大系数,笔者制作了“常用中梁刚度放大系数表”,方便实用。
从列表中可总结出,对剪力墙住宅结构,由于常用梁及板厚比较固定,中梁刚度放大系数可采用2.0;对普通框架结构,可采用1.7~1.9;对宽扁梁结构,可采用1.3~1.6。
同时,笔者编写了excel放大系数计算小程序,可供大家使用。
篇二:关于中梁刚度放大系数关于中梁刚度放大系数20xx-10-2809:26:33|分类:pkpm|字号订阅《高规》第5.2.2条规定:在结构内力和位移计算中,现浇楼板和装配整体式楼面中梁的刚度可考虑翼缘的作用予以放楼板对梁的刚度有放大的作用,考虑楼板的作用可以提高梁的承载力,而且这个数值并不小,但不好计。
PKPM结合新规范讲义之梁刚度放大系数
PKPM结合新规范讲义之梁刚度放大系数篇一:PKPM梁刚度放大系数讨论引述:问题的提出对于抗震区普通楼房的计算模型,分二次计算,即刚度模型、内力配筋模型:1、在刚度模型里,选择“刚性楼板假定+梁刚度放大系数按2010规范取值”计算结构的位移、周期等整体信息,以满足规范要求。
2、在内力配筋模型里,选择“去掉刚性楼板假定+梁刚度放大系数按1.5取值”计算结构的内力、配筋,以满足规范要求。
最后的模型是内力配筋模型,而此模型中的位移角稍微不满足规范,需要替换为刚度模型的内容。
个人认为这样计算“取两个模型各自符合设计概念的结果”是科学的,是符合规范要求的、也是安全的。
而有同事坚持认为“两个模型中,梁的刚度系数不能取不同,例如要么均取2,例如要么均取1。
”坚持说这样的计算书替换,不符合规范精神、不严谨、有安全隐患。
这问题直接牵涉到楼板刚度的贡献、平时工况的弹性及大震工况下的弹塑性、强柱弱梁的实现、计算的实现。
下面就从规范的规定、规范的理解、计算的实现、公司内外各专家的看法,分别展开介绍。
主要内容:一、相关规范的规定二、关于梁刚度放大系数,专家们的论述三、对于结构侧移刚度、弹性与弹塑性,傅学怡的论述四、结构计算框图五、对于二次计算、梁刚度系数取值不同,公司内的初步讨论六、对于二次计算、梁刚度系数取值不同,计算专家们的论述七、三个案例:结构整体信息前后比较主要内容:一、相关规范的规定1、《混凝土结构设计规范》:(应考虑楼板对梁刚度系数的贡献)2、《高层建筑混凝土结构技术规程》:(给出参考范围值)3、《建筑抗震设计规范》:(对梁刚度增大系数无规定,但提高了框架结构的框架柱端弯矩增大系数;)(抗震设防三个水准;二阶段设计方法) =》分两次计算二、关于梁刚度放大系数,专家们的论述1、张维斌:(应考虑楼板的刚度贡献,与砼规、高规对应)2、《建筑抗震设计规范》主编王亚勇的论述(梁刚度系数不宜取大,与抗规对应)3、对于楼板影响,清华大学博导叶列平的进一步论述(梁刚度系数不宜取大)三、对于结构侧移刚度、弹性与弹塑性,傅学怡的论述(弹性:合适的抗侧刚度;弹塑性:延性与安全度)(梁刚度系数取大值;取小值)四、结构计算框图五、对于二次计算、梁刚度系数取值不同,公司内的初步讨论(有不同的观点,或者有疑虑)六、对于二次计算、梁刚度系数取值不同,计算专家们的论述(基本赞同,或者很肯定)1、PKPM未名技术人员(约五十岁左右):(应该可以)2、PKPM软件技术负责人:(主动打来两个电话,热情洋溢)(基本赞同)3、MIDAS BUILDING上海公司技术主管(基本一致)4、广厦软件技术总监:(非常肯定)七、三个案例抚顺7度剪力墙结构整体信息前后比较江苏7度多层各结构整体信息前后比较阳光6度小高层框剪结构整体信息前后比较一、相关规范的表述:1、《混凝土结构设计规范》:(应考虑楼板对梁刚度系数的贡献)5.2.4 对现浇楼盖和装配整体式楼盖,宜考虑楼板作为翼缘对梁刚度和承载力的影响。
pkpm常用修正参数解析
1、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。
模拟施工加载2则可以更合理的给基础传递荷载。
复杂结构设计人员可以指定施工次序。
2、修正后的基本风压一般就是荷载规范规定的基本风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。
3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。
