山东省郓城县随官屯镇七年级数学下册 第一章 整式的乘除 1.4 整式的乘法(第3课时)课件 (新版)
新北师大版七年级数学下册第1章 整式的乘除《1.4整式的乘法》教学PPT
用乘法分配律 完成(m+b)(n+a)的计算 把 m(n+a) 与 b(n+a) 看成两个单项式与多项式
相乘的运算,应用单项式乘多项式的法则,
得: (m+b)(n+a)=m(n+a) + b(n+a) = mn+ma + bn+ba
(m+b)(n+a)=m(n+a) + b (n+a) =mn + ma + bn + ban
2.理解单项式与多项式的乘法法 则,会进行单项式与多项式的乘法 运算。
议一议
宁宁也作了一 幅画,所用的 纸的大小和京 京的相同,她 在纸的左右两 边各留了 米 的空白,这幅画的画面面积是多少呢?
(1). x(mx- ) (2). mx2- 2
∴x(mx- )= mx2- 2
如何进行单项式与多项式相乘的运算?
合作探究
1.分别计算下面图中阴影部分的面积。
(1).
3
32
a2
(2). at + bt - t 2
小结
谈谈这节课你都有什么收获?
单项式与多项式相乘,就是 根据分配律用单项式去乘多 项式的每一项,再把所得的 积相加。
回顾 & 思考☞
☾ 单项式乘以多项回式的顾依与据是思乘考法对加法的分配律. ;
3、 (4 105 ) (510 4 )
解:(((321)) ((42x2y1a202)b5 (3)1)(x(5y)31a0)(42)[1(()42 ()xx5())3(()y1]20(ya5)2a1)02b4x)32y3260a3b1309 2 1010
解: (1) (1−x)(0.6−x)
北师大版七年级下册《数学》第一章整式乘除1.4整式的乘法第一课时(共15张PPT)
3.积的乘方法则: (ab)n anbn (n是正整数)
4.0次幂: a0 1
5.负指数幂:
an
1 an
(n
0,n是整数)
二、探索新知
1、讨论交流
(1)第一幅画的面积可表示为
(2米
以上两个算式中的是什么运算?把1.2x改 成1.2n答案是多少?回顾一下整式
1.整式包括 单项式 和 多项式 .
2.整式的乘法分为 单项式X单项式 单项式X多项式 多项式X多项式
二、探索新知
2、归纳总结
怎么计算呢?
x 1.2x 3a2b 2ab3
x mx xyz y2 z
单项式与单项式相乘,把它们的系数 、相同字母 分别 相乘,对于只在一个单项式里含有的字母,则 连同它的指数 作为积的一个因式.
5)(2.5105 )(8106 ) _2_×__1_0_1_2 .
三、冲刺难题
2、中考点拨
计算:
(1) 8a2b (ab2 ) 2b2 (2) (3x2 y)3 (4x)
求系数的积,应注意符号;
相同字母因式相乘,是同底数幂的乘法, 底数不变,指数相加; 只在一个单项式里含有的字母,要连同 它的指数写在积里,防止遗漏;
求系数 的积, 应注意
符号
只在一个单项式里含有的字母,要连同它的指数写在积里,防止遗漏.
计算:
1)(3x2 y)(3xy) _-_9_x_3y_2_;
2)(ax2 )(abxn ) _a_2_bX_n_+_2 _;
3)( 3 ax)( 2 bx5) __12__a_b_x_6_;
4
3
4)(a3n )2 (b2 )3n ___a_6n_b_6_n ;
单项式乘以单项式的结果仍然是一个单项 式,结果要把系数写在字母因式的前面;
山东省郓城县随官屯镇七年级数学下册 第一章 整式的乘除 1.5 平方差公式(第2课时)教案 (新版)北师大版
第一章整式的乘除5 平方差公式(第2课时)一、学生起点分析学生的知识技能基础:学生通过上一节课的学习,已经经历了探索和推导平方差公式的过程,并能运用公式进行简单的计算,同时前面有理数运算、整式运算等基础知识以及基本技能的学习,为本节课的学习奠定了知识技能基础.学生活动经验基础:学生在前面的学习中,已经经历了探索和应用平方差公式的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力,具有了一定自主探究意识以及与同伴合作交流的能力.前期数形结合思想的渗透,为本节课的探究活动做好了知识、经验准备.二、教学任务分析学生在上节课经历了平方差公式的探索和推导过程,并能够运用平方差公式进行简单计算.在此基础上,教材提出本节课的学习任务,是对上一节课平方差公式的进一步巩固,并拓展到有关数的简便运算当中去.本节课又通过拼图游戏,对平方差公式进行几何意义解释,目的是使学生对平方差公式有一个直观的认识,进一步体会数形结合的数学思想.本节课的教学目标是:1.知识与技能:经历探索平方差公式的过程,会通过图形的拼接验证平方差公式,了解平方差公式的几何背景,并会运用所学的知识,进行简单的混合运算.2.