结构阻尼比取0.01~0.02,程序缺省0.02。
4、侧刚计算方法:一种简化计算法,计算速度快,但应用范围有限,当定义有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有一定误差;总刚计算方法:精度高,适用范围广,计算量大。
对于没有定义弹性楼板且没有不与楼板相连构件的工程,两种方法结果一样。
(以下转贴)“刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的削弱、不连续,均可采用这个假定。
相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。
同样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。
“弹性板6 ”的适用范围:所有的工程均可采用。
相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。
板的面外刚度将承担一部分梁柱的面外弯矩,而使梁柱配筋减少。
此时结构分析时间大大增加。
“弹性板3 ”的适用范围:需要保证楼板平面内刚度非常大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。
“如厚板转换层中的厚板,板厚达到1m以上。
而面外刚度则需要按实际考虑。
相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差异产生的传力问题。
“弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。
设计时可以进行梁的刚度放大和扭矩折减。
(弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁共同承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.此外计算工作量大.因此该模型仅适用于板柱结构;弹性楼板3:考虑楼板的面内刚度无限大,并考虑楼板的面外刚度.适用于厚板转换层;弹性膜:考虑面内刚度,面外刚度为零.采用膜剪切单元.弹性板由用户人工指定,但对于斜屋面,如果没有指定,程序会缺省为弹性膜,用户可以指定为弹性板6或者弹性膜,不允许定义为刚性板或者弹性板3)5、根据高规(JGJ 3-2010)第3.7.3条注,抗震设计时SATWE计算结果中楼层层间最大位移与层高之比的限值可不考虑偶然偏心的影响。
YJK中震、大震参数
中震:结构总体信息:(1)不计算风荷载(2)不考虑人防荷载、消防车荷载计算控制信息:(1)中梁刚度放大系数上限:1.5(2)边梁刚度放大系数上限:1.0(3)连梁刚度折减系数(地震):0.5(不计算风荷载,故其连梁刚度折减系数不变)(4)不强制采用刚性楼板假定(根据专家要求,不同结构也可以采用强刚)(5)增加计算连梁刚度不折减模型下的地震位移(不勾选)地震信息:(1)周期折减系数:1.0(2)抗震等级:四级(抗震等级的不同使得内力的调整程度不同,抗震等级为四级时相当于内力不调整)(3)抗震构造措施的抗震等级:不提高(4)不考虑偶然偏心和双向地震作用(墙肢偏拉时需要复核双向地震)(5)地震影响系数最大值:按高规表4.3.7-1取设防地震对应的数值(勾选性能设计后YJK 会自动调整)(6)地震作用放大系数:全楼1.0(不放大)(7)性能设计:按抗规附录M不同的性能确定(弹性、不屈服)。
设计信息:(1)按抗震规范(5.2.5)调整地震内力(不勾选,不进行剪重比调整)(2)不考虑0.2Vo调整(3)薄弱层内力不调整(包括“自动对层间受剪承载力突变形成的薄弱层放大调整”、“自动根据受剪承载力比值调整配筋至非薄弱”、“转换层指定为薄弱层”均不勾选,薄弱层地震内力放大系数为1.0)。
特殊构件定义:(1)框支梁、框支柱取消定义;(2)性能设计构件类型(底部加强区):墙、柱定义为关键构件,梁、墙梁定义为耗能构件(3)框梁修改过的刚度系数按小震。
大震:结构总体信息:(1)不计算风荷载(2)不考虑人防荷载、消防车荷载计算控制信息:(1)中梁刚度放大系数上限:1.0(大震时楼板裂开,对梁刚度起不到增大作用)(2)边梁刚度放大系数上限:1.0(3)连梁刚度折减系数(地震):0.3(不计算风荷载,故其连梁刚度折减系数不变)(4)不强制采用刚性楼板假定(根据专家要求,不同结构也可以采用强刚)(5)增加计算连梁刚度不折减模型下的地震位移(不勾选)地震信息:(1)特征周期:根据高规表4.3.7-2查到的特征周期按4.3.7条规定再增加0.05s;(2)周期折减系数:1.0(3)抗震等级:四级(抗震等级的不同使得内力的调整程度不同,抗震等级为四级时相当于内力不调整)(4)抗震构造措施的抗震等级:不提高(5)不考虑偶然偏心和双向地震作用(墙肢偏拉时需要复核双向地震)(6)地震影响系数最大值:按高规表4.3.7-1取罕遇地震对应的数值(勾选性能设计后YJK 会自动调整)(7)地震作用放大系数:全楼1.0(不放大)(8)性能设计:按高规第3.11节不同的性能水准确定。
盈建科各种参数设置
盈建科参数设置结构总体信息1、结构体系:按实际情况填写。
2、结构材料信息:按实际情况填写。
3、结构所在地区:一般选择“全国”。
分为全国、上海、广东,分别采用中国国家规范、上海地区规程和广东地区规程。
B类建筑和A类建筑选项只在坚定加固版本中才可选择。
4、地下室层数:定义与上部结构整体分析的地下室层数,根据实际情况输入,无则填0。
5、嵌固端所在层号:(P219~224)抗规6.1.14条:地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的2倍。
如果地下室首层的侧向刚度大于其上一层侧向刚度的2倍,可将地下一层顶板作为嵌固部位;如果不大于2倍,可将嵌固端逐层下移到符合要求的部位,直到嵌固端所在层侧向刚度大于上部结构一层的2倍。
由于剪切刚度比的计算只与建筑结构本身的特性有关,与外界条件(如回填土的影响、是否为地下室等)无关,所以在计算侧向刚度比适宜选用剪切刚度比。
在YJK中的结果文件wmass.out中,剪切刚度是RJX1、RJY1,可从地下一层逐层计算与地上一层的剪切刚度比,出现大于2或四舍五入大于2的,该层顶板即可作为嵌固端。
如果地下室各层都不满足嵌固条件,应将嵌固部位设定在基础顶板处,嵌固端所在层号填0。
6、与基础相连构件最大底标高:7、裙房层数:程序不能自动识别裙房层数,需要人工指定。
应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
8、转换层所在层号:应按楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。
程序不能自动识别转换层,需要人工指定。
对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。
9、加强层所在层号:人工指定。
根据《高规》10.3、《抗规》6.1.10条并结合工程实际情况填写。
10、底框层数:用于框支剪力墙结构。
高规10.211、施工模拟加载层步长:一般默认1.12、恒活荷载计算信息:(P66)1)一般不允许不计算恒活荷载,也较少选一次性加载模型;2)模拟施工加载一模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用于有吊柱的情况;3)按模拟施工二:计算时程序将竖向构件的轴向刚度放大十倍,削弱了竖向荷载按刚度的重分配,柱墙上分得的轴力比较均匀,传给基础的荷载更为合理。
何时考虑中梁刚度放大系数
何时考虑中梁刚度放大系数《高规》第5。
2.2条规定:在结构内力和位移计算中,现浇楼板和装配整体式楼面中梁的刚度可考虑翼缘的作用予以放大。
其建议中梁该系数取2,边梁可取1。
5,一般而言,填入此系数后,梁的刚度增大,内力也会相应的增大.计算地震作用时,模型只考虑了框架梁柱对刚度的贡献,板对总体刚度的贡献并未被考虑进去。
而实际上因为板的存在,梁由矩形变为T型,刚度增大,所以计算参数时,应将中梁刚度放大。
计算配筋时,因为属于T型梁范围内的板配有一定数量的钢筋As,As一方面承担板荷载,另一方面如果有富余As’,且As’能抵消掉因为梁刚度增大而引起的梁配筋的增量,那么梁的配筋就可以直接采用刚度不放大情况下的计算结果,反之,就应该考虑将梁钢筋予以适当放大。