过程与方法:通过创设问题情境,让学生在数学活动中建立平方差公式模型,通过探索规律,归纳出利用平方差公式,解决数字运算问题的方法,培养学生观察、归纳、应用能力.3.情感与态度:了解平方差公式的几何背景,培养学生的数形结合意识.在探究学习中体会数学的现实意义,培养学习数学的信心.三、教学过程设计基于对教材以及教学任务的分析,本节课设计了五个教学环节:复习旧知、引入新课;创设情境、探究结论;观察思考、拓展延伸;典例分析、巩固提高;当堂达标、自我检测;课堂小结、布置作业.第一环节复习旧知、引入新课活动内容:回顾上节课平方差公式平方差公式:(a +b )(a -b )=a 2-b 21.公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积;右边是两数的平方差.2.应用平方差公式的注意事项:1)注意平方差公式的适用范围2)字母a 、b 可以是数,也可以是整式3)注意计算过程中的符号和括号活动目的:上节课直接利用多项式乘以多项式法则,推导得到平方差公式,设计这一环节的目的,是在复习上节课知识的基础上,引入本节课的平方差公式的几何解释,并为进一步应用平方差公式,简化数字运算和较复杂化简计算做好知识准备.实际教学效果:采用组内督查,提问反馈的形式进行复习,做好知识准备,从而为本节课平方差公式的应用做好准备.第二环节 创设情境、探究结论活动内容:如图1-3,边长为a 的大正方形中有一个边长为b 的小正方形.(1)请表示图1-3中阴影部分的面积小颖将阴影部分拼成了一个长方形(如图1-4),这个长方形的长和宽分别是多少?你能表示出它的面积吗?比较(1)(2)的结果,你能验证平方差公式吗?活动目的:本环节通过几何拼图,给平方差公式一个几何背景,使学生在拼图和计算过程中发现规律,验证自己的猜想,使学生对平方差公式,有一个直观感受和认识,避免在公式的学习过程中单纯依赖背诵的弊病. 通过拼图操作,让学生经历观察、交流的过程,倡图1-3图1-4导思维和算法多样化,让学生在图形直观分析的基础上,从代数角度推导公式,培养学生的逻辑推理能力,渗透了转化的数学思想。
推荐K12山东省郓城县随官屯镇七年级数学下册第一章整式的乘除1.6完全平方公式第2课时教案新版北师大版
第一章整式的乘除6完全平方公式(第2课时)一、学生起点分析学生的知识技能基础:学生通过上一节课的学习,已经经历了探索和推导完全平方公式的过程,并能运用公式进行简单的计算,同时通过前面的学习,学生已经基本掌握了整式的乘法运算,并能简单运用平方差公式和完全平方公式进行计算,这些知识的掌握为本节课的学习奠定了良好的知识技能基础.学生活动经验基础:在前面几节课的学习中,学生已经经历了探索和应用乘法公式的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.本节课是对乘法公式的综合应用,同时乘法公式又是整式乘法中具有特殊结构的一类问题,从而让学生经历由特殊到一般的过程,学会在解题之前进行观察与思考是至关重要的,而这在平方差公式的灵活运用中学生同样也积累了一定的活动经验.二、教学任务分析教科书是在学生已经经历了完全平方公式的探索和推导过程之后,并能够运用完全平方公式进行简单计算的基础上,提出本节课的学习任务的.可以说首先是对完全平方公式的进一步巩固,并能将其运用到有关数的简便运算当中去.同时,虽然本节课是完全平方公式的第二个课时,但其实也是对乘法公式及整式乘法运算的简单的综合运用.为此,本节课的教学目标是:1.知识与技能:熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算.2.过程与方法:能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力,感悟换元变换的思想方法,提高灵活应用乘法公式的能力,体会符号运算对解决问题的作用,进一步发展学生的符号感.3.情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美.三、教学过程设计本节课设计了七个教学环节:回顾与思考、做一做、简单应用、综合应用、课堂小结、布置作业、联系拓广.第一环节回顾与思考活动内容:复习已学过的完全平方公式.1.完全平方公式:(a+b)2 = a2 + 2ab + b2(a-b)2 = a2 - 2ab + b22. 想一想:(1)两个公式中的字母都能表示什么? 数或代数式(2)完全平方公式在计算化简中有些什么作用?(3)根据两数和或差的完全平方公式,能够计算多个数的和或差的平方吗?活动目的:本堂课的学习方向首先仍是对于完全平方公式的进一步巩固应用,因而复习是很有必要的,这为后面的学习奠定了一定的基础,同时经过本环节中的第三个问题的思考,也使学生明确了本节课学习的初步目标,起到了承上启下的作用.