梁的上部钢筋(支座负筋)配够就可以了,不必人为再放大,否则有可能会造成超筋,当梁端纵向受拉钢筋的配筋率大于2%时,箍筋直径应增加2mm。
楼板对梁的刚度有放大的作用,考虑楼板的作用可以提高梁的承载力,而且这个数值并不小,但不好计算,所以目前大部设计好像不考虑楼板的这部分的作用,也就低估了梁的承载力,这也是影响强柱弱梁的实际一个关键因素。
梁刚度的放大主要是为了考虑楼板刚度对结构的贡献。
我们知道,刚性楼板假定总是假定楼板平面内刚度无限大,这种情况下是无法考虑楼板刚度对结构的贡献的,因此规范规定通过采用梁刚度放大的方法来近似考虑,从这点来讲,梁的刚度放大并非是为了在计算梁的内力和配筋时,将楼板作为梁的翼缘,按T形梁设计,以达到降低梁的内力和配筋的目的,而仅仅是为了考虑楼板刚度的影响。
在实际工程中,倘若我们在设计工程中遇到在刚性楼板假定下,结构的位移角稍微超出了规范限制,我们可以填入此系数,考虑了楼板刚度的贡献后,结构的周期将有所减小,位移角也将有所减小,但此时梁的内力可能会增大,甚至出现超筋现象,此时我们一般按考虑刚度放大系数前的梁的内力和配筋结构作为最终结果,而位移角采用刚度放大后的结果.所以必要的时候此处要进行二次计算。
YJK参数设置详细解析
结构总体信息1、结构体系:按实际情况填写。
2、结构材料信息:按实际情况填写。
3、结构所在地区:一般选择“全国"。
分为全国、上海、广东,分别采用中国国家规范、上海地区规程和广东地区规程.B类建筑和A类建筑选项只在坚定加固版本中才可选择。
4、地下室层数:定义与上部结构整体分析的地下室层数,根据实际情况输入,无则填0。
5、嵌固端所在层号:(P219~224)抗规6。
1.14条:地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的2倍。
如果地下室首层的侧向刚度大于其上一层侧向刚度的2倍,可将地下一层顶板作为嵌固部位;如果不大于2倍,可将嵌固端逐层下移到符合要求的部位,直到嵌固端所在层侧向刚度大于上部结构一层的2倍。
由于剪切刚度比的计算只与建筑结构本身的特性有关,与外界条件(如回填土的影响、是否为地下室等)无关,所以在计算侧向刚度比是宜选用剪切刚度比。
在YJK中的结果文件wmass。
out中,剪切刚度是RJX1、RJY1,可从地下一层逐层计算与地上一层的剪切刚度比,出现大于2或四舍五入大于2的,该层顶板即可作为嵌固端。
如果地下室各层都不满足嵌固条件,应将嵌固部位设定在基础顶板处,嵌固端所在层号填0.6、与基础相连构件最大底标高:7、裙房层数:程序不能自动识别裙房层数,需要人工指定。
应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
8、转换层所在层号:应按楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。
程序不能自动识别转换层,需要人工指定。
对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号—嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。
9、加强层所在层号:人工指定。
根据《高规》10.3、《抗规》6.1.10条并结合工程实际情况填写.10、底框层数:用于框支剪力墙结构.高规10.211、施工模拟加载层步长:一般默认1。
YJK参数设置详细解析-yjk 刚性楼板【范本模板】
结构总体信息1、结构体系:按实际情况填写。
2、结构材料信息:按实际情况填写。
3、结构所在地区:一般选择“全国”。
分为全国、上海、广东,分别采用中国国家规范、上海地区规程和广东地区规程.B类建筑和A类建筑选项只在坚定加固版本中才可选择。
4、地下室层数:定义与上部结构整体分析的地下室层数,根据实际情况输入,无则填0.5、嵌固端所在层号:(P219~224) 抗规6.1.14条:地下室结构的楼层侧向刚度不宜小于相邻上部楼层侧向刚度的2倍。
如果地下室首层的侧向刚度大于其上一层侧向刚度的2倍,可将地下一层顶板作为嵌固部位;如果不大于2倍,可将嵌固端逐层下移到符合要求的部位,直到嵌固端所在层侧向刚度大于上部结构一层的2倍。
由于剪切刚度比的计算只与建筑结构本身的特性有关,与外界条件(如回填土的影响、是否为地下室等)无关,所以在计算侧向刚度比是宜选用剪切刚度比。
在YJK中的结果文件wmass.out中,剪切刚度是RJX1、RJY1,可从地下一层逐层计算与地上一层的剪切刚度比,出现大于2或四舍五入大于2的,该层顶板即可作为嵌固端.如果地下室各层都不满足嵌固条件,应将嵌固部位设定在基础顶板处,嵌固端所在层号填0。
6、与基础相连构件最大底标高:7、裙房层数:程序不能自动识别裙房层数,需要人工指定。
应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。
8、转换层所在层号:应按楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5。
程序不能自动识别转换层,需要人工指定.对于高位转换的判断,转换层位置以嵌固端起算,即以(转换层所在层号—嵌固端所在层号+1)进行判断,是否为3层或3层以上转换.9、加强层所在层号:人工指定。
根据《高规》10。
3、《抗规》6。
1.10条并结合工程实际情况填写。
10、底框层数:用于框支剪力墙结构。
高规10.211、施工模拟加载层步长:一般默认1.12、恒活荷载计算信息:(P66)1)一般不允许不计算恒活荷载,也较少选一次性加载模型;2)模拟施工加载一模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;3)按模拟施工二:计算时程序将竖向构件的轴向刚度放大十倍,削弱了竖向荷载按刚度的重分配,柱墙上分得的轴力比较均匀,传给基础的荷载更为合理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中梁刚度放大系数和强柱弱梁
时至今日,网上还在讨论“中梁刚度放大系数的取值问题”,有某些人,甚至是软件编制人员也错误的认为,梁的刚度放大可以随着设计者的控制而变化,针对这种错误论点,我不断在论坛上批驳,有点像祥林嫂了,真不知道何日才能正气战胜歪风?算了,在自己的小天地里说说吧,准备过一段时间整理一下写成论文。
如有人引述,希望注明出处,算给本人论文留点素材,谢谢!
经验丰富的设计者或审图人不一定都理解结构的原理和概念,甚至规范条文也未必能完全体现事物的本质规律!
先说几种错误观点:
1.“只有计算位移时,才考虑梁刚度放大系数,计算内力时不考虑,是因为梁的刚度放大后,其内力增大,配筋增大,从而使其承载力得到提高……有可能由强柱弱梁转换为强梁弱柱(计算位移等指标时刚度放大取2,配筋等计算时取1)”这是“承载力问题转移到内力分析阶段解决”!
2.“因为梁的刚度放大后,其分配内力增大,配筋增大...",内力不会因为一个系数的变化而变化,设计截面决定受力,所谓内力变化仅是建立的力学模型上的变化,不是实际内力的变化。
即使仅在力学上,梁的刚度放大后,竖向荷载作用下的梁端弯矩会减小。
地震力不会因为你设个1.0的系数而变小的,它和结构形式和截面有关,不和你设系数多少有关。
是先有力,才有配筋。
3.“受压时考虑楼板对梁的刚度放大,受拉时不考虑”。
内力计算时考虑刚度放大,是和截面有关,T型截面刚度无论是受压还是受拉,基本上就是n倍矩形截面刚度。
4.“我们计算的内力是T型梁的内力,而我们进行梁的配筋时,用T型梁的内力计算矩形梁的配筋,使矩形梁的配筋增大,然而实际破坏模型中再一次考虑了楼板翼缘的参与;这种情况会进一步加剧柱铰的形成”,并没有重复考虑翼缘作用,翼缘和楼板配筋不是一个概念,考虑翼缘刚度作用是结构分析阶段,考虑板筋是承载力分析阶段;按这种思路,梁截面和梁配筋也是重复考虑了!
从本质说,“梁的刚度放大”和“强柱弱梁”没有关系,和梁柱的刚度也没关系。
强柱弱梁是强度要求,刚度放大是客观事实。
要保证强柱弱梁,承载能力是关键,刚度或线刚度没有意义。
1.在弹性阶段,板及板中钢筋参与结构整体受力是事实,“梁的刚度放大”的目的是为了在整体计算中体现楼板参与而做的一种简化——就如在计算无梁楼盖是采用条板法分析是一个意思,是种由多维分析向三维或二维分析在力学上的简化措施。
2.强柱弱梁是抗震的一项基本要求,一种为大部分人所接受的“先局部,保整体”顺序破坏的概念。
强柱弱梁是我们设计的“目的”,而不是“手段和过程"!