实际教学效果:在复习过程中,学生能够顺利地回答出完全平方公式的内容,同时第三个问题的设计适合学生的思维过程,又不难回答,但是却为后面的学习进行了铺垫,起到了很好的效果.第二环节做一做活动内容:出示幻灯片,提出问题.有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1) 第一天有a 个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2) 第二天有b 个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3) 第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?活动目的:数学源自于生活,通过生活当中的一个有趣的分糖场景,使学生进一步巩固了(a+b)2=a2+2ab+b2,同时帮助学生进一步理解了(a+b)2与a2+b2的关系.同时通过问题串的形式,层层递进,适合学生的思维梯度,学生通过自主探究和交流学到了新的知识,巩固了旧的知识,学生的学习积极性和主动性得到大大的激发.实际教学效果:问题提出后,学生能够主动的去寻找问题的答案.同时问题串的设计具有梯度,在不自觉中学生一步步的对知识得以深入理解,并在解决问题过程中体会到了完全平方公式的作用.同时在教学过程中教师还可以引导学生进一步讨论多出2ab的原因:对于这a个男孩,每个男孩第三天得到的糖果数多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.在整个探索过程中老师只是在提出问题和引导学生解决问题,学生通过独立思考与讨论的方式得出了答案,整个过程中学生的自主性得到了充分的体现,课堂气氛平等融洽.第三环节简单应用活动内容:1.例题讲解例2 利用完全平方公式计算:(1) 1022 ; (2) 1972(1)把 1022改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1022 =(100+2)2=1002+2×100×2+22=1000+400+4=10404(2)把 1972改写成 (a+b)2还是(a−b)2 ?a、b怎样确定?1972 =(200-3)2=2002-2×200×3+32=4000-1200+9=388092. 随堂练习利用整式乘法公式计算:(1) 962; (2) 2032活动目的:能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.实际教学效果:此环节的设计符合学生的认知水平和认知过程.虽然问题本身难度不大,学生容易解决,但是通过在解题之前的观察与思考,使学生养成认真审题的好习惯,同时对于知识的掌握更有深度,也为后面乘法公式的综合应用奠定了良好的活动基础.第四环节综合应用活动内容: 1.例题讲解例3 计算:(1) (x+3)2 - x2解: (1) 方法一完全平方公式→合并同类项(x+3)2-x2=x2+6x+9-x2=6x+9解: (1) 方法二平方差公式→单项式乘多项式.(x+3)2-x2=(x+3+x)(x+3-x)=(2x+3)·3=6x+9(2)(x+5)2–(x-2)(x-3)解: (2)(x+5)2-(x-2)(x-3)=(x2+10x+25)-(x2-5x+6)=x2+10x+25-x2+5x-6=15x+19温馨提示:1. 注意运算的顺序.2. (x−2)(x−3)展开后的结果要注意添括号.(3) (a+b+3)(a+b-3)解:(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32=a2+2ab+b2-9温馨提示:将(a+b)看作一个整体,解题中渗透了整体的思想2.巩固练习(1)(a-b+3)(a-b-3)(2)(x-2)(x+2)-(x+1)(x-3)(3)(ab+1)2-(ab-1)2(4)(2x-y)2-4(x-y)(x+2y)活动目的:使学生进一步熟悉乘法公式的运用,同时进一步体会完全平方公式中字母a,b的含义是很广泛的,它可以是数,也可以是整式.并且在解题过程中体会解题前观察与思考的重要性,学会一题多解情况下的优化选择,并通过例题中的第三个题目体会整体思想,同时渗透添加括号的思想.实际教学效果:对例题1(1),学生经过独立思考容易想到方法一从而借助于完全平方公式来解决问题,但是不容易想到借助逆向使用平方差公式来进行计算,在教师的引导下部分学生可以理解借助平方差公式的方法.虽然此题两种方法解题难度上差别不大,但是在随后练习中的第三小题学生会感悟到借助逆向使用平方差公式更为简单.从而既达到了巩固练习的目的,还使学生有了优化选择的意识.对例题1(2),当整式乘法之间用减号连接时,此时应特别注意后面部分的计算结果应该加上括号,这是学生非常容易出错的地方,应给予强调,并在随后练习中的二、四小题有所体现.对例题1(3),在前面学习中就已经有所渗透整体的思想,此题让学生进一步感悟公式中的“a”“b”除了可以代表数与字母之外,还可以代表代数式,并体会添加括号的思想.第五环节课堂小结活动内容:归纳小结1. 完全平方公式的使用:在做题过程中一定要注意符号问题和正确认识a、b表示的意义,它们可以是数、也可以是单项式,还可以是多项式,所以要记得添括号.2.解题技巧:在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.同时本节课更多的属于练习巩固及综合应用,所以应让学生更多的谈在这节课中解题上所获得的收获与体会.实际教学效果:通过学生的畅所欲言,教师在其中能够发现学生掌握较为薄弱的地方,从而在今后教学中可以得以弥补.同时学生谈了更多在某个题目上所获的经验和方法,此时教师应给予总结,进一步明确所涉及的数学思想和数学方法.第六环节布置作业活动内容:1.基础训练:教材习题1.12 .2.扩展训练:联系拓广活动目的:课下将所学知识进一步巩固,并得以反馈.第七环节联系拓广1.(1)如果把完全平方公式中的字母“a”换成“m+n”,公式中的“b”换成“p”,那么 (a+b)2变成怎样的式子?怎样计算(m+n+p)2呢?(m+n+p)2=[(m+n)+p]2=(m+n)2+2(m+n)p+p2=m2+2mn+n2+2mp+2np+p2=m2+ n2 +p2+2mn+2mp+2np(2)把所得结果作为推广了的完全平方公式,试用语言叙述这一公式:三个数和的完全平方等于这三个数的平方和,再加上每两数乘积的2倍.(3)仿照上述结果,你能说出(a−b+c)2所得的结果吗?2. 已知:a+b=5,ab=-6,求下列各式的值(1)(a+b)2 (2)a2+b2若条件换成a-b=5,ab=-6,你能求出a2+b2的值吗?活动目的:对于本节课的进一步拓广,培养学生的探究意识,让学有余力的同学进一步加深对本节课的理解.实际教学效果:确实引起了班内数学较突出同学的兴趣,并能够积极主动地去探究,从而达到了由“小课堂”到课下“大课堂”的目的,培养了学生学习数学的兴趣.四、教学设计反思1. 遵循课程标准所提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”的理念,教学中力求使“自主探索、动手实践、合作交流”成为学生学习的主要方式.2. 为了充分展示数学问题的发生、发展及变化过程,本课采用计算机辅助教学.在整个新课的教学中,采用“动脑想,动手写,会观察,齐讨论,得结论”的学习方法.这样做,增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体;这样做,使学生“学”有所“思”,“思”有所“得”,这样做,体现了素质教育下塑造“创新”型人才的优势.最后,结合本节课教学内容,选择具有典型性,由浅入深的例题,让学生认知内化,形成能力.通过发展提高,培养学生迁移创新精神,有助于智力的发展.。
山东省郓城县随官屯镇七年级数学下册 第一章 整式的乘除 1.5 平方差公式(第2课时)课件 (新版)
一a
a
b
b
图1-3
图1-4
(3)比较(1)(2)的结果,你能验证 平方差公式吗?
活动探究
二 1、计算下列各组算式,并观察它们的共同
特点
7×9=
11×13=
79×81=
8×8=
12×12=
80×80=
2、从以上过程中,你发现了什么规律?
3、请用字母表示这一规律,你能说明它的 正确性吗?
例3
用平方差公式进行计算: (1)103×97 ; (2)118×122 (100+3)(100-3) (120-2)(120+2)
1) 2001×1999 -20002
2)(3mn+1)(3mn-1)-8m2n2
3) (1 x 2) (1 x 2) - 1 x(x+8)
2
2
4
课堂小 结
本节课你有哪些收获?
还有那些困惑?
作业
拓展作业: 计算
(21+1)( 22+1)(24+1)(28+1)(216+1)(232+1)(264+1)
第一章 整式的乘除
5 平方差公式(第2课时)
知识回 顾
1、平方差公式: (a+b)(a-b)=a2-b2
2、公式的结构特点: 左边是两个二项式的乘积,即两数和与
这两数差的积;右边是两数的平方差。
3、应用平方差公式的注意事项:
1)注意平方差公式的适用范围
2)字母a、b可以是数,也可以是整式
3)注意计算过程中的符号和括号
活动探究 一a
b 图1-3
如图1-3,边长为a的大正方形中有一个边长为b 的小正方形.