3.就目前一般的弹性设计来看,“梁的刚度放大”是必须的,和强柱弱梁没有交叉点,因为刚度客观存在,也是内力分析前、刚度矩阵形成的前提,强柱弱梁是我们的目的,前提不影响结果(目的)。
而这个前提是不能随设计者意志力为转移。
4.加大柱的断面和配筋(柱的客观刚度)并不能决定强柱弱梁的形成,强柱弱梁是靠梁柱实际的承载能力比来实现的!理论上,无论刚度比多大的梁柱,通过调整梁柱配筋和断面都可
以实现强柱弱梁。
当然,傻瓜才去这样做!但事实上,无论从哪期规范看,它没阐述清楚这个基本概念。
5.轴压比不是越小越好,保证合理的轴压比,一定程度上对柱的抗剪及抗弯有利。
对“柱铰机制”形成的理解:
放大梁的刚度,梁所分配的弯矩增大(这实际应为T型截面的梁+板共同承受),但配筋时只配在梁上,不考虑板的作用,梁的实际承载力大大提高;(抗震中的强柱弱梁概念就此被部分破坏,塑性铰发生在梁上可能趋势减小,柱先于梁被破坏的趋势增强)
梁超强(或强梁弱柱)的原因不是梁刚度的放大,而是楼板钢筋的参与。
梁刚度放大是在内力分析阶段讨论的问题,是种客观存在(楼板不配筋也存在),而楼板钢筋参与负弯矩分配是承载力的节点分析阶段讨论的问题。
内力分析后应用于配筋的应该是:M柱≥η(M梁+M板),
承载力阶段“梁”配筋时采用(M梁+M板)、板筋照配,
造成实际“广义梁端”承载力为(M梁+M板+M板2),
形成M柱<η(M梁+M板+M板2),“柱铰机制”形成。
内力分析阶段的梁刚度不放大,柱配筋的承载力ηM梁1与梁刚度放大下的柱配筋的承载力ηM梁2比较是偏大的,
但依然不能保证:ηM梁1≥η(M梁2+M板)
即柱实际承载力≯理论强柱弱梁下柱承载力:弯矩放大*(放大梁刚度后梁端配筋+楼板参与钢筋)。
“强度计算时梁的刚度不放大”的误导源于部分软件设置和部分编制人的错误理解,“强梁弱柱”的形成有很大一部分原因是因为这一点,理论模型建立的问题如果转移到工程配筋里去解决是根本性的“本末倒置”。
可笑的是部分软件编制人还勾结规范修改组人员,在规范宣讲和软件培训中错误传播这种论调,可悲!
搞规范的如果有点正事,去仔细考虑一下该如何考虑楼板配筋的参与作用,而不是一味加大柱配筋和断面,就像“福建省建筑结构抗震设计暂行技术规定第六条一样”,有点可行性和可操作性。
福建省建筑结构抗震设计暂行技术规定。
(其实也不是完全合理,但去想总比拍脑袋强。
针对结构设计,这里应该对梁配筋用减法,柱承载力是广义梁端承载力的η倍)
其实基本原理都懂,但没人静下心来认真搞搞实验,大部分专家都喜欢坐在椅子上分析或者和忙着参考国外规范对比。
为了和人家结果统一和保险,在柱承载能力上乘个越来越大的放大系数,通过机器上的推覆一分析,呵呵,这个可以了,就这么定吧!可怜的“构件设计规范”终于能体现一部分结构体系的内容了,但做的还远远不够。
或者说,智慧的参与少于计算机的参与,理论竟然大于实践!
针对“强柱弱梁”两个方法来解决:
1.如抗规一样,采取梁端弯矩放大系数法,和过去规范一脉相承,比较容易被接受,也易被掌握。
但缺点是没法针对具体工程量化,比如大跨梁、厚板、短梁,其系数如果都相同是及其不合理的。
2.强度比关系法,概念上更清晰,而且我们的一级9度验算也是这样执行的。
取得梁超配筋增加的承载力与柱配筋关系式,根据梁的实际承载力(含板)来调整柱的计算配筋(承载力)。
应该考虑翼缘影响再算弹性M,这里的翼缘影响不是指钢筋,截面和是否板配筋没关系,板钢筋是翼缘受力的承受者和起骨架作用。
理想梁端负弯矩力学模型和配筋是:
一、内力分析中根据具体截面情况,分段采用不同的截面影响系数(即所谓刚度放大),得出M值。
(宜考虑至柱边)
二、根据M配筋,配筋应减去影响翼缘中的板钢筋。
三、柱端配筋强度大于广义梁端强度,以保证梁铰先于柱铰出现。
至于是否设一个大于1的η系数,就看试验数据支持或者制定规范的老先生们的保守程度了。