山东省郓城县七年级数学下册第一章整式的乘除回顾与思考(第1课时)教案(新版)北师大版
第一章整式的乘除回顾与思考(第1课时)课时安排说明:《回顾与思考》共分两课时,第一课时,主要内容是复习整式的乘除法法则,幂的运算、简单的整式乘除法练习;第二课时,主要内容是灵活运用乘法公式,稍复杂的整式乘除法及综合应用.一、学生起点分析:学生的知识技能基础:学生在这一章中了解了整数指数幂的意义和正整数指数幂的运算性质,经历了探索整式乘除法法则的过程,理解了整式乘除的算理,运用这些知识解决了一些相关的实际问题。
但这一章的运算法则较多,公式也容易混淆,而且学生对这些知识的理解缺乏整体认知,还没形成体系.学生活动经验基础:在学习整式乘除法的过程中,学生经历了许多数学活动,积累了一定的经验.但是学生有条理的思考和表达能力还比较薄弱,缺乏综合运用知识解决较复杂问题的经验,需要进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
二、教学任务分析代数是一门具有丰富内容并且与现实世界、学生生活、其他学科联系十分密切的学科,同时代数也是一门基础的数学学科,它为数学本身和其他学科的研究提供了语言、方法和手段,它的符号表示手段,深刻的揭示了存在于一类实际问题中的共性,有助于人们对现实世界的认识;它的运用代数式、表格、图像等多种表示的方法,为数学交流提供了有效的途径;它的模型化方法、表示的思想、方程的思想、函数的思想以及推理的方法也为数学本身和其他学科的研究提供了基础。
教科书根据整式乘除的知识体系特征和学生的认知基础,提出了复习课的具体学习任务:梳理全章内容,建立知识体系;熟练运用幂的运算法则、整式乘除法进行运算;综合运用这些知识解决稍复杂的问题,这是近期目标。
整式的乘除内容从属于“数与式”这一数学学习领域,远期目标是“让学生经历观察、操作、推理、想象等探索过程,发展学生的符号感和应用意识,提高应用代数意识及方法解决问题的能力”。
为此,本节课的教学目标是:1.知识与技能:梳理全章内容,建立知识体系;熟练运用幂的运算法则、整式乘除法进行运算.2.过程与方法:让学生经历观察、操作、推理、想象等探索过程,发展学生的符号感和应用意识,提高应用代数意识及方法解决问题的能力.[]24432432153232333)(.4)(.3)(.22.1bb b x x x x x x x a a a m m ==-=-⋅-=-=-⋅=⋅⨯⨯++3.情感与态度:在数学活动中发展学生合作交流的能力和数学表达能力,感受数学与现实生活的密切联系,增强学生的数学应用意识. 三、教学过程设计本节课按知识点分类设计了六个教学环节:自我展示、知识串联、同场竞技、拓展延伸、课堂小结、布置作业.第一环节:自我展示活动内容: 让学生展示自己的预习作业:本章知识框架图,并进行说明.活动目的:让学生亲自经历知识梳理的过程,感受幂的运算与整式的乘除法之间的关系,更好地形成自己的知识体系.活动注意事项:不同学生的知识结构图可能在各个知识点间的联系、书写详略程度上存在差异,教学时教师可以在课前选取有代表性的框架图进行全班展示,注意让学生说说自己的框架建立的过程.在学生展示的基础上,教师可以呈现一个比较简单明了的知识框架图:第二环节:知识串联活动内容:将本章学过的所有法则及公式快速加以复习,同时让学生回答出法则及公式中的注意事项.活动目的:让学生进一步明确各种运算法则,类比纠正学生在认识上模糊的地方,为下面的练习做好准备.活动注意事项:在学生串联知识的过程中,教师应注意学生是否存在法则的混淆,是否能较好的区别法则,是否理解法则的文字叙述和符号表示等,对学生存在的困惑可以适当的举例讲解.第三环节:同场竞技 活动内容:1、快速判断以下各题是否正确同底数幂的运算性质单项式的乘单项式的除法单项式与多项式的乘法多项式与单项式的除法多项式的乘法乘法公式,1、用小数或分数表示.=-52=⨯-51047.22、探索规律:下列单项式则第n 项是。
七年级数学下册 第一章 整式的乘除 1.4 整式的乘法(第3课时)课件
【题组训练】
1.(2019·黄石下陆区期末(qī mò))若(x+4)(x-2)=x2+mx+n,
则m,n的值分别是 ( )C
A.2,8
B.-2,-8
C.2,-8 D.-2,8
第二十页,共四十页。
★2.已知a+b=4,ab=3,则代数式(a+2)(b+2)的值是( )
D
A.7
第十七页,共四十页。
【学霸提醒(tíxǐng)】
求多项式乘法中相关字母的值的两种题型及思路
1.在包含多项式乘多项式的等式中,要确定相关字母的值:应先 计算多项式乘多项式,化简后与已知多项式对照,对应的系数相 等,进而求出相关字母的值.
第十八页,共四十页。
2.结果中“不包含某项”,要确定相关字母的值: 先计算多项式乘多项式,然后把相关字母看作已知数,合并(hébìng) 同类项,“不包含”的项的系数为0,进而确定相关字母的值.
…………合并同类项
第十六页,共四十页。
因为展开式中x2项的系数(xìshù)为9,x3项的系数为1,
所以___6_n__+_3_m__+__6=9,_______-_(_m__+=61).
…………列方程
解得m=____-_7__,n=_____4_.
…………解方程
所以m-n=___-_7__-4___=____-_1_1__. …………代入求值
第十四页,共四十页。
知识点二 多项式与多项式相乘的应用(yìngyòng)
(P18例3拓展) 【典例2】(2019·重庆沙坪坝区月考) 若(2x2-mx+6)(x2-3x+3n)的展开式中x2项的系数为9, x3项的系数为1,求m-n的值.
山东省郓城县随官屯镇七年级数学下册第一章整式的乘除1.6完全平方公式第1课时课件新版北师大版
((a+2b+)32x)=a22=+(22a+b3+xb)(22+3x)
(32)((n-+21x)2+1−)22)=2a−2-n22a; b+b2
利用完全平方公式计算: 由=4下+2面×的2×两3个x+图9形x2你能得到哪个公式?
(指2)出(-下2列x+各1式)2 中的错误,并加以改正:
(2) (-2x+1)2
右=4边+1是2x两+9数x2的平方和加上(减去)这两数乘积的两倍.
右两边数是 和两(数或的差平)方的和平加方上,(等减于去这)两这数两的数平乘方积和的加两上倍(或. 减去)这两数积的两倍.
指(3)出(n下+1列)2各−式n中2 ;的错误,并加以改正:
两(a-数b和) (2=或a2差-)2a的b+平b方2 ,等于这两数的平方和加上(或减去)这两数积的两倍.
x )2
;
(3)(n +1)2 − n2 ;
(4) (4x + 0.5)2 ; (5) (2x2-3y2)2
练一练
2. 指出下列各式中的错误,并加以改正: (1) (2a−1)2=2a2−2a+1; (2) (2a+1)2=4a2 +1; (3) (a−1)2=a2−2a−1.
又识完全平方公式: 左=4边+1是2x二+9项x2式(两数和(差))的平方;
结果不同: 平方差公式的结果是两项 即 (a+b)(a−b)=a2−b2.
2. 在解题过程中要准确确定a和b,对照公 式原形的两边, 做到不丢项、不弄错符号 、2ab时不少乘2。
作业
拓展练习: (a+b)2与(a-b)2有怎样的联系?能否用一个 等式来表示两者之间的关系,并尝试用图 形来验证你的结论?
推荐K12学习山东省郓城县随官屯镇七年级数学下册第一章整式的乘除1.2幂的乘方与积的乘方第2课时教案
第一章 整式的乘除2 幂的乘方与积的乘方(第2课时)一、 学生起点分析:学生知识技能基础:学生通过对七年级上册数学课本的学习,已经掌握了用字母表示数的技能,并且了解了有关乘方的知识,根据幂的意义知道了式子:na n a a a a =⨯⨯⨯个的成立,而通过对前两节课的学习,对于幂的运算中“同底数幂的乘法”与“幂的乘方”法则已非常熟悉,而与之有关的延伸题及变形题都有一定的涉及.学生活动经验基础:在探讨“积的乘方”的关系式中,学生仍可根据幂的意义的有关计算,经历从特殊到一般的研究过程,感受到知识之间的内在联系,能从具体情境中抽象出数量之间的变化规律,并且能够用字母表达式体现展示这一规律.同时在学习过程中,给学生足够的合作交流空间,加深对法则的探索过程及对算理的理解.二、教学任务分析:教科书从求地球的体积这样一个实际背景入手,再通过一组算式深入浅出地把新知识一点一滴的落实下来.通过前期的数学学习,学生对探讨幂的运算方式方法已经具有一定的体会,由前期工作的铺垫学生对新知识的接受没有太大的疑惑.在教学中,教师注意引导学生对积的乘方一般规律的探索和表达,鼓励学生通过独立思考与讨论发现关系,给学生留下充分探索和交流的空间.为此,本节课的教学目标是:1. 知识与技能:了解积的乘方的运算性质,并能解决一些实际问题.2. 过程与方法:经历探索积的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.3. 情感与态度:体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.三、 教学过程设计:本节课设计了七个教学环节:复习回顾、探索交流、知识扩充、巩固新知、公式逆用、课堂小结、布置作业.第一环节:复习回顾:活动内容:复习前几节课学习的有关幂的三个知识点:1.幂的意义:na n a a a a =⨯⨯⨯个 2.同底数幂的乘法运算法则.n m n m a a a +=⋅(m 、n 为正整数)3.幂的乘方运算法则(a m )n =a m n (m 、n 都是正整数)活动目的:在学习的过程中要让学习者保持思维的连贯性是一件十分重要的事情,因而必要的铺垫是要进行的.七年级上学期所学习的幂的意义对七年级下学期要学的幂的运算有很大的帮助,它能辅助公式的推导起到降级运算的目的.同底数幂的乘法及幂的乘方都是在它的铺垫下完成的,可见“温故而知新”不失为一好的学习方法. 活动注意事项:复习的过程不是单单复习旧知识的过程,那样的复习太狭隘,“不积跬步,无以致千里;不积小流,无以成江海”,学习是一个逐渐集聚的过程,前面已经学习了两节幂的运算,在本节课中,由复习开始更应为新课的学习作准备.复习的关键要着重于知识的建模,回忆旧知识的同时更要回忆推导过程中蕴含的数学思想,从而为新知识的学习打下坚实的基础.第二环节:探索交流活动内容:地球可以近似地看做是球体,如果用V, r 分别代表球的体积和半径,那么334r V π=. 地球的半径约为6×103 km ,它的体积大约是多少立方千米? 本环节是这节课最为重要的环节之一,充分借助教材提供的求地球体积的情境,引导学生思考“(6×103)3等于多少”,同时分析这种运算的特征,展开对“积的乘方”运算的探索,教师还可以在课上可以对直接学生进行升级式提问:(1)根据幂的意义,(ab )3表示什么?(2) 为了计算(化简)算式ab ·ab ·ab ,可以应用乘法的交换律和结合律.又可以把它写成什么形式?(3)由(ab )3=a 3b 3 出发, 你能想到更为一般的公式吗?活动目的:经历了前两节课的探究,在本课中可以启发学生自主从具体特殊的数字问题到抽象的字母,新的挑战更会激起学生学习的兴趣,达到更好的学习效果.活动注意事项:本环节的设计是在学生已有的知识结构基础上,根据学生脑海中已存在的数学模型,稍作调整,探讨字母表达规律直击新课学习目标的,这样的环节设计对学生能力的训练能够起到很大的作用.探索的过程由实际情景过渡到特殊的(ab )3=a 3b 3的结论,再让学生猜想(ab )n =a n b n 的成立,并进行说理解释.这样的设计不拖沓亦不唐突,但基于学生学习现状考虑,如果有些班中有部分同学接受起来遇到困难,建议授课教师在不影响正常教学的情况下,将学生进行小组划分,发挥兵教兵的方式,让学生在合作中学习,体会数学知识的内在联系,尝到学会新知识的快乐.第三环节:知识扩充活动内容:积的乘方的运算法则:(ab )n =a n b n积的乘方,等于每一因数乘方的积.公式拓展:三个或三个以上的积的乘方,是否也具有上面的性质? 怎样用公式表示? 进一步探讨出答案(abc)n =a n ·b n ·c n活动目的:此环节这样设计的活动目的有两个:一、学生所学的知识之间是相辅相成的,支离破碎分解知识来学习对学习者来说是毫无意义的,因而在教学过程中建立学习的主线,让思维连贯起来显得尤为重要.二、知识拓展也要把握时机.前一环节探索新知识难度不大,所以把难点设置在公式拓展上较为合适.本环节中提示用不同的方法证(a b c )n =a n ·b n ·c n ,这本身在开拓学生思路方面也是一个促进.活动注意事项:教师在引导学生探讨这部分内容时,要投入一定的精力来关注学生课堂上的表现,如果整体学习难度较大,可加大力度全班性的进行引导,多一些点拨,多一些提示,帮助学生尽快掌握拓展内容.而如果只是一部分学习存有困难,仍可采用前面提到的小组分工合作学习的方式,充分调动学生学习积极性.但要求授课教师时时进行观察,选择最好的授课方案,这也是对教师的要求.第四环节:巩固新知活动内容:1.课本【例2】计算:(1)(3x )2 ; (2)(-2b )5 ;(3)(-2x y )4 ; (4)(3a 2)n .2.完成引例的求地球体积问题3.下面的计算是否正确?如有错误请改正.(1)844)(ab ab =;(2)2226)3(q p pq -=-4.课本随堂练习1活动目的:处理习题应遵循从易到难的顺序来进行,本环节的设计正是如此.判断题难度较低,起到对基本知识点的辨析作用.两个例题从数据及应用方面进行研究,对新知识的落实也都是进行巩固.至此,学生已掌握了三种不同的幂的运算方式,即同底数幂的乘法、幂的乘方与积的乘方,这三大部分可以综合来进行出题,让学生在知识整合上上一个新台阶.活动注意事项:教学过程中把各类习题完全放手给学生进行,这是建立在相互信赖的基础之上,能够促进学生学习积极性,授课教师在学习的过程中必须起到主导作用,在实际授课时,多关注学生独立思考、解决问题的过程,以及学习的状态,对于掌握不好的方面多进行强调,以免学生形成错误思维定式.第五环节:公式逆用活动内容:计算:(1)23×53 ; (2) 28×58 (3) (-5)16 × (-2)15 ; (4) 24 × 44 ×(-0.125)4 (5)0.25100×4100 (6) 812×0.12513活动目的:这是一组综合性较强的提高习题,学生通过处理这些习题,能够体会到公式逆用的方法,以及公式逆用在实际问题解决的过程中能够对计算带来简便作用.可以根据上课时间将部分题目留作课后完成.活动注意事项:本环节是对学生处理知识能力综合考查的一环节,对公式理解透彻的同学进行起来难度不大,而公式掌握生疏的同学处理起来就有一定困难了.在教学过程中,可以设计合作小组间进行“过关斩将”游戏,看哪个小组积分多.第六环节:课堂小结:活动内容:师生互相交流本堂课上应该掌握的积的乘方的特征,教师对课堂上发现的学生掌握不好的地方给以强调.活动目的:课堂小结并不只是课堂知识点的回顾,要尽量学生畅谈自己的切身感受,教师对于发言进行鼓励,对于知识点整合,更要有所思考,达到对所学知识巩固的目的.活动的注意事项:在小结中,让学生谈出自己学习的体会,其中有能够掌握的,也有掌握不好的,掌握不好的可以结合相关习题进行点拨.第七环节:布置作业1.完成课本习题1.3的1、2、5、62.拓展作业:你能用几何图形直观的解释(3b )2=9b 2吗?四、教学设计反思新课程下的数学实验教材是来源于学生实际生活的教材,教材有丰富的生活背景,重在让学生探讨,独立得到新的知识.教材是最重要的课程资源,这是不容置疑的.然而,教材只是学生学习的素材,不是教学的范本.新课程改革使教学过程中教师可支配的因素增多了,课程内容的综合性、弹性加大了,给了教师更为广阔、更为自由的空间,要求教师具备一定的课程整合能力,创造性地使用教材.1.深入分析,让教材“立”起来新课程标准数学实验教材较好地体现了课程标准的理念和总体培养目标.注意从形成学生学习经验的角度出发,充分考虑学生的年龄特征、认知水平,增强了书本知识与现实生活的联系.教材在内容、结构、题例和呈现方式上,既注意了继承与发展的关系,又注意体现了开放的教材观、开放的学习方式和教学方法.教师应在深入理解、研究教材中所提供的丰富的信息资源的基础上,科学合理地使用好教材的这些有效资源.因此,我们在处理教材、安排教学内容时,要明确教材中的知识,活化教材内容,增强学生对数学内容的亲切感,激发学生求知欲.2.适当延伸,让教材“宽”起来现代教学理论主张:"用教材教",教师不应只是被动的课程执行者,而应成为课程的开发者和创造者.因而对实施课程目标的重要资源的教材进行创造性使用已是时代的要求,每位教师必须摒弃"教教材"和"以教材为本"的观念.通过创造性使用教材,促使学生在知识、能力、情感、态度、价值观等方面得到发展.而教材中的例题和习题,大都是一些条件充足、问题明确的标准问题,虽然有简洁的特点,却没有给学生留下自主探究的空间.因此,在教学中,我们要以教材例题为基本内容,对教材内容作必要处理与适当延伸.把封闭的形式变成灵活的、开放的形式,教学内容的呈现要生动、活泼,富有启发性和趣味性.补充一定的联系拓广问题会激发学生不断去探究,寻找不同的推导方法,从而培养学生求异思维与创新精神,也拓宽了教材资源,激活课堂教学.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业:
拓展作业:
解方程(x 2)(x 3) (x 1)(x 4)
预习作业: 两项式乘以两项式,结果可能是四项吗? 可能是三项吗?可能是两项吗?请你举 例说明
应用新知:
例3 计算:
(1) (1 x)(0.6 x) (2) (2x y)(x y) (3) (2m n)2
综合练习:
(1) (x 1)(x2 x 1)
(2) (x 2)( y 3) (x 1)( y 2)
变式训练:
1、计算:
(1) (m 2n)(m 2n) (2)(2n 5)(n 3)
a 图1-2
探究尝试:
1、你能说出 (m a)(n b) n(m a) b(m a) 这一步运算的道理吗?
2、 结合这个算式 (m+a)(n+b)=mn+mb+an+ab
你能说说如何进行多项式与多项式相乘 的运算?
探究尝试:
单项式与多项式相乘的法则: 单项式与多项式相乘,就是根据分
配律用单项式去乘多项式的每一项,再 把所得的积相加。
第一章 整式的乘除
4 整式的乘法(第3课时)
前置诊断:
计算:
(1) (3mn)2 (m2 mn n2 )
(2) 2a2 a(2a 5b)
创设情境:
图1-1是一个长和宽分别为m,n的长方形纸 片,如果它的长和宽分别增加a,b,所得
长方形(图1-2)的面积可以怎样表示?n Leabharlann m1-1bnm
2、计算:(2x 1)(x 5) (x 5)(x 3)
3、若 (mx y)(x y) 2x2 nxy y2 求m,n的值.
收获感悟:
本节课学习了哪些知识? 领悟到哪些解决问题的方法? 感触最深的是什么? 对于本节课的学习还有什么困惑?
达标检测:
计算:
(1)(ax b)(cx d)